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A semigroup is called E-separated if for any distinct idempotents z,y € X
there exists a homomorphism h : X — Y to a semilattice Y such that h(z) #
h(y). Developing results of Putcha and Weissglass, we characterize E-separated
semigroups via certain commutativity properties of idempotents of X. Also we
characterize E-separated semigroups in the class of w-regular F-semigroups.
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1. INTRODUCTION

In this paper we introduce and study E-separated E-semigroups. A semigroup X
is defined to be FE-separated if for any distinct idempotents =,y € X there exists a
homomorphism A : X — Y to a semilattice Y such that h(z) # h(y). We recall that
a semilattice is a commutative semigroup of idempotents. An element x of a semigroup
X is an idempotent if xx = x. A semigroup X is called an E-semigroup if the set
E(X)Z {x € X :zx =z} is a subsemigroup of X.

Developing results of Putcha and Weissglass [19], in Theorem [5| we characterize
E-separated semigroup via suitable commutativity properties of the idempotents of the
semigroup.

In Proposition |8 we prove that the class of E-separated E-semigroups contains all
duo semigroups (and hence all commutative semigroups). A semigroup X is called duo
if X = Xa for every z € X. It is clear that each commutative semigroup is duo.
In Theorem [6] we establish some structural properties of E-separated E-semigroups. In
particular, we distinguish a natural subsemigroup §E(X) of X that admits homomorphic
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retractions onto the semilattice £(X) and also on the Clifford part H(X) = U H,
e€E(X)
of X.
In Theorem [7] we characterize F-separated semigroups within the class of m-regular
E-semigroups.
The main instrument for studying F-separated semigroups is the binary quasiorder
whose properties are discussed in Section

2. PRELIMINARIES

In this section we collect some standard notions that will be used in the paper. We
refer to [10] for Fundamentals of Semigroup Theory.

We denote by w the set of all finite ordinals and by N = w\ {0} the set of all positive
integer numbers.

Let X be a semigroup. For an element x € X let

N E 2" n e N}

be the monogenic subsemigroup of X, generated by the element z. For two subsets
A,B C X,let AB = {ab:a € A, b € B} be the product of A, B in X. For a subset
AC X, let
VAE U VA where VAZ {ze X :a"c A}.
neN
For an element a of a semigroup X, the set

H,={zeX:(xX'=aX") A (X'z=X"a)}

is called the H-class of a. Here X' = X U{1} where 1 is an element such that 1o = z = 1
for all z € X',

By Corollary 2.2.6 [10], for every idempotent e € F(X) its H-class H, coincides
with the maximal subgroup of X, containing the idempotent e. The union

HX)= |J H
e€E(X)
of all maximal subgroups of X is called the Clifford part of X (it should be mentioned
that H(X) is not necessarily a subsemigroup of X).
For any element x € H(X), there exists a unique element 2~! € H(X) such that

rx e = T, et = x_l, and zz ! =z"lz

The set
VHX)= |J VH.
ecE(X)
is called the eventually Clifford part of X. Let m : \/H(X) — E(X) be the function

assigning to each x € {/H(X) the unique idempotent e € E(X) such that N N H, # (.
The following lemma shows that the function 7 is well-defined.

Lemma 1. Let x be an element of a semigroup X such that 2™ € H, for some n € N
and e € E(X). Then ™ € H, for all m > n.
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Proof. To derive a contradiction, assume that 2™ ¢ H, for some m > n. We can assume
that m is the smallest number such that m > n and 2™ ¢ H.. It follows from 2™ € H,
and 2™ ¢ H, that m > n > 1 and hence m — 2 € N. The minimality of m ensures that
2™ ! ¢ H.. Observe that

mel g xmlel _ eszle g €X1
and
€X1 _ x2(m—1) (1,2(m—1))—1X1 C x2(m—1)X1 _ .’mem_zXl C l’le.
Therefore, 2™ X! = eX!. By analogy one can prove that X'z™ = X'e. Therefore,
™ € H,., which contradicts the choice of m. O

A semigroup X is called

o Clifford if X = H(X);

o cventually Clifford if X = \/H(X).

In fact, the class of (eventually) Clifford semigroups coincides with the class of

completely (7-)regular semigroups, considered in [16] (and [7], [11], [17])-
Let us recall that a semigroup X is defined to be

o (completely) regular if for every x € X there exists y € X such that x = zyzx
(and zy = yx);

o (completely) m-regular if for every x € X there exist n € N and y € X such that
2" = 2"yz™ (and 2"y = yz™).

