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1. Introduction

This paper is a transposition and some generalization of research results in [1] to the
case when the domain of �nding a solution of a mixed problem for a strictly hyperbolic
equation of arbitrary order is a curvilinear sector in the plane. Problems in such domains
are called Darboux problems [2].

For a strictly hyperbolic equation we consider a problem with nonlocal (undivided
and integral) boundary conditions in the curvilinear sector and also the hyperbolic Stefan
problem, a problem for which domain boundaries are unknown a priori in the upper half-
plane of the plane xOt. Such problems have important practical applications and arise
in many applied evolution processes (see, for instance, [1]�[7]).

2. Statement of the problem

Let G be a curvilinear sector of the upper half-plane t > 0 of the plane xOt, bounded
by the curves γ0 and γm+1 which are given by equations x = a0(t), x = am+1(t), m > 0,
a0(0) = am+1(0) = 0, am+1(t) > a0(t) for all t > 0 respectively. The curves γs : x = as(t),
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s = 0,m+ 1, as ∈ C1(R+) (R+ = [0,∞)), as+1(t) > as(t) for all t > 0, as(0) = 0 divide
G into m + 1 connectivity components Gs (s = 0,m), that are numbered from left to
right.

For each s = 0,m in Gs, is given a strictly hyperbolic equation of order n > 2

(1) Asu ≡
n∑
i=0

Asi (x, t, ∂x, ∂t)u
s(x, t) = fs(x, t),

where Asi (x, t, ∂x, ∂t) is a linear homogeneous di�erential operator of order i, for each
s = 0,m:

Asi (x, t, ∂x, ∂t)u
s(x, t) ≡

i∑
j=0

Asij(x, t)
∂ius

∂xj∂ti−j
,

which coe�cients Asij(x, t) are square matrices of order n, with Asn0(x, t) ≡ I, s = 0,m.

Suppose Asnj ∈ C1(Ḡs), j = 1, n; Asij , f
s ∈ C(Ḡs), i = 0, n− 1, j = 0, i; s = 0,m.

We will understand the hyperbolicity of equation (1) in the sense that in decomposi-
tion

Asn(x, t, ξ, λ) =

n∏
i=1

(λ− λsi (x, t)ξ)

the functions λsi (x, t) are real and di�erent for all (x, t) ∈ Ḡs, whence λsi (x, t) ∈ C1(Ḡs).
Note that the condition λsi 6= λsk for j 6= k is weighted here, which is not required for
the case of �rst order hyperbolic systems. Moreover, for all t > 0 and at each s = 0,m
conditions

(2)

λsi (as(t), t)− a′s(t) > 0, i = 1, ps,
λsi (as(t), t)− a′s(t) < 0, i = ps + 1, n,
λsi (as+1(t), t)− a′s+1(t) > 0, i = 1, qs,

λsi (as+1(t), t)− a′s+1(t) < 0, i = qs + 1, n,
0 6 ps, qs 6 n, s = 0,m

are ful�lled.
Since ps(qs) is the number of indices i for which λ

s
i (0, 0) > a′s(0) (respectively a′s+1)

and a′s(0) 6 a′s+1(0), then ps > qs for all s = 0,m. Let N =

m∑
s=0

(ps− qs) + (m+ 1)n. For

the equation (1), set the conditions replacing the boundary conditions to γ0 and γm+1

and the conjugate conditions to γ1, . . . , γm if m > 0 :

(3)

m∑
s=0

n−1∑
i=0

[
s+1∑
k=s

Bkpis (t, ∂x, ∂t)u
s(x, t)

∣∣∣∣∣
x=ak(t)

+

+

as+1(t)∫
as(t)

Cpis(y, t, ∂y, ∂t)u
s(y, t)dy

]
= hp(t), p = 1, q,
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(4)

m∑
s=0

n−1∑
i=0

as+1(t)∫
as(t)

Cpis(y, t, ∂y, ∂t)u
s(y, t)dy = hp(t),

p = 1 + q, n, t > 0, 0 6 q 6 N,

(5)
∂k+lus(0, 0)

∂xk∂tl
= ukls , k + l = 0, n− 2, s = 0,m.

Here Bkpis (t, ∂x, ∂t) and C
p
is(y, t, ∂y, ∂t) are given linear homogeneous di�erential operators

of order i with continuous coe�cients depending on t ∈ [0,+∞) and (y, t) ∈ Ḡs; hp(t) are
given at t > 0 continuous functions, with hp ∈ C1(R+) and hp(0) = 0 for p = q + 1, N ;
ukls are given numbers.

