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We study the semigroup BF
ω , which is introduced in [O. Gutik and M.

Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv.
Univ. Ser. Mech.-Mat. 90 (2020), 5�19], in the case when the family F of
subsets of cardinality 6 1 in ω. We show that BF

ω is isomorphic to the
subsemigroup B�

ω(Fmin) of the Brandt ω-extension of the semilattice Fmin

and describe all shift-continuous feebly compact T1-topologies on the semi-
group B�

ω(Fmin). In particulary we prove that every shift-continuous feebly
compact T1-topology τ on B�

ω(Fmin) is compact and moreover in this case the
space (B�

ω(Fmin), τ) is homeomorphic to the one-point Alexandro� compacti-
�cation of the discrete countable space D(ω). We study the closure of BF

ω in
a semitopological semigroup. In particularly we show that BF

ω is algebraically
complete in the class of Hausdor� semitopological inverse semigroups with
continuous inversion, and a Hausdor� topological inverse semigroup BF

ω is
closed in any Hausdor� topological semigroup if and only if the band E(BF

ω )
is compact.
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1. Introduction, motivation and main definitions

We shall follow the terminology of [2, 3, 4, 5, 19]. By ω we denote the set of all
non-negative integers.

Let P(ω) be the family of all subsets of ω. For any F ∈P(ω) and n,m ∈ ω we put

n−m+ F = {n−m+ k : k ∈ F}
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This de�nition implies that n−m+ F = ∅ if F = ∅. A subfamily F ⊆P(ω) is called
ω-closed if F1 ∩ (−n+ F2) ∈ F for all n ∈ ω and F1, F2 ∈ F .

A semigroup S is called inverse if for any element x ∈ S there exists a unique
x−1 ∈ S (called the inverse of x) such that xx−1x = x and x−1xx−1 = x−1. If S is an
inverse semigroup, then the function inv : S → S which assigns to every element x of S
its inverse element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by
E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall
refer to E(S) as a band (or the band of S). The semigroup operation of S determines
the following partial order 4 on E(S): e 4 f if and only if ef = fe = e. This order
is called the natural partial order on E(S). A semilattice is a commutative semigroup
of idempotents. By (ω,min) or ωmin we denote the set ω with the semilattice operation
x · y = min{x, y}.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order 4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te.
This order is called the natural partial order on S [22].

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a
group congruence [3].

On the set Bω = ω × ω we de�ne a semigroup operation �·� in the following way

(i1, j1) · (i2, j2) =

 (i1 − j1 + i2, j2), if j1 < i2;
(i1, j2), if j1 = i2;
(i1, j1 − i2 + j2), if j1 > i2.

It is well known that the semigroupBω is isomorphic to the bicyclic monoid by the mappi-
ng h : C (p, q)→ Bω, q

kpl 7→ (k, l) (see: [3, Section 1.12] or [18, Exercise IV.1.11(ii)]).
A topological (semitopological) semigroup is a topological space together with a

continuous (separately continuous) semigroup operation. If S is a semigroup and τ is
a topology on S such that (S, τ) is a topological semigroup, then we shall call τ a semi-

group topology on S, and if τ is a topology on S such that (S, τ) is a semitopological
semigroup, then we shall call τ a shift-continuous topology on S. An inverse topological
semigroup with the continuous inversion is called a topological inverse semigroup. If S is
an inverse semigroup and τ is a topology on S such that (S, τ) is a topological inverse
semigroup, then we shall call τ a semigroup inverse topology on S.

Next we shall describe the construction which is introduced in [9].
Let Bω be the bicyclic monoid and F be an ω-closed subfamily of P(ω). On the

set Bω ×F we de�ne the semigroup operation �·� in the following way

(i1, j1, F1) · (i2, j2, F2) =

 (i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2), if j1 < i2;
(i1, j2, F1 ∩ F2), if j1 = i2;
(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)), if j1 > i2.
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By [9], if the family F ⊆P(ω) is ω-closed, then (Bω ×F , ·) is a semigroup. Moreover,
if an ω-closed family F ⊆P(ω) contains the empty set ∅, then the set

I = {(i, j,∅) : i, j ∈ ω}

is an ideal of the semigroup (Bω×F , ·). For any ω-closed family F ⊆P(ω) the following
semigroup

BF
ω =

{
(Bω ×F , ·)/I, if ∅ ∈ F ;
(Bω ×F , ·), if ∅ /∈ F

is de�ned in [9]. The semigroup BF
ω generalizes the bicyclic monoid and the countable

semigroup of matrix units. It is proven in [9] that BF
ω is combinatorial inverse semigroup

and Green's relations, the natural partial order on BF
ω and its set of idempotents are

described. The criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semi-
group BF

ω and when BF
ω has the identity, is isomorphic to the bicyclic semigroup or the

countable semigroup of matrix units are given. In particular in [9] it is proved that the

semigroup BF
ω is isomorphic to the semigrpoup of ω×ω-matrix units if and only if F

consists of sets of cardinality 6 1 in ω.
Let F be some family of cardinality 6 1 in ω. In this case we shall say that F

is the family of atomic subsets of ω. It is obvious that if F = {∅} then the semigroup

BF
ω is trivial and hence in this paper we assume that the family F contains at least one

singleton subset of ω. It is obvious that in this case F is an ω-closed subfamily of P(ω)

and hence BF
ω is an inverse semigroup with zero. Later by 0 we denote the zero of BF

ω

and by (i, j, {k}) a non-zero element of BF
ω for some i, j ∈ ω, {k} ∈ F .

We put F =
⋃

F . Since the semilattice (ω,min) is linearly ordered, the set F with

the binary operation xy = min{x, y} is a subsemilattice of (ω,min) and later by Fmin

we shall denote the set F with the semilattice operation inherited from (ω,min).
We need the following construction from [6].
Let S be a semigroup with zero and λ > 1 be a cardinal. On the set Bλ(S) =

(λ× S × λ) t {O} we de�ne a semigroup operation as follows

(α, s, β) · (γ, t, δ) =

{
(α, st, δ), if β = γ;

O, if β 6= γ

and

(α, s, β) · O = O · (α, s, β) = O · O = O,

for all α, β, γ, δ ∈ λ and s, t ∈ S. The semigroup Bλ(S) is called the Brandt λ-extension
of the semigroup S [6]. Algebraic properties of Bλ(S) and its generalization the Brandt
λ0-extension B0

λ(S) are studied in [6, 7, 10, 12].

