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1. Introduction, motivation, and main definitions

In this paper all topological spaces are assumed to be Hausdor�.
A topological semigroup is a topological space endowed with a continuous semigroup

operation. If S is a semigroup and τ is a topology on S such that (S, τ) is a topological
semigroup, then we shall call τ semigroup topology on S. A semitopological semigroup

is a topological space together with a separately continuous semigroup operation. A
topological semigroup (S, τ) is said to be minimal if no semigroup topology on S is
strictly contained in τ . If (S, τ) is a minimal topological semigroup, then τ is called a
minimal semigroup topology.

Let λ be a nonempty set. By Bλ we denote the set (λ× λ) ∪ {0} endowed with the
following semigroup operation:

(α, β) · (γ, δ) =
{

(α, δ), if β = γ;
0, if β 6= γ;

and (α, β) ·0 = 0 ·(α, β) = 0 ·0 = 0, for each α, β, γ, δ ∈ λ. The semigroup Bλ is called the
semigroup of λ × λ-matrix units. The semitopological semigroups of matrix units were
investigated in [4].

A directed graph (or just digraph) D consists of a nonempty set V (D) of elements
called vertices and a set A(D) of ordered pairs of vertices called arcs. We call V (D) the
vertex set and A(D) the arc set of D. The order (resp. size) of D is the cardinality of the
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vertex (resp. arc) set of D. For any arc (u, v) the �rst vertex u is its tail and the second
vertex v is its head. The head and tail of an arc are its end-vertices. If a tail and a head
of arc coincide, then this arc is called a loop. A vertex v of D is a source (resp. sink) if
v is not a head(resp. tail) of any arc of D. A vertex v of D is isolated if v is not a head
and tail of any arc of D. A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D),
A(H) ⊆ A(D). If every arc of A(D) with both end-vertices in V (H) is in A(H), we say
that H is induced by V (H) and call H an induced subdigraph of D.

A walk in a digraph D is an alternating sequence

W = x1a1x2a2x3 . . . xk−1ak−1xk

of vertices xi and arcs aj of D such that ai = (xi, xi+1) is xi for every i = 1, 2, . . . , k− 1.
The length of a walk is the number of its arcs. When the arcs of W are de�ned from the
context or simply unimportant, we will denote W by x1x2 . . . xk. If the vertices of W are
distinct, W is a path. If the vertices x1, x2, . . . , xk−1 are distinct and x1 = xk, W is a
cycle. A walk (path, cycle) W is a Hamilton (or Hamiltonian) walk (path, cycle) if W
contains all vertices of D.

Let {Di}i∈I be a family of digraphs. The digraph

(⊔
i∈I

V (Di),
⊔
i∈I

A(Di)

)
is called

the disjoint union of this family and is denoted by
⊕
i∈I

Di. If D is a digraph and R is

an equivalence relation on V (D), then the quotient digraph D/R has the vertex set V/R
and the arc set {([a]R, [b]R) | (a, b) ∈ A(D)}.

The concept of minimal topological groups was introduced independently in the
early 1970's by Doitchinov [3] and Stephenson [7]. Both authors were motivated by the
theory of minimal topological spaces, which was well understood at that time. More
than 20 years earlier L. Nachbin [6] had studied minimality in the context of division
rings, and B. Banaschewski [1] investigated minimality in the more general setting of
topological algebras. Two minimal semigroups topologies on topological semigroups of
matrix units were described by Gutik and Pavlyk in [4]. The lattice of weak topologies
was investigated in [2].

2. Compositional families

If (Bλ, τ) is a semitopological semigroup, then any nonzero element of Bλ is an
isolated point of (Bλ, τ), see [4, Lemma 2]. It follows that if λ is in�nite, then the
topological space (Bλ, τ) is discrete. Later λ is assumed to be in�nite. Also the following
lemma holds.

Lemma 1. Let (Bλ, τ) be a semitopological semigroup. If A is a closed subset of (Bλ, τ)
which does not contain the zero 0, then any subset of A is closed.

