ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2021. Випуск 92. С. 34–50 Visnyk of the Lviv Univ. Series Mech. Math. 2021. Issue 92. P. 34–50 http://publications.lnu.edu.ua/bulletins/index.php/mmf doi: http://dx.doi.org/10.30970/vmm.2021.92.034-050

УДК 512.53

ON THE SEMIGROUP $B_{\omega}^{\mathscr{F}}$ WHICH IS GENERATED BY THE FAMILY \mathscr{F} OF ATOMIC SUBSETS OF ω

Oleg GUTIK, Oleksandra LYSETSKA

Ivan Franko National University of Lviv, Universitetska Str., 1, 79000, Lviv, Ukraine e-mail: oleg.gutik@lnu.edu.ua, o.yu.sobol@gmail.com

We study the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$, which is introduced in [O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. **90** (2020), 5–19], in the case when the family \mathscr{F} of subsets of cardinality ≤ 1 in ω . We show that $\mathbf{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the subsemigroup $\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min})$ of the Brandt ω -extension of the semilattice \mathbf{F}_{\min} and describe all shift-continuous feebly compact T_1 -topologies on the semi-group $\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min})$. In particulary we prove that every shift-continuous feebly compact T_1 -topological route the space $(\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min}), \tau)$ is homeomorphic to the one-point Alexandroff compactification of the discrete countable space $\mathfrak{O}(\omega)$. We study the closure of $\mathbf{B}_{\omega}^{\mathscr{F}}$ in a semitopological semigroup. In particularly we show that $\mathbf{B}_{\omega}^{\mathscr{F}}$ is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion, and a Hausdorff topological inverse semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ is closed in any Hausdorff topological semigroup if and only if the band $E(\mathbf{B}_{\omega}^{\mathscr{F}})$ is compact.

Key words: semitopological semigroup, topological semigroup, bicyclic monoid, inverse semigroup, feebly compact, compact, Brandt ω -extension, closure.

1. INTRODUCTION, MOTIVATION AND MAIN DEFINITIONS

We shall follow the terminology of [2, 3, 4, 5, 19]. By ω we denote the set of all non-negative integers.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω . For any $F \in \mathscr{P}(\omega)$ and $n, m \in \omega$ we put

$$n - m + F = \{n - m + k \colon k \in F\}$$

²⁰²⁰ Mathematics Subject Classification: 22A15 © Gutik, O., Lysetska, O., 2021

This definition implies that $n - m + F = \emptyset$ if $F = \emptyset$. A subfamily $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is called ω -closed if $F_1 \cap (-n + F_2) \in \mathscr{F}$ for all $n \in \omega$ and $F_1, F_2 \in \mathscr{F}$.

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ (called the *inverse of* x) such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band of S). The semigroup operation of S determines the following partial order \preccurlyeq on E(S): $e \preccurlyeq f$ if and only if ef = fe = e. This order is called the *natural partial order* on E(S). A semilattice is a commutative semigroup of idempotents. By (ω, \min) or ω_{\min} we denote the set ω with the semilattice operation $x \cdot y = \min\{x, y\}$.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \preccurlyeq on S: $s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that s = te. This order is called the *natural partial order* on S [22].

The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathscr{C}(p,q)$ is determined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = q^{k+m-\min\{l,m\}}p^{l+n-\min\{l,m\}}.$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence simple) combinatorial *E*-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence [3].

On the set $B_{\omega} = \omega \times \omega$ we define a semigroup operation "." in the following way

$$(i_1, j_1) \cdot (i_2, j_2) = \begin{cases} (i_1 - j_1 + i_2, j_2), & \text{if } j_1 < i_2; \\ (i_1, j_2), & \text{if } j_1 = i_2; \\ (i_1, j_1 - i_2 + j_2), & \text{if } j_1 > i_2. \end{cases}$$

It is well known that the semigroup \boldsymbol{B}_{ω} is isomorphic to the bicyclic monoid by the mapping $\mathfrak{h}: \mathscr{C}(p,q) \to \boldsymbol{B}_{\omega}, q^k p^l \mapsto (k,l)$ (see: [3, Section 1.12] or [18, Exercise IV.1.11(*ii*)]).

A topological (semitopological) semigroup is a topological space together with a continuous (separately continuous) semigroup operation. If S is a semigroup and τ is a topology on S such that (S, τ) is a topological semigroup, then we shall call τ a semigroup topology on S, and if τ is a topology on S such that (S, τ) is a semitopology on S such that (S, τ) is a semitopological semigroup, then we shall call τ a shift-continuous topology on S. An inverse topological semigroup with the continuous inversion is called a topological inverse semigroup. If S is an inverse semigroup and τ is a topology on S such that (S, τ) is a topological inverse semigroup, then we shall call τ a semigroup inverse topology on S.

Next we shall describe the construction which is introduced in [9].

Let B_{ω} be the bicyclic monoid and \mathscr{F} be an ω -closed subfamily of $\mathscr{P}(\omega)$. On the set $B_{\omega} \times \mathscr{F}$ we define the semigroup operation "." in the following way

$$(i_1, j_1, F_1) \cdot (i_2, j_2, F_2) = \begin{cases} (i_1 - j_1 + i_2, j_2, (j_1 - i_2 + F_1) \cap F_2), & \text{if } j_1 < i_2; \\ (i_1, j_2, F_1 \cap F_2), & \text{if } j_1 = i_2; \\ (i_1, j_1 - i_2 + j_2, F_1 \cap (i_2 - j_1 + F_2)), & \text{if } j_1 > i_2. \end{cases}$$

By [9], if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω -closed, then $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$ is a semigroup. Moreover, if an ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \emptyset , then the set

$$\boldsymbol{I} = \{(i, j, \emptyset) \colon i, j \in \omega\}$$

is an ideal of the semigroup $(B_{\omega} \times \mathscr{F}, \cdot)$. For any ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$\boldsymbol{B}_{\omega}^{\mathscr{F}} = \left\{ \begin{array}{ll} (\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot) / \boldsymbol{I}, & \text{if } \varnothing \in \mathscr{F} \\ (\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot), & \text{if } \varnothing \notin \mathscr{F} \end{array} \right.$$

is defined in [9]. The semigroup $B_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [9] that $B_{\omega}^{\mathscr{F}}$ is combinatorial inverse semigroup and Green's relations, the natural partial order on $B_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. The criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup $B_{\omega}^{\mathscr{F}}$ and when $B_{\omega}^{\mathscr{F}}$ has the identity, is isomorphic to the bicyclic semigroup or the countable semigroup of matrix units are given. In particular in [9] it is proved that the semigroup $B_{\omega}^{\mathscr{F}}$ is isomorphic to the semigroup of $\omega \times \omega$ -matrix units if and only if \mathscr{F} consists of sets of cardinality ≤ 1 in ω .

Let \mathscr{F} be some family of cardinality ≤ 1 in ω . In this case we shall say that \mathscr{F} is the *family of atomic subsets* of ω . It is obvious that if $\mathscr{F} = \{\varnothing\}$ then the semigroup $B_{\omega}^{\mathscr{F}}$ is trivial and hence in this paper we assume that the family \mathscr{F} contains at least one singleton subset of ω . It is obvious that in this case \mathscr{F} is an ω -closed subfamily of $\mathscr{P}(\omega)$ and hence $B_{\omega}^{\mathscr{F}}$ is an inverse semigroup with zero. Later by **0** we denote the zero of $B_{\omega}^{\mathscr{F}}$ and by $(i, j, \{k\})$ a non-zero element of $B_{\omega}^{\mathscr{F}}$ for some $i, j \in \omega$, $\{k\} \in \mathscr{F}$.

We put $\mathbf{F} = \bigcup \mathscr{F}$. Since the semilattice (ω, \min) is linearly ordered, the set \mathbf{F} with the binary operation $xy = \min\{x, y\}$ is a subsemilattice of (ω, \min) and later by \mathbf{F}_{\min} we shall denote the set \mathbf{F} with the semilattice operation inherited from (ω, \min) .

We need the following construction from [6].

