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A subset X of an Abelian group G is called semia�ne if for every x, y, z ∈ X
the set {x + y − z, x − y + z} intersects X. We prove that a subset X of an
Abelian group G is semia�ne if and only if one of the following conditions
holds: (1) X = (H+a)∪ (H+ b) for some subgroup H of G and some elements
a, b ∈ X; (2) X = (H \C)+g for some g ∈ G, some subgroup H of G and some
midconvex subset C of the group H. A subset C of a group H is midconvex if

for every x, y ∈ C, the set
x+ y

2
:= {z ∈ H : 2z = x+ y} is a subset of C.

Key words: Abelian group, semia�ne set.

In this paper we study the structure of a�ne and semia�ne sets in Abelian groups.
All groups in this paper are assumed to be Abelian.

De�nition 1. A subset X of a group G is called

• a�ne if ∀x, y, z ∈ X x+ (y − z) ∈ X;
• semia�ne if ∀x, y, z ∈ X

(
x+ (y − z) ∈ X ∨ x− (y − z) ∈ X

)
.

It is clear that the empty subset of a group is a�ne, and every a�ne set in a group
is semia�ne.

A�ne sets in groups are algebraic counterparts of the classical geometric notion of
an a�ne set in a vector space. Semia�ne sets are algebraic counterparts of 1-spherical
metric spaces studied in [1]. A metric space (X, d) is called 1-spherical if for every points
a, b, c ∈ X there exists a points x ∈ X such that d(c, x) = d(a, b). So, 1-spherical
metric spaces satisfy a weak form of the Axiom of Segment Construction, well-known in
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Axiomatic Foundations of Geometry, see [3, p. 125], [4, p. 81], [5, p. 119],[6, p. 82] [7,
p. 8], [8, p. 11]. Observe that a metric subspace of the real line is 1-spherical if and only
if it is a semia�ne subset of the additive group of real numbers.

The following simple proposition shows that nonempty a�ne sets are just shifts of
subgroups.

Proposition 1. For a nonempty subset X of a group G the following conditions are

equivalent:

(1) X is a�ne;

(2) X − x is a subgroup of G for every x ∈ X;

(3) X − x is a subgroup of G for some x ∈ X.

Proof. (1) ⇒ (2). Assume that X is a�ne and take any x ∈ X. For every y, z ∈ X the
a�nity of X ensures that

(y − x)− (z − x) = (x+ y − z)− x ∈ X − x,

witnessing that X − x is a subgroup of G.

The implication (2)⇒ (3) is trivial.

(3)⇒ (1) If X − a is a subgroup of G for some a ∈ X, then for every x, y, z ∈ X we
have

(x+ y − z)− a = (x− a) + (y − a)− (z − a) ∈ X − a

and hence x+ y − z ∈ X, which means that the set X is a�ne. �

A characterization of semia�ne sets in groups is more complicated and involves the
notion of a midconvex set in a group.

De�nition 2. A subset X of a group G is midconvex if for every x, y ∈ X the set

x+ y

2
:= {z ∈ G : 2z = x+ y}

is a subset of X.

The main result of this paper is the following characterization of semia�ne sets in
groups.

Theorem 1. A subset X of a group G is semia�ne if and only if one of the following

conditions holds:

(1) X = (H + a) ∪ (H + b) for some subgroup H of G and some elements a, b ∈ X;

(2) X = (H \ C) + g for some g ∈ G, some subgroup H ⊆ G and some midconvex

set C in H.

Theorem 1 will be proved in Section 2. Now we discuss some implications of
Theorem 1 and the characterizations of midconvex sets from [2].

Let G be a subgroup of the additive group of real numbers. A subset C ⊆ G
is called order-convex in G if for every real numbers x ≤ y in C, the order interval
{z ∈ G : x ≤ z ≤ y} is a subset of C.

The following characterization of midconvex sets in groups is proved in [2].