3. Existence and uniqueness of problem solution

Suppose that the conditions speci�ed in paragraph 2 are ful�lled; a′s(t) 6= 0 for
all s = 0,m+ 1 and t ∈ R+; the operator coe�cients Cpis and the free terms hp(t) for

p = q + 1, N are functions from classes C1(Ḡs) and C1(R+) respectively.
Before de�ning the notion of piecewise continuous generalized solution of the

problem (1)-(5), let us �rst transform it by assuming that the desired solution has
piecewise continuous derivatives of all orders 6 n and all equalities are satis�ed in the
ordinary way.

Using the considerations made in [8], consider for each s = 0,m operators

(6) Ms
i (x, t, ∂x, ∂t)u

s =

n∑
k=1

bsik(x, t)∂k−1t ∂n−kx us, i = 1, n, s = 0,m

with a characteristic form

(7)

n∑
k=1

bsik(x, t)λk−1ξn−k =
∏
j 6=i

(λ− λsj(x, t)ξ).

The formulas (6) de�ne for each s = 0,m a set of n linearly independent forms
from the derivatives ∂i−1t ∂n−ix us; conversely, these derivatives can be found as linear
combinations of Ms

i (x, t, ∂x, ∂t)u
s, namely

(8) ∂i−1t ∂n−ix us =

n∑
k=1

csik(x, t)Ms
k(x, t, ∂x, ∂t)u

s,

where the matrix csik(x, t) is inverse to the matrix bsik(x, t). It is not di�cult to check that

(9) csik(x, t) =
(λsk(x, t))i−1∏

j 6=k
(λsk(x, t)− λsj(x, t))

, s = 0,m.

Indeed, from (8) we get

λi−1 =

n∑
r=1

csir(x, t)M
s
r (x, t, 1, λ), i = 1, n, s = 0,m.
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According to (7),

λi−1 =

n∑
r=1

csir(x, t)
∏
j 6=r

(λ− λsj(x, t)), i = 1, n, s = 0,m.

Substitute λ = λsk(x, t) in the last equality. Then we get

(λsk(x, t))i−1 =

n∑
r=1

csir(x, t)
∏
j 6=r

(λsk(x, t)− λsj(x, t)) =

= csik(x, t)
∏
j 6=k

(λsk(x, t)− λsj(x, t)), i = 1, n, s = 0,m.

From this we immediately obtain (9).
Thus, an arbitrary linear homogeneous di�erential operator of order n − 1 with

continuous coe�cients can, moreover, be uniquely represented as a linear combination
of operators Ms

i (x, t, ∂x, ∂t), with the coe�cients in this representation being continuous
functions from (x, t). If the coe�cients of a given operator are continuously di�erentiable,
then the coe�cients in the representation are continuously di�erentiable [1, 8].

Using this, we express the principal parts of the operator Bkpis (t, ∂x, ∂t) and
Cpis(y, t, ∂y, ∂t) in (3)-(4) in terms of Ms

i (x, t, ∂x, ∂t), i = 1, n:

(10) Bkpn−1,s(t, ∂x, ∂t) =

n∑
i=1

αkpis (t)Ms
i (ak(t), t, ∂x, ∂t),

(11) Cpn−1,s(y, t, ∂y, ∂t) =

n∑
i=1

βpis(y, t)M
s
i (y, t, ∂y, ∂t).

According to the above, all coe�cients αkpis (t), βpis(y, t) are continuous, and coe�ci-

ents βpis(y, t) at p = q + 1, N are continuously di�erentiable.
Let

α1
s(t) =

∥∥∥αspis (t)
∥∥∥, p = 1, q, i = 1, ps; α

2
s(t) =

∥∥∥αs+1,p
is (t)

∥∥∥, p = 1, q, i = qs + 1, n;

α3
s(0) = −

∥∥∥αs+1,p
is (0)

∥∥∥, p = 1, q, i = 1, qs;

α4
s(0) = −

∥∥∥αspis (0)
∥∥∥, p = 1, q, i = ps + 1, n;

β1
s (t) =

∥∥∥βpis(as(t), t)(λsi (as(t), t)− a′s(t))∥∥∥, p = q + 1, N, i = 1, ps;

