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Boundary value problems with nonlocal conditions (undivided and integral)
for a strictly hyperbolic equation of arbitrary order and a system of hyperbolic
equations of the first order in the case of a degenerate initial condition interval
to a point are considered, the case where the boundaries of the domain are
unknown ahead is also considered.
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1. INTRODUCTION

This paper is a transposition and some generalization of research results in [I] to the
case when the domain of finding a solution of a mixed problem for a strictly hyperbolic
equation of arbitrary order is a curvilinear sector in the plane. Problems in such domains
are called Darboux problems [2].

For a strictly hyperbolic equation we consider a problem with nonlocal (undivided
and integral) boundary conditions in the curvilinear sector and also the hyperbolic Stefan
problem, a problem for which domain boundaries are unknown a priori in the upper half-
plane of the plane xOt. Such problems have important practical applications and arise
in many applied evolution processes (see, for instance, [I]-[7])-

2. STATEMENT OF THE PROBLEM

Let G be a curvilinear sector of the upper half-plane ¢ > 0 of the plane xOt, bounded
by the curves vy and 7,11 which are given by equations x = ag(t), * = am41(t), m > 0,
ap(0) = am4+1(0) = 0, am41(t) > ao(t) for all t > 0 respectively. The curves v, : & = as(t),
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s=0,m+ 1, as € CY(Ry) (Ry =[0,00)), asy1(t) > as(t) for all t > 0, as(0) = 0 divide
G into m + 1 connectivity components G* (s = 0,m), that are numbered from left to
right.

For each s = 0,m in G*, is given a strictly hyperbolic equation of order n > 2

(1) Adu= ZAf(a:,t, Oy, O)u’(z,t) = f°(x,t),
=0

where A?(z,t,0;,0;) is a linear homogeneous differential operator of order ¢, for each
s =0,m:

S

Af (x,t, 05,0 )u ZA O J(’)tz -

which coefficients A (,t) are square matrices of order n, with A}y (x,t) =1, s = 0,m.
Suppose A3, € Cl(GS) j=1n; A5, f*€C(G*),i=0,n—1,j=0,i; s =0,m.
We W111 understand the hyperbolicity of equation in the sense that in decomposi-

tion
An(z,t,60) = [T = X, 08)
i=1
the functions \$(z,t) are real and different for all (z,t) € G*, whence \;(z,t) € C1(G*).
Note that the condition Ay # Aj for j # k is weighted here, which is not required for
the case of first order hyperbolic systems. Moreover, for all ¢ > 0 and at each s = 0,m
conditions

A (as(t),t) — ag(t) >0, i=1,ps,
/\S(as()t)— ()<0 i=ps+1n,
(2) Aj(asi1(b),8) — a4 (1) >0, i =1,4¢s,

Xo(agsi(t)t) — iy () < 0, i =g, FLm,
0<ps, gs<n, s=0m

are fulfilled.
Since p,(gs) is the number of indices 7 for which A (0,0) > a}(0) (respectively a’, )

and a,(0) < al,(0), then p, > g, for all s =0, m. Let N = Z(ps —gs)+ (m+1)n. For

the equation (1)), set the conditions replacing the boundaryszgnditions to o and Y41
and the conjugate conditions to v1,...,ym if m >0 :
m n—1 [ s+1
3 Y ZB (6,0, 000 ()| +
s=0 i=0 r=a(t)
asy1(t)

I
“F—‘
R

+ / C? (y,t,0y, 0 )u’(y, t)dy | = hP(t), p
as(t)
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m n—1 ast1(t)
) XY [ chnno00w iy - ),
s=0 i=0

as(t)

8k+lus(0, 0) Xl
(5) arkar s

Here stp(t, 0z, 0;) and C?¥ (y,t, 0y, O;) are given linear homogeneous differential operators
of order ¢ with continuous coefficients depending on t € [0, +00) and (y,t) € G*; hP(t) are
given at ¢ > 0 continuous functions, with h? € C*(R,) and h?(0) = 0 for p = q¢ + 1, N;

u! are given numbers.

k+1=0,n—-2, s=0,m.

3. EXISTENCE AND UNIQUENESS OF PROBLEM SOLUTION

Suppose that the conditions specified in paragraph 2 are fulfilled; a/,(t) # 0 for
all s = 0,m+1 and t € Ry; the operator coefficients C?, and the free terms h?(t) for
p=q+ 1, N are functions from classes C*(G*) and C*(R,) respectively.

