УДК 512.536.7

MINIMAL SEMIGROUP TOPOLOGIES ON THE SEMIGROUP OF MATRIX UNITS

Markiian KHYLYNSKYI, Pavlo KHYLYNSKYI

Ivan Franko National University of Lviv, Universitetska Str., 1, 79000, Lviv, Ukraine e-mail: khymarkiyan@gmail.com, khypavlo@gmail.com

We describe minimal topologies in some class of semigroup topologies on semigroups of matrix units.

 $Key\ words:$ topological semigroup, minimal semigroup topology, semigroups of matrix units

1. INTRODUCTION, MOTIVATION, AND MAIN DEFINITIONS

In this paper all topological spaces are assumed to be Hausdorff.

A topological semigroup is a topological space endowed with a continuous semigroup operation. If S is a semigroup and τ is a topology on S such that (S, τ) is a topological semigroup, then we shall call τ semigroup topology on S. A semitopological semigroup is a topological space together with a separately continuous semigroup operation. A topological semigroup (S, τ) is said to be minimal if no semigroup topology on S is strictly contained in τ . If (S, τ) is a minimal topological semigroup, then τ is called a minimal semigroup topology.

Let λ be a nonempty set. By B_{λ} we denote the set $(\lambda \times \lambda) \cup \{0\}$ endowed with the following semigroup operation:

$$(\alpha,\beta)\cdot(\gamma,\delta) = \begin{cases} (\alpha,\delta), & \text{if } \beta = \gamma; \\ 0, & \text{if } \beta \neq \gamma; \end{cases}$$

and $(\alpha, \beta) \cdot 0 = 0 \cdot (\alpha, \beta) = 0 \cdot 0 = 0$, for each $\alpha, \beta, \gamma, \delta \in \lambda$. The semigroup B_{λ} is called the *semigroup of* $\lambda \times \lambda$ -matrix units. The semitopological semigroups of matrix units were investigated in [4].

A directed graph (or just digraph) D consists of a nonempty set V(D) of elements called vertices and a set A(D) of ordered pairs of vertices called arcs. We call V(D) the vertex set and A(D) the arc set of D. The order (resp. size) of D is the cardinality of the

²⁰²⁰ Mathematics Subject Classification: 22A15

[©] Khylynskyi, M., Khylynskyi, P., 2021

vertex (resp. arc) set of D. For any arc (u, v) the first vertex u is its *tail* and the second vertex v is its *head*. The head and tail of an arc are its *end-vertices*. If a tail and a head of arc coincide, then this arc is called a *loop*. A vertex v of D is a *source* (resp. *sink*) if v is not a head(resp. tail) of any arc of D. A vertex v of D is *isolated* if v is not a head and tail of any arc of D. A digraph H is a *subdigraph* of a digraph D if $V(H) \subseteq V(D)$, $A(H) \subseteq A(D)$. If every arc of A(D) with both end-vertices in V(H) is in A(H), we say that H is induced by V(H) and call H an induced subdigraph of D.

A walk in a digraph D is an alternating sequence

$$W = x_1 a_1 x_2 a_2 x_3 \dots x_{k-1} a_{k-1} x_k$$

of vertices x_i and arcs a_j of D such that $a_i = (x_i, x_{i+1})$ is x_i for every i = 1, 2, ..., k-1. The *length* of a walk is the number of its arcs. When the arcs of W are defined from the context or simply unimportant, we will denote W by $x_1x_2...x_k$. If the vertices of W are distinct, W is a *path*. If the vertices $x_1, x_2, ..., x_{k-1}$ are distinct and $x_1 = x_k$, W is a *cycle*. A walk (path, cycle) W is a *Hamilton* (or *Hamiltonian*) walk (path, cycle) if W contains all vertices of D.

Let
$$\{D_i\}_{i \in I}$$
 be a family of digraphs. The digraph $\left(\bigsqcup_{i \in I} V(D_i), \bigsqcup_{i \in I} A(D_i)\right)$ is called

the disjoint union of this family and is denoted by $\bigoplus_{i \in I} D_i$. If D is a digraph and \mathcal{R} is

an equivalence relation on V(D), then the quotient digraph D/\mathcal{R} has the vertex set V/\mathcal{R} and the arc set $\{([a]_{\mathcal{R}}, [b]_{\mathcal{R}}) \mid (a, b) \in A(D)\}$.