In this paper we study the semigroup BF
ω for a family F of atomic subsets of ω. We

show that BF
ω is isomorphic to the subsemigroup B�

ω(Fmin) of the Brandt ω-extension
of the semilattice Fmin and describe all shift-continuous feebly compact T1-topologies
on the semigroup B�

ω(Fmin). In particular, we prove that every shift-continuous feebly
compact T1-topology τ on B�

ω(Fmin) is compact and moreover in this case the space
(B�

ω(Fmin), τ) is homeomorphic to the one-point Alexandro� compacti�cation of the di-

screte countable space D(ω). We study the closure ofBF
ω in a semitopological semigroup.
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In particularly we show that BF
ω is algebraically complete in the class of Hausdor� semi-

topological inverse semigroups with continuous inversion, and a Hausdor� topological
inverse semigroup BF

ω is closed in any Hausdor� topological semigroup if and only if the

band E(BF
ω ) is compact.

Later in this paper we assume that F is a non-trivial family of atomic subsets of
ω, i.e., F contains at least one nontrivial singleton subset of ω.

2. Algebraic properties of the semigroup BF
ω

Proposition 2 of [9] implies the following proposition which describing the natural

partial order on BF
ω .

Proposition 1. Let (i1, j1, {k1}) and (i2, j2, {k2}) be non-zero elements of the semigroup

BF
ω . Then (i1, j1, {k1}) 4 (i2, j2, {k2}) if and only if

k2 − k1 = i1 − i2 = j1 − j2 = p

for some p ∈ ω.

Since the set ω is well ordered by the usual order we enumerate the set F = {ki : i ∈
ω} in the following way k0 < k1 < · · · < kn < kn+1 < · · · . It is obvious that the set F is
�nite if and only if F contains the maximum.

Proposition 1 implies the structure of maximal chains in BF
ω with the respect to its

natural partial order

Corollary 1. Let i, j be arbitrary elements of ω. Then in the case when the set F is

in�nite then the following �nite series

0 4 (i, j, {k0});
0 4 (i+ k1 − k0, j + k1 − k0, {k0}) 4 (i, j, {k1});
0 4 (i+ k1 − k0, j + k1 − k0, {k0}) 4 (i+ k2 − k1, j + k2 − k1, {k1}) 4 (i, j, {k2});

· · · · · · · · · · · · · · · · · ·
0 4 (i+ k1 − k0, j + k1 − k0, {k0}) 4 (i+ k2 − k1, j + k2 − k1, {k1}) 4 · · · 4
4 (i+ kn+1 − kn, j + kn+1 − kn, {kn}) 4 (i, j, {kn+1});
· · · · · · · · · · · · · · · · · · · · · · · ·

describes maximal chains in the semigroup BF
ω and in the case when the set F is �nite

and contains maximum kn then the following �nite series

0 4 (i, j, {k0});
0 4 (i+ k1 − k0, j + k1 − k0, {k0}) 4 (i, j, {k1});
0 4 (i+ k1 − k0, j + k1 − k0, {k0}) 4 (i+ k2 − k1, j + k2 − k1, {k1}) 4 (i, j, {k2});

· · · · · · · · · · · · · · · · · ·
0 4 (i+ k1 − k0, j + k1 − k0, {k0}) 4 (i+ k2 − k1, j + k2 − k1, {k1}) 4 · · · 4
4 (i+ kn − kn−1, j + kn − kn−1, {kn}) 4 (i, j, {kn})

describes maximal chains in the semigroup BF
ω .
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We de�ne a map f : BF
ω → Bω(Fmin) by the formulae

(1) f(i, j, {k}) = (i+ k, k, j + k) and (0)f = O,

for i, j ∈ ω and {k} ∈ F \ {∅}.

Proposition 2. The map f : BF
ω → Bω(Fmin) is an isomorphic embedding.

Proof. It is obvious that the map f which is de�ned by formulae (1) is injective.

For arbitrary (i1, j1, {k1}), (i2, j2, {k2}) ∈ BF
ω we have that

f((i1, j1,{k1}) · (i2, j2, {k2})) =

=


f(i1 − j1 + i2, j2, {k2}), if j1 < i2 and j1 + k1 = i2 + k2;

f(i1, j2, {k1}), if j1 = i2 and k1 = k2;
f(i1, j1 − i2 + j2, {k1}), if j1 > i2 and j1 + k1 = i2 + k2;

f(0), if j1 + k1 6= i2 + k2

=

=


(i1 − j1 + i2 + k2, k2, j2 + k2), if j1 < i2 and j1 + k1 = i2 + k2;

(i1 + k1, k1, j2 + k1), if j1 = i2 and k1 = k2;
(i1 + k1, k1, j1 − i2 + j2 + k1), if j1 > i2 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2

=

=


(i1 + k1, k2, j2 + k2), if j1 < i2 and j1 + k1 = i2 + k2;
(i1 + k1, k1, j2 + k2), if j1 = i2 and k1 = k2;
(i1 + k1, k1, j2 + k2), if j1 > i2 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2,

and

f((i1, j1, {k1}) · f(i2, j2, {k2})) = (i1 + k1, k1, j1 + k1) · (i2 + k2, k2, j2 + k2) =

=

{
(i1 + k1,min{k1, k2}, j2 + k2), if j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2
=

=


(i1 + k1, k2, j2 + k2), if k2 < k1 and j1 + k1 = i2 + k2;
(i1 + k1, k1, j2 + k2), if k2 = k1 and k1 = k2;
(i1 + k1, k1, j2 + k2), if k2 > k1 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2,

=

=


(i1 + k1, k2, j2 + k2), if j1 < i2 and j1 + k1 = i2 + k2;
(i1 + k1, k1, j2 + k2), if j1 = i2 and k1 = k2;
(i1 + k1, k1, j2 + k2), if j1 > i2 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2.