SEMIAFFINE SETS IN ABELIAN GROUPS
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2022. Âèïóñê 93 7

Theorem 2. A subset X of a group G is midconvex if and only if for every g ∈ G and

x ∈ X, the set {n ∈ Z : x+ ng ∈ X} is equal to C ∩H for some order-convex set C ⊆ Z
and some subgroup H ⊆ Z such that the quotient group Z/H has no elements of even

order.

We recall that the order of an element g of a group G in the smallest positive integer
n such that ng = 0. If ng 6= 0 for all n ∈ N, then we say that g has in�nite order. A
group G is called periodic if every element of G has �nite order.

The following characterization of midconvex sets in periodic groups was proved in
[2].

Theorem 3. A subset X of a periodic group H is midconvex if and only if for every

x ∈ X the set X−x is a subgroup of H such that the quotient group H/(X−x) contains
no elements of even order.

Combining Theorem 1 with Theorem 3, we obtain the following characterization of
semia�ne sets in periodic groups.

Corollary 1. A subset X of a periodic group G is semia�ne if and only if one of the

following conditions holds:

(1) X = (H + a) ∪ (H + b) for some subgroup H of G and some elements a, b ∈ X;

(2) X = (H \ P ) + g for some g ∈ G and some subgroups P ⊆ H of G such that the

quotient group H/P contains no elements of even order.

The following characterization of midconvex sets in subgroups of the group Q of
rational numbers is proved in [2].

Theorem 4. Let H be a subgroup of Q. A nonempty set X ⊆ H is midconvex in H if

and only if X = C ∩ (P + x) for some order-convex set C ⊆ Q, some x ∈ X and some

subgroup P of H such that the quotient group H/P contains no elements of even order.

Combining Theorem 1 with Theorem 4, we obtain the following characterization of
semia�ne sets in subgroups of the group Q.

Corollary 2. A subset X of a subgroup G of the group Q is semia�ne if and only if

one of the following conditions holds:

(1) X = (H + a) ∪ (H + b) for some subgroup H of G and some elements a, b ∈ X;

(2) X = (H \ (P ∩C)) + g for some g ∈ G, some order-convex set C in Q and some

subgroups P ⊆ H of G such that the quotient group H/P contains no elements

of even order.

1. Some Lemmas

In this section we prove some lemmas that will be used in the proof of Theorem 1
presented in the next section. By Z be denote the additive group of integer numbers and
by N the set of positive integer numbers.

Lemma 1. Let X be a semia�ne subset of a group G and a ∈ X − X be such that

2a /∈ X −X. Then

X = (H + x) ∪ (H + x+ a)

for some subgroup H of G and some x ∈ X.
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Proof. Let Ca be the cyclic subgroup generated by the element a in the group G. Let

D = {n ∈ N : na ∈ X −X}.
If D = {1}, then let Ha be the trivial subgroup of Ca. If D 6= {1}, then let n =
min(D \ {1}). If follows from a ∈ X − X and 2a /∈ X − X that n ≥ 3. Let Ha be the
cyclic subgroup generated by the element g = (n+ 1)a in Ca.

Claim 1. For every x ∈ X ∩ (X − a) we have

X ∩ (Ca + x) = (Ha + x) ∪ (Ha + x+ a).

Proof. First we consider the case when D = {1}. In this case Ha = {0} and
(Ha + x) ∪ (Ha + x+ a) = {x, x+ a}.

Assuming that

X ∩ (Ca + x) 6= {x, x+ a},
we can �nd an integer number k /∈ {0, 1} such that x+ka ∈ X. It follows from {x, x+a} ⊆
X and 2a /∈ X −X that k /∈ {2, 3,−1,−2}. If k > 0, then

ka = (ka+ x)− x ∈ X −X

and hence k ∈ D, which contradicts D = {1}. If k < 0, then

−ka = x− (x+ ka) ∈ X −X

and hence −k ∈ D, which contradicts D = {1}. In both cases we obtain a contradiction
showing that

X ∩ (Ca + x) = (Ha + x) ∪ (Ha + x+ a).