Before defining the notion of piecewise continuous generalized solution of the
problem —, let us first transform it by assuming that the desired solution has
piecewise continuous derivatives of all orders < n and all equalities are satisfied in the
ordinary way.

Using the considerations made in [8], consider for each s = 0, m operators

n

(6) M7 (x,t, 0z, O)u Z xtak ton=kus i=T,n, s=0,m

with a characteristic form

(7) Zb 2 AR =TT = A (=, 1)9).
J#i
The formulas @ define for each s = 0,m a set of n linearly independent forms
from the derivatives 0} '07~"u*; conversely, these derivatives can be found as linear
combinations of M?(x,t,0;,0¢)u®, namely

(8) Qi ton—iy® = Zcfk(m7t)M,§(as7t,3I,8t)us,
k=1

where the matrix ¢ (x,t) is inverse to the matrix bf, (z,t). It is not difficult to check that

(9) e (z,t) = (N (=,1))"" 5=0,m.

[T (A, t) = Aj(, 1))

i#k

Indeed, from (8) we get

ATl = Zcfr(x,t)Mf(x,t, 1,A), i=1,n, s=0,m.
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According to (7)),

chact H (A= Aj(z,1)), i=1,n, s=0,m.

JFr
Substitute A = Aj (x,¢) in the last equality. Then we get

M@, )71 =Y e, t) [T, t) = X (1) =
=1 jr
= cjp(z,t) H()\Z(I’,t) - A§($7t))’ t=1,n, s=0,m.
J#k

From this we immediately obtain @

Thus, an arbitrary linear homogeneous differential operator of order n — 1 with
continuous coefficients can, moreover, be uniquely represented as a linear combination
of operators M$(z,t,0,,0:), with the coefficients in this representation being continuous
functions from (z, t). If the coeflicients of a given operator are continuously differentiable,
then the coefficients in the representation are continuously differentiable [, [§].

Using this, we express the principal parts of the operator B; kp P(t,04,0;) and
C? (y,t,0y,0;) in . in terms of M7 (x,t,0,,0;),1=1,n:

n

(10) B, (600,00 = > aiP(t)M; (ar(t), t, 05, ),
=1
(11) Cﬁ 1, s(yat7ay7 at) = Zﬂfs(y7t)Mis(y7t7 8y7at)~
i=1

According to the above, all coefficients aﬁf (t), B (y,t) are continuous, and coeffici-
ents 7 (y,t) at p= ¢+ 1, N are continuously differentiable.

Let
al(t) = o)), = Ta, i = Toss a2) = |0i ()| p=Tq i =z + Ln
ad(0) = — | * ()|, p=Tq i = T
a,(0) = —’ ay0)|, p=1,q, i =ps +1Ln;
BLE) = [ B(as), 0 (N las(t),6) = al®) |, p= aF LN, i = Tps;
B2 = = |lasa . ) (Nl (. =iy ®) | p=aF TN, i =g F L
5:(0) —’Bf’s 0,0( s+1(0)) ,p=q+1,N,i=14;
B:(0) = ‘ﬂfs ( 0)) ,p=q+LN,i=p,+1mn

,t>20
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and besides that, let us introduce square matrices of order N

A(t) = ad@) ..oal) ad(t) ... a2,(t)
Bo) .. Bn(t) B3 ... 52() ’
ad(0)0f ... a2, (00, 0ad(0) ...
5o =| St L S0k ol - of5ko |
Here 0% are zero matrices of dimension ¢ x (ps — ¢s) if & = 1 and of dimension

(N —=q)(ps —qs) if k=2 (s=0,m).
Let us assume that

(12) det A(t) #0,Vt >0

(13) [A(0)™'B(0)| < 1

and at the point (0,0) the ié(pS — ¢s) agreement conditions
N s=0

(14) (812p — Okz p)HP(0) =0, i = qs + 1,ps, s =0,m
p=1

are fulfilled, where §;, are matrix elements [I — A(0)~!B(0)]~!

I W
r= r=0
H?(0) = 1P(0) (p =1,q), H?(0) = h"'(0) (p = ¢ + 1, N).