The concept of minimal topological groups was introduced independently in the early 1970's by Doitchinov [3] and Stephenson [7]. Both authors were motivated by the theory of minimal topological spaces, which was well understood at that time. More than 20 years earlier L. Nachbin [6] had studied minimality in the context of division rings, and B. Banaschewski [1] investigated minimality in the more general setting of topological algebras. Two minimal semigroups topologies on topological semigroups of matrix units were described by Gutik and Pavlyk in [4]. The lattice of weak topologies was investigated in [2].

2. Compositional families

If (B_{λ}, τ) is a semitopological semigroup, then any nonzero element of B_{λ} is an isolated point of (B_{λ}, τ) , see [4, Lemma 2]. It follows that if λ is infinite, then the topological space (B_{λ}, τ) is discrete. Later λ is assumed to be infinite. Also the following lemma holds.

Lemma 1. Let (B_{λ}, τ) be a semitopological semigroup. If A is a closed subset of (B_{λ}, τ) which does not contain the zero 0, then any subset of A is closed.

For any $A \subseteq B_{\lambda}$ and any $\alpha, \beta \in \lambda$ we denote

$${}_{\alpha}A_{\beta} = \{ (\beta, \gamma) \mid (\alpha, \gamma) \in A \};$$

$${}_{\beta}^{\alpha}A = \{ (\gamma, \beta) \mid (\gamma, \alpha) \in A \}.$$

Lemma 2. Let τ be a topology on B_{λ} and any nonzero element of B_{λ} is isolated in (B_{λ}, τ) . The semigroup operation is continuous on $(B_{\lambda} \times B_{\lambda}) \setminus \{(0,0)\}$ if and only if the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are closed for all $\alpha, \beta \in \lambda$ and any closed subset A of (B_{λ}, τ) which does not contain the zero 0.

Proof. (\Rightarrow) Let A be a closed subset of (B_{λ}, τ) which does not contain the zero 0. By the continuity of operation, the maps $\lambda_{(\alpha,\beta)}: B_{\lambda} \to B_{\lambda}$ and $\rho_{(\beta,\alpha)}: B_{\lambda} \to B_{\lambda}$ defined by the formulas $\lambda_{(\alpha,\beta)}(x) = (\alpha,\beta) \cdot x$ and $\rho_{(\beta,\alpha)}(x) = x \cdot (\beta,\alpha)$ for each $x \in B_{\lambda}$, are continuous. Therefore the sets

$${}_{\alpha}A_{\beta} = (\lambda_{(\alpha,\beta)})^{-1}(A)$$

 and

$${}^{\alpha}_{\beta}A = (\rho_{(\beta,\alpha)})^{-1}(A)$$

are closed in the topological space (B_{λ}, τ) .

 (\Leftarrow) Since every nonzero point of B_{λ} is isolated, it suffices to we check the continuity of the semigroup operation only in the cases of $(\alpha, \beta) \cdot 0$ and $0 \cdot (\alpha, \beta)$ for each $\alpha, \beta \in B_{\lambda}$. If U is any open neighborhood of the zero 0 and $A = B_{\lambda} \setminus U$, then the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}A$ are closed. Denote by V and W the neighborhoods of zero $B_{\lambda} \setminus {}_{\alpha}A_{\beta}$ and $B_{\lambda} \setminus {}_{\beta}A$, respectively. Simple calculations show that $\{(\alpha, \beta)\} \cdot V \subseteq U$ and $W \cdot \{(\alpha, \beta)\} \subseteq U$.

Corollary 1. Let τ be a topology on B_{λ} . The pair (B_{λ}, τ) is a semitopological semigroup if and only if the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are closed for all $\alpha, \beta \in \lambda$ and any closed subset A of (B_{λ}, τ) such that $0 \notin A$.

For any nonempty subsets A and B of λ we shall call $A \times B$ by a rectangle of B_{λ} .

Definition 1. A nonempty family \mathcal{F} of rectangles of B_{λ} is called compositional if for any $A \times B \in \mathcal{F}$ there exists $C \subset \lambda$ such that $A \times (\lambda \setminus C) \in \mathcal{F}$ and $C \times B \in \mathcal{F}$.

Lemma 3. If τ is a semigroup topology on B_{λ} , then the family of all closed rectangles of (B_{λ}, τ) is compositional.