Next, assume that D 6= {1}. In this case the number n = min(D\{1}) is well-de�ned
and we can consider the element g := (n+1)a. By induction we shall prove that for every
integer number i ≥ 0, the set

Xi = {jg + x, jg + x+ a : j ∈ Z, |j| ≤ i}
is a subset ofX. The setX0 = {x, x+a} is the subset ofX by the choice of x ∈ X∩(X−a).
Assume that for some i ∈ N we know that Xi−1 ⊆ X. Then

{(i− 1)g + x, (i− 1)g + x+ a} ⊆ X.

Since na ∈ X −X and X is semia�ne, either

(i− 1)g + x+ a+ na ∈ X

or

(i− 1)g + x+ a− na ∈ X.

In the second case, we have

(n− 1)a = ((i− 1)g + x)− ((i− 1)g + x+ a− na) ∈ X −X,

which contradicts the choice of n = min(D \ {1}). This contradiction shows that

(i− 1)g + x+ a− na /∈ X

and hence

ig + x = (i− 1)g + x+ a+ na ∈ X.
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Since a ∈ X −X and X is semia�ne, ig + x+ a ∈ X or ig + x− a ∈ X. Assuming that
ig + x− a ∈ X, we obtain that

(n− 1)a = g − 2a = ig + x− a− ((i− 1)g + x+ a) ∈ X −X,

which contradicts the choice of n = min(D \ {1}). This contradiction shows that

ig + x− a /∈ X

and hence ig + x+ a ∈ X. Therefore,

{ig + x, ig + x+ a} ⊆ X.

By analogy we can prove that

{−ig + x,−ig + x+ a} ⊆ X.

This completes the inductive step.

After completing the inductive construction, we obtain that

(Ha + x) ∪ (Ha + x+ a) = {ig + x, ig + x+ a : i ∈ Z} =
⋃
i∈N

Xi ⊆ X ∩ (Ca + a).

Assuming that
X ∩ (Ca + x) 6= (Ha + x) ∪ (Ha + x+ a),

we can �nd an element

c ∈ X ∩ (Ca + x) \
(
(Ha + x) ∪ (Ha + x+ a)

)
.

Write c as c = ma + x for some m ∈ Z. Then there exists a unique number i ∈ Z such
that

i(n+ 1) + 1 < m < (i+ 1)(n+ 1).

Then
(m− (i(n+ 1) + 1))a = c− (ig + x+ a) ∈ X −X

and 1 < m− (i(n+ 1) + 1) < n, which contradicts the choice of n = min(D \ {1}). This
contradiction shows that

X ∩ (Ca + x) = (Ha + x) ∪ (Ha + x+ a).

�

Claim 2. For every x, y, z ∈ X ∩ (X − a) we have

x+ y − z ∈ X ∩ (X − a).

Proof. It follows from y, z ∈ X ∩ (X − a) that {y, z, y + a, z + a} ⊆ X and hence

{y − z, y + a− z, y − z − a} ⊆ X −X.

We claim that x + y − z ∈ X. Assuming that x + y − z /∈ X and using the semia�nity
of X, we conclude that x− y + z ∈ X. Since x+ a ∈ X and

(x+ a) + (y − z − a) = x+ y − z /∈ X,

the semia�nity of X ensures that (x+ a)− (y − z − a) ∈ X. Then

2a = ((x+ a)− (y − z − a))− (x− y + z) ∈ X −X,

which contradicts our assumption. This contradiction shows that x+ y − z ∈ X.
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If x+ y − z /∈ X − a, then (x+ a) + y − z /∈ X and hence (x+ a)− (y − z) ∈ X by
the semia�nity of X. Since x+ y + a− z /∈ X and y + a− z ∈ X −X, the semia�nity
of X ensures that x− (y + a− z) ∈ X. Then

2a = ((x+ a)− (y − z))− (x− (y + a− z)) ∈ X −X,

which contradicts our assumption. This contradiction shows that

x+ y − z ∈ X ∩ (X − a).

�

Since a ∈ X −X, there exists an element x ∈ X ∩ (X − a). Consider the set

H = (X ∩ (X − a))− x

and observe that for every h, h′ ∈ H, the elements y = x + h and z = x + h′ belong to
X ∩ (X − a). By Claim 2,

x+ h− h′ = x+ (y − x)− (z − x) = x+ y − z = X ∩ (X − a)

and hence h− h′ ∈ H, which means that H is a subgroup of the group G.