Let S be a semigroup with zero and $\lambda \ge 1$ be a cardinal. On the set $B_{\lambda}(S) = (\lambda \times S \times \lambda) \sqcup \{\mathcal{O}\}$ we define a semigroup operation as follows

$$(\alpha, s, \beta) \cdot (\gamma, t, \delta) = \begin{cases} (\alpha, st, \delta), & \text{if } \beta = \gamma \\ \mathcal{O}, & \text{if } \beta \neq \gamma \end{cases}$$

and

$$(\alpha, s, \beta) \cdot \mathscr{O} = \mathscr{O} \cdot (\alpha, s, \beta) = \mathscr{O} \cdot \mathscr{O} = \mathscr{O},$$

for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $s, t \in S$. The semigroup $\mathscr{B}_{\lambda}(S)$ is called the *Brandt* λ -extension of the semigroup S [6]. Algebraic properties of $\mathscr{B}_{\lambda}(S)$ and its generalization the Brandt λ^{0} -extension $\mathscr{B}^{0}_{\lambda}(S)$ are studied in [6, 7, 10, 12].

In this paper we study the semigroup $\mathcal{B}_{\omega}^{\mathscr{F}}$ for a family \mathscr{F} of atomic subsets of ω . We show that $\mathcal{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the subsemigroup $\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min})$ of the Brandt ω -extension of the semilattice \mathbf{F}_{\min} and describe all shift-continuous feebly compact T_1 -topologies on the semigroup $\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min})$. In particular, we prove that every shift-continuous feebly compact T_1 -topology τ on $\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min})$ is compact and moreover in this case the space $(\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}), \tau)$ is homeomorphic to the one-point Alexandroff compactification of the discrete countable space $\mathfrak{D}(\omega)$. We study the closure of $\mathcal{B}_{\omega}^{\mathscr{F}}$ in a semitopological semigroup.

In particularly we show that $B_{\omega}^{\mathscr{F}}$ is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion, and a Hausdorff topological inverse semigroup $B_{\omega}^{\mathscr{F}}$ is closed in any Hausdorff topological semigroup if and only if the band $E(B_{\omega}^{\mathscr{F}})$ is compact.

Later in this paper we assume that \mathscr{F} is a non-trivial family of atomic subsets of ω , i.e., \mathscr{F} contains at least one nontrivial singleton subset of ω .

2. Algebraic properties of the semigroup $B^{\mathscr{F}}_{\omega}$

Proposition 2 of [9] implies the following proposition which describing the natural partial order on $B^{\mathscr{F}}_{\omega}$.

Proposition 1. Let $(i_1, j_1, \{k_1\})$ and $(i_2, j_2, \{k_2\})$ be non-zero elements of the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$. Then $(i_1, j_1, \{k_1\}) \preccurlyeq (i_2, j_2, \{k_2\})$ if and only if

$$k_2 - k_1 = i_1 - i_2 = j_1 - j_2 = p$$

for some $p \in \omega$.

Since the set ω is well ordered by the usual order we enumerate the set $\mathbf{F} = \{k_i : i \in \omega\}$ in the following way $k_0 < k_1 < \cdots < k_n < k_{n+1} < \cdots$. It is obvious that the set \mathbf{F} is finite if and only if \mathbf{F} contains the maximum.

Proposition 1 implies the structure of maximal chains in $B^{\mathscr{F}}_{\omega}$ with the respect to its natural partial order

Corollary 1. Let i, j be arbitrary elements of ω . Then in the case when the set F is infinite then the following finite series

describes maximal chains in the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ and in the case when the set \mathbf{F} is finite and contains maximum k_n then the following finite series

describes maximal chains in the semigroup $\boldsymbol{B}^{\mathscr{F}}_{\omega}$.

We define a map $\mathfrak{f} \colon \boldsymbol{B}_{\omega}^{\mathscr{F}} \to \mathscr{B}_{\omega}(\boldsymbol{F}_{\min})$ by the formulae

(1)
$$f(i,j,\{k\}) = (i+k,k,j+k) \quad \text{and} \quad (\mathbf{0})f = \mathcal{O},$$

for $i, j \in \omega$ and $\{k\} \in \mathscr{F} \setminus \{\varnothing\}$.

Proposition 2. The map $f: \mathbf{B}_{\omega}^{\mathscr{F}} \to \mathscr{B}_{\omega}(\mathbf{F}_{\min})$ is an isomorphic embedding.

Proof. It is obvious that the map \mathfrak{f} which is defined by formulae (1) is injective. For arbitrary $(i_1, j_1, \{k_1\}), (i_2, j_2, \{k_2\}) \in \mathbf{B}_{\omega}^{\mathscr{F}}$ we have that

$$\begin{split} \mathfrak{f}((i_1, j_1, \{k_1\}) \cdot (i_2, j_2, \{k_2\})) &= \\ &= \begin{cases} \mathfrak{f}(i_1 - j_1 + i_2, j_2, \{k_2\}), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ \mathfrak{f}(i_1, j_2, \{k_1\}), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ \mathfrak{f}(0), & \text{if } j_1 + k_1 \neq i_2 + k_2 \end{cases} = \\ &= \begin{cases} (i_1 - j_1 + i_2 + k_2, k_2, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_1), & \text{if } j_1 = i_2 \text{ and } k_1 = k_2; \\ (i_1 + k_1, k_1, j_1 - i_2 + j_2 + k_1), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_2, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 = i_2 \text{ and } k_1 = k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 = i_2 \text{ and } k_1 = k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 + k_1 \neq i_2 + k_2, \end{cases} \end{cases}$$

 and

$$\begin{split} \mathfrak{f}((i_1, j_1, \{k_1\}) \cdot \mathfrak{f}(i_2, j_2, \{k_2\})) &= (i_1 + k_1, k_1, j_1 + k_1) \cdot (i_2 + k_2, k_2, j_2 + k_2) = \\ &= \left\{ \begin{array}{ccc} (i_1 + k_1, \min\{k_1, k_2\}, j_2 + k_2), & \text{if } j_1 + k_1 = i_2 + k_2; \\ \mathcal{O}, & \text{if } j_1 + k_1 \neq i_2 + k_2 \end{array} \right. = \\ &= \left\{ \begin{array}{ccc} (i_1 + k_1, k_2, j_2 + k_2), & \text{if } k_2 < k_1 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } k_2 > k_1 \text{ and } k_1 = k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } k_2 > k_1 \text{ and } j_1 + k_1 = i_2 + k_2; \\ \mathcal{O}, & \text{if } j_1 + k_1 \neq i_2 + k_2, \end{array} \right. = \\ &= \left\{ \begin{array}{c} (i_1 + k_1, k_2, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 = i_2 \text{ and } k_1 = k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ \mathcal{O}, & \text{if } j_1 + k_1 \neq i_2 + k_2. \end{array} \right. \end{cases}$$

Since **0** and \mathscr{O} are the zeros of the semigroups $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and $\mathscr{B}_{\omega}(\boldsymbol{F}_{\min})$, respectively, the above equalities imply that the map $\mathfrak{f}: \boldsymbol{B}_{\omega}^{\mathscr{F}} \to \mathscr{B}_{\omega}(\boldsymbol{F}_{\min})$ is a homomorphism. This completes the proof of the proposition.

Next we define

 $\mathscr{B}_{\omega}^{\mathsf{f}}(\boldsymbol{F}_{\min}) = \{\mathscr{O}\} \cup \left\{ (i+k,k,j+k) \in \mathscr{B}_{\omega}(\boldsymbol{F}_{\min}) \setminus \{\mathscr{O}\} : (i,j,\{k\}) \in \boldsymbol{B}_{\omega}^{\mathscr{F}} \right\}.$

Proposition 2 implies

 $\mathbf{38}$

Theorem 1. Let \mathscr{F}^* be any family of atomic subsets of ω . Then the semigroup $\mathbf{B}^{\mathscr{F}}_{\omega}$ is isomorphic to $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ by the mapping \mathfrak{f} .

Proposition 3. Let \mathscr{F}^* be any family of subsets of ω which contains a non-empty set, and $k_0 = \min \bigcup \mathscr{F}^*$. Then the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^*}$ is isomorphic to the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^*}$ where

$$\mathscr{F}_0^* = \{-k_0 + F \colon F \in \mathscr{F}^*\}.$$

Proof. Since the set ω with the usual order \leq is well ordered, the number k_0 is well defined. This implies that the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^*_0}$ is well defined, because $F \subseteq \{n \in \omega : n \geq k_0\}$ for any $F \in \mathscr{F}^*$. Without loss of generality we may assume that $\emptyset \in \mathscr{F}^*$, which implies that the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^*}$ has zero $\mathbf{0}$, and hence the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^*_0}$ has zero $\mathbf{0}$, too.