Since 0 and O are the zeros of the semigroupsBF
ω and Bω(Fmin), respectively, the above

equalities imply that the map f : BF
ω → Bω(Fmin) is a homomorphism. This completes

the proof of the proposition. �

Next we de�ne

B�
ω(Fmin) = {O} ∪

{
(i+ k, k, j + k) ∈ Bω(Fmin) \ {O} : (i, j, {k}) ∈ BF

ω

}
.

Proposition 2 implies



ON THE SEMIGROUP BF
ω

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 92 39

Theorem 1. Let F ∗ be any family of atomic subsets of ω. Then the semigroup BF
ω is

isomorphic to B�
ω(Fmin) by the mapping f.

Proposition 3. Let F ∗ be any family of subsets of ω which contains a non-empty set,

and k0 = min
⋃

F ∗. Then the semigroup BF∗

ω is isomorphic to the semigroup BF∗
0

ω

where

F ∗0 = {−k0 + F : F ∈ F ∗} .

Proof. Since the set ω with the usual order 6 is well ordered, the number k0 is well

de�ned. This implies that the semigroup BF∗
0

ω is well de�ned, because F ⊆ {n ∈ ω : n >
k0} for any F ∈ F ∗. Without loss of generality we may assume that ∅ ∈ F ∗, which

implies that the semigroup BF∗

ω has zero 0, and hence the semigroup BF∗
0

ω has zero 0,
too.

We de�ne the map h : BF∗

ω → BF∗
0

ω in the following way

(2) h(i, j, {k}) = (i− k0, j − k0, {k − k0}) and (0)h = 0

for i, j ∈ ω and {k} ∈ F ∗ \ {∅}. It is obvious that such de�ned map h is bijective.

For arbitrary (i1, j1, {k1}), (i2, j2, {k2}) ∈ BF∗

ω we have that

h((i1,j1, {k1}) · (i2, j2, {k2})) =

=


h(i1 − j1 + i2, j2, {k2}), if j1 < i2 and j1 + k1 = i2 + k2;

h(i1, j2, {k1}), if j1 = i2 and k1 = k2;
h(i1, j1 − i2 + j2, {k1}), if j1 > i2 and j1 + k1 = i2 + k2;

h(0), if j1 + k1 6= i2 + k2

=

=


(i1 − j1 + i2 − k0, j2 − k0, {k2 − k0}), if j1 < i2 and j1 + k1 = i2 + k2;

(i1 − k0, j2 − k0, {k1 − k0}), if j1 = i2 and k1 = k2;
(i1 − k0, j1 − i2 + j2 − k0, {k1 − k0}), if j1 > i2 and j1 + k1 = i2 + k2;

0, if j1 + k1 6= i2 + k2

and

h(i1, j1, {k1}) · h(i2, j2, {k2}) =

= (i1 − k0, j1 − k0, {k1 − k0}) · (i2 − k0, j2 − k0, {k2 − k0}) =

=



(i1−k0−(j1−k0)+i2−k0, j2−k0, {k2−k0}), if j1 − k0 < i2 − k0 and
j1−k0+k1−k0=i2−k0+k2−k0;

(i1 − k0, j2 − k0, {k1 − k0}), if j1 − k0 = i2 − k0 and
k1 − k0 = k2 − k0;

(i1−k0, j1−k0−(i2−k0)+j2−k0, {k1−k0}), if j1 − k0 > i2 − k0 and
j1−k0+k1−k0=i2−k0+k2−k0;

0, if j1−k0+k1−k0 6=i2−k0+k2−k0

=


(i1 − j1 + i2 − k0, j2 − k0, {k2 − k0}), if j1 < i2 and j1 + k1 = i2 + k2;

(i1 − k0, j2 − k0, {k1 − k0}), if j1 = i2 and k1 = k2;
(i1 − k0, j1 − i2 + j2 − k0, {k1 − k0}), if j1 > i2 and j1 + k1 = i2 + k2;

0, if j1 + k1 6= i2 + k2.

Since 0 is the zero of both semigroups BF∗

ω and BF∗
0

ω , the above equalities imply that

such de�ned map h : BF∗

ω → BF∗
0

ω is a homomorphism. �
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Theorem 2. Let F 1 and F 2 be some families of atomic subsets of ω. Then the semi-

groups BF1

ω and BF2

ω are isomorphic if and only if there exists an integer n such that

F 1 =
{
n+ F : F ∈ F 2

}
.

Proof. The implication (⇐) follows from Proposition 3.
(⇒) Put F 1 =

⋃
F 1 and F 2 =

⋃
F 2. By Proposition 3. without loss of generality

we may assume that 0 ∈ F 1 ∩ F 2, i.e., {0} ∈ F 1 and {0} ∈ F 2.

Suppose to the contrary that the semigroups BF1

ω and BF2

ω are isomorphic but
F 1 6= F 2. Since F 1 and F 2 are some families of atomic subsets of ω, we get that
F 1 6= F 2. Hence without loss of generality we may assume that there exists the minimum
positive integer m of the set F 1 such that m /∈ F 2. Put

F̃ =
{
k ∈ F 2 : k < m

}
.

We enumerate the set F̃ = {k0, k1, . . . , kn} in the following way

k0 = 0 < k1 < · · · < kn.

Then we have that F̃ ⊂ F 1.
By Lemma 2 of [9] a non-zero element (i, j, {k}) of the semigroup BF1

ω (or BF2

ω )

is an idempotent if and only if i = j. This and Corollary 1 imply the semigroup BF1

ω

contains exactly m− kn distinct chains (or a chain) of idempotents of the length kn + 2,

but the semigroup BF1

ω contains at least m − kn + 1 distinct chains of idempotents of

the length kn + 2. This contradicts that the semigroups BF1

ω and BF2

ω are isomorphic.
The obtained contradiction implies the implication. �

For any i, j ∈ ω we denote

F
(i,j)�
min =

{
(i, k, j) : (i, k, j) ∈ B�

ω(Fmin)
}

and

ω
(i,j)
min = {(i, k, j) : (i, k, j) ∈ Bω(ωmin)} ,

where by ωmin we denote the semilattice (ω,min).