Each semilattice X carries the natural partial order < defined by x < y iff

Ty =Y = yx.

Let 2 denote the set {0,1} endowed with the operation of multiplication inherited
from the ring Z. It is clear that 2 is a two-element semilattice, so it carries the natural
partial order, which coincides with the linear order inherited from Z.

For elements z,y of a semigroup X we write x < y if x(x) < x(y) for every
homomorphism y : X — 2. The relation < is a quasiorder, called the binary quasi-
order on X, see [2]. The obvious order properties of the semilattice 2 imply the following
(obvious) properties of the binary quasiorder on X.

Proposition 1. For any semigroup X and any elements z,y,a € X, the following
statements hold:

(1) if Sy, then ax < ay and za < ya;

(2) 2y Syx S wy;

(3) v Sa? Sy

(4) zy Sz and zy S y.

For an element a of a semigroup X and subset A C X, consider the following sets:
faE{zreX:alz}, baZ{reX:2<a}, and JaZE{reX:a<z<a},

called the upper 2-class, lower 2-class and the 2-class of x, respectively. Proposition
implies that those three classes are subsemigroups of X.
The following simple fact follows from the definition of the class {z.

Proposition 2. For every idempotent e of a semigroup X we have \VH, C {Je.
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For two elements x,y of a semigroup X, we write z { y iff fz = Jy iff x(z) = x(y)
for any homomorphism x : X — 2. Proposition [1| implies that { is a congruence on X.

We recall that a congruence on a semigroup X is an equivalence relation ~ on X
such that for any elements x ~ y of X and any a € X we have ax ~ ay and za = ya.
For any congruence =~ on a semigroup X, the quotient set X/~ has a unique semigroup
structure such that the quotient map X — X/ is a semigroup homomorphism. The
semigroup X/ is called the quotient semigroup of X by the congruence = .

A congruence = on a semigroup X is called a semilattice congruence if the quotient
semigroup X/, is a semilattice. Proposition [1f implies that { is a semilattice congruence
on X. Moreover, {J is equal to the smallest semilattice congruence on X, see [2], [14],
[15], [22]. The quotient semigroup X/q is called the semilattice reflection of X. More
information on the smallest semilattice congruence and semilattice decompositions of
semigroups can be found in [I8], [8], [L1], [12], [20].

A semigroup X is called 2-trivial if every homomorphism h : X — 2 is constant.
Tamura [22], [23] called 2-trivial semigroups semilattice-indecomposable (or briefy s-
indecomposable) semigroups. The following fundamental fact was first proved by Tamura
[21] and then reproved by another methods in [25], [14], [15], and [2].

Theorem 1 (Tamura). For every element x of a semigroup X its 2-class {x is a 2-trivial
semigroup.

The binary quasiorder admits an inner description via prime (co)ideals, which was
first noticed by Petrich [15] and Tamura [22].

A subset I of a semigroup X is called

e an ideal if (IX)U(XI) C I;

e a prime ideal if I is an ideal such that X \ I is a subsemigroup of X;

e a (prime) coideal if the complement X \ I is a (prime) ideal in X.

According to this definition, the sets ) and X are prime (co)ideals in X.
Observe that a subset A of a semigroup X is a prime coideal in X if and only if its
characteristic function

o |1, ifxeA,
xa:X =2 yxa:ze xalz) 2L )

0, otherwise,
is a homomorphism. This function characterization of prime coideals implies the following
inner description of the 2-quasiorder, first noticed by Tamura in [22].

Proposition 3. For any element x of a semigroup X, its upper 2-class {tx coincides
with the smallest coideal of X that contains x.

Corollary 1. A semigroup X is 2-trivial if and only if every nonempty prime ideal in
X coincides with X .

Remark 1. By [T, [9] (see also [5], [6], [3], [4]), 2-trivial semigroups can contain non-trivial
ideals, in particular, there exist infinite congruence-free (and hence 2-trivial) monoids
with zero.

The following inner description of the upper 2-classes is a modified version of
Theorem 3.3 in [I5]. Its proof can be found in [2].
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Proposition 4. For any element x of a semigroup X its upper 2-class ftx is equal to
the union U 1,2, where fyz = {z} and

new
Moz = {y € X - X1yX' 0 (,2)° # 0}
forn e w.
For duo semigroups, Proposition [4| simplifies to the following form, proved in [2].