The operators M (z,t,8;,0;) (i = 1,n) defined by formulas (6) and have the

property that the principal parts of operators A° and
(0r + X; (2, )0, ) M7 (x,t, 0y, O )u®, s =0,m

are the same for arbitrary i = 1, n.

By putting vi(z,t) = M7 (x,t,0,,0,)u® (i = 1,n), we can write equation for
each s = 0, m in each of following n forms:

(15) 8; Za,kxt (z,) + S5 (x,t,00, O )u® + f5(x,1),

i1=1,n, s=0,m,

where the coefficients of af, (x,¢) and the linear differential operators S7(x,t,,,0;) of
order n — 2 are obviously determined by the coefﬁcients of equation (|1) .
The conditions . taking into account (| . give equalities

n ls-&-l as+1(t)

1) 33| S0 | Aonn) -

s=0 i=1 s as(t)

s+1

ZB (t, 0, Op)u* (, 1)

r=a(t)
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as+1(t)

- / Ch(y,t,0y,00)u’(y, t)dy | + hP(t) = HY (t,u), p=1,q

as(t)
m n as+1(t)
(NS S AT
s=0 i=1
as(t)
m n—2 ast1(t)
= — Z P (y,t, 0y, 0p)u’(y, t)dy + hP(t) = HY (t,u),
s=0 =0

as(t)
p=1+¢,N; t>0.

Let us now choose for an arbitrary point (z,t) € G* a line | with equation

_ as41(7) — as(7)
(T, 2, t) = as(1) + m(x —a,(t), (0< 7<)

Then for arbitrary i = 0,n — 2, j = 0, the representation

. n—2 k—i+j
o'’ k:ls 8kus
I T] =2 Z 9" @) |t
(z,t) k=i =] ( ,0)

/ZG’” T, ¢, t)vg(Y(7, x, t), T)dT

holds. In order to obtain this representation, we have to express the integrand function
in equality
t

4+ / i ﬂ d
dr \ Oxzioti—J T
0) o (P(7,z,t),7)

by the formula for the derivative of a complex function; then apply a similar transformati-
on to each of the derivatives of order i + 1 obtained, and so on, including the derivatives
of order n — 1, which have to be expressed in v; according to the formulas ; now using
the standard permutation of integration bounds we have to convert the multiple integrals
into single integrals.

Substituting the expression into the equation subject to the conditions
leads to a system of Volterra integro-differential equations of the form

B Otu®
T Qxioti—i

x,t

O'u®
OxI Oti—3

)

(19) 83 Zalk (x,t)vp(x,t) /ZQM T, 2, t)og(Y(7, z,t), 7)dT+

+ 3 S WG ) + f ), (a,t) €GO, s=0om, i=Tn.
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The right-hand sides of the additional conditions — are transformed accordingly,
so that these conditions will have the form

m n s+1 ast1(t)
(200 > > [Zaif(t)vf(aka),t) + / f;(y,t)vf(y,t)] =

s=01i=1 Lk=s

as(t)
~ n—2 k ~
= HY(t,v) + Zhi“(t)u’;l, p=1,4¢,
k=0 1=0

m n as+1(t) n—2 k

) YN / By, )vs (y, t)dy = HE(t,0) + Y Y Bl (t)ul,

s=0 i=1 k=0 =0

p=1+¢,N; t>0.

We can now define a piecewise continuous solution of the problem —. It is
according to the formula that we will so call the piecewise continuous function wu for
which

3
N

k
> abl( /ZG o, Dol (Y (T, z, 1), 7)dr,

k=0 1=0 o k=1

where the vector-function v is the piecewise continuous generalized solution of the
problem (19)-(21), that is, the piecewise continuous function which for all (x,t) satisfies
the integro-functional equation obtained by integrating the equation along the
corresponding characteristics £ = ¢ (7, z,t), as solutions of the Cauchy problem

dg
dr

and for all ¢ also satisfies the ratio and (21)).

From the considerations made in deriving the relations 7, it follows that the
solution of the problem (1] . as a function having piecewise continuous derivatives of
all orders < n and satisfying equahty . . ) for all (z,t) € G\ Uy, is also a piecewise
continuous generalized solution of this problem. The converse statement, of course, need
not necessarily hold. It is easy to check if the piecewise continuous generalized solution
u of the problem (/1] . has plecevvlse continuous derivatives of all orders < n.