Claim 3. X = (H + x) ∪ (H + x+ a).

Proof. Observe that

H + x = X ∩ (X − a) ⊆ X

and

H + x+ a = (X ∩ (X − a)) + a ⊆ X.

On the other hand, for every y ∈ X, the semia�nity of X ensures that y + a ∈ X or
y − a ∈ X. In the �rst case,

y ∈ X ∩ (X − a) = H + x.

In the second case,

y − a ∈ X ∩ (X − a) = H + x

and y ∈ H + x+ a. �

This completes the proof of Lemma 1. �

Lemma 2. Let X be a nonempty semia�ne set in a group G. The set X − X is a

subgroup of G if and only if ∀a ∈ X −X (2a ∈ X −X).

Proof. The �only if� part is trivial. To prove the �if� part, assume that 2a ∈ X − X
for all a ∈ X − X. To prove that X − X is a subgroup of G, it su�ces to check that
a− b ∈ X −X for any a, b ∈ X −X. So, �x any a, b ∈ X −X. Two cases are possible.

1. There exists x ∈ X such that {x− b, x+ b} ⊆ X. Since X is semia�ne, x−a ∈ X
or x+ a ∈ X. If x− a ∈ X, then

a− b = (x− b)− (x− a) ∈ X −X.

If x+ a ∈ X, then

a− b = (x+ a)− (x+ b) ∈ X −X.
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2. For all x ∈ X, {x − b, x + b} 6⊆ X. To derive a contradiction, assume that
a− b /∈ X −X. Since X −X = −(X −X), a− b /∈ X −X implies b− a /∈ X −X. Since
b ∈ X −X, there exists x ∈ X such that x+ b ∈ X. Our assumption ensures that

{x− b, x− b+ a, x− a+ b, x+ a, x+ 2b− a} =
{x− b, x− (b− a), x+ (b− a), (x+ b)− (b− a), (x+ b) + (b− a)} ∩X = ∅.

Since x+a /∈ X and X is semia�ne, x−a ∈ X. Since (x−a)+b /∈ X and X is semia�ne,
x − a − b ∈ X. Since 2b ∈ X −X and (x − a) + 2b /∈ X, the semia�nity of X ensures
that x− a− 2b ∈ X and then

{(x− a− b)− b, (x− a− b) + b} ⊆ X,

which contradicts our assumption. This contradiction shows that a− b ∈ X −X. �

2. Proof of Theorem 1

The �if� part of Theorem 1 is proved in the following two lemmas.

Lemma 3. A subset X of a group G is semia�ne if

X = (H + a) ∪ (H + b)

for some subgroup H of G and some elements a, b ∈ X.

Proof. To show that the setX = (H+a)∪(H+b) is semia�ne, take any points x, y, z ∈ X.
Depending on the location of the points x, y, z in the set X = (H + a) ∪ (H + b), we
consider eight cases.

1. If x ∈ H + a, y ∈ H + a, and z ∈ H + a, then x+ y − z ∈ H + a ⊆ X.
2. If x ∈ H + a, y ∈ H + a and z ∈ H + b, then x− y + z ∈ H + b ⊆ X.
3. If x ∈ H + a, y ∈ H + b and z ∈ H + a, then x+ y − z ∈ H + b ⊆ X.
4. If x ∈ H + a, y ∈ H + b, and z ∈ H + b, then x+ y − z ∈ H + a ⊆ X.
5. If x ∈ H + b, y ∈ H + a and z ∈ H + a, then x+ y − z ∈ H + b ⊆ X.
6. If x ∈ H + b, y ∈ H + a and z ∈ H + b, then x+ y − z ∈ H + a ⊆ X.
7. If x ∈ H + b, y ∈ H + b and z ∈ H + a, then x− y + z ∈ H + a ⊆ X.
8. If x ∈ H + b, y ∈ H + b and z ∈ H + b, then x+ y − z ∈ H + b ⊆ X.