β2
s (t) = −

∥∥∥βpis(as+1(t), t)
(
λsi (as+1(t), t)− a′s+1(t)

)∥∥∥, p = q + 1, N, i = qs + 1, n;

β3
s (0) =

∥∥∥βpis(0, 0)
(
λsi (0, 0)− a′s+1(0)

)∥∥∥, p = q + 1, N, i = 1, qs;

β4
s (0) = −

∥∥∥βpis(0, 0)
(
λsi (0, 0)− a′s(0)

)∥∥∥, p = q + 1, N, i = ps + 1, n;

s = 0,m, t > 0
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and besides that, let us introduce square matrices of order N

A(t) =

∥∥∥∥ α1
0(t) . . . α1

m(t) α2
0(t) . . . α2

m(t)
β1
0(t) . . . β1

m(t) β2
0(t) . . . β2

m(t)

∥∥∥∥ ,
B(0) =

∥∥∥∥ α3
0(0)010 . . . α3

m(0)01m 010α
4
0(0) . . . 01mα

4
m(0)

β3
0(0)020 . . . β3

m(0)02m 020β
4
0(0) . . . 02mβ

4
m(0)

∥∥∥∥ .
Here 0ks are zero matrices of dimension q × (ps − qs) if k = 1 and of dimension
(N − q)(ps − qs) if k = 2 (s = 0,m).

Let us assume that

(12) detA(t) 6= 0, ∀ t > 0,

(13) |A(0)−1B(0)| < 1

and at the point (0, 0) the

m∑
s=0

(ps − qs) agreement conditions

(14)

N∑
p=1

(δlsi ,p − δksi ,p)H
p(0) = 0, i = qs + 1, ps, s = 0,m

are ful�lled, where δjp are matrix elements [I −A(0)−1B(0)]−1,

lsi = i, ksi = ns+

m∑
r=0

pr −
s∑
r=0

qr + i,

Hp(0) = hp(0) (p = 1, q), Hp(0) = hp′(0) (p = q + 1, N).

The operators Ms
i (x, t, ∂x, ∂t) (i = 1, n) de�ned by formulas (6) and (7) have the

property that the principal parts of operators As and

(∂t + λsi (x, t)∂x)Ms
i (x, t, ∂x, ∂t)u

s, s = 0,m

are the same for arbitrary i = 1, n.
By putting vsi (x, t) = Ms

i (x, t, ∂x, ∂t)u
s (i = 1, n), we can write equation (1) for

each s = 0,m in each of following n forms:

(15)
∂vsi
∂t

+ λsi (x, t)
∂vsi
∂x

=

n∑
k=1

asik(x, t)vsk(x, t) + Ssi (x, t, ∂x, ∂t)u
s + fs(x, t),

i = 1, n, s = 0,m,

where the coe�cients of asik(x, t) and the linear di�erential operators Ssi (x, t, ∂x, ∂t) of
order n− 2 are obviously determined by the coe�cients of equation (1) .

The conditions (3)-(4) taking into account (10)-(11) give equalities

(16)

m∑
s=0

n∑
i=1

[
s+1∑
k=s

αkpis (t)vsi (ak(t), t) +

as+1(t)∫
as(t)

βpis(y, t)dy

]
=

=

m∑
s=0

n−2∑
i=0

[
s+1∑
k=s

Bkpis (t, ∂x, ∂t)u
s(x, t)

∣∣∣∣∣
x=ak(t)

−
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−
as+1(t)∫
as(t)

Cpis(y, t, ∂y, ∂t)u
s(y, t)dy

]
+ hp(t) ≡ Hp

1 (t, u), p = 1, q;

(17)

m∑
s=0

n∑
i=1

as+1(t)∫
as(t)

βpis(y, t)v
s
i (y, t)dy =

= −
m∑
s=0

n−2∑
i=0

as+1(t)∫
as(t)

Cpis(y, t, ∂y, ∂t)u
s(y, t)dy + hp(t) ≡ Hp

2 (t, u),

p = 1 + q,N ; t > 0.

Let us now choose for an arbitrary point (x, t) ∈ Ḡs a line l with equation

ψ(τ, x, t) = as(τ) +
as+1(τ)− as(τ)

as+1(t)− as(t)
(x− as(t)), (0 6 τ 6 t).