Although the equatlons and the additional conditions . ) have a more
general form due to the presence of additional Volterra integral terms, all considerations
made by the method of characteristics in [9] apply directly to the obtained problem
(19)—(21). Thus, we have the following theorem:

)‘S(gv ) 5()_x7( )GGS t=1,n, s=0,m,

Theorem 1. Let the given functions in the problem — satisfy all the assumptions
formulated in paragraphs 2-3, and for the system of equations (19)) with additional condi-
tions (20)) —L and and the agreement conditions (14) are fulfilled. Then this

problem has in G a unique piecewise continuous generalized solution.
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4. THE CASE OF THE DARBOUX-STEFAN PROBLEM

We will consider domains G¢ = {(z,t) € G* : 0 < t < ¢} and smooth lines 7, of
the same type as in paragraph 2 but now let us assume that these lines (with equations
x = as(t), as(0) =0, s = 0,m + 1) are not predefined but are constructed in the process
of solving the problem; only the values of a/(0) are given, and

ap(0) < @} (0) < ... <ap, 1(0).
In the domain G, we will consider the hyperbolic system
Oui
ot

n
(22) + )\i(x,t)% = Zaij(x,t)uj + filz,t), i=1,n
i=1
with piecewise continuous (uniformly continuous in each domain G?) functions a;; and
fi and piecewise smooth (having uniformly continuous derivatives in each domain G?)
functions A;. The meaning of the notations A etc. is the same as before. Since the
boundaries of the domains G2 are not predefined, we will assume that all functions A7,
ajj, ff (i, = 1,n, s = 0,m) are given for > 0 in some neighborhood of point (0,0) and

OAS 0N}

are continuous together with —- and tl; the functions );, etc. are combined from

x
them after constructing all the functions as(¢), i.e. domains G2, according to the rule:

Ai(z,t) = N (2,1), as(t) <z <asy1(t), s=0,m.

Suppose that for each s = 0,m
A7(0,0) — a(0) >0 (i =1,ps),
A5(0,0) —al,1(0) <0 (i=ps+1,n),
where 0 < p; < n. Let us assume N = (m + 1)n.
Consider the following problem: for some € > 0 we need to find functions a;(t),

it =0,m + 1, and in the corresponding domain G, the solution u(z, t) of the system ,
such that conditions

n m s+1 as+1(t)
@) 2| el guia®.0+ [ 0. 0d| -
i=1 s=0 | k=s as(t)
= hP(a(t),t), p=1,N, t€]0,¢;
n m s+1
(24) al(t) =D D> Ak(alt), hui(ax(t),t) + He(a(t),t), r=0,m+1, t€[0,e],
j=15=0k=s

where a(t) = (ap(t), ..., am+1(t)) are fulfilled.

This problem is an example of a multiphase two-phase hyperbolic Stefan problem
for system, in the case of degeneracy of the initial condition interval to a single
point.

Let us introduce matrices

a;(aﬂt) = ”aff(aat)nv p= 1aN 1 =1,ps,

a?(a,t) = laif P (a,t)]l, p=1T,N i=1+p,n,

1S
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and assume
Ala,t) = ||048(a, t)... ain(a, t)a%(a, t)... ain(a, t|l,
B(a,t) = (~D)lld(a,1) .. o2, (a, Oyab(a, 1) ... by (a, )]

5. SOLVABILITY OF THE DARBOUX-STEFAN PROBLEM

By a piecewise continuous generalized solution of the problem — we will
understand the set of functions as(t) (s = 0,m+1, 0 < ¢t < ¢) for some € > 0 and a
piecewise continuous generalized solution u(z, t) in G. of the problem , satisfying
the condition for all t € [0,¢].