Proof. Since every point of (B_{λ}, τ) is a closed subset, the family of all closed rectangles of B_{λ} is not empty. Let A and B be any subsets of λ such that $A \times B$ is a closed rectangle of B_{λ} . Since $B_{\lambda} \setminus A \times B$ is an open neighborhood of 0 and $0 \cdot 0 = 0$, the continuity of the semigroup operation in (B_{λ}, τ) implies that there exist open neighborhoods U and V of 0 such that $U \cdot V \subseteq B_{\lambda} \setminus A \times B$. It follows that for each $\alpha \in A$ and $\beta \in B$ there is no $\gamma \in \lambda$ such that both $(\alpha, \gamma) \in U$ and $(\gamma, \beta) \in V$. Put

$$C = \{ \gamma \in \lambda \mid \exists \alpha \in A \text{ such that } (\alpha, \gamma) \in U \}.$$

Consider possible cases.

If C is empty, then λ \ C = λ. The definition of the set C implies that U does not contain A × (λ \ C). Thus A × λ is a closed subset of the topological space (B_λ, τ). Fix any φ ∈ λ. By Lemma 1, the set A × (λ \ {φ}) is closed. Since {φ} × B = α(A × B)φ, Lemma 2 implies that the set {φ} × B is closed, where α is an element of A.

- (2) If $C = \lambda$, then the set $\lambda \setminus C$ is empty. The definition of the set C implies that V does not contain $C \times B$. Thus $\lambda \times B$ is a closed subset of the topological space (B_{λ}, τ) . Fix any $\varphi \in \lambda$. Applying 1, we conclude that the set $(\lambda \setminus \{\varphi\}) \times B$ is closed. Since $A \times \{\varphi\} = \frac{\beta}{\varphi}(A \times B)$, Lemma 2 implies that the set $A \times \{\varphi\}$ is closed, where β is an element of B.
- (3) Suppose that C is not empty and does not equals λ . It follows $A \times (\lambda \setminus C) \subset B_{\lambda} \setminus U$ and $C \times B \subset B_{\lambda} \setminus V$, so by Lemma 1, $A \times (\lambda \setminus C)$ and $C \times B$ are closed rectangles of B_{λ} .

Hence the family of all closed rectangles of (B_{λ}, τ) is compositional.

Let \mathcal{F} be a compositional family. Denote

$$\mathcal{C} = \mathcal{F} \cup \{ {}_{\alpha}A_{\beta}, {}_{\beta}^{\alpha}A \mid A \in \mathcal{F} \text{ and } \alpha, \beta \in \lambda \} \cup \{ \{ (\alpha, \beta) \} \mid \alpha, \beta \in \lambda \}$$

and

$$P_{\mathcal{F}} = \{B_{\lambda} \setminus B \mid B \in \mathcal{C}\} \cup \{\{(\alpha, \beta)\} \mid \alpha, \beta \in \lambda\} \cup \{\emptyset\}.$$

Proposition 1. For every compositional family \mathcal{F} the topology generated by the subbase $P_{\mathcal{F}}$ is the smallest semigroup topology on B_{λ} such that elements of \mathcal{F} are closed.

Proof. Let τ be the topology generated by $P_{\mathcal{F}}$. Since each nonzero point in (B_{λ}, τ) is clopen subset, the topological space (B_{λ}, τ) is Hausdorff.

First we shall show that the topology τ is semigroup. For any $A \in \mathcal{C}$ the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are elements of \mathcal{C} . Since

for arbitrary family $\{A_i\}_{i \in I}$ subsets of $B_{\lambda} \setminus \{0\}$, by Lemma 2, the semigroup operation is continuous on $(B_{\lambda} \times B_{\lambda}) \setminus \{(0,0)\}$.

The continuity of the operation in the point (0,0) can be verify only for elements of the subbase. Let U be an open neighborhood of the zero 0 such that $U \in P_{\mathcal{F}}$. Consider possible cases.

(1) If $B_{\lambda} \setminus U = A \times B \in \mathcal{F}$, then there exists $C \subset \lambda$ such that $A \times (\lambda \setminus C)$ and $C \times B$ are closed subsets of (B_{λ}, τ) . Thus $B_{\lambda} \setminus (A \times (\lambda \setminus C))$ and $B_{\lambda} \setminus (C \times B)$ are open neighborhoods of the zero 0 and

$$(B_{\lambda} \setminus (A \times (\lambda \setminus C))) \cdot (B_{\lambda} \setminus (C \times B)) \subseteq B_{\lambda} \setminus (A \times B) = U.$$

(2) If $B_{\lambda} \setminus U = {}_{\alpha}(A \times B)_{\beta} = \{\beta\} \times B$ for some $\alpha \in A, \beta \in \lambda$ and $A \times B \in \mathcal{F}$, then there exists $C \subset \lambda$ such that the sets $A \times (\lambda \setminus C)$ and $C \times B$ are closed