We define the map $\mathfrak{h}\colon \boldsymbol{B}_{\omega}^{\mathscr{F}^*} \to \boldsymbol{B}_{\omega}^{\mathscr{F}^*}$ in the following way

(2)
$$\mathfrak{h}(i, j, \{k\}) = (i - k_0, j - k_0, \{k - k_0\})$$
 and $(\mathbf{0})\mathfrak{h} = \mathbf{0}$

for $i, j \in \omega$ and $\{k\} \in \mathscr{F}^* \setminus \{\varnothing\}$. It is obvious that such defined map \mathfrak{h} is bijective. For arbitrary $(i_1, j_1, \{k_1\}), (i_2, j_2, \{k_2\}) \in \mathbf{B}_{\omega}^{\mathscr{F}^*}$ we have that

$$\begin{split} \mathfrak{h}((i_1,j_1,\{k_1\})\cdot(i_2,j_2,\{k_2\})) &= \\ &= \begin{cases} \mathfrak{h}(i_1-j_1+i_2,j_2,\{k_2\}), & \text{if } j_1 < i_2 \text{ and } j_1+k_1=i_2+k_2; \\ \mathfrak{h}(i_1,j_2,\{k_1\}), & \text{if } j_1=i_2 \text{ and } k_1=k_2; \\ \mathfrak{h}(i_1,j_1-i_2+j_2,\{k_1\}), & \text{if } j_1>i_2 \text{ and } j_1+k_1=i_2+k_2; \\ \mathfrak{h}(\mathbf{0}), & \text{if } j_1+k_1\neq i_2+k_2 \end{cases} \\ &= \begin{cases} (i_1-j_1+i_2-k_0,j_2-k_0,\{k_2-k_0\}), & \text{if } j_1 < i_2 \text{ and } j_1+k_1=i_2+k_2; \\ (i_1-k_0,j_2-k_0,\{k_1-k_0\}), & \text{if } j_1=i_2 \text{ and } k_1=k_2; \\ (i_1-k_0,j_1-i_2+j_2-k_0,\{k_1-k_0\}), & \text{if } j_1>i_2 \text{ and } j_1+k_1=i_2+k_2; \\ \mathbf{0}, & \text{if } j_1+k_1\neq i_2+k_2 \end{cases} \end{split}$$

 and

$$\begin{split} \mathfrak{h}(i_{1},j_{1},\{k_{1}\})\cdot\mathfrak{h}(i_{2},j_{2},\{k_{2}\}) &= \\ &= (i_{1}-k_{0},j_{1}-k_{0},\{k_{1}-k_{0}\})\cdot(i_{2}-k_{0},j_{2}-k_{0},\{k_{2}-k_{0}\}) = \\ & \begin{cases} (i_{1}-k_{0}-(j_{1}-k_{0})+i_{2}-k_{0},j_{2}-k_{0},\{k_{2}-k_{0}\}), & \text{if } j_{1}-k_{0} < i_{2}-k_{0} \text{ and} \\ j_{1}-k_{0}+k_{1}-k_{0}=i_{2}-k_{0}+k_{2}-k_{0}; \\ (i_{1}-k_{0},j_{2}-k_{0},\{k_{1}-k_{0}\}), & \text{if } j_{1}-k_{0} = i_{2}-k_{0} \text{ and} \\ k_{1}-k_{0} = k_{2}-k_{0}; \\ (i_{1}-k_{0},j_{1}-k_{0}-(i_{2}-k_{0})+j_{2}-k_{0},\{k_{1}-k_{0}\}), & \text{if } j_{1}-k_{0} > i_{2}-k_{0} \text{ and} \\ j_{1}-k_{0}+k_{1}-k_{0}=i_{2}-k_{0}+k_{2}-k_{0}; \\ \mathbf{0}, & \text{if } j_{1}-k_{0}+k_{1}-k_{0}=i_{2}-k_{0}+k_{2}-k_{0}; \\ & (i_{1}-j_{1}+i_{2}-k_{0},j_{2}-k_{0},\{k_{2}-k_{0}\}), & \text{if } j_{1}i_{2} \text{ and } j_{1}+k_{1}=i_{2}+k_{2}; \\ & \mathbf{0}, & \text{if } j_{1}+k_{1}\neq i_{2}+k_{2}. \end{split}$$

Since **0** is the zero of both semigroups $B_{\omega}^{\mathscr{F}^*}$ and $B_{\omega}^{\mathscr{F}^*}$, the above equalities imply that such defined map $\mathfrak{h}: B_{\omega}^{\mathscr{F}^*} \to B_{\omega}^{\mathscr{F}^*}$ is a homomorphism. \Box

Theorem 2. Let \mathscr{F}^1 and \mathscr{F}^2 be some families of atomic subsets of ω . Then the semigroups $\mathbf{B}^{\mathscr{F}^1}_{\omega}$ and $\mathbf{B}^{\mathscr{F}^2}_{\omega}$ are isomorphic if and only if there exists an integer n such that

$$\mathscr{F}^1 = \left\{ n + F \colon F \in \mathscr{F}^2 \right\}$$

Proof. The implication (\Leftarrow) follows from Proposition 3.

 (\Rightarrow) Put $\mathbf{F}^1 = \bigcup \mathscr{F}^1$ and $\mathbf{F}^2 = \bigcup \mathscr{F}^2$. By Proposition 3. without loss of generality we may assume that $0 \in \mathbf{F}^1 \cap \mathbf{F}^2$, i.e., $\{0\} \in \mathscr{F}^1$ and $\{0\} \in \mathscr{F}^2$.

Suppose to the contrary that the semigroups $B_{\omega}^{\mathscr{F}^1}$ and $B_{\omega}^{\mathscr{F}^2}$ are isomorphic but $\mathscr{F}^1 \neq \mathscr{F}^2$. Since \mathscr{F}^1 and \mathscr{F}^2 are some families of atomic subsets of ω , we get that $F^1 \neq F^2$. Hence without loss of generality we may assume that there exists the minimum positive integer m of the set F^1 such that $m \notin F^2$. Put

$$\widetilde{\boldsymbol{F}} = \left\{ k \in \boldsymbol{F}^2 \colon k < m \right\}.$$

We enumerate the set $\widetilde{F} = \{k_0, k_1, \dots, k_n\}$ in the following way

$$k_0 = 0 < k_1 < \dots < k_n.$$

Then we have that $\widetilde{F} \subset F^1$.

By Lemma 2 of [9] a non-zero element $(i, j, \{k\})$ of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}^1}$ (or $\boldsymbol{B}_{\omega}^{\mathscr{F}^2}$) is an idempotent if and only if i = j. This and Corollary 1 imply the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}^1}$ contains exactly $m - k_n$ distinct chains (or a chain) of idempotents of the length $k_n + 2$, but the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}^1}$ contains at least $m - k_n + 1$ distinct chains of idempotents of the length $k_n + 2$. This contradicts that the semigroups $\boldsymbol{B}_{\omega}^{\mathscr{F}^1}$ and $\boldsymbol{B}_{\omega}^{\mathscr{F}^2}$ are isomorphic. The obtained contradiction implies the implication.

For any $i, j \in \omega$ we denote

$$\boldsymbol{F}_{\min}^{(i,j)_{\vec{r}}} = \left\{ (i,k,j) \colon (i,k,j) \in \mathscr{B}_{\omega}^{\vec{r}}(\boldsymbol{F}_{\min}) \right\}$$

and

$$\omega_{\min}^{(i,j)} = \{(i,k,j) \colon (i,k,j) \in \mathscr{B}_{\omega}(\omega_{\min})\}$$

where by ω_{\min} we denote the semilattice (ω, \min).

Lemma 1. In the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ both equations $A \cdot X = B$ and $X \cdot A = B$ have only finitely many solutions for $B \neq \mathbf{0}$.

Proof. We show that the equation $A \cdot X = B$ has finitely many solutions for $B \neq \mathcal{O}$ in the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$. In the case of the equation $X \cdot A = B$ the proof is similar.