Lemma 1. In the semigroup BF
ω both equations A ·X = B and X · A = B have only

�nitely many solutions for B 6= 0.

Proof. We show that the equation A ·X = B has �nitely many solutions for B 6= O in
the semigroup B�

ω(Fmin). In the case of the equation X ·A = B the proof is similar.
We denote

A = (iA, kA, jA), X = (iX , kX , jX) and B = (iB , kB , jB),

where (iX , kX , jX) is a variable, (iA, kA, jA) and (iB , kB , jB) are constants of the equation

(3) (iA, kA, jA) · (iX , kX , jX) = (iB , kB , jB).

First we establish the solution of equation (3) in the Brandt ω-extension Bω(ωmin) of the
semilattice ωmin. The semigroup operation in Bω(ωmin) implies that equation (3) has a
non-empty set of solutions if and only if kB 4 kA in ωmin and iA = iB . Hence we have

that the set of solutions of (3) is a subset of ω
(jA,jB)
min . This implies that the set of solutions
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of equation (3) is a subset of F
(jA,jB)�
min . This and Theorem 1 imply the statement of the

lemma. �

3. On topogizations of the semigroup B�
ω(Fmin)

By Proposition 3 for any family F of atomic subsets of ω the semigroup BF
ω is

isomorphic to the semigroup BF0
ω where F0 is a family of atomic subsets of ω such that

0 ∈
⋃

F0. Hence later we shall assume that 0 ∈ F , i.e., (i, 0, i) ∈ B�
ω(Fmin) for any

i, j ∈ ω.

Proposition 4. Let τ be a shift-continuous T1-topology on the semigroup B�
ω(Fmin).

Then every non-zero element of B�
ω(Fmin) is an isolated point in

(
B�
ω(Fmin), τ

)
.

Proof. Fix arbitrary i, j ∈ ω. Since

(i, 0, i) · (i, 0, j) · (j, 0, j) = (i, 0, j)

the assumption of the proposition implies that for any open neighbourhood W(i,0,j) 63 O
of the point (i, 0, j) there exists its open neighbourhood V(i,0,j) in the topological space(
B�
ω(Fmin), τ

)
such that

(i, 0, i) · V(i,0,j) · (j, 0, j) ⊆W(i,0,j).

The de�nition of the semigroup operation on B�
ω(Fmin) implies that V(i,0,j) ⊆ F

(i,j)�
min .

Then F
(i,j)�
min is an open subset of the set

(
B�
ω(Fmin), τ

)
because it is the full preimage

of V(i,0,j) under the mapping

h : B�
ω(Fmin)→ B�

ω(Fmin), x 7→ (i, 0, i) · x · (j, 0, j).

By Corollary 1 the set F
(i,j)�
min is �nite, which implies the statement of the proposition. �

Next we shall show that the semigroup B�
ω(Fmin) admits a compact shift-continuous

Hausdor� topology.

Example 1. A topology τAc on the semigroup B�
ω(Fmin) is de�ned as follows:

a) all nonzero elements of B�
ω(Fmin) are isolated points in

(
B�
ω(Fmin), τAc

)
;

b) the family

BAc(O) =
{
U(i1,j1),...,(in,jn) = B�

ω(Fmin) \
(
F

(i1,j1)�
min ∪ · · · ∪ F

(in,jn)�
min

)
:

n, i1, j1, . . . , in, jn ∈ ω
}

is the base of the topology τAc at the point O ∈ B�
ω(Fmin).

Corollary 1 implies that the set F
(i,j)�
min is �nite for any i, j ∈ ω which implies that

the topological space
(
B�
ω(Fmin), τAc

)
is homeomorphic to the one-point Alexandro�

compacti�cation of the discrete space B�
ω(Fmin) \ {O}.

Proposition 5.
(
B�
ω(Fmin), τAc

)
is a Hausdor� compact semitopological semigroup with

continuous inversion.
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Proof. It is obvious that the topology τAc is Hausdor� and compact.
Fix any U(i1,j1),...,(in,jn) ∈ BAc(O) and (i, k, j), (l,m, p) ∈ B�

ω(Fmin) \ {O}. Put

K = {i, i1, . . . , in, j, j1, . . . , jn} and UK = B�
ω(Fmin) \

⋃
x,y∈K

F
(x,y)�
min .

Then we have that UK ∈ BAc(O) and the following conditions hold

UK · {(i, k, j)} ⊆ U(i1,j1),...,(in,jn),

{(i, k, j)} · UK ⊆ U(i1,j1),...,(in,jn),

{O} · {(i, k, j)} = {(i, k, j)} · {O} = {O} ⊆ U(i1,j1),...,(in,jn),

{O} · U(i1,j1),...,(in,jn) = U(i1,j1),...,(in,jn) · {O} = {O} ⊆ U(i1,j1),...,(in,jn),

{(i, k, j)} · {(l,m, p)} = {O} ⊆ U(i1,j1),...,(in,jn), if j 6= l,

{(i, k, j)} · {(l,m, p)} = {(i,min{k,m}, p)}, if j = l,(
U(j1,i1),...,(jn,in)

)−1 ⊆ U(i1,j1),...,(in,jn)

Therefore,
(
B�
ω(Fmin), τAc

)
is a semitopological inverse semigroup with continuous

inversion. �

We recall that a topological space X is said to be

• perfectly normal if X is normal and and every closed subset of X is a Gδ-set;
• scattered if X does not contain a non-empty dense-in-itself subspace;
• hereditarily disconnected (or totally disconnected) if X does not contain any
connected subsets of cardinality larger than one;

• compact if each open cover of X has a �nite subcover;
• countably compact if each open countable cover of X has a �nite subcover;
• H-closed ifX is a closed subspace of every Hausdor� topological space containing
X;

• infra H-closed provided that any continuous image of X into any �rst countable
Hausdor� space is closed (see [15]);

• feebly compact if each locally �nite open cover of X is �nite [1];
• d-feebly compact (or DFCC ) if every discrete family of open subsets in X is �nite
(see [17]);

• pseudocompact if X is Tychono� and each continuous real-valued function on X
is bounded;

• Y -compact for some topological space Y , if the image f(X) is compact for any
continuous map f : X → Y .