 $\mathbf{54}$

- in (B_{λ}, τ) . The set $_{\alpha}(A \times (\lambda \setminus C))_{\beta} = \{\beta\} \times (\lambda \setminus C)$ is closed in (B_{λ}, τ) . Hence $B_{\lambda} \setminus (\{\beta\} \times (\lambda \setminus C))$ and $B_{\lambda} \setminus (C \times B)$ are open neighborhoods of the zero 0 and $(B_{\lambda} \setminus (\{\beta\} \times (\lambda \setminus C))) \cdot (B_{\lambda} \setminus (C \times B)) \subseteq B_{\lambda} \setminus (\{\beta\} \times B) = U$.
- (3) In the case $B_{\lambda} \setminus U = \frac{\alpha}{\beta} (A \times B) = A \times \{\beta\}$ the proof of the continuity of the semigroup operation is similar to the proof of the case (2).
- (4) Suppose that B_λ \ U = {(α, β)} for some (α, β) ∈ B_λ \ {0}. Since family C is not empty, there exists A × B ∈ C. It follows that there exists C ⊂ λ such that the sets A × (λ \ C) and C × B are closed in (B_λ, τ). Fix any φ ∈ A and ψ ∈ B. Consequently, the sets _φ(A × (λ \ C))_α and ^ψ_β(C × B) are closed in (B_λ, τ). Thus B_λ \ _φ(A × (λ \ C))_α and B_λ \ ^ψ_β(C × B) are open neighborhoods of the zero 0 and

$$(B_{\lambda} \setminus_{\varphi} (A \times (\lambda \setminus C))_{\alpha}) \cdot (B_{\lambda} \setminus_{\beta}^{\psi} (C \times B)) \subseteq B_{\lambda} \setminus \{(\alpha, \beta)\} = U.$$

Consequently, the semigroup operation is continuous.

Let τ_1 be a semigroup topology on B_{λ} such that elements of \mathcal{F} are closed in (B_{λ}, τ_1) . It follows that all nonzero points are closed. By Lemma 2, elements of

$$_{\alpha}(A \times B)_{\beta,\beta} (A \times B) \mid A \in \mathcal{F} \text{ and } \alpha, \beta \in \lambda$$

are closed in (B_{λ}, τ_1) and hence their complements are open. Since every nonzero point of (B_{λ}, τ_1) is isolated, elements of $P_{\mathcal{F}}$ are open in the topological space (B_{λ}, τ_1) . Therefore the topology generated by the subbase $P_{\mathcal{F}}$ is the smallest semigroup topology on B_{λ} such that elements of \mathcal{F} are closed.

The topology generated by the subbase $P_{\mathcal{F}}$ is called the topology generated by the compositional family \mathcal{F} and denoted by $\tau_{\mathcal{F}}$.

Proposition 1 and Lemma 3 imply the following corollary.

Corollary 2. Every minimal semigroup topology on B_{λ} is generated by some compositional family.

For arbitrary sets A and B we denote

$$A \subseteq^* B$$
 if a set $A \setminus B$ is finite;
 $A =^* B$ if a set $A \triangle B$ is finite.

Remark 1. Note that there are semigroup topologies on B_{λ} such that not generated by compositional families. In particular, a topology generated by the base

 $\mathcal{B} = \{\{(\alpha, \alpha) \mid \alpha \in A\} \cup \{0\} \mid A =^* \lambda\} \cup \{\{(\alpha, \beta)\} \mid \alpha, \beta \in \lambda\}.$

Remark 2. Observe that a semigroup topology on B_{λ} can be generated by distinct compositional families. For example, for arbitrary sets $A \subset \lambda$ and $B \subset A$ the following compositional families $\mathcal{F}_1 = \{A \times (\lambda \setminus A)\}$ and $\mathcal{F}_2 = \{A \times (\lambda \setminus A), B \times (\lambda \setminus A)\}$ generate the same semigroup topology on B_{λ} .

Let τ be a semigroup topology on B_{λ} generated by some compositional family. By $\operatorname{Com}(\tau)$ denote the set of all compositional families such that generate the topology τ .

Proposition 2. Let τ_1 and τ_2 be semigroup topologies on B_{λ} generated by compositional families. A topology τ_1 is weaker than a topology τ_2 if and only if there exist compositional families $\mathcal{F}_1 \in \text{Com}(\tau_1)$ and $\mathcal{F}_2 \in \text{Com}(\tau_2)$ such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$.