We denote

$$A = (i_A, k_A, j_A),$$
 $X = (i_X, k_X, j_X)$ and $B = (i_B, k_B, j_B),$

where (i_X, k_X, j_X) is a variable, (i_A, k_A, j_A) and (i_B, k_B, j_B) are constants of the equation (3) $(i_A, k_A, j_A) \cdot (i_X, k_X, j_X) = (i_B, k_B, j_B).$

First we establish the solution of equation (3) in the Brandt ω -extension $\mathscr{B}_{\omega}(\omega_{\min})$ of the semilattice ω_{\min} . The semigroup operation in $\mathscr{B}_{\omega}(\omega_{\min})$ implies that equation (3) has a non-empty set of solutions if and only if $k_B \preccurlyeq k_A$ in ω_{\min} and $i_A = i_B$. Hence we have that the set of solutions of (3) is a subset of $\omega_{\min}^{(j_A, j_B)}$. This implies that the set of solutions

of equation (3) is a subset of $F_{\min}^{(j_A, j_B)_{\uparrow}}$. This and Theorem 1 imply the statement of the lemma.

3. On topogizations of the semigroup $\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min})$

By Proposition 3 for any family \mathscr{F} of atomic subsets of ω the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}_{0}}$ where \mathscr{F}_{0} is a family of atomic subsets of ω such that $0 \in \bigcup \mathscr{F}_{0}$. Hence later we shall assume that $0 \in \mathbf{F}$, i.e., $(i, 0, i) \in \mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min})$ for any $i, j \in \omega$.

Proposition 4. Let τ be a shift-continuous T_1 -topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$. Then every non-zero element of $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ is an isolated point in $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$.

Proof. Fix arbitrary $i, j \in \omega$. Since

$$(i,0,i) \cdot (i,0,j) \cdot (j,0,j) = (i,0,j)$$

the assumption of the proposition implies that for any open neighbourhood $W_{(i,0,j)} \not\supseteq \mathcal{O}$ of the point (i,0,j) there exists its open neighbourhood $V_{(i,0,j)}$ in the topological space $(\mathscr{B}^{\uparrow}_{\omega}(\mathbf{F}_{\min}), \tau)$ such that

$$(i,0,i) \cdot V_{(i,0,j)} \cdot (j,0,j) \subseteq W_{(i,0,j)}.$$

The definition of the semigroup operation on $\mathscr{B}^{\rho}_{\omega}(\boldsymbol{F}_{\min})$ implies that $V_{(i,0,j)} \subseteq \boldsymbol{F}_{\min}^{(i,j)r}$. Then $\boldsymbol{F}_{\min}^{(i,j)r}$ is an open subset of the set $(\mathscr{B}^{\rho}_{\omega}(\boldsymbol{F}_{\min}), \tau)$ because it is the full preimage of $V_{(i,0,j)}$ under the mapping

$$\mathfrak{h}\colon \mathscr{B}^{\mathfrak{f}}_{\omega}(\boldsymbol{F}_{\min}) \to \mathscr{B}^{\mathfrak{f}}_{\omega}(\boldsymbol{F}_{\min}), \; x \mapsto (i,0,i) \cdot x \cdot (j,0,j).$$

By Corollary 1 the set $F_{\min}^{(i,j)^r}$ is finite, which implies the statement of the proposition. \Box

Next we shall show that the semigroup $\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min})$ admits a compact shift-continuous Hausdorff topology.

Example 1. A topology τ_{Ac} on the semigroup $\mathscr{B}^{\not{r}}_{\omega}(\boldsymbol{F}_{\min})$ is defined as follows:

- a) all nonzero elements of $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ are isolated points in $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau_{Ac});$
- b) the family

$$\mathscr{B}_{\mathrm{Ac}}(\mathscr{O}) = \left\{ U_{(i_1,j_1),\dots,(i_n,j_n)} = \mathscr{B}_{\omega}^{\mathsf{p}}(\boldsymbol{F}_{\min}) \setminus \left(\boldsymbol{F}_{\min}^{(i_1,j_1)_{\mathsf{p}}} \cup \dots \cup \boldsymbol{F}_{\min}^{(i_n,j_n)_{\mathsf{p}}} \right) : \\ n, i_1, j_1, \dots, i_n, j_n \in \omega \right\}$$

is the base of the topology τ_{Ac} at the point $\mathscr{O} \in \mathscr{B}_{\omega}^{\lor}(\boldsymbol{F}_{\min})$.

Corollary 1 implies that the set $\boldsymbol{F}_{\min}^{(i,j)_{\vec{r}}}$ is finite for any $i, j \in \omega$ which implies that the topological space $(\mathscr{B}_{\omega}^{\vec{r}}(\boldsymbol{F}_{\min}), \tau_{Ac})$ is homeomorphic to the one-point Alexandroff compactification of the discrete space $\mathscr{B}_{\omega}^{\vec{r}}(\boldsymbol{F}_{\min}) \setminus \{\mathscr{O}\}$.

Proposition 5. $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau_{Ac})$ is a Hausdorff compact semitopological semigroup with continuous inversion.

Proof. It is obvious that the topology $\tau_{\rm Ac}$ is Hausdorff and compact.

$$oldsymbol{K} = \{i, i_1, \dots, i_n, j, j_1, \dots, j_n\} \qquad ext{and} \qquad U_{oldsymbol{K}} = \mathscr{B}^{
m r}_{\omega}(oldsymbol{F}_{\min}) \setminus igcup_{x,y \in oldsymbol{K}} oldsymbol{F}^{(x,y)_r}_{\min}.$$

Then we have that $U_{\mathbf{K}} \in \mathscr{B}_{\mathrm{Ac}}(\mathscr{O})$ and the following conditions hold

$$\begin{aligned} U_{\mathbf{K}} \cdot \{(i,k,j)\} &\subseteq U_{(i_{1},j_{1}),...,(i_{n},j_{n})}, \\ \{(i,k,j)\} \cdot U_{\mathbf{K}} &\subseteq U_{(i_{1},j_{1}),...,(i_{n},j_{n})}, \\ \{\mathscr{O}\} \cdot \{(i,k,j)\} &= \{(i,k,j)\} \cdot \{\mathscr{O}\} = \{\mathscr{O}\} \subseteq U_{(i_{1},j_{1}),...,(i_{n},j_{n})}, \\ \{\mathscr{O}\} \cdot U_{(i_{1},j_{1}),...,(i_{n},j_{n})} = U_{(i_{1},j_{1}),...,(i_{n},j_{n})} \cdot \{\mathscr{O}\} = \{\mathscr{O}\} \subseteq U_{(i_{1},j_{1}),...,(i_{n},j_{n})}, \\ \{(i,k,j)\} \cdot \{(l,m,p)\} = \{\mathscr{O}\} \subseteq U_{(i_{1},j_{1}),...,(i_{n},j_{n})}, & \text{if } j \neq l, \\ \{(i,k,j)\} \cdot \{(l,m,p)\} = \{(i,\min\{k,m\},p)\}, & \text{if } j = l, \\ (U_{(j_{1},i_{1}),...,(j_{n},i_{n})})^{-1} \subseteq U_{(i_{1},j_{1}),...,(i_{n},j_{n})} \end{aligned}$$

Therefore, $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau_{Ac})$ is a semitopological inverse semigroup with continuous inversion.

We recall that a topological space X is said to be

- perfectly normal if X is normal and and every closed subset of X is a G_{δ} -set;
- *scattered* if X does not contain a non-empty dense-in-itself subspace;
- hereditarily disconnected (or totally disconnected) if X does not contain any connected subsets of cardinality larger than one;
- *compact* if each open cover of X has a finite subcover;
- countably compact if each open countable cover of X has a finite subcover;
- *H*-closed if X is a closed subspace of every Hausdorff topological space containing X;
- *infra H-closed* provided that any continuous image of X into any first countable Hausdorff space is closed (see [15]);
- *feebly compact* if each locally finite open cover of X is finite [1];
- *d-feebly compact* (or *DFCC*) if every discrete family of open subsets in X is finite (see [17]);
- *pseudocompact* if X is Tychonoff and each continuous real-valued function on X is bounded;
- Y-compact for some topological space Y, if the image f(X) is compact for any continuous map $f: X \to Y$.

The relations between above defined compact-like spaces are presented at the diagram in [14].

Lemma 2. Every shift-continuous T_1 -topology τ on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ is regular.