For any A ⊆ Bλ and any α, β ∈ λ we denote

αAβ = {(β, γ) | (α, γ) ∈ A};
α
βA = {(γ, β) | (γ, α) ∈ A}.
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Lemma 2. Let τ be a topology on Bλ and any nonzero element of Bλ is isolated in

(Bλ, τ). The semigroup operation is continuous on (Bλ×Bλ) \ {(0, 0)} if and only if the

sets αAβ and α
βA are closed for all α, β ∈ λ and any closed subset A of (Bλ, τ) which

does not contain the zero 0.

Proof. (⇒) Let A be a closed subset of (Bλ, τ) which does not contain the zero 0. By the
continuity of operation, the maps λ(α,β) : Bλ → Bλ and ρ(β,α) : Bλ → Bλ de�ned by the
formulas λ(α,β)(x) = (α, β) · x and ρ(β,α)(x) = x · (β, α) for each x ∈ Bλ, are continuous.
Therefore the sets

αAβ = (λ(α,β))
−1(A)

and
α
βA = (ρ(β,α))

−1(A)

are closed in the topological space (Bλ, τ).
(⇐) Since every nonzero point of Bλ is isolated, it su�ces to we check the continuity

of the semigroup operation only in the cases of (α, β) · 0 and 0 · (α, β) for each α, β ∈ Bλ.
If U is any open neighborhood of the zero 0 and A = Bλ \ U , then the sets αAβ and
α
βA are closed. Denote by V and W the neighborhoods of zero Bλ \ αAβ and Bλ \ αβA,
respectively. Simple calculations show that {(α, β)} · V ⊆ U and W · {(α, β)} ⊆ U .

Corollary 1. Let τ be a topology on Bλ. The pair (Bλ, τ) is a semitopological semigroup

if and only if the sets αAβ and α
βA are closed for all α, β ∈ λ and any closed subset A of

(Bλ, τ) such that 0 /∈ A.

For any nonempty subsets A and B of λ we shall call A×B by a rectangle of Bλ.

De�nition 1. A nonempty family F of rectangles of Bλ is called compositional if for
any A×B ∈ F there exists C ⊂ λ such that A× (λ \ C) ∈ F and C ×B ∈ F .

Lemma 3. If τ is a semigroup topology on Bλ, then the family of all closed rectangles

of (Bλ, τ) is compositional.

Proof. Since every point of (Bλ, τ) is a closed subset, the family of all closed rectangles of
Bλ is not empty. Let A and B be any subsets of λ such that A×B is a closed rectangle
of Bλ. Since Bλ \A×B is an open neighborhood of 0 and 0 · 0 = 0, the continuity of the
semigroup operation in (Bλ, τ) implies that there exist open neighborhoods U and V of
0 such that U · V ⊆ Bλ \ A × B. It follows that for each α ∈ A and β ∈ B there is no
γ ∈ λ such that both (α, γ) ∈ U and (γ, β) ∈ V . Put

C = {γ ∈ λ | ∃α ∈ A such that (α, γ) ∈ U}.

Consider possible cases.

(1) If C is empty, then λ \ C = λ. The de�nition of the set C implies that U does
not contain A × (λ \ C). Thus A × λ is a closed subset of the topological space
(Bλ, τ). Fix any ϕ ∈ λ. By Lemma 1, the set A × (λ \ {ϕ}) is closed. Since
{ϕ}×B = α(A×B)ϕ, Lemma 2 implies that the set {ϕ}×B is closed, where α
is an element of A.
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(2) If C = λ, then the set λ \C is empty. The de�nition of the set C implies that V
does not contain C × B. Thus λ × B is a closed subset of the topological space
(Bλ, τ). Fix any ϕ ∈ λ. Applying 1, we conclude that the set (λ \ {ϕ}) × B is
closed. Since A × {ϕ} = β

ϕ(A × B), Lemma 2 implies that the set A × {ϕ} is
closed, where β is an element of B.

(3) Suppose that C is not empty and does not equals λ. It follows A×(λ\C) ⊂ Bλ\U
and C×B ⊂ Bλ \V , so by Lemma 1, A× (λ\C) and C×B are closed rectangles
of Bλ.

Hence the family of all closed rectangles of (Bλ, τ) is compositional.

Let F be a compositional family. Denote

C = F ∪ {αAβ ,αβ A | A ∈ F and α, β ∈ λ} ∪ {{(α, β)} | α, β ∈ λ}

and

PF = {Bλ \B | B ∈ C} ∪ {{(α, β)} | α, β ∈ λ} ∪ {∅}.