Proof. (\Rightarrow) If $\mathcal{F}_1 \in \operatorname{Com}(\tau_1)$ and $\mathcal{F} \in \operatorname{Com}(\tau_2)$, then the family $\mathcal{F}_2 = \mathcal{F}_1 \cup \mathcal{F}$ is compositional and $\mathcal{F}_1 \subseteq \mathcal{F}_2$. Since the topology τ_1 is weaker than the topology τ_2 , any element of \mathcal{F}_1 is a closed set in (B_{λ}, τ_2) . Therefore, the family \mathcal{F}_2 generate the topology τ_2 .

(\Leftarrow) It follows from $\mathcal{F}_1 \subseteq \mathcal{F}_2$ that every closed set in (B_λ, τ_1) is closed in (B_λ, τ_2) . Hence the topology τ_1 is weaker than the topology τ_2 .

Lemma 4. Let τ be a semigroup topology on B_{λ} . If the set $A \times B$ is closed in (B_{λ}, τ) and C = *A, D = *B, then the set $C \times D$ is closed in (B_{λ}, τ) .

Proof. By Lemma 1, the set $(A \cap C) \times (B \cap D)$ is closed in (B_{λ}, τ) . Lemma 2 implies that the sets $(A \cap C) \times \{\alpha\}$ and $\{\beta\} \times (B \cap D)$ are closed for all $\alpha \in D \setminus B, \beta \in C \setminus A$. Since the sets $D \setminus B$ and $C \setminus A$ are finite, the sets $(A \cap C) \times (D \setminus B)$ and $(C \setminus A) \times (B \cap D)$ are closed. The set $(C \setminus A) \times (D \setminus B)$ is finite and therefore closed. Consequently, the set $C \times D$ is closed in (B_{λ}, τ) since $C \times D$ is an union of closed sets $(A \cap C) \times (B \cap D)$, $(A \cap C) \times (D \setminus B), (C \setminus A) \times (B \cap D)$ and $(C \setminus A) \times (D \setminus B)$.

3. Compositional digraphs

A compositional family \mathcal{F} can be represented in the form of a digraph with loops $D(\mathcal{F})$. The vertex set of the digraph is the set

$$\{A \mid A \times (\lambda \setminus B) \in \mathcal{F} \text{ or } B \times (\lambda \setminus A) \in \mathcal{F}\}\$$

and $(A, B) \in A(D(\mathcal{F}))$ if and only if $A \times (\lambda \setminus B) \in \mathcal{F}$.

Definition 2. A digraph without isolated vertices D is called *compositional* if for all $(u, v) \in A(D)$ there exists $w \in V(D)$ such that $(u, w) \in A(D)$ and $(w, v) \in A(D)$.

Remark 3. For any compositional family \mathcal{F} the digraph $D(\mathcal{F})$ is compositional and any compositional digraph D such that vertices of D are subsets of λ determines some compositional family.

Example 1. The following digraphs are compositional.

Example 2. Let $\mathbb{Z}[\frac{1}{2}]$ be the set of all dyadic rationals in [0,1]. The digraph \mathcal{U} with $V(\mathcal{U}) = \mathbb{Z}[\frac{1}{2}]$ and

$$A(\mathcal{U}) = \left\{ (v, u) \mid v = \frac{k}{2^n} \text{ and } u = v + \frac{1}{2^m} \text{ for some } m \ge n \right\}$$

is compositional. Indeed, if (u, v) is an arc of \mathcal{U} , then $(u, \frac{u+v}{2})$ and $(\frac{u+v}{2}, v)$ are arcs of \mathcal{U} .

For each $i \in \mathbb{N}$ by \mathcal{U}_i denoted the subdigraph of \mathcal{U} induced by

$$V(\mathcal{U}_i) = \left\{ u \in \mathbb{Z}[\frac{1}{2}] \mid u = \frac{k}{2^n} \text{ for any } n \leqslant i \right\}$$

Proposition 3. There exists a Hamiltonian path in U_i for each $i \in \mathbb{N}$.

Proof. Consider the sequence of vertices $W = \left\{0, \frac{1}{2^i}, \frac{2}{2^i}, \frac{3}{2^i}, \dots, \frac{2^i-1}{2^i}, 1\right\}$. Observe that $v_{j+1} - v_j = \frac{1}{2^i}$ for arbitrary $v_j, v_{j+1} \in W$. Thus (v_j, v_{j+1}) is an arc of \mathcal{U}_i and therefore this sequence is a path. Since the path contains all vertices of \mathcal{U}_i , W is a Hamiltonian path.