�

Lemma 4. A subset X of a group G is semia�ne if

X = (H \ C) + g

for some g ∈ G, some subgroup H of G and some midconvex set C in H.

Proof. Assuming that X = (H \C)+g is not semia�ne, we can �nd elements x, y, z ∈ X
such that

{x+ y − z, x− y + z} ∩X = ∅
and hence

{x+ y − z − g, x− y + z − g} ∩ (X − g) = ∅.

Then

{x− g, y − g, z − g} ⊆ X − g = H \ C ⊆ H
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and hence

{x+ y − z − g, x− y + z − g} =
= {(x− g) + (y − g)− (z − g), (x− g)− (y − g) + (z − g)} ⊆
⊆ H \ (X − g) =

= C.

Since

2(x− g) = (x+ y − z − g) + (x− y + z − g),

the midconvexity of C in H ensures that x − g ∈ C, which contradicts the choice of
x ∈ X = (H \ C) + g. �

To prove the �only if� part of Theorem 1, assume that the set X is semia�ne in the
group G. If for some g ∈ X −X we have 2g /∈ X −X, then by Lemma 1,

X = (H + a) ∪ (H + a+ g)

for some subgroup H of G and some a ∈ X. It is clear that

b := g + a ∈ H + g + a ⊆ X.

Therefore the case (1) of Theorem 1 is satis�ed.
Next, assume that 2g ∈ X−X for all g ∈ X−X. If X is empty, then X = (H \C)+0

for the subgroup H = G and the midconvex set C = H in H. So, we assume that X is
not empty. In this case the set H := X −X is a subgroup of G, according to Lemma 2.
Pick any point g ∈ X. We claim that the set C := H \ (X − g) is midconvex in the group
H = X −X. Indeed, take any points a, b ∈ C and c ∈ H with 2c = a+ b. Assuming that
c /∈ C, we conclude that c ∈ H \C = X − g. Since b− c ∈ H = X −X, there exist points
y, z ∈ X such that b− c = y − z. Since c+ g ∈ X, the semia�nity of X ensures that

c+ g + y − z ∈ X or c+ g − y + z ∈ X.

If c+ g + y − z ∈ X, then

b+ g = (c+ g) + (b− c) = (c+ g) + (y − z) ∈ X

and hence b ∈ X − g = H \ C, which contradicts the choice of b ∈ C.
If c+ g − y + z ∈ X, then

a+ g = 2c− b+ g = c+ g − (b− c) = c+ g − y + z ∈ X

and hence a ∈ X − g = H \ C, which contradicts the choice of a ∈ C.
In both cases we obtain a contradiction showing that c ∈ C, which means that the

set C is midconvex in H. Since X = (H \ C) + g, the condition (2) of Theorem 1 is
satis�ed.
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Ïiäìíîæèíà X àáåëåâî¨ ãðóïè G íàçèâà¹òüñÿ íàïiâàôiííîþ, ÿêùî äëÿ
êîæíîãî x, y, z ∈ X, ìíîæèíà {x+ y− z, x− y+ z} ïåðåòèíà¹ X. Äîâåäåíî,
ùî ïiäìíîæèíà X àáåëåâî¨ ãðóïè G ¹ íàïiâàôiííîþ òîäi i ëèøå òîäi, êîëè
X = (H + a) ∪ (H + b) àáî X = (H \ C) + a äëÿ äåÿêî¨ ïiäãðóïè H ⊆ G,
ñåðåäèííî-îïóêëî¨ ïiäìíîæèíè C ⊆ H òà òî÷îê a, b ∈ G. Ïiäìíîæèíà C
ãðóïè H íàçèâà¹òüñÿ ñåðåäèííî-îïóêëîþ, ÿêùî äëÿ äîâiëüíèõ òî÷îê x, y ∈
C ìíîæèíà x+y

2
:= {z ∈ H : 2z = x+ y} ìiñòèòüñÿ â C.

Êëþ÷îâi ñëîâà: àáåëåâà ãðóïà, íàïiâàôiííà ìíîæèíà.