Proposition 1. For every compositional family F the topology generated by the subbase

PF is the smallest semigroup topology on Bλ such that elements of F are closed.

Proof. Let τ be the topology generated by PF . Since each nonzero point in (Bλ, τ) is
clopen subset, the topological space (Bλ, τ) is Hausdor�.

First we shall show that the topology τ is semigroup. For any A ∈ C the sets αAβ
and α

βA are elements of C. Since

α

(⋃
i∈I

Ai
)
β
=
⋃
ι∈I

α(Ai)β ,

α
β

(⋃
i∈I

Ai
)
=
⋃
ι∈I

α
β(Ai),

α

(⋂
i∈I

Ai
)
β
=
⋂
ι∈I

α(Ai)β ,

α
β

(⋂
i∈I

Ai
)
=
⋂
ι∈I

α
β(Ai),

for arbitrary family {Ai}i∈I subsets of Bλ \ {0}, by Lemma 2, the semigroup operation
is continuous on (Bλ ×Bλ) \ {(0, 0)}.

The continuity of the operation in the point (0, 0) can be verify only for elements of
the subbase. Let U be an open neighborhood of the zero 0 such that U ∈ PF . Consider
possible cases.

(1) If Bλ \U = A×B ∈ F , then there exists C ⊂ λ such that A× (λ \C) and C×B
are closed subsets of (Bλ, τ). Thus Bλ \ (A× (λ \C)) and Bλ \ (C ×B) are open
neighborhoods of the zero 0 and

(Bλ \ (A× (λ \ C))) · (Bλ \ (C ×B)) ⊆ Bλ \ (A×B) = U.

(2) If Bλ \ U = α(A × B)β = {β} × B for some α ∈ A, β ∈ λ and A × B ∈ F ,
then there exists C ⊂ λ such that the sets A × (λ \ C) and C × B are closed
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in (Bλ, τ). The set α(A × (λ \ C))β = {β} × (λ \ C) is closed in (Bλ, τ). Hence
Bλ \ ({β}× (λ \C)) and Bλ \ (C ×B) are open neighborhoods of the zero 0 and

(Bλ \ ({β} × (λ \ C))) · (Bλ \ (C ×B)) ⊆ Bλ \ ({β} ×B) = U.

(3) In the case Bλ \ U = α
β(A × B) = A × {β} the proof of the continuity of the

semigroup operation is similar to the proof of the case (2).
(4) Suppose that Bλ \U = {(α, β)} for some (α, β) ∈ Bλ \ {0}. Since family C is not

empty, there exists A × B ∈ C. It follows that there exists C ⊂ λ such that the
sets A × (λ \ C) and C × B are closed in (Bλ, τ). Fix any ϕ ∈ A and ψ ∈ B.
Consequently, the sets ϕ(A× (λ \C))α and ψ

β (C ×B) are closed in (Bλ, τ). Thus

Bλ \ ϕ(A × (λ \ C))α and Bλ \ ψβ (C × B) are open neighborhoods of the zero 0
and

(Bλ \ ϕ(A× (λ \ C))α) · (Bλ \ ψβ (C ×B)) ⊆ Bλ \ {(α, β)} = U.

Consequently, the semigroup operation is continuous.
Let τ1 be a semigroup topology on Bλ such that elements of F are closed in (Bλ, τ1).

It follows that all nonzero points are closed. By Lemma 2, elements of

{α(A×B)β ,
α
β (A×B) | A ∈ F and α, β ∈ λ}

are closed in (Bλ, τ1) and hence their complements are open. Since every nonzero point of
(Bλ, τ1) is isolated, elements of PF are open in the topological space (Bλ, τ1). Therefore
the topology generated by the subbase PF is the smallest semigroup topology on Bλ such
that elements of F are closed.

The topology generated by the subbase PF is called the topology generated by the

compositional family F and denoted by τF .
Proposition 1 and Lemma 3 imply the following corollary.

Corollary 2. Every minimal semigroup topology on Bλ is generated by some composi-

tional family.

For arbitrary sets A and B we denote

A ⊆∗ B if a set A \B is �nite;

A =∗ B if a set A4B is �nite.