Proposition 3 implies the following corollary.

Corollary 3. Arbitrary quotient digraph of \mathcal{U} has a finite cycle.

Proposition 4. Let $\{D_i\}_{i \in I}$ be a collection of compositional digraphs. Arbitrary quotient digraph of the digraph $D = \bigoplus_{i \in I} D_i$ is compositional.

Proof. Let \mathcal{R} be an equivalence relation on V(D) and $([u], [v]) \in A(D/\mathcal{R})$. It follows that there exist $u', v' \in V(D)$ such that $(v', u') \in A(D)$. Thus (v', u') is an arc of D_j for some $j \in I$. Since digraph D_j is compositional, there exist arcs (u', w) and (w, v')of D_j . Therefore $([u'], [w]), ([w], [v']) \in A(D/\mathcal{R})$. Hence the quotient digraph D/\mathcal{R} is compositional.

Lemma 5. Let D be a compositional digraph and (u, v) be an arc of D. There exists an equivalence relation \mathcal{R} on $V(\mathcal{U})$ such that \mathcal{U}/\mathcal{R} is isomorphic to a subdigraph of D which contains (u, v).

Proof. For each $w \in V(D)$ define a set C_w of vertices of \mathcal{U} . First put that $0 \in C_u$ and $1 \in C_v$. If $x \in C_r$, $y \in C_t$ and (r, t) is an arc of D, then $\frac{x+y}{2} \in C_s$, where s is a vertex of D such that $(r, s), (s, t) \in A(D)$.

Nonempty elements of $\{C_w\}_{w \in V(D)}$ provide a partition of $V(\mathcal{U})$ which determines an equivalence relation \mathcal{R} on $V(\mathcal{U})$. Consider the map $f: \mathcal{U}/\mathcal{R} \to D$ defined by the formula $f(C_w) = w$ for any $w \in V(D)$ such that $C_w \neq \emptyset$. Since sets C_u and C_v is not empty, $u, v \in f(\mathcal{U}/\mathcal{R})$. Consequently, $f(\mathcal{U}/\mathcal{R})$ is a subdigraph of D which contains (u, v). Observe that $f: \mathcal{U}/\mathcal{R} \to f(\mathcal{U}/\mathcal{R})$ is bijective.

Let us show by induction that if (u, v) is an arc of \mathcal{U} and $u \in C_r$, $v \in C_s$, then (r,s) is an arc of D. For \mathcal{U}_0 this statement holds. Suppose that the statement holds for \mathcal{U}_n and $(u,v) \in A(\mathcal{U}_{n+1}) \setminus A(\mathcal{U}_n)$. If $u \notin V(\mathcal{U}_{n+1})$, then $(2u-v,v) \in A(\mathcal{U}_n)$. It follows that $2u - v \in C_t$, $v \in C_s$ and (t, s) is an arc of D. The definition of C_i implies that $(r,s) \in A(D)$ and $u \in C_r$. If $v \notin V(\mathcal{U}_{n+1})$, then $(u, 2v - u) \in A(\mathcal{U}_n)$. It follows that $u \in C_t$, $v2v - u \in C_s$ and (t, s) is an arc of D. Consequently, $(t, r) \in V(D)$ and $v \in C_r$.

If (C_r, C_t) is an arc of \mathcal{U}/\mathcal{R} , then there exist $u \in C_r$ and $v \in C_t$ such that (u, v) is an arc of \mathcal{U} . It follows that (r, t) is an arc of D. The digraph H with vertex set $f(\mathcal{U}/\mathcal{R})$ and arc set

$$\{(r,t) \in A(D) \mid (f^{-1}(r), f^{-1}(t)) \in A(\mathcal{U}/\mathcal{R})\}$$

is a subdigraph of the digraph D. Hence $f: \mathcal{U}/\mathcal{R} \to H$ is an isomorphism.

Proposition 5. Any compositional digraph D is isomorphic to quotient digraph of $\bigoplus \mathcal{U}^a$, where \mathcal{U}^a is an isomorphic copy of \mathcal{U} . $a \in A(D)$

Proof. By lemma 5, for any digraph \mathcal{U}^a there exist an equivalence relation \mathcal{R}_a and an isomorphism f_a between $\mathcal{U}^a/\mathcal{R}_a$ and the subdigraph of D which contains the arc a.