Then for arbitrary i = 0, n− 2, j = 0, i the representation

(18)
∂ius

∂xj∂ti−j

∣∣∣∣∣
(x,t)

=

n−2∑
k=i

k−i+j∑
l=j

gklsij (x, t)
∂kus

∂xl∂tk−l

∣∣∣∣∣
(0,0)

+

+

t∫
0

n∑
k=1

Gksij (τ, x, t)vsk(ψ(τ, x, t), τ)dτ

holds. In order to obtain this representation, we have to express the integrand function
in equality

∂ius

∂xj∂ti−j

∣∣∣∣∣
(x,t)

=
∂ius

∂xj∂ti−j

∣∣∣∣∣
(0,0)

+

t∫
0

d

dτ

(
∂ius

∂xj∂ti−j

∣∣∣∣∣
(ψ(τ,x,t),τ)

)
dτ

by the formula for the derivative of a complex function; then apply a similar transformati-
on to each of the derivatives of order i+ 1 obtained, and so on, including the derivatives
of order n−1, which have to be expressed in vsk according to the formulas (8); now using
the standard permutation of integration bounds we have to convert the multiple integrals
into single integrals.

Substituting the expression (18) into the equation (15) subject to the conditions (5)
leads to a system of Volterra integro-di�erential equations of the form

(19)
∂vsi
∂t

+ λsi (x, t)
∂vsi
∂x

=

n∑
k=1

asik(x, t)vsk(x, t) +

t∫
0

n∑
k=1

Qsik(τ, x, t)vsk(ψ(τ, x, t), τ)dτ+

+

n−2∑
k=0

k∑
l=0

ukls g
is
kl(x, t) + fs(x, t), (x, t) ∈ Ḡs, s = 0,m, i = 1, n.
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The right-hand sides of the additional conditions (16)-(17) are transformed accordingly,
so that these conditions will have the form

(20)

m∑
s=0

n∑
i=1

[
s+1∑
k=s

αkpis (t)vsi (ak(t), t) +

as+1(t)∫
as(t)

βpis(y, t)v
s
i (y, t)

]
=

= H̃p
1 (t, v) +

n−2∑
k=0

k∑
l=0

h̃pkl1(t)ukls , p = 1, q,

(21)

m∑
s=0

n∑
i=1

as+1(t)∫
as(t)

βpis(y, t)v
s
i (y, t)dy = H̃p

2 (t, v) +

n−2∑
k=0

k∑
l=0

h̃pkl2(t)ukls ,

p = 1 + q,N ; t > 0.

We can now de�ne a piecewise continuous solution of the problem (1)-(5). It is
according to the formula (18) that we will so call the piecewise continuous function u for
which

us(x, t) =

n−2∑
k=0

k∑
l=0

gkls0,0 (x, t)ukls +

t∫
0

n∑
k=1

Gks0,0(τ, x, t)vsk(ψ(τ, x, t), τ)dτ,

where the vector-function v is the piecewise continuous generalized solution of the
problem (19)-(21), that is, the piecewise continuous function which for all (x, t) satis�es
the integro-functional equation obtained by integrating the equation (19) along the
corresponding characteristics ξ = ϕsi (τ, x, t), as solutions of the Cauchy problem

dξ

dτ
= λsi (ξ, τ), ξ(t) = x, (x, t) ∈ Ḡs, i = 1, n, s = 0,m,

and for all t also satis�es the ratio (20) and (21).
From the considerations made in deriving the relations (19)�(21), it follows that the

solution of the problem (1)�(5) as a function having piecewise continuous derivatives of
all orders 6 n and satisfying equality (1)�(5) for all (x, t) ∈ G \ ∪γm, is also a piecewise
continuous generalized solution of this problem. The converse statement, of course, need
not necessarily hold. It is easy to check if the piecewise continuous generalized solution
u of the problem (1)�(5) has piecewise continuous derivatives of all orders 6 n.

Although the equations (19) and the additional conditions (20)�(21) have a more
general form due to the presence of additional Volterra integral terms, all considerations
made by the method of characteristics in [9] apply directly to the obtained problem
(19)�(21). Thus, we have the following theorem:

Theorem 1. Let the given functions in the problem (1)�(5) satisfy all the assumptions
formulated in paragraphs 2�3, and for the system of equations (19) with additional condi-
tions (20)�(21), (12) and (13) and the agreement conditions (14) are ful�lled. Then this
problem has in Ḡ a unique piecewise continuous generalized solution.
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4. The case of the Darboux-Stefan problem

We will consider domains Gsε = {(x, t) ∈ Gs : 0 < t 6 ε} and smooth lines γs of
the same type as in paragraph 2 but now let us assume that these lines (with equations
x = as(t), as(0) = 0, s = 0,m+ 1) are not prede�ned but are constructed in the process
of solving the problem; only the values of a′s(0) are given, and

a′0(0) < a′1(0) < . . . < a′m+1(0).