Remark 1. Note that there are semigroup topologies on Bλ such that not generated by
compositional families. In particular, a topology generated by the base

B = {{(α, α) | α ∈ A} ∪ {0} | A =∗ λ} ∪ {{(α, β)} | α, β ∈ λ}.

Remark 2. Observe that a semigroup topology on Bλ can be generated by distinct
compositional families. For example, for arbitrary sets A ⊂ λ and B ⊂ A the following
compositional families F1 = {A× (λ \A)} and F2 = {A× (λ \A), B × (λ \A)} generate
the same semigroup topology on Bλ.

Let τ be a semigroup topology on Bλ generated by some compositional family. By
Com(τ) denote the set of all compositional families such that generate the topology τ .
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Proposition 2. Let τ1 and τ2 be semigroup topologies on Bλ generated by compositional

families. A topology τ1 is weaker than a topology τ2 if and only if there exist compositional

families F1 ∈ Com(τ1) and F2 ∈ Com(τ2) such that F1 ⊆ F2.

Proof. (⇒) If F1 ∈ Com(τ1) and F ∈ Com(τ2), then the family F2 = F1 ∪F is composi-
tional and F1 ⊆ F2. Since the topology τ1 is weaker than the topology τ2, any element
of F1 is a closed set in (Bλ, τ2). Therefore, the family F2 generate the topology τ2.

(⇐) It follows from F1 ⊆ F2 that every closed set in (Bλ, τ1) is closed in (Bλ, τ2).
Hence the topology τ1 is weaker than the topology τ2.

Lemma 4. Let τ be a semigroup topology on Bλ. If the set A × B is closed in (Bλ, τ)
and C =∗ A, D =∗ B, then the set C ×D is closed in (Bλ, τ).

Proof. By Lemma 1, the set (A∩C)× (B∩D) is closed in (Bλ, τ). Lemma 2 implies that
the sets (A ∩C)× {α} and {β} × (B ∩D) are closed for all α ∈ D \B, β ∈ C \A. Since
the sets D \ B and C \ A are �nite, the sets (A ∩ C) × (D \ B) and (C \ A) × (B ∩D)
are closed. The set (C \ A) × (D \ B) is �nite and therefore closed. Consequently, the
set C ×D is closed in (Bλ, τ) since C ×D is an union of closed sets (A ∩C)× (B ∩D),
(A ∩ C)× (D \B), (C \A)× (B ∩D) and (C \A)× (D \B).

3. Compositional digraphs

A compositional family F can be represented in the form of a digraph with loops
D(F). The vertex set of the digraph is the set

{A | A× (λ \B) ∈ F or B × (λ \A) ∈ F}
and (A,B) ∈ A(D(F)) if and only if A× (λ \B) ∈ F .

De�nition 2. A digraph without isolated vertices D is called compositional if for all
(u, v) ∈ A(D) there exists w ∈ V (D) such that (u,w) ∈ A(D) and (w, v) ∈ A(D).

Remark 3. For any compositional family F the digraph D(F) is compositional and
any compositional digraph D such that vertices of D are subsets of λ determines some
compositional family.

Example 1. The following digraphs are compositional.

1

2

3

4

1 2
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Example 2. Let Z[ 12 ] be the set of all dyadic rationals in [0, 1]. The digraph U with

V (U) = Z[ 12 ] and

A(U) =
{
(v, u) | v =

k

2n
and u = v +

1

2m
for some m > n

}
is compositional. Indeed, if (u, v) is an arc of U , then (u, u+v2 ) and (u+v2 , v) are arcs of U .

0 1

1
2

1
4

3
4

1
8

3
8

5
8

7
8

For each i ∈ N by Ui denoted the subdigraph of U induced by

V (Ui) =
{
u ∈ Z[ 12 ] | u = k

2n for any n 6 i
}
.

Proposition 3. There exists a Hamiltonian path in Ui for each i ∈ N.

Proof. Consider the sequence of vertices W =
{
0, 1

2i ,
2
2i ,

3
2i , . . . ,

2i−1
2i , 1

}
. Observe that

vj+1 − vj = 1
2i for arbitrary vj , vj+1 ∈ W . Thus (vj , vj+1) is an arc of Ui and therefore

this sequence is a path. Since the path contains all vertices of Ui, W is a Hamiltonian
path.