Define the equivalence relation \mathcal{R} on $\bigoplus \mathcal{U}^a$ in the following way: $a \in A(D)$

$$u\mathcal{R}v$$
 if and only if $f_b([u]_{\mathcal{R}_b}) = f_c([v]_{\mathcal{R}_c})$

for all $u \in V(\mathcal{U}^b)$ and $v \in V(\mathcal{U}^c)$.

Now define the map $f:\left(\bigoplus_{a\in A(D)}\mathcal{U}^a\right)/\mathcal{R}\to D$ by the formula $f([w]_{\mathcal{R}})=f_b([w]_{\mathcal{R}_b}),$

where $w \in V(\mathcal{U}^b)$. Let us show that f is an isomorphism.

Since every vertex s of D is a head or a tail of some arc b of D, there exists $w \in V(\mathcal{U}^b)$ such that $f_b([w]_{\mathcal{R}_b}) = s$. Thus $f([w]_{\mathcal{R}}) = s$ and hence f is surjective. If $f([u]_{\mathcal{R}}) = f([v]_{\mathcal{R}})$, then $f_b([u]_{\mathcal{R}_b}) = f_c([v]_{\mathcal{R}_c})$, where $u \in V(\mathcal{U}^b)$ and $v \in V(\mathcal{U}^c)$. Therefore $u\mathcal{R}v$ and hence $[u]_{\mathcal{R}} = [v]_{\mathcal{R}}$. It follows that f is injective.

Let $([u]_{\mathcal{R}}, [v]_{\mathcal{R}})$ be a vertex of $\left(\bigoplus_{a \in A(D)} \mathcal{U}^a\right) / \mathcal{R}$. It follows that there exist vertices $r \in [u]_{\mathcal{R}}$ and $t \in [v]_{\mathcal{R}}$ of $\bigoplus_{a \in A(D)} \mathcal{U}^a$ such that (r, t) is an arc of $\bigoplus_{a \in A(D)} \mathcal{U}^a$. Consequently,

 $r, t \in V(\mathcal{U}^a)$ for some $a \in V(D)$ and therefore $([r]_{\mathcal{R}_a}, [t]_{\mathcal{R}_a})$ is an arc of $\mathcal{U}_a/\mathcal{R}_a$. Since f_a is a isomorphism, $(f_a([r]_{\mathcal{R}_a}), f_a([t]_{\mathcal{R}_a}))$ is an arc of D. Hence $(f([u]_{\mathcal{R}}), f([v]_{\mathcal{R}}))$ is an arc of D.

Let $(f([u]_{\mathcal{R}}), f([v]_{\mathcal{R}}))$ be an arc of D. It follows that $(f_a([u]_{\mathcal{R}_a}), f_a([v]_{\mathcal{R}_a}))$ is an arc of D, where $a = (f([u]_{\mathcal{R}}), f([v]_{\mathcal{R}}))$. Since f_a is an isomorphism, $([u]_{\mathcal{R}_a}, [v]_{\mathcal{R}_a})$ is an arc of $\mathcal{U}_a/\mathcal{R}_a$. Thus $([u]_{\mathcal{R}}, [v]_{\mathcal{R}})$ is an arc of \mathcal{U}/\mathcal{R} and hence f is an isomorphism.

Corollary 3 and Proposition 5 imply the following corollaries.

Corollary 4. Any compositional digraph either has a finite cycle or contains an isomorphic copy of \mathcal{U} as subdigraph.

Corollary 5. Any finite compositional digraph has a finite cycle.

4. MAIN RESULT

The following proposition is a generalization of [4, Theorem 5].

Proposition 6. If $A \subset \lambda$, then the semigroup topology τ generated by the compositional family $\{A \times (\lambda \setminus A)\}$ is minimal.

Proof. Assume that τ_1 is a weaker topology than the topology τ . Let $B \times (\lambda \setminus C)$ be a closed set in (B_{λ}, τ_1) . By Lemma 3, there exists $D \subseteq \lambda$ such that the sets $B \times (\lambda \setminus D)$ and $D \times (\lambda \setminus C)$ are closed in (B_{λ}, τ_1) . Since τ_1 is weaker than $\tau, D \subseteq^* A$ and $(\lambda \setminus D) \subseteq^* (\lambda \setminus A)$. Therefore $D =^* A$. Applying Lemma 3, we conclude that there exists $F \subseteq \lambda$ such that the sets $D \times (\lambda \setminus F)$ and $F \times (\lambda \setminus C)$ are closed in (B_{λ}, τ_1) . Hence $F \subseteq^* A$ and $(\lambda \setminus F) \subseteq^* (\lambda \setminus A)$ and then $F =^* A$. By Lemma 4, the set $A \times (\lambda \setminus A)$ is closed in the topological space (B_{λ}, τ_1) . The obtained contradiction implies that τ is a minimal semigroup topology on B_{λ} .