Theorem 2. Let
1) coefficients \{ € C*(Ug) (i =1,n,8=0, m) where
0,0 <

50}

for some g9 > 0;

2) coefficients aj; and free terms f; (j,i= 1,n, s=0,m) belong to class C*(Up);

3) coefficients alf,h” € CH([—¢0,20)™ 1 x[0,20]), B, € CH (), (i =T1,n, s =0,m,

p=1,N,k=s,s+1);

4) coeﬁlcients Vel H, € CY([—e0,g0]™ ! x [0,20));

5) det A(0,0) £ 0;

6) |A*1(O,O)B(O,O)\ < 1 (one of the standard matriz norms is denoted by the norm
| ! |);

7 |H-(0,0)] <1 (r=0,m+1);

8) det [|SP(0,0) + i P(0,0)|| # 0, where the rows of this matriz are numbered
with values p = 1, N and the columns with pairs (s,i), s =0,m, i = 1,n;

9) the agreement conditions are fulfilled

ZZ *2(0,0) + a7 (0,0)]us (0,0) = hP(0,0),

i=1 s=0

whence, according to 8), we can determine all values uf(0,0) that must satisfy

ZZ% 0) + 75 1°(0,0)]u3(0,0) + H,(0,0), r=0,m+ L.

s=07=1
Then there exists € € (0,e9] such that the problem — has in G. a unique piecewise
smooth generalized solution defined for all t € [0, ¢].

Proof. Denote given values a’,(0) by (a)o, set some values ¢ € (0,ep], h > 0 and denote
by D! the set of functions a = (ag, ..., am41) € [C* [0 g]]™*2, for which

las(t)| < e, lal(t)—(a))o] <h, 0<t<e, s=0,m+1.

Let us consider € and h sufficiently small such that under given assumptions each
function a € DQ corresponds to a piecewise continuous solution in G = G., of the
corresponding problem at fixed as(t); denote this solution by U(x,t;a) (its value for

fixed x, ¢ is a functional with respect to a).



Volodymyr KYRYLYCH, Olha MILCHENKO
108 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2021. Bunyck 92

It is easy to prove that for arbitrary j = 1,n, s = 0,m, k = s, s + 1 the dependence
U?(ax(t), t; a) in the uniform deviation metric on a as element [C"[0, ]2 satisfies the
Lipschitz condition

(25) 3L >0:Va', a® € D",

max [U*(ak(t).tia") = U(ad (0, t:0%)] < L{max Ja'(t) - a*(t)|+

2/
— 4
+ max |a' &) —a® (),
where the vertical lines denote any of the norms in R"*2 (its choice determines L).
The relation can be obtained by using a priori estimates of [1] for the solution
through given functions, from which it follows, in particular, that all values

(26) Ui (x,t;a)] < Ug = const (j=1,n, s=0,m, (z,t) € GS, a € D).
ou; ouj

A similar statement would hold for the derivatives % and E

(27) \Ufm'(x,t; a)| < Uy = const, |Uft/(m,t;a)| < Uz = const .

Since we only need to satisfy the condition , let us consider on D? the operator
A :a — Aa, that acts according to rule

m s+1

(o) / [ZZD VU3 (ax(7), 75 0) + H(a(r), ) | dr.

j=15=0k=s
r=0,m+1, te€0,¢].

The desired solution is its fixed point. It follows from the agreement condition 9) that if
for a fixed h it is sufficient to reduce ¢, then the operator A maps D into itself and in
the metric [C1[0,e]]™*? is contractive. Therefore by Banach theorem the existence and
uniqueness of a fixed point of the operator, i.e. the desired solution follows [10].

This completes the proof of Theorem 2. O

6. REMARKS

1. The problem (I)—(B) does not exclude the case where some of the curves 7,
are characteristics of the equation . The only thing that changes is the number of

conditions (3)—() [7].

2. If the characteristics of the equation coming from the intersection point of the
boundary curves do not fall into the domain G, then the number of boundary conditions

@B)—() is (m+1)n

3. It is easy to construct examples like those of [I], which point out the importance

of the conditions — for the problem —.

4. The boundary movement conditions in the problem — can be given in a
more general form, e.g.

al.(t) = g-(a(t), t,u’(a(t),t)), r=0,m+1, s=0,m,
a(t) = (ao(t),. .., ams1(t)),
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u(a(t),t) = (ui(a(t),t), ..., up(a(t), 1)),

In this case, the functions g, (a(t),t,u®(a(t),t)), in addition to being continuous in a set
of variables, should also be required to satisfy a local Lipschitz condition for the variables
a(t) and u®(x,t) [10].

10.