The relations between above de�ned compact-like spaces are presented at the di-
agram in [14].

Lemma 2. Every shift-continuous T1-topology τ on the semigroup B�
ω(Fmin) is regular.

Proof. By Proposition 5 every non-zero element of the semigroup B�
ω(Fmin) is an isolated

point in the space
(
B�
ω(Fmin), τ

)
. Hence every open neighbourhood V (O) of the zero O is

a closed subset in
(
B�
ω(Fmin), τ

)
, which implies that the topological space

(
B�
ω(Fmin), τ

)
is regular. �
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Since in any countable T1-spaceX every open subset ofX is a Fσ-set, Theorem 1.5.17
from [5] and Lemma 2 imply the following corollary.

Corollary 2. Let τ be a shift-continuous T1-topology on the semigroup B�
ω(Fmin). Then(

B�
ω(Fmin), τ

)
is a perfectly normal, scattered, hereditarily disconnected space.

By D(ω) we denote the in�nite countable discrete space and by R the set of all real
numbers with the usual topology.

Theorem 3. Let τ be a shift-continuous T1-topology on the semigroup B�
ω(Fmin). Then

the following statements are equivalent:

(i)
(
B�
ω(Fmin), τ

)
is compact;

(ii) τ = τAc;

(iii)
(
B�
ω(Fmin), τ

)
is H-closed;

(iv)
(
B�
ω(Fmin), τ

)
is feebly compact;

(v)
(
B�
ω(Fmin), τ

)
is infra H-closed;

(vi)
(
B�
ω(Fmin), τ

)
is d-feebly compact;

(vii)
(
B�
ω(Fmin), τ

)
is pseudocompact;

(viii)
(
B�
ω(Fmin), τ

)
is R-compact;

(ix)
(
B�
ω(Fmin), τ

)
is D(ω)-compact.

Proof. Implications (ii) ⇒ (i) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (viii) ⇒ (ix) and (i) ⇒
(vii)⇒ (iv)⇒ (vi) are trivial (see the diagram in [14]). By Lemma 2 we get implications
(vi)⇒ (iv) and (iii)⇒ (i).

(ix)⇒ (i) Suppose to the contrary that there exists a shift-continuous T1-topology
τ on the semigroup B�

ω(Fmin) such that
(
B�
ω(Fmin), τ

)
is a D(ω)-compact non-compact

space. Then there exists an open cover U = {Uα} of
(
B�
ω(Fmin), τ

)
which does not

contain a �nite subcover. Fix Uα0 ∈ U such that O ∈ Uα0 . Since the space
(
B�
ω(Fmin), τ

)
is not compact the set B�

ω(Fmin)\Uα0
is in�nite. We enumerate the set B�

ω(Fmin)\Uα0
,

i.e., put {xi : i ∈ ω} = B�
ω(Fmin) \ Uα0 . We identify D(ω) with ω and de�ne a map

f :
(
B�
ω(Fmin), τ

)
→ D(ω) by the formula

f(x) =

{
0, if x ∈ Uα0

;
i, if x = xi.

Proposition 4 implies that such de�ned map f is continuous. Also, the image f(B�
ω(Fmin))

is not a compact subset of D(ω), which contradicts the assumption. �

Remark 1. (1) By Proposition 4 of [9] the semigroup BF
ω contains an isomorphic

copy of the semigroup of ω × ω-matrix units. Then Theorem 5 from [11] impli-

es that BF
ω does not embed into a countably compact Hausdor� topological

semigroup.
(2) A Hausdor� topological semigroup S is called Γ-compact if for every x ∈ S

the closure of the set {x, x2, x3, . . .} is compact in S (see [16]). The semigroup

operation BF
ω implies that either a · a = a or a · a = O for any a ∈ BF

ω . Hence

the semigroup BF
ω with any Hausdor� semigroup topology is Γ-compact.
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4. On the closure of BF
ω in a (semi)topological semigroup

Lemma 3. Let S be a dense subsemigroup of a T1-semitopological semigroup T and 0
be the zero of S. Then the element 0 is the zero of T .

Proof. Suppose to the contrary that there exists a ∈ T \ S such that 0 · a = b 6= 0.
Then for every open neighbourhood U(b) 63 0 in T there exists an open neighbourhood
V (a) 63 0 of the point a in T such that 0 · V (a) ⊆ U(b). But |V (a) ∩ S| > ω, and hence
0 ∈ 0 · V (a) ⊆ U(b). This contradicts the choice of the neighbourhood U(b). Therefore
0 · a = 0 for all a ∈ T \ S.

The proof of the equality a · 0 = 0 is similar. �

Theorem 4. Let T be a T1-semitopological semigroup which contains the semigroup BF
ω

as a dense proper subsemigroup. Then I =
(
T \BF

ω

)
∪ {0} is an ideal of T .

Proof. Lemma 3 implies that 0 is the zero of the semigroup T . Since T is a T1-topological
space, the set BF

ω \ {0} is dense in T . By Lemma 3 [13], BF
ω \ {0} is an open subspace

of T .
Fix an arbitrary non-zero element y ∈ I. If x · y = z /∈ I for some x ∈ BF

ω \ {0}
then there exists an open neighbourhood U(y) of the point y in the space T such that

{x} · U(y) = {z} ⊂ BF
ω \ {0}.

By Lemma 1 the open neighbourhood U(y) should contain �nitely many elements of the

set BF
ω \{0} which contradicts our assumption. Hence x ·y ∈ I for all x ∈ BF

ω \{0} and
y ∈ I. The proof of the statement that y ·x ∈ I for all x ∈ BF

ω \{0} and y ∈ I is similar.
Suppose to the contrary that x · y = w /∈ I for some non-zero elements x, y ∈ I.