In the domain Gε, we will consider the hyperbolic system

(22)
∂ui
∂t

+ λi(x, t)
∂ui
∂x

=

n∑
i=1

aij(x, t)uj + fi(x, t), i = 1, n

with piecewise continuous (uniformly continuous in each domain Gsε) functions aij and
fi and piecewise smooth (having uniformly continuous derivatives in each domain Gsε)
functions λi. The meaning of the notations λsi etc. is the same as before. Since the
boundaries of the domains Gsε are not prede�ned, we will assume that all functions λsi ,
asij , f

s
i (i, j = 1, n, s = 0,m) are given for > 0 in some neighborhood of point (0, 0) and

are continuous together with
∂λsi
∂x

and
∂λsi
∂t

; the functions λi, etc. are combined from

them after constructing all the functions as(t), i.e. domains Gsε, according to the rule:

λi(x, t) = λsi (x, t), as(t) < x < as+1(t), s = 0,m.

Suppose that for each s = 0,m

λsi (0, 0)− a′s(0) > 0 (i = 1, ps),

λsi (0, 0)− a′s+1(0) < 0 (i = ps + 1, n),

where 0 6 ps 6 n. Let us assume N = (m+ 1)n.
Consider the following problem: for some ε > 0 we need to �nd functions ai(t),

i = 0,m+ 1, and in the corresponding domain Gε the solution u(x, t) of the system (22),
such that conditions

(23)

n∑
i=1

m∑
s=0

[
s+1∑
k=s

αkpis (a(t), t)usi (ak(t), t) +

∫ as+1(t)

as(t)

βpis(y, t)u
s
i (y, t)dy

]
=

= hp(a(t), t), p = 1, N, t ∈ [0, ε];

(24) a′r(t) =

n∑
j=1

m∑
s=0

s+1∑
k=s

γksrj (a(t), t)usj(ak(t), t) +Hr(a(t), t), r = 0,m+ 1, t ∈ [0, ε],

where a(t) = (a0(t), . . . , am+1(t)) are ful�lled.
This problem is an example of a multiphase two-phase hyperbolic Stefan problem

for (22) system, in the case of degeneracy of the initial condition interval to a single
point.

Let us introduce matrices

α1
s(a, t) = ‖αspis (a, t)‖, p = 1, N i = 1, ps,

α2
s(a, t) = ‖αs+1,p

is (a, t)‖, p = 1, N i = 1 + ps, n,
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and assume

A(a, t) = ‖α1
0(a, t) . . . α1

m(a, t)α2
0(a, t) . . . α2

m(a, t)‖,
B(a, t) = (−1)‖α2

0(a, t) . . . α2
m(a, t)α1

0(a, t) . . . α1
m(a, t)‖.

5. Solvability of the Darboux-Stefan problem

By a piecewise continuous generalized solution of the problem (22)�(24) we will
understand the set of functions as(t) (s = 0,m+ 1, 0 6 t 6 ε) for some ε > 0 and a
piecewise continuous generalized solution u(x, t) in Gε of the problem (22), (23) satisfying
the condition (24) for all t ∈ [0, ε].

Theorem 2. Let

1) coe�cients λsi ∈ C2(Ū0) (i = 1, n, s = 0,m), where

Ū0 = {(x, t) : |x| 6 ε0, 0 6 t 6 ε0}

for some ε0 > 0;
2) coe�cients asij and free terms fsi (j, i = 1, n, s = 0,m ) belong to class C1(Ū0);

3) coe�cients αkpis , h
p ∈ C1([−ε0, ε0]m+1×[0, ε0]), βpis ∈ C1(Ū0), (i = 1, n, s = 0,m,

p = 1, N , k = s, s+ 1 );
4) coe�cients γskrj , Hr ∈ C1([−ε0, ε0]m+1 × [0, ε0]);
5) detA(0, 0) 6= 0;
6) |A−1(0, 0)B(0, 0)| < 1 (one of the standard matrix norms is denoted by the norm
| · |);