Proposition 5. For any element a € X of a duo semigroup X we have
fa={re X :d"nXzX #£0}.

A semigroup X is called Archimedean if for any elements x,y € X there exists n € N
such that 2™ € XyX for some a,b € X. A standard example of an Archimedean semi-
group is the additive semigroup N of positive integers. For commutative semigroups the
following characterization (that can be easily derived from Proposition [5) was obtained
by Tamura and Kimura in [24].

Theorem 2. A duo semigroup X is 2-trivial if and only if X is Archimedean.

For viable semigroups we have another simplification of Proposition ] due to Putcha
and Weissglass [19]. Let us recall that a semigroup X is called viable if for any x,y € X
with {zy,yz} C E(X) we have xy = yx.

Proposition 6 (Putcha—Weissglass). If X is a wiable semigroup, then for every
idempotent e € E(X) we have

e={reX:eec XzX".
fre={

Proof. Let
feZ{re X eec XzX'}.

By Proposition E[, e C fre. The reverse inclusion will follow from the minimality of the
prime coideal fe as soon as we prove that e is a prime coideal in X. It is clear from
the definition that {}ye is a coideal. So, it remains to check that {}e is a subsemigroup.
Given any elements z,y € fiye, find elements a,b,c,d € X' such that axb = e = cyd.
Then azbe = ee = e and

(beazx)(beax) = be(azxbe)ax = beeax = beax,

which means that beax is an idempotent. By the viability of X, axbe = e = beax.
By analogy we can prove that ecyd = e = ydec. Then bearydexr = ee = e and hence
zy € Mhe. O

Following Tamura [23], we define a semigroup X to be unipotent if X contains a
unique idempotent. The following fundamental result was proved by Tamura [23] and
reproved by a different method in [2].

Theorem 3 (Tamura, 1982). For the unique idempotent e of an unipotent 2-trivial
semigroup X, the maximal group H, of e in X is an ideal in X.
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An element of a semigroup X is called central if it belongs to the center
Z(X)E{ze X Vo€ X (22 =u12)}
of the semigroup X.

Corollary 2. The unique idempotent e of a unipotent 2-trivial semigroup X is central
in X.

Proof. Let e be a unique idempotent of the unipotent semigroup X. By Tamura’s
Theorem [3] the maximal subgroup H. is an ideal in X. Then for every x € X we have
zre,er € H,.. Taking into account that xe and ex are elements of the group H., we
conclude that ex = exe = xe. This means that the idempotent e is central in X. O

For any idempotent e of a semigroup X, let

%g{xGX:xe:exGHe}.

He
(&

we have

The set Iie is a subsemigroup of X. Indeed, for any z,y €
zye = zyee = x(ey)e = (ze)(ye) € H.H. = H,

and
ery = eexy = e(xe)y = (ex)(ey) € H.H, = H,,
which implies that zy € e,

e

The following theorem nicely complements Theorem [3] and Corollary

Theorem 4. For any idempotent e we have

VH, C e C e,

Jlosedenns. Take any element x € {/H.. Since x € {/H., there exists n € N such that
2" € H, and hence 22" € H,. Observe that

zeX' = za" X' C 2" X! = eX!

and
eXP =2 X! C 2"t X! = geX!

and hence zeX! = eX'. By analogy we can prove that X'ze = X'e. Then ze € H, by
the definition of the H-class H,.

By analogy we can prove that ex € H,. It follows from ze,ex € H, that

er =exe=ex € H,

and hence z € %

By Proposition []
He c{z e X:e€caxH,NHux} C{zr e X e X'zX'} C fe.

(&

O

An idempotent e of a semigroup X is defined to be wiable if the semigroup }ée is a
coideal in X.

Proposition 7. An idempotent e of a semigroup X is viable if and only if h;e =fre. In

this case H, is an ideal of the semigroup fe and e € Z(fre).
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Proof. If e is viable, then semigroup ’Ze

as fre is the smallest prime coideal containing e, see Proposition |3 Then h;e = fe By
Theorem Ml

If Ii = fpe, then e is viable because ffe = Ze is a coideal in X.

Also H, is an ideal in 2 and e € Z(%<) by the definition of Ze. O

(&

is a prime coideal in X and hence fle C Ii

3. CHARACTERIZING F-SEPARATED SEMIGROUPS

In this section we find several commutativity properties of semigroups, which are
equivalent to the E-separatedness.