Proposition 3 implies the following corollary.

Corollary 3. Arbitrary quotient digraph of U has a �nite cycle.

Proposition 4. Let {Di}i∈I be a collection of compositional digraphs. Arbitrary quotient

digraph of the digraph D =
⊕
i∈I

Di is compositional.

Proof. Let R be an equivalence relation on V (D) and ([u], [v]) ∈ A(D/R). It follows
that there exist u′, v′ ∈ V (D) such that (v′, u′) ∈ A(D). Thus (v′, u′) is an arc of Dj

for some j ∈ I. Since digraph Dj is compositional, there exist arcs (u′, w) and (w, v′)
of Dj . Therefore ([u′], [w]), ([w], [v′]) ∈ A(D/R). Hence the quotient digraph D/R is
compositional.

Lemma 5. Let D be a compositional digraph and (u, v) be an arc of D. There exists an

equivalence relation R on V (U) such that U/R is isomorphic to a subdigraph of D which

contains (u, v).

Proof. For each w ∈ V (D) de�ne a set Cw of vertices of U . First put that 0 ∈ Cu and
1 ∈ Cv. If x ∈ Cr, y ∈ Ct and (r, t) is an arc of D, then x+y

2 ∈ Cs, where s is a vertex of
D such that (r, s), (s, t) ∈ A(D).
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Nonempty elements of {Cw}w∈V (D) provide a partition of V (U) which determines
an equivalence relation R on V (U). Consider the map f : U/R → D de�ned by the
formula f(Cw) = w for any w ∈ V (D) such that Cw 6= ∅. Since sets Cu and Cv is not
empty, u, v ∈ f(U/R). Consequently, f(U/R) is a subdigraph of D which contains (u, v).
Observe that f : U/R → f(U/R) is bijective.

Let us show by induction that if (u, v) is an arc of U and u ∈ Cr, v ∈ Cs, then
(r, s) is an arc of D. For U0 this statement holds. Suppose that the statement holds for
Un and (u, v) ∈ A(Un+1) \ A(Un). If u /∈ V (Un+1), then (2u − v, v) ∈ A(Un). It follows
that 2u − v ∈ Ct, v ∈ Cs and (t, s) is an arc of D. The de�nition of Ci implies that
(r, s) ∈ A(D) and u ∈ Cr. If v /∈ V (Un+1), then (u, 2v − u) ∈ A(Un). It follows that
u ∈ Ct, v2v − u ∈ Cs and (t, s) is an arc of D. Consequently, (t, r) ∈ V (D) and v ∈ Cr.

If (Cr, Ct) is an arc of U/R, then there exist u ∈ Cr and v ∈ Ct such that (u, v) is
an arc of U . It follows that (r, t) is an arc of D. The digraph H with vertex set f(U/R)
and arc set

{(r, t) ∈ A(D) | (f−1(r), f−1(t)) ∈ A(U/R)}

is a subdigraph of the digraph D. Hence f : U/R → H is an isomorphism.

Proposition 5. Any compositional digraph D is isomorphic to quotient digraph of⊕
a∈A(D)

Ua, where Ua is an isomorphic copy of U .

Proof. By lemma 5, for any digraph Ua there exist an equivalence relation Ra and an
isomorphism fa between Ua/Ra and the subdigraph of D which contains the arc a.

De�ne the equivalence relation R on
⊕

a∈A(D)

Ua in the following way:

uRv if and only if fb([u]Rb
) = fc([v]Rc

)

for all u ∈ V (Ub) and v ∈ V (Uc).

Now de�ne the map f :

 ⊕
a∈A(D)

Ua
 /R → D by the formula f([w]R) = fb([w]Rb

),

where w ∈ V (Ub). Let us show that f is an isomorphism.
Since every vertex s ofD is a head or a tail of some arc b ofD, there exists w ∈ V (Ub)

such that fb([w]Rb
) = s. Thus f([w]R) = s and hence f is surjective. If f([u]R) = f([v]R),

then fb([u]Rb
) = fc([v]Rc

), where u ∈ V (Ub) and v ∈ V (Uc). Therefore uRv and hence
[u]R = [v]R. It follows that f is injective.