7) |Hr(0, 0)| < 1 (r = 0,m+ 1 );

8) det ‖αspis (0, 0) + αs+1,p
is (0, 0)‖ 6= 0, where the rows of this matrix are numbered

with values p = 1, N and the columns with pairs (s, i), s = 0,m, i = 1, n;
9) the agreement conditions are ful�lled

n∑
i=1

m∑
s=0

[αspis (0, 0) + αs+1,p
is (0, 0)]usi (0, 0) = hp(0, 0),

whence, according to 8), we can determine all values usi (0, 0) that must satisfy

a′r(0) =

m∑
s=0

n∑
j=1

[γssrj (0, 0) + γs+1,s
rj (0, 0)]usj(0, 0) +Hr(0, 0), r = 0,m+ 1.

Then there exists ε ∈ (0, ε0] such that the problem (22)�(24) has in Ḡε a unique piecewise
smooth generalized solution de�ned for all t ∈ [0, ε].

Proof. Denote given values a′s(0) by (a′s)0, set some values ε ∈ (0, ε0], h > 0 and denote
by Dh

ε the set of functions a = (a0, . . . , am+1) ∈ [C1[0, ε]]m+2, for which

|as(t)| < ε, |a′s(t)− (a′s)0| 6 h, 0 6 t 6 ε, s = 0,m+ 1.

Let us consider ε and h su�ciently small such that under given assumptions each
function a ∈ Dh

ε corresponds to a piecewise continuous solution in Ḡε = Ḡε,a of the
corresponding problem at �xed as(t); denote this solution by U(x, t; a) (its value for
�xed x, t is a functional with respect to a).
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It is easy to prove that for arbitrary j = 1, n, s = 0,m, k = s, s+ 1 the dependence
Usj (ak(t), t; a) in the uniform deviation metric on a as element [C1[0, ε]]m+2 satis�es the
Lipschitz condition

(25) ∃L > 0 : ∀a1, a2 ∈ Dh
ε ,

max
06t6ε

|Us(a1k(t), t; a1)− Us(a2k(t), t; a2)| 6 L[ max
06t6ε

|a1(t)− a2(t)|+

+ max
06t6ε

|a1′(t)− a2′(t)|],

where the vertical lines denote any of the norms in Rn+2 (its choice determines L).
The relation (25) can be obtained by using a priori estimates of [1] for the solution

through given functions, from which it follows, in particular, that all values

(26) |Usj (x, t; a)| 6 U0 = const (j = 1, n, s = 0,m, (x, t) ∈ Ḡsε, a ∈ Dh
ε ).

A similar statement would hold for the derivatives
∂usj
∂x

and
∂usj
∂t

:

(27) |Usjx
′(x, t; a)| 6 U1 = const, |Usjt

′(x, t; a)| 6 U2 = const .

Since we only need to satisfy the condition (24), let us consider on Dh
ε the operator

A : a→ Aa, that acts according to rule

(Aa)r(t) =

t∫
0

[
n∑
j=1

m∑
s=0

s+1∑
k=s

γksrj (a(τ), τ)Usj (ak(τ), τ ; a) +Hr(a(τ), τ)

]
dτ,

r = 0,m+ 1, t ∈ [0, ε].

The desired solution is its �xed point. It follows from the agreement condition 9) that if
for a �xed h it is su�cient to reduce ε, then the operator A maps Dh

ε into itself and in
the metric [C1[0, ε]]m+2 is contractive. Therefore by Banach theorem the existence and
uniqueness of a �xed point of the operator, i.e. the desired solution follows [10].

This completes the proof of Theorem 2. �

6. Remarks

1. The problem (1)�(5) does not exclude the case where some of the curves γm
are characteristics of the equation (1). The only thing that changes is the number of
conditions (3)�(4) [7].

2. If the characteristics of the equation (1) coming from the intersection point of the
boundary curves do not fall into the domain G, then the number of boundary conditions
(3)�(4) is (m+ 1)n.

3. It is easy to construct examples like those of [1], which point out the importance
of the conditions (12)�(13) for the problem (1)�(5).