Proof. By Proposition 5 every non-zero element of the semigroup $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ is an isolated point in the space $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau)$. Hence every open neighbourhood $V(\mathscr{O})$ of the zero \mathscr{O} is a closed subset in $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau)$, which implies that the topological space $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau)$ is regular.

 $\mathbf{42}$

Since in any countable T_1 -space X every open subset of X is a F_{σ} -set, Theorem 1.5.17 from [5] and Lemma 2 imply the following corollary.

Corollary 2. Let τ be a shift-continuous T_1 -topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$. Then $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ is a perfectly normal, scattered, hereditarily disconnected space.

By $\mathfrak{D}(\omega)$ we denote the infinite countable discrete space and by \mathbb{R} the set of all real numbers with the usual topology.

Theorem 3. Let τ be a shift-continuous T_1 -topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$. Then the following statements are equivalent:

- (i) $(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau)$ is compact;
- (*ii*) $\tau = \tau_{\rm Ac}$;
- (*iii*) $\left(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau\right)$ is *H*-closed;
- (iv) $\left(\mathscr{B}^{\mathcal{P}}_{\omega}(\boldsymbol{F}_{\min}), \tau\right)$ is feebly compact;
- (v) $\left(\mathscr{B}_{\omega}^{\not r}(\boldsymbol{F}_{\min}), \tau\right)$ is infra *H*-closed;
- (vi) $\left(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau\right)$ is d-feebly compact;
- (vii) $\left(\mathscr{B}_{\omega}^{r}(\boldsymbol{F}_{\min}), \tau\right)$ is pseudocompact;
- (viii) $\left(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau\right)$ is \mathbb{R} -compact;
- $(ix) \left(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau \right) \text{ is } \mathfrak{D}(\omega) \text{-compact.}$

Proof. Implications $(ii) \Rightarrow (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (viii) \Rightarrow (ix)$ and $(i) \Rightarrow (vii) \Rightarrow (iv) \Rightarrow (vi)$ are trivial (see the diagram in [14]). By Lemma 2 we get implications $(vi) \Rightarrow (iv)$ and $(iii) \Rightarrow (i)$.

 $(ix) \Rightarrow (i)$ Suppose to the contrary that there exists a shift-continuous T_1 -topology τ on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ such that $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ is a $\mathfrak{D}(\omega)$ -compact non-compact space. Then there exists an open cover $\mathscr{U} = \{U_{\alpha}\}$ of $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ which does not contain a finite subcover. Fix $U_{\alpha_0} \in \mathscr{U}$ such that $\mathscr{O} \in U_{\alpha_0}$. Since the space $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ is not compact the set $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) \setminus U_{\alpha_0}$ is infinite. We enumerate the set $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) \setminus U_{\alpha_0}$, i.e., put $\{\mathbf{x}_i : i \in \omega\} = \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) \setminus U_{\alpha_0}$. We identify $\mathfrak{D}(\omega)$ with ω and define a map $\mathfrak{f}: (\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau) \to \mathfrak{D}(\omega)$ by the formula

$$\mathfrak{f}(\boldsymbol{x}) = \begin{cases} 0, & \text{if } \boldsymbol{x} \in U_{\alpha_0}; \\ i, & \text{if } \boldsymbol{x} = \boldsymbol{x}_i. \end{cases}$$

Proposition 4 implies that such defined map \mathfrak{f} is continuous. Also, the image $\mathfrak{f}(\mathscr{B}^{\mathfrak{f}}_{\omega}(\boldsymbol{F}_{\min}))$ is not a compact subset of $\mathfrak{D}(\omega)$, which contradicts the assumption. \Box

- Remark 1. (1) By Proposition 4 of [9] the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ contains an isomorphic copy of the semigroup of $\omega \times \omega$ -matrix units. Then Theorem 5 from [11] implies that $\mathbf{B}_{\omega}^{\mathscr{F}}$ does not embed into a countably compact Hausdorff topological semigroup.
 - (2) A Hausdorff topological semigroup S is called Γ -compact if for every $x \in S$ the closure of the set $\{x, x^2, x^3, \ldots\}$ is compact in S (see [16]). The semigroup operation $\mathbf{B}_{\omega}^{\mathscr{F}}$ implies that either $a \cdot a = a$ or $a \cdot a = \mathscr{O}$ for any $a \in \mathbf{B}_{\omega}^{\mathscr{F}}$. Hence the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ with any Hausdorff semigroup topology is Γ -compact.

4. On the closure of $B^{\mathscr{F}}_{\omega}$ in a (semi)topological semigroup

Lemma 3. Let S be a dense subsemigroup of a T_1 -semitopological semigroup T and 0 be the zero of S. Then the element 0 is the zero of T.

Proof. Suppose to the contrary that there exists $a \in T \setminus S$ such that $0 \cdot a = b \neq 0$. Then for every open neighbourhood $U(b) \not\supseteq 0$ in T there exists an open neighbourhood $V(a) \not\supseteq 0$ of the point a in T such that $0 \cdot V(a) \subseteq U(b)$. But $|V(a) \cap S| \ge \omega$, and hence $0 \in 0 \cdot V(a) \subseteq U(b)$. This contradicts the choice of the neighbourhood U(b). Therefore $0 \cdot a = 0$ for all $a \in T \setminus S$.

The proof of the equality $a \cdot 0 = 0$ is similar.

Theorem 4. Let T be a T_1 -semitopological semigroup which contains the semigroup $\mathbf{B}^{\mathscr{F}}_{\omega}$ as a dense proper subsemigroup. Then $I = \left(T \setminus \mathbf{B}^{\mathscr{F}}_{\omega}\right) \cup \{\mathbf{0}\}$ is an ideal of T.

Proof. Lemma 3 implies that **0** is the zero of the semigroup T. Since T is a T_1 -topological space, the set $\mathbf{B}^{\mathscr{F}}_{\omega} \setminus \{\mathbf{0}\}$ is dense in T. By Lemma 3 [13], $\mathbf{B}^{\mathscr{F}}_{\omega} \setminus \{\mathbf{0}\}$ is an open subspace of T.

Fix an arbitrary non-zero element $y \in I$. If $x \cdot y = z \notin I$ for some $x \in \mathbf{B}^{\mathscr{F}}_{\omega} \setminus \{\mathbf{0}\}$ then there exists an open neighbourhood U(y) of the point y in the space T such that

$$\{x\} \cdot U(y) = \{z\} \subset \boldsymbol{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}.$$

By Lemma 1 the open neighbourhood U(y) should contain finitely many elements of the set $\mathbf{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}$ which contradicts our assumption. Hence $x \cdot y \in I$ for all $x \in \mathbf{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}$ and $y \in I$. The proof of the statement that $y \cdot x \in I$ for all $x \in \mathbf{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}$ and $y \in I$ is similar. Suppose to the contrary that $x \cdot y = w \notin I$ for some non-zero elements $x, y \in I$.

Suppose to the contrary that $x \cdot y = w \notin I$ for some non-zero elements $x, y \in I$. Then $w \in \mathbf{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}$ and the separate continuity of the semigroup operation in T yields open neighbourhoods U(x) and U(y) of the points x and y in the space T, respectively, such that $\{x\} \cdot U(y) = \{w\}$ and $U(x) \cdot \{y\} = \{w\}$. Since both neighbourhoods U(x) and U(y) contain infinitely many elements of the set $\mathbf{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}$, equalities $\{x\} \cdot U(y) = \{w\}$ and $U(x) \cdot \{y\} = \{w\}$ do not hold, because $\{x\} \cdot \left(U(y) \cap \mathbf{B}_{\omega}^{\mathscr{F}} \setminus \{\mathbf{0}\}\right) \subseteq I$. The obtained contradiction implies that $x \cdot y \in I$.

A subset D of a semigroup S is said to be ω -unstable if D is infinite and $aB \cup Ba \notin D$ for any $a \in D$ and any infinite subset $B \subseteq D$.

Definition 1 [8]). An *ideal series* (see, for example, [3, 4]) for a semigroup S is a chain of ideals

 $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = S.$

We call the ideal series *tight* if I_0 is a finite set and $D_k = I_k \setminus I_{k-1}$ is an ω -unstable subset for each $k = 1, \ldots, n$.