REFERENCES

V. M. Kyrylych and O. Z. Slyusarchuk, Boundary value problems with nonlocal conditions
for hyperbolic systems of equations with two independent variables, Mat. Stud. 53 (2020),
no. 2, 159-180. DOI: 10.30970/ms.53.2.159-180

A. V. Bitsadze, Some classes of partial differential equations, Nauka, Moscow, 1981, 448 p.
(in Russian).

G. Beregowa, W. Kyrylycz, W. Flud, Hiperboliczne zagadnienie Stefana o mnielokalnych
warunkach na prostej, Zesz. Nauk. Pol. Opolskiej Mat. 230 (1997), no. 14, 31-42.

V. M. Kyrylych and A. M. Filimonov, Generalized continuous solvability of the problem with
unknown boundaries for singular hyperbolic systems of quasilinear equations, Mat. Stud. 30
(2008), no. 1, 42-60.

V. M. Kyrylych, O. O. Kukliuk, and O. V. Milchenko, Optimal control of a biopopulation
theory problem under the same starting conditions of an evolutionary process, Prykl. Probl.
Mekh. Mat. 19 (2021), 12-18 (in Ukrainian). DOI: 10.15407/apmm2021.19.12-18

Z. O. Melnyk, Ezample of a nonclassical boundary-value problem for the equations of vi-
brations of a string, Ukr. Mat. J. 32 (1980), no. 5, 446—448. DOI: 10.1007/BF01091573
R. P. Holten, Generalized Goursat problem, Pasif. J. Math. 12 (1962), no. 1, 207-224.
DOI: 10.2140/pjm.1962.12.207

V. Thomee, Existence proofs for mized problems for hyperbolic differential equations in two
independent variables by means of the continuity method, Math. Scand. 6 (1958), no. 1,
5-32. DOI: 10.7146/math.scand.a-10531

V. E. Abolinya and A. D. Myshkis, On a mized boundary-value problem for a linear
hyperbolic system on a plane, Uch. Zap. Latv. Univ. 20 (1958), no. 3, 87—104 (in Russian).
P. B. Augpycsk, B. M. Kupuiuyg, A. JI. Mbuukuc, JJokaavrasn u 240004014 PA3PEUUMOCTIL
K6a3uAUHEUHOT 2unepboauveckot 3adawu Cmegpana Ha npamot, duddepent. ypasaenus,
42 (2006), no. 4, 489—503; English version: R. V. Andrusyak, V. M. Kirilich, and A. D.
Myshkis, Local and global solvability of the quasilinear hyperbolic Stefan problem on the line,
Differ. Equ. 42 (2006), no. 4, 519—536. DOI: 10.1134/S0012266106040094

Cmammasa: naditiwna do pedkonezii 07.12.2020
doonpayvosana 22.05.2021
nputinama do dpyxy 07.09.2021



Volodymyr KYRYLYCH, Olha MILCHENKO
110 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2021. Bunyck 92

3AIAYI JAPBY-CTE®AHA 3 HEJIOKAJIbHVMHW YMOBAMMUI
AJId OJHOBUMIPHUX T'IIIEPBOJITYHUX PIBHAHD 1
CUCTEM

Bouoaumup KUPWNJINY, Onsra MIJIBYHEHKO

JIveiecvrutl Haytonasbrul yrieepcumem iment leana Pparka,
sys. Ynisepcumemcoka 1, 79000, m. Jveis
e-mail: vkyrylych@ukr.net, olga.milchenko@Inu.edu.ua

PosrnsayTo Kpaiiosi 3ama4i 3 HEOKATPHUMYA yMOBAMHA (HEPO3ILICHAME Ta
inTerpanapbHIMu) 118 CTPOrO rinep6GOIvHOro PIBHAHHS JOBLILHOTO HOPAAKY Ta
cruCTeMu TirmepOOJIYHNX PIBHSHD TEPIIOT0 TOPSIKY V BUMAJIKY BUPO/IZKIEHHS
iHTepBaJly 3a/IaHHSA MOYATKOBUX YMOB B TOYKY, IIPUYOMY PO3TJISHYTO TAKOXK
BUIIA/I0K, KOJIM MexKi 00J1acTi Halepes, HeBioMi.

Karouosi crosa: rimepbostivuni piBHaHH, 3ama4a lap0Oy, rinepbomiuna 3a-
nada Credana, HeJOKAIbHI YMOBH, XapaKTEPUCTUKH.
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