Let ([u]R, [v]R) be a vertex of

 ⊕
a∈A(D)

Ua
 /R. It follows that there exist vertices

r ∈ [u]R and t ∈ [v]R of
⊕

a∈A(D)

Ua such that (r, t) is an arc of
⊕

a∈A(D)

Ua. Consequently,

r, t ∈ V (Ua) for some a ∈ V (D) and therefore ([r]Ra , [t]Ra) is an arc of Ua/Ra. Since fa
is a isomorphism, (fa([r]Ra), fa([t]Ra)) is an arc of D. Hence (f([u]R), f([v]R)) is an arc
of D.



MINIMAL TOPOLOGIES ON THE SEMIGROUP OF MATRIX UNITS
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 92 59

Let (f([u]R), f([v]R)) be an arc of D. It follows that (fa([u]Ra), fa([v]Ra)) is an arc
of D, where a = (f([u]R), f([v]R)). Since fa is an isomorphism, ([u]Ra , [v]Ra) is an arc
of Ua/Ra. Thus ([u]R, [v]R) is an arc of U/R and hence f is an isomorphism.

Corollary 3 and Proposition 5 imply the following corollaries.

Corollary 4. Any compositional digraph either has a �nite cycle or contains an

isomorphic copy of U as subdigraph.

Corollary 5. Any �nite compositional digraph has a �nite cycle.

4. Main result

The following proposition is a generalization of [4, Theorem 5].

Proposition 6. If A ⊂ λ, then the semigroup topology τ generated by the compositional

family {A× (λ \A)} is minimal.

Proof. Assume that τ1 is a weaker topology than the topology τ . Let B × (λ \ C) be a
closed set in (Bλ, τ1). By Lemma 3, there exists D ⊆ λ such that the sets B× (λ\D) and
D×(λ\C) are closed in (Bλ, τ1). Since τ1 is weaker than τ ,D ⊆∗ A and (λ\D) ⊆∗ (λ\A).
Therefore D =∗ A. Applying Lemma 3, we conclude that there exists F ⊆ λ such that the
sets D×(λ\F ) and F×(λ\C) are closed in (Bλ, τ1). Hence F ⊆∗ A and (λ\F ) ⊆∗ (λ\A)
and then F =∗ A. By Lemma 4, the set A × (λ \ A) is closed in the topological space
(Bλ, τ1). The obtained contradiction implies that τ is a minimal semigroup topology on
Bλ.

Proposition 7. Let F be a compositional family. If there exists a �nite subdigraph H
of the digraph D(F) which does not contain sink or source, then there exists A ⊆ λ such

that the set A× (λ \A) is closed in the topological space (Bλ, τF ).

Proof. Let V (D) = {A1, . . . , An} and H does not contain sink. For each Ai ∈ V (H) there
exits Aj ∈ V (H) such that Ai × (λ \Aj). Observe that

λ \ (A1 ∪ . . . ∪An) = (λ \A1) ∩ . . . ∩ (λ \An).

If (λ \ A1) ∩ . . . ∩ (λ \ An) = ∅, then A1 ∪ . . . ∪ An = λ and hence, by Lemmas 1 and
2, the set (λ \ {α})× {α} is closed in the topological space (Bλ, τF ) for each α ∈ λ. Let
(λ \ A1) ∩ . . . ∩ (λ \ An) 6= ∅. By Lemma 1, the set Ai × ((λ \ A1) ∩ . . . ∩ (λ \ An)) is
closed for any Ai ∈ V (H). Hence

A1 ∪ . . . ∪An × ((λ \A1) ∩ . . . ∩ (λ \An)) =
n⋃
i=1

Ai × λ \

(
n⋃
i=1

Ai

)
is closed in the topological space (Bλ, τF ). The case with source is proved similarly.

Propositions 6 and 7 imply the following corollary.

Corollary 6. If the digraph D(F) has a �nite cycle, then F is a singleton or generates

a nonminimal topology.

Corollaries 3 and 6 imply the following theorem.
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Theorem 1. Let τ be a semigroup topology on Bλ generated by a compositional family F
such that D(F) does not contain subdigraph isomorphic to U . The topology τ is minimal

if and only if τ is generated by a singleton compositional family.

Problem 1. Is there a minimal semigroup topology on Bλ generated by a composition

family F such that D(F) is isomorphic to U?
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