Lemma 4. The ideal series $I_0 = \{ \mathcal{O} \} \subset I_1 = \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ is tight for the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$.

Proof. Fix any infinite subset $D \subseteq \mathscr{B}^{\rho}_{\omega}(\boldsymbol{F}_{\min}) \setminus \{\mathscr{O}\}$ and any element $a \in \mathscr{B}^{\rho}_{\omega}(\boldsymbol{F}_{\min}) \setminus \{\mathscr{O}\}$. Since the set D is infinite and the set $\boldsymbol{F}^{(i,j)\rho}_{\min}$ is finite for any $i, j \in \omega$, at least one of the following conditions holds:

- (i) there exist infinitely many $i_n \in \omega$ such that $(i_n, k_n, j_n) \in D$ for some $j_n \in \omega$ and $k_n \in \mathbf{F}_{\min}$;
- (*ii*) there exist infinitely many $j_n \in \omega$ such that $(i_n, k_n, j_n) \in D$ for some $i_n \in \omega$ and $k_n \in \mathbf{F}_{\min}$.

Both above conditions and the semigroup operation of $\mathscr{B}^{\not{r}}_{\omega}(\boldsymbol{F}_{\min})$ imply that $\mathscr{O} \in (i,k,j) \cdot D \cup D \cdot (i,k,j)$, which completes the proof of the lemma. \Box

Let \mathfrak{S} be a class of semitopological semigroups. A semigroup $S \in \mathfrak{S}$ is called \mathfrak{S} closed, if S is a closed subsemigroup of any semitopological semigroup $T \in \mathfrak{S}$ which contains S both as a subsemigroup and as a topological space. \mathscr{HTS} -closed topological semigroups, where \mathscr{HTS} is the class of Hausdorff topological semigroups, are introduced by Stepp in [20], and there they were called *maximal semigroups*. An algebraic semigroup S is called *algebraically complete in* \mathfrak{S} , if S with any Hausdorff topology τ such that $(S, \tau) \in \mathfrak{S}$ is \mathfrak{S} -closed.

By Proposition 10 from [8], every inverse semigroup S with a tight ideal series is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion. Hence Theorem 1 and Lemma 4 imply the following theorem.

Theorem 5. Let \mathscr{F} be a family of atomic subsets of ω . Then the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion.

The following lemma describes the closure of the semigroup $\mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min})$ in a T_1 -topological semigroup.

Lemma 5. Let S be a T_1 -topological semigroup which contains the semigroup $\mathscr{B}^{\not{r}}_{\omega}(\boldsymbol{F}_{\min})$ as a dense subsemigroup. Then the following conditions hold:

(i) if $S \setminus \mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}) \neq \emptyset$ then $x^2 = \emptyset$ for all $x \in S \setminus \mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$; (ii) $E(S) = E(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}))$.

Proof. (i) By Lemma 3 the element \mathscr{O} is the zero of the semigroup S. Suppose to the contrary that there exists $x \in S \setminus \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ such that $x^2 = y \neq \mathscr{O}$. Since S is a T_1 -space there exists an open neighbourhood U(y) of the point y in S such that $\mathscr{O} \notin U(y)$. The continuity of the semigroup operation in S implies that there exists an open neighbourhood V(x) of the point x in the space S such that $V(x) \cdot V(x) \subseteq U(y)$. By Corollary 1 the set $\mathbf{F}_{\min}^{(i,j)r}$ is finite for any $i, j \in \omega$. Since the set $V(x) \cap \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ is infinite, the above arguments and the definition of the semigroup operation in $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ imply that $\mathscr{O} \in V(x) \cdot V(x) \subseteq U(y)$, a contradiction.

Statement (ii) follows from (i).

Lemma 6. Let $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ be a Hausdorff topological semigroup with the compact band $E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$. If a Hausdorff topological semigroup S contains $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ as a subsemigroup then $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ is a closed subset of S.

Proof. Suppose to the contrary that there exists a Hausdorff topological semigroup S which contains $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ as a non-closed subsemigroup. Since the closure of a subsemigroup of S is again a subsemigroup in S (see [2, page 9]), without loss of generality we may assume that $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ is a dense subsemigroup of S and $S \setminus \mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}) \neq \emptyset$. By Lemma 3 the element \mathscr{O} is the zero of S. Fix an arbitrary $x \in S \setminus \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$. By Hausdorffness of S there exist open neighbourhoods U(x) and $U(\mathscr{O})$ of the points x and \mathscr{O} in S, respectively, such that $U(x) \cap$ $U(\mathscr{O}) = \mathscr{O}$. Since $x \cdot \mathscr{O} = \mathscr{O} \cdot x = \mathscr{O}$, there exist open neighbourhoods V(x) and $V(\mathscr{O})$ of the points x and \mathscr{O} in the space S, respectively, such that

$$\begin{split} V(x) \cdot V(\mathscr{O}) &\subseteq U(\mathscr{O}), \qquad V(\mathscr{O}) \cdot V(x) \subseteq U(\mathscr{O}), \qquad V(x) \subseteq U(x) \quad \text{and} \quad V(\mathscr{O}) \subseteq U(\mathscr{O}). \\ \text{The compactness of } E(\mathscr{B}^{^{*}}_{\omega}(\boldsymbol{F}_{\min})) \text{ and Proposition 4 imply that the set } E(\mathscr{B}^{^{*}}_{\omega}(\boldsymbol{F}_{\min})) \setminus V(\mathscr{O}) \text{ is finite. Also, by Corollary 1 the set } \boldsymbol{F}^{(i,j),^{^{*}}}_{\min} \text{ is finite for any } i, j \in \omega. \text{ Since the set } V(x) \cap \mathscr{B}^{^{*}}_{\omega}(\boldsymbol{F}_{\min}) \text{ is infinite, the above arguments and the definition of the semigroup operation in } \mathscr{B}^{^{*}}_{\omega}(\boldsymbol{F}_{\min}) \text{ imply that there exists } (i,k,j) \in V(x) \text{ such that } (i,k,i) \in V(\mathscr{O}) \\ \text{or } (j,k,j) \in V(\mathscr{O}). \text{ Therefore, we have that at least one of the following conditions holds:} \end{split}$$

$$(V(x) \cdot V(\mathscr{O})) \cap V(x) \neq \varnothing, \qquad (V(\mathscr{O}) \cdot V(x)) \cap V(x) \neq \varnothing.$$

Since $V(x) \subseteq U(x)$, this contradicts the assumption $U(x) \cap U(\mathcal{O}) = \mathcal{O}$. The obtained contradiction implies the statement of the lemma. \Box

Later by \mathscr{HTS} we denote the class of all Hausdorff topological semigroups.

The following lemma shows that the converse statement to Lemma 6 is true in the case when $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ is a topological inverse semigroup.

Lemma 7. Let $(\mathscr{B}^{r}_{\omega}(\mathbf{F}_{\min}), \tau)$ be a Hausdorff topological inverse semigroup. If $(\mathscr{B}^{r}_{\omega}(\mathbf{F}_{\min}), \tau)$ is an \mathscr{HTS} -closed topological semigroup then the band $E(\mathscr{B}^{r}_{\omega}(\mathbf{F}_{\min}))$ is compact.

Proof. Suppose to the contrary that there exists a Hausdorff semigroup inverse topology τ on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ such that $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ is an \mathscr{HTS} -closed topological semigroup and the band $E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$ is not compact. By Proposition 4 every non-zero element of $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ is an isolated point in $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ and hence there exists an open neighbourhood $V(\mathscr{O})$ of the zero \mathscr{O} in the space $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ such that $M = E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})) \setminus V(\mathscr{O})$ is an infinite subset of the band $E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$. Since the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$ is countable, so is the set M. Next we enumerate elements of the set M by positive integers:

$$M = \{(i_n, k_n, i_n) \colon n = 1, 2, 3, \ldots\}.$$

By Corollary 1 the set $\mathbf{F}_{\min}^{(i,j)^r}$ is finite for any $i, j \in \omega$, and hence without loss of generality we may assume that $i_m < i_n$ for any positive integers m < n. Since $(\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}), \tau)$ is a topological inverse semigroup the maps $\varphi : \mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}) \to E(\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}))$ and $\psi : \mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}) \to E(\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}))$ defined by the formulae $\varphi(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x}^{-1}$ and $\psi(\mathbf{x}) = \mathbf{x}^{-1} \cdot \mathbf{x}$, respectively, are continuous, and hence $\mathcal{I}_M = \varphi^{-1}(M) \cup \psi^{-1}(M)$ is a closed subset in the topological space $(\mathscr{B}_{\omega}^{\dagger}(\mathbf{F}_{\min}), \tau)$.