Definition 1. A semigroup X is defined to be

o E-commutative if xy = yax for any idempotents z,y € E(X);

o FE-viable if every idempotent of X is viable;

e E-central if for any e € E(X) and € X we have ex = we;

o Ey-central if for any e € E(X) and = € fte we have ex = xe;

o E-hypercentral if for any e € F(X) and z,y € X with 2y = e we have ze = ex
and ye = ey;

e E-hypocentral if for any e € F(X) and z,y € X with 2y = e we have ze = ex or
ye = ey;

e E-upcentral if for any idempotents e, f € E(X) with fe = e = ef and any
x € {/H; we have re = ex.

For any semigroup these commutativity properties relate as follows.

E-commutative <= E-central == F;-central <= E-separated === E-upcentral

ﬂ |1 ﬂ

FE-semigroup viable <——=> F-viable <> E-hypercentral = F-hypocentral

Nontrivial equivalences and implications in this diagram are proved in the following
theorem.

Theorem 5. For a semigroup X the following conditions are equivalent:
(1) X is E-separated;
(2) X is E-viable;
(8) X is Ey-central;
(4) X is E-hypercentral;
(5) X is viable.
The equivalent conditions (1)—(5) imply the condition
(6) X is E-hypocentral and E-upcentral.

Proof. We shall prove the implications (1) = (2) = (3) = (4) = (5) = (1) and
(4) = (6).

(1) = (2) Assume that X is E-separated. To show that X is E-viable, take any
e € E(X) and x € fre. Since X is E-separated, the 2-class {Je of e is unipotent. By
Tamura’s Theorem [3] the group H. is an ideal in {Je. Since {Je is an ideal in fpe, the
maximal subgroup H, is an ideal in fte. Then ze,ex € H, and hence xe = exe = ex € H,
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and x € HT So fre C % and fte = = by Theorem {4l Then % = {te is a coideal in X

e e
and the idempotent e is viable, witnessing that the semigroup X is E-viable.

The implication (2) = (3) follows from Proposition

(3) = (4) Assume that X is Eq-central. To show that X is E-hypercentral, take
any idempotent e € F(X) and any elements z,y € X with zy = e. Proposition ensures
that e S « and e < y and hence z,y € fte. Applying the Ejy-centrality of X, we conclude
that ex = xe and ey = ye.

(4) = (5) Assume that X is E-hypercentral. To show that X is viable, take any
elements z,y € X such that {zy,yz} C E(X). The E-hypercentrality of X ensures that

vy = ayzy = 2(yz)y = (yr)vy = yz(zy) = y(zy)z = yryzr = yz.

(5) = (1) To derive a contradiction, assume that X is viable but not E-separated.
Then there exist two distinct idempotents e, f € E(X) such that fte = 1} f. By Proposi-
tion @, there are elements a,b,c,d € X! such that e = afb and f = ced. Observe that
afbe = ee = e and

(beaf)(beaf) = be(afbe)af = beeaf = beaf

and hence afbe and bea f are idempotents. The viability of X ensures that afbe = beaf.
By analogy we can prove that eafb = e = fbea, cedf = f = dfce and fced = f = edfc.
These equalities imply that H. = Hy and hence e = f because the group H, = Hy
contains a unique idempotent. But the equality e = f contradicts the choice of the
idempotents e, f.

(4) = (6) Assume that X is E-hypercentral. Then X is E-hypocentral. To show
that X is E-upcentral, take any idempotents e, f € E(X) and any element z € WITf
such that fe = e = ef. By Lemmal[l} there exists a number n > 2 such that 2™ € Hy.
Let g be the inverse element to 2" in the group Hy. Then

n—1

ge).
The E-hypercentrality of X ensures ex = ze. O

e=fe=z"ge=z(x

Remark 2. Viable semigroups were introduced and studied by Putcha and Weissglass who
proved in [19, Theorem 6] that a semigroup X is viable if and only if it is E-separated (this
is the equivalence (1) < (5) in Theorem [5)). For another condition (involving J-classes),
equivalent to the conditions (1)—(5) of Theorem 5| see Theorem 23.7 in [13].

Example 1. Any semigroup X with left zero multiplication xy = x is F-hypocentral and
E-upcentral. If X contains more than one element, then X is not E-hypercentral. This
example shows that condition (6) of Theorem [5|is not equivalent to conditions (1)—(5).