Then w ∈ BF
ω \ {0} and the separate continuity of the semigroup operation in T yields

open neighbourhoods U(x) and U(y) of the points x and y in the space T , respectively,
such that {x} · U(y) = {w} and U(x) · {y} = {w}. Since both neighbourhoods U(x) and

U(y) contain in�nitely many elements of the set BF
ω \ {0}, equalities {x} · U(y) = {w}

and U(x) · {y} = {w} do not hold, because {x} ·
(
U(y) ∩BF

ω \ {0}
)
⊆ I. The obtained

contradiction implies that x · y ∈ I. �

A subsetD of a semigroup S is said to be ω-unstable ifD is in�nite and aB∪Ba * D
for any a ∈ D and any in�nite subset B ⊆ D.

De�nition 1 ([8]). An ideal series (see, for example, [3, 4]) for a semigroup S is a chain
of ideals

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In = S.

We call the ideal series tight if I0 is a �nite set and Dk = Ik \ Ik−1 is an ω-unstable
subset for each k = 1, . . . , n.

Lemma 4. The ideal series I0 = {O} ⊂ I1 = B�
ω(Fmin) is tight for the semigroup

B�
ω(Fmin).

Proof. Fix any in�nite subsetD ⊆ B�
ω(Fmin)\{O} and any element a ∈ B�

ω(Fmin)\{O}.
Since the set D is in�nite and the set F

(i,j)�
min is �nite for any i, j ∈ ω, at least one of the

following conditions holds:
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(i) there exist in�nitely many in ∈ ω such that (in, kn, jn) ∈ D for some jn ∈ ω and
kn ∈ Fmin;

(ii) there exist in�nitely many jn ∈ ω such that (in, kn, jn) ∈ D for some in ∈ ω and
kn ∈ Fmin.

Both above conditions and the semigroup operation of B�
ω(Fmin) imply that O ∈ (i, k, j)·

D ∪D · (i, k, j), which completes the proof of the lemma. �

Let S be a class of semitopological semigroups. A semigroup S ∈ S is called S-

closed, if S is a closed subsemigroup of any semitopological semigroup T ∈ S which
contains S both as a subsemigroup and as a topological space. HTS -closed topological
semigroups, where HTS is the class of Hausdor� topological semigroups, are introduced
by Stepp in [20], and there they were called maximal semigroups. An algebraic semigroup
S is called algebraically complete in S, if S with any Hausdor� topology τ such that
(S, τ) ∈ S is S-closed.

By Proposition 10 from [8], every inverse semigroup S with a tight ideal series is
algebraically complete in the class of Hausdor� semitopological inverse semigroups with
continuous inversion. Hence Theorem 1 and Lemma 4 imply the following theorem.

Theorem 5. Let F be a family of atomic subsets of ω. Then the semigroup BF
ω is

algebraically complete in the class of Hausdor� semitopological inverse semigroups with

continuous inversion.

The following lemma describes the closure of the semigroup B�
ω(Fmin) in a T1-

topological semigroup.

Lemma 5. Let S be a T1-topological semigroup which contains the semigroup B�
ω(Fmin)

as a dense subsemigroup. Then the following conditions hold:

(i) if S \B�
ω(Fmin) 6= ∅ then x2 = O for all x ∈ S \B�

ω(Fmin);
(ii) E(S) = E(B�

ω(Fmin)).

Proof. (i) By Lemma 3 the element O is the zero of the semigroup S. Suppose to the
contrary that there exists x ∈ S \ B�

ω(Fmin) such that x2 = y 6= O. Since S is a
T1-space there exists an open neighbourhood U(y) of the point y in S such that O /∈
U(y). The continuity of the semigroup operation in S implies that there exists an open
neighbourhood V (x) of the point x in the space S such that V (x) · V (x) ⊆ U(y). By

Corollary 1 the set F
(i,j)�
min is �nite for any i, j ∈ ω. Since the set V (x) ∩B�

ω(Fmin) is
in�nite, the above arguments and the de�nition of the semigroup operation in B�

ω(Fmin)
imply that O ∈ V (x) · V (x) ⊆ U(y), a contradiction.

Statement (ii) follows from (i). �

Lemma 6. Let B�
ω(Fmin) be a Hausdor� topological semigroup with the compact band

E(B�
ω(Fmin)). If a Hausdor� topological semigroup S contains B�

ω(Fmin) as a subsemi-

group then B�
ω(Fmin) is a closed subset of S.

Proof. Suppose to the contrary that there exists a Hausdor� topological semigroup S
which contains B�

ω(Fmin) as a non-closed subsemigroup. Since the closure of a subsemi-
group of S is again a subsemigroup in S (see [2, page 9]), without loss of generality we
may assume that B�

ω(Fmin) is a dense subsemigroup of S and S \B�
ω(Fmin) 6= ∅. By

Lemma 3 the element O is the zero of S.
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Fix an arbitrary x ∈ S \ B�
ω(Fmin). By Hausdor�ness of S there exist open nei-

ghbourhoods U(x) and U(O) of the points x and O in S, respectively, such that U(x) ∩
U(O) = ∅. Since x ·O = O · x = O, there exist open neighbourhoods V (x) and V (O) of
the points x and O in the space S, respectively, such that

V (x) · V (O) ⊆ U(O), V (O) · V (x) ⊆ U(O), V (x) ⊆ U(x) and V (O) ⊆ U(O).

The compactness of E(B�
ω(Fmin)) and Proposition 4 imply that the set E(B�

ω(Fmin)) \
V (O) is �nite. Also, by Corollary 1 the set F

(i,j)�
min is �nite for any i, j ∈ ω. Since the set

V (x) ∩B�
ω(Fmin) is in�nite, the above arguments and the de�nition of the semigroup

operation in B�
ω(Fmin) imply that there exists (i, k, j) ∈ V (x) such that (i, k, i) ∈ V (O)

or (j, k, j) ∈ V (O). Therefore, we have that at least one of the following conditions holds:

(V (x) · V (O)) ∩ V (x) 6= ∅, (V (O) · V (x)) ∩ V (x) 6= ∅.
Since V (x) ⊆ U(x), this contradicts the assumption U(x) ∩ U(O) = ∅. The obtained
contradiction implies the statement of the lemma. �

Later by HTS we denote the class of all Hausdor� topological semigroups.
The following lemma shows that the converse statement to Lemma 6 is true in the

case when B�
ω(Fmin) is a topological inverse semigroup.