4. The boundary movement conditions in the problem (22)�(24) can be given in a
more general form, e.g.

a′r(t) = gr(a(t), t, us(a(t), t)), r = 0,m+ 1, s = 0,m,

a(t) = (a0(t), . . . , am+1(t)),



THE DARBOUX-STEFAN PROBLEMS WITH NONLOCAL CONDITIONS
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 92 109

us(a(t), t) = (us1(a(t), t), . . . , usn(a(t), t)).

In this case, the functions gr(a(t), t, us(a(t), t)), in addition to being continuous in a set
of variables, should also be required to satisfy a local Lipschitz condition for the variables
a(t) and us(x, t) [10].

References

1. V. M. Kyrylych and O. Z. Slyusarchuk, Boundary value problems with nonlocal conditions

for hyperbolic systems of equations with two independent variables, Mat. Stud. 53 (2020),
no. 2, 159�180. DOI: 10.30970/ms.53.2.159-180

2. A. V. Bitsadze, Some classes of partial di�erential equations, Nauka, Moscow, 1981, 448 p.
(in Russian).

3. G. Beregowa, W. Kyrylycz, W. Flud, Hiperboliczne zagadnienie Stefana o nielokalnych

warunkach na prostej, Zesz. Nauk. Pol. Opolskiej Mat. 230 (1997), no. 14, 31�42.
4. V. M. Kyrylych and A. M. Filimonov, Generalized continuous solvability of the problem with

unknown boundaries for singular hyperbolic systems of quasilinear equations, Mat. Stud. 30
(2008), no. 1, 42�60.

5. V. M. Kyrylych, O. O. Kukliuk, and O. V. Milchenko, Optimal control of a biopopulation

theory problem under the same starting conditions of an evolutionary process, Prykl. Probl.
Mekh. Mat. 19 (2021), 12�18 (in Ukrainian). DOI: 10.15407/apmm2021.19.12-18

6. Z. O. Melnyk, Example of a nonclassical boundary-value problem for the equations of vi-

brations of a string, Ukr. Mat. J. 32 (1980), no. 5, 446�448. DOI: 10.1007/BF01091573
7. R. P. Holten, Generalized Goursat problem, Pasif. J. Math. 12 (1962), no. 1, 207�224.

DOI: 10.2140/pjm.1962.12.207
8. V. Thomee, Existence proofs for mixed problems for hyperbolic di�erential equations in two

independent variables by means of the continuity method, Math. Scand. 6 (1958), no. 1,
5�32. DOI: 10.7146/math.scand.a-10531

9. V. E. Abolinya and A. D. Myshkis, On a mixed boundary-value problem for a linear

hyperbolic system on a plane, Uch. Zap. Latv. Univ. 20 (1958), no. 3, 87�104 (in Russian).
10. Ð. Â. Àíäðóñÿê, Â. Ì. Êèðèëè÷, À. Ä. Ìûøêèñ, Ëîêàëüíàÿ è ãëîáàëüíàÿ ðàçðåøèìîñòè

êâàçèëèíåéíîé ãèïåðáîëè÷åñêîé çàäà÷è Ñòåôàíà íà ïðÿìîé, Äèôôåðåíö. óðàâíåíèÿ,
42 (2006), no. 4, 489�503; English version: R. V. Andrusyak, V. M. Kirilich, and A. D.
Myshkis, Local and global solvability of the quasilinear hyperbolic Stefan problem on the line,
Di�er. Equ. 42 (2006), no. 4, 519�536. DOI: 10.1134/S0012266106040094

Ñòàòòÿ: íàäiéøëà äî ðåäêîëåãi¨ 07.12.2020
äîîïðàöüîâàíà 22.05.2021
ïðèéíÿòà äî äðóêó 07.09.2021



110
Volodymyr KYRYLYCH, Olha MILCHENKO

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 92

ÇÀÄÀ×I ÄÀÐÁÓ-ÑÒÅÔÀÍÀ Ç ÍÅËÎÊÀËÜÍÈÌÈ ÓÌÎÂÀÌÈ

ÄËß ÎÄÍÎÂÈÌIÐÍÈÕ ÃIÏÅÐÁÎËI×ÍÈÕ ÐIÂÍßÍÜ I

ÑÈÑÒÅÌ

Âîëîäèìèð ÊÈÐÈËÈ×, Îëüãà ÌIËÜ×ÅÍÊÎ

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåòñüêà 1, 79000, ì. Ëüâiâ

e-mail: vkyrylych@ukr.net, olga.milchenko@lnu.edu.ua
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