Remark 3. By [I], [9], there exists an infinite 0-simple congruence-free monoid X. Being
congruence-free, the semigroup X is 2-trivial. On the other hand, X contains at least
two central idempotents: 0 and 1. The polycyclic monoids (see [3], [4], [5], [6]) have the
similar properties. By Theorem 2.4 in [3], for any cardinal A > 2 the polycyclic monoid Py
is congruence-free and hence 2-trivial, but its contains two distinct central idempotents
0 and 1. These examples show that individual central idempotents are not necessarily
viable. On the other hand, if all idempotents of a semigroup are central, then all of them
are viable, by Theorem
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4. F-SEPARATED F-SEMIGROUPS

In this section we establish some results on the structure of E-separated E-
semigroups. But first we show that the class of such semigroups contains all duo
semigroups and hence all commutative semigroups. Let us recall that a semigroup X is
duo if Xx = zX for all z € X.

Proposition 8. Each duo semigroup X is an E-separated E-semigroup.

Proof. First we show that X is an E-semigroup. Given two idempotents e, f, use the duo
property of X to find elements x,y € X such that ef = xe and fe = yf. Then

efef=eyff=eyf =efe=xee=xe=cf
and hence ef is an idempotent. Therefore, X is an E-semigroup.
Assuming that X is not E-separated, we can find an idempotent e € E(X) whose
2-class {Je contains an idempotent f # e. By Proposition

ce XfX=XXfCXf=fX

and

feXeX =XXeC Xe=ceX.
Then eX! C fXX! C fX!, fX! CeXX! CeX!, Xle C X!XfC X!'f, and X'f C
X'Xe C X'e, which implies Hy = H, and hence f = e as the group H. = Hy contains
a unique idempotent. O

The following theorem describing properties of E-separated FE-semigroups is the
main result of this section. The statements (2), (3) of this theorem hold true for any
E-separated semigroup.

Theorem 6. Any E-separated E-semigroup X has the following properties.

(1) E(X) is a semilattice.

(2) For any idempotent e € E(X) the mazimal subgroup H, C X is an ideal in the
semigroup fre.

(8) For any e € E(X) and x € e we have ex = ze € H;

(4) For any idempotents x,y € E(X), the inequality x Sy in X is equivalent to the
inequality x <y in E(X).

(5) The map 7y : PE(X) — E(X) assigning to each element x € {E(X) the unique
idempotent in the semigroup Jx is a well-defined homomorphic retraction of the
semigroup $E(X) onto E(X).

(6) The map hy : PE(X) — H(X), hy : x = xmg(z), is a well-defined homomorphic
retraction of the semigroup $E(X) onto the Clifford part H(X) of X.

(7) The Clifford part H(X) is a subsemigroup of X.

Proof. Let X/ be the semilattice reflection of X and ¢ : X — X/4 be the quotient
homomorphism.

1. To see that E(X) is a semilattice, take any idempotents z,y € E(X). Since X
is an FE-semigroup, the products zy and yx are idempotents. Taking into account that
q: X — X/ is a homomorphism onto the semilattice X/q, we conclude that

q(zy) = q(x)q(y) = q(y)q(x) = q(yz)
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and hence Jzy = Jyx. Since the semigroup X is E-separated, the idempotents xy and
yx are equal to the unique idempotent of the unipotent semigroup Jzy = Jyx and hence
TY = Y.

2,3. The statements 2 and 3 follow from Theorem [5| and Proposition

4. Let x,y be two idempotents in X. If x <y, then x = zy and hence

h(z) = h(z)h(y) < h(y)

for any homomorphism h : X — 2. Then = < y by the definition of the quasiorder <.
Now assume that = < y. Multiplying this inequality by z from both sides and applying
Proposition [, we obtain z = zz < zy < z and hence zy € {fz. Since X is an E-
semigroup, the product xy is an idempotent. Since the semigroup X is F-separated, the
semigroup = is unipotent and hence the idempotent zy € {z is equal to the unique
idempotent x of Jz. By analogy we can prove that xy = x. The equality 2y = © = yz
means that x <y, by the definition of the partial order < on the semilattice F(X).

5. Consider the map 7y : {E(X) — E(X) assigning to each element x € X the
unique idempotent in the unipotent semigroup {z. It is clear that mq is a retraction of
JE(X) onto E(X). Since {} is a semilattice congruence, the quotient semigroup X/4 is
a semilattice and the quotient map ¢ : X — X/4 is a semigroup homomorphism. By the
{-unipotence of X, the restriction

h = qlpx)  E(X) = q[B(X)] € X/q

is bijective and hence h is a semigroup isomorphism and so is the inverse function h=! :
q[E(X)] — E(X). Then the function 7 = h™1 o qlyp(x) is a semigroup homomorphism,
being a composition of two homomorphisms.