Lemma 7. Let (B�
ω(Fmin), τ) be a Hausdor� topological inverse semigroup. If

(B�
ω(Fmin), τ) is an HTS -closed topological semigroup then the band E(B�

ω(Fmin)) is

compact.

Proof. Suppose to the contrary that there exists a Hausdor� semigroup inverse topology
τ on the semigroup B�

ω(Fmin) such that (B�
ω(Fmin), τ) is an HTS -closed topological

semigroup and the band E(B�
ω(Fmin)) is not compact. By Proposition 4 every non-

zero element of B�
ω(Fmin) is an isolated point in

(
B�
ω(Fmin), τ

)
and hence there exists

an open neighbourhood V (O) of the zero O in the space
(
B�
ω(Fmin), τ

)
such that M =

E(B�
ω(Fmin))\V (O) is an in�nite subset of the band E(B�

ω(Fmin)). Since the semigroup
B�
ω(Fmin) is countable, so is the set M . Next we enumerate elements of the set M by

positive integers:
M = {(in, kn, in) : n = 1, 2, 3, . . .}.

By Corollary 1 the set F
(i,j)�
min is �nite for any i, j ∈ ω, and hence without loss of generali-

ty we may assume that im < in for any positive integers m < n. Since (B�
ω(Fmin), τ)

is a topological inverse semigroup the maps ϕ : B�
ω(Fmin) → E(B�

ω(Fmin)) and
ψ : B�

ω(Fmin) → E(B�
ω(Fmin)) de�ned by the formulae ϕ(x) = x · x−1 and ψ(x) =

x−1 · x, respectively, are continuous, and hence IM = ϕ−1(M) ∪ ψ−1(M) is a closed
subset in the topological space (B�

ω(Fmin), τ).
Let y /∈ B�

ω(Fmin). Put S = B�
ω(Fmin) ∪ {y}. We extend the semigroup operation

from B�
ω(Fmin) onto S as follows:

y · y = y · x = x · y = O, for all x ∈ B�
ω(Fmin).

Simple veri�cations show that so extended binary operation is associative.
We put

Mn = {(i2j−1, k2j−1, i2j) : j = n, n+ 1, n+ 2, . . .}
for any positive integer n. We de�ne a topology τS on S in the following way:
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(i) for every x ∈ B�
ω(Fmin) the bases of topologies τ and τS at the point x coincide;

and
(ii) the family B = {Un(y) = {y} ∪Mn : n = 1, 2, 3, . . .} is the base of the topology

τS at the point y.

Since Mn ⊂ IM for any positive integer n, τS is a Hausdor� topology on S.
For any open neighbourhood V (O) of the zero O such that V (O) ⊆ U(O) and any

positive integer n we have that

V (O) · Un(y) = Un(y) · V (O) = Un(y) · Un(y) = {O} ⊆ V (O).

We remark that the de�nition of the setMn implies that for any non-zero element (i, k, j)
of the semigroup B�

ω(Fmin) there exists the smallest positive integer n(i,k,j) such that

(i, k, j) ·Mn(i,k,j)
= Mn(i,k,j)

· (i, k, j) = {O}.
This implies that

(i, k, j) · Un(i,k,j)
(y) = Un(i,k,j)

(y) · (i, k, j) = {O} ⊆ V (O).

Therefore (S, τS) is a Hausdor� topological semigroup which contains (B�
ω(Fmin), τ)

as a proper dense subsemigroup, which contradicts the assumption of the lemma. The
obtained contradiction implies that the band E(B�

ω(Fmin)) is compact. �

The proof of Lemma 7 implies Proposition 6, which gives the su�cient conditions
on the topological semigroup (B�

ω(Fmin), τ) to be non-HTS -closed.

Proposition 6. Let τ be a semigroup topology on the semigroup B�
ω(Fmin). Let

ϕ : B�
ω(Fmin) → E(B�

ω(Fmin)) and ψ : B�
ω(Fmin) → E(B�

ω(Fmin)) be the maps which

are de�ned by the formulae ϕ(x) = x · x−1 and ψ(x) = x−1 · x. If there exists an open

neighbourhood U(O) of zero in (B�
ω(Fmin), τ) such that(

ϕ−1(M) ∪ ψ−1(M)
)
∩ U(O) = ∅

for some in�nite subset M of the band E(B�
ω(Fmin)), then (B�

ω(Fmin), τ) is not an

HTS -closed topological semigroup.

Theorem 1 and Lemmas 6, 7 imply

Theorem 6. Let F be a some family of atomic subsets of ω. Then a Hausdor� topologi-

cal semigroup BF
ω with the compact band is an HTS -closed topological semigroup.

Moreover, a Hausdor� topological inverse semigroup BF
ω is an HTS -closed topological

semigroup if and only the band E(BF
ω ) is compact.

Example 2 and Proposition 7 imply that the converse statement to Lemma 6 (and
hence to the �rst statement of Theorem 1) is not true.

Example 2. For any positive integer n we denote

Un(O) = {O} ∪
⋃{

F
(i,j)�
min : n 6 i < j

}
.

We de�ne a topology τ1 on the semigroup B�
ω(Fmin) in the following way:

(i) any non-zero element of the semigroup B�
ω(Fmin) is an isolated point in

(B�
ω(Fmin), τ1);
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(ii) the family B1(O) = {Un(O) : n ∈ ω} is the base of the topology τ1 at the zero
O.

It is obvious that (B�
ω(Fmin), τ1) is a Hausdor� topological space.

Proposition 7. (B�
ω(Fmin), τ1) is an HTS -closed topological semigroup.

Proof. First we show that the semigroup operation is continuous in (B�
ω(Fmin), τ1).

Since every non-zero element of the semigroup (B�
ω(Fmin), τ1) is an isolated point, it is

complete to show that the semigroup operation in (B�
ω(Fmin), τ1) is continuous at zero.