Let $\boldsymbol{y} \notin \mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min})$. Put $S = \mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min}) \cup \{\boldsymbol{y}\}$. We extend the semigroup operation from $\mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min})$ onto S as follows:

$$oldsymbol{y} \cdot oldsymbol{y} = oldsymbol{y} \cdot oldsymbol{x} = oldsymbol{x} \cdot oldsymbol{y} = oldsymbol{\mathcal{O}}, \qquad ext{for all} \quad oldsymbol{x} \in \mathscr{B}^{ec{}}_{\omega}(oldsymbol{F}_{\min})$$

Simple verifications show that so extended binary operation is associative. We put

 $M_n = \{(i_{2j-1}, k_{2j-1}, i_{2j}): j = n, n+1, n+2, \ldots\}$

for any positive integer n. We define a topology τ_S on S in the following way:

- (i) for every $\boldsymbol{x} \in \mathscr{B}_{\omega}^{r}(\boldsymbol{F}_{\min})$ the bases of topologies τ and τ_{S} at the point \boldsymbol{x} coincide; and
- (*ii*) the family $\mathscr{B} = \{U_n(\boldsymbol{y}) = \{\boldsymbol{y}\} \cup M_n : n = 1, 2, 3, ...\}$ is the base of the topology τ_S at the point \boldsymbol{y} .
- Since $M_n \subset \mathcal{I}_M$ for any positive integer n, τ_S is a Hausdorff topology on S.

For any open neighbourhood $V(\mathcal{O})$ of the zero \mathcal{O} such that $V(\mathcal{O}) \subseteq U(\mathcal{O})$ and any positive integer n we have that

$$V(\mathscr{O}) \cdot U_n(\boldsymbol{y}) = U_n(\boldsymbol{y}) \cdot V(\mathscr{O}) = U_n(\boldsymbol{y}) \cdot U_n(\boldsymbol{y}) = \{\mathscr{O}\} \subseteq V(\mathscr{O}).$$

We remark that the definition of the set M_n implies that for any non-zero element (i, k, j)of the semigroup $\mathscr{B}^{r}_{\omega}(\mathbf{F}_{\min})$ there exists the smallest positive integer $n_{(i,k,j)}$ such that

$$(i,k,j) \cdot M_{n_{(i,k,j)}} = M_{n_{(i,k,j)}} \cdot (i,k,j) = \{\mathcal{O}\}$$

This implies that

$$(i,k,j) \cdot U_{n_{(i,k,j)}}(\boldsymbol{y}) = U_{n_{(i,k,j)}}(\boldsymbol{y}) \cdot (i,k,j) = \{\mathcal{O}\} \subseteq V(\mathcal{O}).$$

Therefore (S, τ_S) is a Hausdorff topological semigroup which contains $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ as a proper dense subsemigroup, which contradicts the assumption of the lemma. The obtained contradiction implies that the band $E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$ is compact.

The proof of Lemma 7 implies Proposition 6, which gives the sufficient conditions on the topological semigroup $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau)$ to be non- \mathscr{HTS} -closed.

Proposition 6. Let τ be a semigroup topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})$. Let $\varphi : \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) \to E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$ and $\psi : \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) \to E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$ be the maps which are defined by the formulae $\varphi(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x}^{-1}$ and $\psi(\mathbf{x}) = \mathbf{x}^{-1} \cdot \mathbf{x}$. If there exists an open neighbourhood $U(\mathscr{O})$ of zero in $(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}), \tau)$ such that

$$\left(\varphi^{-1}(M)\cup\psi^{-1}(M)\right)\cap U(\mathscr{O})=\varnothing$$

for some infinite subset M of the band $E(\mathscr{B}^{\rho}_{\omega}(\mathbf{F}_{\min}))$, then $(\mathscr{B}^{\rho}_{\omega}(\mathbf{F}_{\min}), \tau)$ is not an \mathscr{HTS} -closed topological semigroup.

Theorem 1 and Lemmas 6, 7 imply

Theorem 6. Let \mathscr{F} be a some family of atomic subsets of ω . Then a Hausdorff topological semigroup $\mathbf{B}^{\mathscr{F}}_{\omega}$ with the compact band is an \mathscr{HTS} -closed topological semigroup. Moreover, a Hausdorff topological inverse semigroup $\mathbf{B}^{\mathscr{F}}_{\omega}$ is an \mathscr{HTS} -closed topological semigroup if and only the band $E(\mathbf{B}^{\mathscr{F}}_{\omega})$ is compact.

Example 2 and Proposition 7 imply that the converse statement to Lemma 6 (and hence to the first statement of Theorem 1) is not true.

Example 2. For any positive integer n we denote

$$U_n(\mathscr{O}) = \{\mathscr{O}\} \cup \bigcup \left\{ F_{\min}^{(i,j)_{\mathscr{O}}} : n \leq i < j \right\}.$$

We define a topology τ_1 on the semigroup $\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min})$ in the following way:

(i) any non-zero element of the semigroup $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ is an isolated point in $(\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min}), \tau_1);$

(ii) the family $\mathscr{B}_1(\mathscr{O}) = \{U_n(\mathscr{O}) : n \in \omega\}$ is the base of the topology τ_1 at the zero \mathscr{O} .

It is obvious that $(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau_{1})$ is a Hausdorff topological space.

Proposition 7. $(\mathscr{B}^{\vec{r}}_{\omega}(\boldsymbol{F}_{\min}), \tau_1)$ is an \mathscr{HTS} -closed topological semigroup.

Proof. First we show that the semigroup operation is continuous in $(\mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min}), \tau_1)$. Since every non-zero element of the semigroup $(\mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min}), \tau_1)$ is an isolated point, it is complete to show that the semigroup operation in $(\mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min}), \tau_1)$ is continuous at zero. Fix an arbitrary $(i, k, j) \in \mathscr{B}^{\ell}_{\omega}(\boldsymbol{F}_{\min}) \setminus \{\mathcal{O}\}$. Then for $n = \max\{i, j\} + 1$ we have that

$$(i,k,j) \cdot U_n(\mathscr{O}) = U_n(\mathscr{O}) \cdot (i,k,j) = \{\mathscr{O}\} \subset U_n(\mathscr{O}).$$

Also for any $n \in \omega$ we have that

$$U_n(\mathscr{O}) \cdot U_n(\mathscr{O}) \subseteq U_n(\mathscr{O}).$$

Therefore $(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau_1)$ is a topological semigroup.

Suppose to the contrary that there exists a Hausdorff topological semigroup S which contains $(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau_{1})$ as a non-closed subsemigroup. Since the closure of a subsemigroup in a topological semigroup is a subsemigroup (see [2, page 9]), without loss of generality we can assume that $(\mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min}), \tau_{1})$ is a dense proper subsemigroup of S.

Fix an arbitrary $\boldsymbol{x} \in S \setminus \mathscr{B}^{r}_{\omega}(\boldsymbol{F}_{\min})$. By Lemmas 3 and 5 we have that

$$\boldsymbol{x}\cdot\boldsymbol{x}=\boldsymbol{x}\cdot\boldsymbol{\mathscr{O}}=\boldsymbol{\mathscr{O}}\cdot\boldsymbol{x}=\boldsymbol{\mathscr{O}}.$$

Fix any positive integer *n*. Let $W(\mathcal{O})$ be an open neighbourhood of zero \mathcal{O} in *S* such that $W(\mathcal{O}) \cap \mathscr{B}^{\not{\sigma}}_{\omega}(\mathbf{F}_{\min}) = U_n(\mathcal{O})$. The continuity of the semigroup operation in *S* implies that there exist open neighbourhoods $V(\mathbf{x}), V(\mathcal{O})$ and $U(\mathcal{O})$ of the points \mathbf{x} and \mathcal{O} in the space *S*, respectively, such that

$$\begin{split} V(\boldsymbol{x}) \cdot V(\mathscr{O}) &\subseteq U(\mathscr{O}), \quad V(\mathscr{O}) \cdot V(\boldsymbol{x}) \subseteq U(\mathscr{O}), \quad V(\boldsymbol{x}) \cdot V(\boldsymbol{x}) \subseteq U(\mathscr{O}), \\ V(\boldsymbol{x}) \cap U(\mathscr{O}) &= \varnothing \quad \text{and} \quad V(\mathscr{O}) \subseteq U(\mathscr{O}) \subseteq W(\mathscr{O}). \end{split}$$

Theorem 9 of [21] implies that $E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}))$ is a closed subset of S. Hence, we may assume that $V(\mathbf{x}) \cap E(\mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min})) = \emptyset$, and moreover $U(\mathscr{O}) \cap \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) = U_m(\mathscr{O})$ and $V(\mathscr{O}) \cap \mathscr{B}^{\dagger}_{\omega}(\mathbf{F}_{\min}) = U_l(\mathscr{O})$ for some positive integers l and m such that $l \ge m \ge n$.