6. Since the function 7y : {E(X) — E(X) is well-defined, so is the function Ay :
PE(X) = X, hy : @+ zmg(z). To see that hy is a homomorphism, take any elements
z,y € JE(X) and applying Theorem [6{5,3), conclude that

hy(zy) = xymy(oy) =

By Theorem |3} for any e € E(X) and = € {Je, the group H, is an ideal in {fe and hence
hy(x) = wmy(z) = ze € Ho € H(X).

If x € H(X), then z € H,, and hence fig(x) = ze = x. Therefore, iy : {E(X) — H(X)
is a well-defined homomorphic retraction of {£(X) onto H(X).

7. Since hy : JE(X) — X is a homomorphism, its image H(X) = hy[{E(X)] is a
subsemigroup of X. O
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5. CHARACTERIZING F-SEPARATED 7T-REGULAR FE-SEMIGROUPS

In this section we recognize E-separated semigroups among n-regular F-semigroups.
We recall that a semigroup X is w-regular if for every x € X there exist n € Nand y € X
such that =™ = z"yx™. The class of m-regular semigroups includes all eventually Clifford
semigroups (called also completely m-regular semigroups). A semigroup X is eventually
Clifford if X = {/H(X). For any semigroup X by 7 : \/H(X) — E(X) we denote the
function assigning to each z € {/H(X) the unique idempotent e € E(X) such that
2NN H, #0.
Proposition 9. If a semigroup X is E-commutative and E-upcentral, then

(1) for everye, f € E(X) we have H.Hy C Hey;

(2) for every idempotents e, f € E(X) with e < f we have

(\N/Hf . He) U (He . \N/Hf) C H,;

(3) for every idempotents e, f € E(X) and every elements x € /H, and y € {/Hy we
have (zy)"ef € Hey for alln € N;

(4) for any x,y € \/H(X) with xy € V/H(X) we have m(z)r(y) < n(zy);
(5) for any e € E(X) and x € X with {xe,ex} C\/H(X), we have n(ze) = w(ex);

(6) for any e € E(X) and x € \/H(X) with xe € \/H(X) we have w(xe) = w(x)e.

Proof. 1. Let u € H, and v € Hy. The F-upcentrality of X ensures that efu = uef and
efv =wvef. Then efuv = uefv = uv, wvef = uefv = uv,

wv tuT =ufuT =uefut = efuu! =efe=ef
and
v T luw = v tev = v e fo = v lvef = fef = ef.
Hence uv € H.y, witnessing that H.Hy C Hy.
2. For every e, f € E(X) with e < f and every x € \N/IT, we have

ze=zxfec/HyfeC Hre C Hfe = He,

see Theorem [4] and Proposition [9[1). By analogy we can prove that ex € He..

3. Let e, f € E(X) and « € VH,, y € {/Hy be any elements. By induction we shall
prove that (zy)"ef € Hs for every n € N. For n = 1 we have

wyef = xefy € (VHe - He) - (Hy-{/Hy) C HeHy C Hey

by the E-upcentrality of X, Theorem M| and Proposition |§|(1) Assume that for some
n € N we have proved that (zy)"ef € Hcy. Then

(xy)”'“ef =ay(xy)"ef € xyHey = ayefHey C HepHey = Hey

by the inductive assumption and case n = 1.

4. Take any elements x,y € \/H(X) with zy € \/H(X). Since zy € \/H(X), there

exists n € N such that (zy)" € Hr(sy). By Proposition 9[1),
(zy)nﬂ'(:c)ﬂ'(y) € HTr(wy)Hﬂ'(w)Hﬂ'(y) - Hﬂ(wy)ﬂ(w)ﬂ'(y)'
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On the other hand, Proposition [J3) ensures that

(zy)"m(2)7(y) € Hr()n(y)-
Hence 7(zy)m(z)n(y) = m(x)7(y), which means that 7(z)7(y) < m(xy).
5. Take any elements e € F(X) and z € X such that {ze,ex} C {/H(X). By
Lemma |1} there exists n € N such that (ze)" € Hy(ye) and (ex)™ € Hy(egy. Then
Hr(ze) 3 (we)" ! = z(ex)"e =
= z(ex)"w(ex)e =
= a(ex)"en(er) =
(xe)n—H ( ) € Hﬂ(re)ﬂ—(evﬁr) - H-rr(re)-rr(pz)
and hence 7(xze) = w(xe) - w(ex). By analogy we can prove that w(ex) = 7w(ex) - w(xe).
Then
m(xe) = w(ze)m(ex) = w(ex)n(xze) = w(ex).
6. Take any e € E(X) and x € \/H(X) with ze € {/H(X). Find n € N such that
{(ze)", 2"} C H(X). Let f = 7(ze) and observe that
Hy¢ > (ze)" = (ze)"e C Hye C Hye
implies f = fe.
By induction we shall prove that (z f)* (a:e)k . For k = 1 this follows from f = ef.