Fix an arbitrary (i, k, j) ∈ B�
ω(Fmin) \ {O}. Then for n = max{i, j}+ 1 we have that

(i, k, j) · Un(O) = Un(O) · (i, k, j) = {O} ⊂ Un(O).

Also for any n ∈ ω we have that

Un(O) · Un(O) ⊆ Un(O).

Therefore (B�
ω(Fmin), τ1) is a topological semigroup.

Suppose to the contrary that there exists a Hausdor� topological semigroup S which
contains (B�

ω(Fmin), τ1) as a non-closed subsemigroup. Since the closure of a subsemi-
group in a topological semigroup is a subsemigroup (see [2, page 9]), without loss of
generality we can assume that (B�

ω(Fmin), τ1) is a dense proper subsemigroup of S.
Fix an arbitrary x ∈ S \B�

ω(Fmin). By Lemmas 3 and 5 we have that

x · x = x · O = O · x = O.

Fix any positive integer n. Let W (O) be an open neighbourhood of zero O in S such
thatW (O)∩B�

ω(Fmin) = Un(O). The continuity of the semigroup operation in S implies
that there exist open neighbourhoods V (x), V (O) and U(O) of the points x and O in
the space S, respectively, such that

V (x) · V (O) ⊆ U(O), V (O) · V (x) ⊆ U(O), V (x) · V (x) ⊆ U(O),

V (x) ∩ U(O) = ∅ and V (O) ⊆ U(O) ⊆W (O).

Theorem 9 of [21] implies that E(B�
ω(Fmin)) is a closed subset of S. Hence, we may

assume that V (x) ∩ E(B�
ω(Fmin)) = ∅, and moreover U(O) ∩B�

ω(Fmin) = Um(O) and
V (O) ∩B�

ω(Fmin) = Ul(O) for some positive integers l and m such that l > m > n.
Then conditions

V (x) · V (O) ⊆ U(O) and V (x) ∩ U(O) = ∅

imply that there exists on open neighbourhood V1(x) ⊆ V (x) of the point x in the space
S such that

V1(x) ∩
(⋃{

F
(i,s)�
min : s ∈ ω

})
= ∅

for any non-negative integer i < m. This and Theorem 9 of [21] imply that there exists
an open neighbourhood V2(x) ⊆ V (x) of the point x in S such that

V2(x) ∩B�
ω(Fmin) ⊆

⋃{
F

(i,j)�
min : i > j, i, j ∈ ω

}
.

Hence there exists an in�nite sequence {(ip, kp, jp)}p∈ω in V2(x) such that the sequence
{ip}p∈ω is increasing and jp 6 ip − 1 for any p ∈ ω. The de�nition of the topology τ1
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implies that there exists an element (ip0 , kp0 , jp0) of the sequence {(ip, kp, jp)}p∈ω such
that

F
(ip0−1,ip0 )�
min ⊆ Ul(O) ⊆ V (O).

Then we have that

F
(ip0−1,ip0 )�
min · (ip0 , kp0 , jp0) ⊆ F

(ip0−1,jp0 )�
min * Um(O),

which contradicts the inclusion V (O) ·V (x) ⊆ U(O). The obtained contradiction implies
that x is not an accumulation point of B�

ω(Fmin) in the topological space S, and hence
the statement of the proposition holds. �
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Âèâ÷à¹ìî íàïiâãðóïó BF
ω , ÿêà ïîáóäîâàíà â ïðàöi [9], ó âèïàäêó êî-

ëè ñiì'ÿ F ñêëàäà¹òüñÿ ç ïîðîæíüî¨ ìíîæèíè òà äåÿêèõ îäíîåëåìåíòíèõ
ïiäìíîæèí ó ω. Äîâîäèìî, ùî íàïiâãðóïà BF

ω içîìîðôíà ïiäíàïiâãðóïi
B�

ω(Fmin) ω-ðîçøèðåííÿ Áðàíäòà íàïiâ ðàòêè Fmin é îïèñó¹ìî óñi òðàíñ-
ëÿöiéíî íåïåðåðâíi ñëàáêî êîìïàêòíi T1-òîïîëîãi¨ íà íàïiâãðóïi B�

ω(Fmin).
Çîêðåìà, äîâîäèìî, ùî êîæíà òðàíñëÿöiéíî íåïåðåðâíà ñëàáêî êîìïàêòíà
T1-òîïîëîãiÿ τ íà B�

ω(Fmin) êîìïàêòíà, i áiëüøå òîãî, ó öüîìó âèïàäêó
ïðîñòið (B�

ω(Fmin), τ) ãîìåîìîðôíèé îäíîòî÷êîâié êîìïàêòèôiêàöi¨ Àë¹ê-
ñàíäðîâà äèñêðåòíîãî çëi÷åííîãî ïðîñòîðó D(ω). Âèâ÷à¹ìî çàìèêàííÿ íà-
ïiâãðóïè BF

ω â íàïiâòîïîëîãi÷íié íàïiâãðóïi. Çîêðåìà äîâîäèìî, ùî íà-
ïiâãðóïà BF

ω àëãåáðè÷íî ïîâíà â êëàñi ãàóñäîðôîâèõ íàïiâòîïîëîãi÷íèõ
iíâåðñíèõ íàïiâãðóï ç íåïåðåðâíîþ iíâåðñi¹þ, i ãàóñäîôîâà òîïîëîãi÷íà ií-
âåðñíà íàïiâãðóïà BF

ω ¹ çàìêíåíîþ â êîæíié ãàóñäîðôîâié òîïîëîãi÷íié
íàïiâãðóïi òîäi i ëèøå òîäi, êîëè â'ÿçêà E(BF

ω ) êîìïàêòíà.

Êëþ÷îâi ñëîâà: íàïiâòîïîëîãi÷íà íàïiâãðóïà, òîïîëîãi÷íà íàïiâãðóïà,
áiöèêëi÷íèé ìîíî¨ä, iíâåðñíà íàïiâãðóïà, ñëàáêî êîìàâêòíèé, êîìïàêòíèé,
ω-ðîçøèðåííÿ Áðàíäòà, çàìèêàííÿ.
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