Then conditions

$$V(\boldsymbol{x}) \cdot V(\mathscr{O}) \subseteq U(\mathscr{O}) \qquad \text{and} \qquad V(\boldsymbol{x}) \cap U(\mathscr{O}) = \varnothing$$

imply that there exists on open neighbourhood $V_1(x) \subseteq V(x)$ of the point x in the space S such that

$$V_1(\boldsymbol{x}) \cap \left(\bigcup \left\{ \boldsymbol{F}_{\min}^{(i,s)_r} : s \in \omega
ight\}
ight) = arnothing$$

for any non-negative integer i < m. This and Theorem 9 of [21] imply that there exists an open neighbourhood $V_2(\mathbf{x}) \subseteq V(\mathbf{x})$ of the point \mathbf{x} in S such that

$$V_2(\boldsymbol{x}) \cap \mathscr{B}_{\omega}^{r}(\boldsymbol{F}_{\min}) \subseteq \bigcup \left\{ \boldsymbol{F}_{\min}^{(i,j)_r} : i > j, \ i, j \in \omega
ight\}.$$

Hence there exists an infinite sequence $\{(i_p, k_p, j_p)\}_{p \in \omega}$ in $V_2(\boldsymbol{x})$ such that the sequence $\{i_p\}_{p \in \omega}$ is increasing and $j_p \leq i_p - 1$ for any $p \in \omega$. The definition of the topology τ_1

 $\mathbf{48}$

implies that there exists an element $(i_{p_0}, k_{p_0}, j_{p_0})$ of the sequence $\{(i_p, k_p, j_p)\}_{p \in \omega}$ such that

$$\boldsymbol{F}_{\min}^{(i_{p_0}-1,i_{p_0})_{\ell}} \subseteq U_l(\mathscr{O}) \subseteq V(\mathscr{O}).$$

Then we have that

$$\mathcal{F}_{\min}^{(i_{p_0}-1,i_{p_0})_r} \cdot (i_{p_0},k_{p_0},j_{p_0}) \subseteq \boldsymbol{F}_{\min}^{(i_{p_0}-1,j_{p_0})_r} \nsubseteq U_m(\mathscr{O}),$$

which contradicts the inclusion $V(\mathcal{O}) \cdot V(\boldsymbol{x}) \subseteq U(\mathcal{O})$. The obtained contradiction implies that \boldsymbol{x} is not an accumulation point of $\mathscr{B}^{\dagger}_{\omega}(\boldsymbol{F}_{\min})$ in the topological space S, and hence the statement of the proposition holds.

ACKNOWLEDGEMENTS

The authors acknowledge the referee for their comments and suggestions.

References

- R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudocompact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500-506. DOI: 10.1090/S0002-9939-1958-0097043-2
- J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
- 3. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- 4. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- 5. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- O. V. Gutik, On Howie semigroup, Mat. Metody Fiz.-Mekh. Polya 42 (1999), no. 4, 127–132 (in Ukrainian).
- 7. O. Gutik, On the group of automorphisms of the Brandt λ^0 -extension of a monoid with zero, Proceedings of the 16th ITAT Conference Information Technologies Applications and Theory (ITAT 2016), Tatranske Matliare, Slovakia, September 15–19, 2016. CEUR-WS, Bratislava, 2016, pp. 237–240.
- 8. O. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78 (2009), no. 2, 326-336. DOI: 10.1007/s00233-008-9112-2
- O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
- O. V. Gutik and K. P. Pavlyk, On Brandt λ⁰-extensions of semigroups with zero, Mat. Metody Fiz.-Mekh. Polya 49 (2006), no. 3, 26-40.
- 11. O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ^0 -extensions, Mat. Stud. **32** (2009), no. 2, 115–131.
- O. Gutik and D. Repovš, On Brandt λ⁰-extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8-32. DOI: 10.1007/s00233-009-9191-8
- 13. O. Gutik and A. Savchuk, On the semigroup ID_{∞} , Visn. Lviv. Univ., Ser. Mekh.-Mat. 83 (2017), 5–19 (in Ukrainian).
- 14. O. V. Gutik and O. Yu. Sobol, On feebly compact semitopological semilattice $\exp_n \lambda$, Mat. Metody Fiz.-Mekh. Polya **61** (2018), no. 3, 16–23; reprinted version: J. Math. Sc. **254** (2021), no. 1, 3–20. DOI: 10.1007/s10958-021-05284-8
- D. W. Hajek and A. R. Todd, Lightly compact spaces and infra H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), no. 2, 479–482. DOI: 10.1090/S0002-9939-1975-0370499-3

- J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183
- 17. M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.
- 18. M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
- W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. DOI: 10.1007/BFb0073675
- 20. J. W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math. Soc. 20 (1969), no. 1, 251-253. DOI: 10.1090/S0002-9939-1969-0232883-5
- J. W. Stepp, Algebraic maximal semilattices, Pacific J. Math. 58 (1975), no. 1, 243-248. DOI: 10.2140/pjm.1975.58.243
- V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (in Russian).

Стаття: надійшла до редколегії 22.11.2021 доопрацьована 25.12.2021 прийнята до друку 05.01.2022

ПРО НАПІВГРУПУ $B^{\mathscr{F}}_{\omega}$, ПОРОДЖЕНУ СІМ'ЄЮ \mathscr{F} АТОМАРНИХ ПІДМНОЖИН В ω

Олег ГУТІК, Олександра ЛИСЕЦЬКА

Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000, м. Львів e-mail: oleg.gutik@lnu.edu.ua, o.yu.sobol@gmail.com

Вивчаємо напівгрупу $\mathcal{B}_{\omega}^{\mathscr{F}}$, яка побудована в праці [9], у випадку коли сім'я \mathscr{F} складається з порожньої множини та деяких одноелементних підмножин у ω . Доводимо, що напівгрупа $\mathcal{B}_{\omega}^{\mathscr{F}}$ ізоморфна піднапівгрупі $\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min}) \omega$ -розширення Брандта напівгратки \mathbf{F}_{\min} й описуємо усі трансляційно неперервні слабко компактні T_1 -топології на напівгрупі $\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min})$. Зокрема, доводимо, що кожна трансляційно неперервна слабко компактна T_1 -топологія τ на $\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min})$ компактна, і більше того, у цьому випадку простір ($\mathscr{B}_{\omega}^{\mathsf{r}}(\mathbf{F}_{\min}), \tau$) гомеоморфний одноточковій компактифікації Алєксандрова дискретного зліченного простору $\mathfrak{D}(\omega)$. Вивчаємо замикання напівгрупи $\mathcal{B}_{\omega}^{\mathscr{F}}$ в напівтопологічній напівгрупі. Зокрема доводимо, що напівгрупа $\mathcal{B}_{\omega}^{\mathscr{F}}$ алгебрично повна в класі гаусдорфових напівтопологічних інверсних напівгруп з неперервною інверсією, і гаусдофова топологічна інверсна напівгрупа $\mathcal{B}_{\omega}^{\mathscr{F}}$ є замкненою в кожній гаусдорфовій топологічній напівгрупі тоді і лише тоді, коли в'язка $E(\mathcal{B}_{\omega}^{\mathscr{F}})$ компактна.

Ключові слова: напівтопологічна напівгрупа, топологічна напівгрупа, біциклічний моноїд, інверсна напівгрупа, слабко комавктний, компактний, *ω*-розширення Брандта, замикання.

50