Assume that for some k € N we have (2f)* = (ze)*f. By the inductive assumption and
Theorem

This completes the inductive step and also the proof of the equality (zf)* = (ze)¥ f for
all £k € N.
For k = n we obtain

(xf)n = (xe)nf € HTF(ZEG)f - Hw(me)f = Hf7

which implies zf € {/Hy and w(zf) = f.

By induction we shall prove that (zf)* = 2*f. For k = 1 this is trivial. Assume
that for some k& € N we have proved that (zf)* = z¥ f. By the inductive assumption and
Theorem [

(@) = (@f)raf =abfaf = aPn(f)af = abafr(af) =P ff = 2" f

This complete the inductive step and also the proof of the equality (zf)¥ = z* f for all
keN.
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The choice of n ensures that 2" € H(X) and hence 2" € H,(,) and 2" = 2"7(x).
By Proposition [9(4), (z)e < m(ze) = f and hence m(z)e = m(z)ef. Then
Hr(w)e 3 2" = a"n(z)e = 2" (n(z)ef) = (z"n(x)) fe = 2" fe = (vf)"e € Hye C Hye
and finally, 7(z)e = fe = f = m(xe). O
Now we are able to prove the main result of this section.

Theorem 7. For a w-reqular E-semigroup X, the following conditions are equivalent:
(1) fe = VH. for every e € E(X);
(2) X is E-separated;
(3) X is E-upcentral, E-hypocentral, and E-commutative.
Proof. We shall prove the implications (1) = (2) = (3) = (1). Let ¢ : X — X/q,
q : © — {Jz, be the quotient homomorphism of X onto its semilattice reflection.

(1) = (2) If e = VH. for every e € E(X), then for every distinct idempotents
e, f € E(X) we have

qle) = Ye = VH, # VHf = 8f = a(f),

which means that the semigroup X is E-separated.

(2) = (3) I X is E-separated, then X is Fj-central and E-hypocentral by Theo-
rem |5l To see that X is E-commutative, take any idempotents x,y € E(X). Since X is
an FE-semigroup, the products zy, yx are idempotents. By Theorem [5] the E-separated
semigroup X is viable and hence zy = yz.

(3) = (1) Assume that a m-regular semigroup X is E-upcentral, E-hypocentral, and
E-commutative.

Claim 1. The semigroup X is eventually Clifford.

Proof. Take any z € X and using the w-regularity of X, find n € N and y € X such
that ™ = z"ya™. It follows that e = x™y and f = ya™ are idempotents. Since X is
E-hypocentral, e = ™y implies x"e = ex™ or ey = ye. If x"e = ex™, then
f=1f=(yz")(yz") = y(a"y)z" = yea™ = ya"e = fe.
If ey = ye, then
f=1f= ") (yz") = y(z"y)a" = yex" = eya™ = ef = fe.

In both cases we obtain f = fe.

On the other hand, by the E-hypocentrality of X, the equality f = ya™ implies
fy=yfor fa™ =a™f. If fy=yf, then

e=ee=x"yx"y=a"fy=zx"yf =ef.
If fa™ = 2™ f, then
e=ce=zx"yx"y=a"fy= fx"y= fe=ef.

In both cases we obtain e = ef. Therefore, e = ef = f.

Observe that eX! = 2"yX' C 2" X! and

"X = g"ya" X! = ea" X! C eX?
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and hence eX! = 2" X', On the other hand,
Xlgm = Xla"ya™ C Xlya" = X'f = X'e
and
Xle=X'f=Xlya" C Xt

and hence X'e = X'2". The equalities eX' = 2" X' and X'e = X'a" imply 2" € H..
Then x € VH, C \{/H(X). O

Since the semigroup X is eventually Clifford, the map 7 : X — E(X) is well-defined
on the whole semigroup X = {/H(X).