Proposition 7. Let \mathcal{F} be a compositional family. If there exists a finite subdigraph H of the digraph $D(\mathcal{F})$ which does not contain sink or source, then there exists $A \subseteq \lambda$ such that the set $A \times (\lambda \setminus A)$ is closed in the topological space $(B_{\lambda}, \tau_{\mathcal{F}})$.

Proof. Let $V(D) = \{A_1, \ldots, A_n\}$ and H does not contain sink. For each $A_i \in V(H)$ there exits $A_j \in V(H)$ such that $A_i \times (\lambda \setminus A_j)$. Observe that

$$\lambda \setminus (A_1 \cup \ldots \cup A_n) = (\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n).$$

If $(\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n) = \emptyset$, then $A_1 \cup \ldots \cup A_n = \lambda$ and hence, by Lemmas 1 and 2, the set $(\lambda \setminus \{\alpha\}) \times \{\alpha\}$ is closed in the topological space (B_λ, τ_F) for each $\alpha \in \lambda$. Let $(\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n) \neq \emptyset$. By Lemma 1, the set $A_i \times ((\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n))$ is closed for any $A_i \in V(H)$. Hence

$$A_1 \cup \ldots \cup A_n \times ((\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n)) = \bigcup_{i=1}^n A_i \times \lambda \setminus \left(\bigcup_{i=1}^n A_i\right)$$

is closed in the topological space $(B_{\lambda}, \tau_{\mathcal{F}})$. The case with source is proved similarly.

Propositions 6 and 7 imply the following corollary.

Corollary 6. If the digraph $D(\mathcal{F})$ has a finite cycle, then \mathcal{F} is a singleton or generates a nonminimal topology.

Corollaries 3 and 6 imply the following theorem.

Theorem 1. Let τ be a semigroup topology on B_{λ} generated by a compositional family \mathcal{F} such that $D(\mathcal{F})$ does not contain subdigraph isomorphic to \mathcal{U} . The topology τ is minimal if and only if τ is generated by a singleton compositional family.

Problem 1. Is there a minimal semigroup topology on B_{λ} generated by a composition family \mathcal{F} such that $D(\mathcal{F})$ is isomorphic to \mathcal{U} ?

ACKNOWLEDGEMENTS

The authors acknowledge Oleksandr Ravsky for his comments and suggestions.

References

- B. Banaschewski, *Minimal topological algebras*, Math. Ann. **211** (1974), no. 2, 107–114. DOI: 10.1007/BF01344165
- S. Bardyla and O. Gutik, On the lattice of weak topologies on the bicyclic monoid with adjoined zero, Algebra Discrete Math. 30 (2020), no. 1, 26-43. DOI: 10.12958/adm1459
- D. Doïtchinov, Produits de groupes topologiques minimaux, Bull. Sci. Math., II. Ser. 97 (1972), 59-64.
- O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71 (2005), no. 3, 389-400. DOI: 10.1007/s00233-005-0530-0
- J. Bang-Jensen and G. Gutin, Digraphs. Theory, algorithms and applications, Springer Monographs in Mathematics. Springer, London, 2nd edition, 2009. DOI: 10.1007/978-1-84800-998-1
- L. Nachbin, On strictly minimal topological division rings, Bull. Amer. Math. Soc. 55 (1949), 1128-1136. DOI: 10.1090/S0002-9904-1949-09339-4
- R. M. Stephenson, Jr., Minimal topological groups, Math. Ann. 192 (1971), 193–195. DOI: 10.1007/BF02052870

Стаття: надійшла до редколегії 22.02.2021 доопрацьована 25.05.2021 прийнята до друку 29.12.2021

МІНІМАЛЬНІ НАПІВГРУПОВІ ТОПОЛОГІЇ НА НАПІВГРУПІ МАТРИЧНИХ ОДИНИЦЬ

Маркіян ХИЛИНСЬКИЙ, Павло ХИЛИНСЬКИЙ

Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000, м. Львів e-mail: khymarkiyan@gmail.com, khypavlo@gmail.com

Ми описали мінімальні топології в деякому класі напівгрупових топологій на напівгрупі матричних одиниць.

Ключові слова: топологічна напівгрупа, мінімальна напівгрупова топологія, напівгрупа матричних одиниць.