Claim 2. For every e € E(X), the upper 2-set e is equal to the set

def

te={re X :e<m(x)}

Proof. Given any z € e, find n € N such that 2" € Hy(,) and conclude that e <
7(z) § « implies = € fre, by Proposition [l Therefore, f;,.e C fre. The equality {},.e = fre
will follow from the minimality of the prime coideal fte as soon as we check that the set
f.€ is a prime coideal in X.
By Proposition |§|(4), for every z,y € {.e we have
e =ece < m(x)m(y) < 7(zy)

and hence zy € e and {,e is a semigroup. Next, we show that I “X \ i€ is an ideal

in X. Assuming that [ is not an ideal, we can find elements = € I and y € X such that
a2y or yx belongs to X \ I = {.e. First we consider the case zy € {}.e. By Theorem @(2),
exy € H, and hence there exists an element g € H, such that exyg = e. Assuming that
ex € fi.e and applying Proposition [9(6), we conclude that

e < m(ex) =m(eex) =erm(ex) < e
and hence e = m(ex). Applying Proposition EKG) once more, we conclude that

e =m(ex) = em(z) < 7(x)
and = € f).e, which contradicts the choice of x. Therefore, ex ¢ {.e. Replacing the
elements x,y by er and yg, we can assume that ex = z, ye = y and zy = e. Consider
the product f = yx and observe that
[ =yryz = yer = yx = f,
which means that f is an idempotent. By the E-hypocentrality of X, the equality xy = e
implies xe = ex or ye = ey. If xe = ex, then
f=vyzr=yex =yzre= fe.

If ye = ey, then

f=yx =yexr =eyx =ef = fe.
In both cases we conclude that f = fe. By the E-hypocentrality of X, the equality
f =wyzx implies fy =yf or fe =xaf. If fy =yf, then

f=ef=ayf=afy=uayry=ce=e.
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If fx =xf, then
f=rfe=fry=uafy=ayry=e.

In both cases we obtain e = f.

Now observe that X! = ez X! C eX! and eX! = 2yX ! C 2X!, which implies
2X! = eX'. On the other hand,

X'z = Xler = X'ayx C Xlyz = X' f = X'e

and X'e = X'f = X'yz C X'z, which implies X'z = X'e. Therefore, x € H, C {),e,
which contradicts the choice of z. By analogy we can derive a contradiction from the

assumption yz € {).e. Those contradictions show that {)_e is a prime coideal, equal to
fe. O

Now we can prove that for every e € E(X) its 2-class {Je equals \/H.. By Proposi-
tion |2, VH, C {fe. To prove that /H. = {Je, choose any element x € {Je. Since X is
eventually Clifford, there exists an idempotent f € E(X) such that « € Q’/H»f Then
there exists n € N such that 2™ € Hy and hence f §§ 2™ { = { e, see Proposition [I} By
Claim 2,

feteChe=1{ye X e<n(y)}
and hence e < f. By analogy,

ccle=0fCf={yeX: f<ny}
implies f < w(e) = e. The inequalities e < f and f < e imply e = f and hence

x € {/Hy =+/H,., and finally, {Je = V/H.. O

Theorems [6] and [7] imply the following theorem describing properties of E-
hypercentral w-regular E-semigroups.

Theorem 8. Every E-separated ww-reqular E-semigroup X has the following properties.

(1) X is eventually Clifford and E(X) is a semilattice.

(2) For every idempotent e € E(X) we have e = V/H, and fe = {x € X : e < m(z)}.

(3) For any idempotent e € E(X) the mazimal subgroup H, C X is an ideal in the
semigroup fre.

(4) For any e € E(X) and x € ffe we have ex = we;

(5) The map w: X — E(X) is a homomorphic retraction of X onto E(X).

(6) The map h: X — H(X), h:xw— xrw(x), is a homomorphic retraction of X onto
its Clifford part H(X).

(7) The Clifford part H(X) is a subsemigroup of X.
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Haunisrpyua wnasusarbcsa FE-6idokpemarosanoro, axmo romomopdizmu B
HAMIBIDATKHA DPO3ALIAIOTH imemmoTeHnTn Hamisrpymu. OxapakTepwsoBano F-
BLIOKPEMTIOBaHI HAMBIPYIIM HAa MOBI KOMYTATHBHUX BJIACTUBOCTEH imeMmIio-
TerTiB. Takoxk oxapakTepm30BaHO F-BinokpemiiioBaHI HamiBrpynum B KJjaci
T-perynapHuX F-HamiBrpym.
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