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A semigroup is called E-separated if for any distinct idempotents x, y ∈ X
there exists a homomorphism h : X → Y to a semilattice Y such that h(x) 6=
h(y). Developing results of Putcha and Weissglass, we characterize E-separated
semigroups via certain commutativity properties of idempotents of X. Also we
characterize E-separated semigroups in the class of π-regular E-semigroups.
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1. Introduction

In this paper we introduce and study E-separated E-semigroups. A semigroup X
is de�ned to be E-separated if for any distinct idempotents x, y ∈ X there exists a
homomorphism h : X → Y to a semilattice Y such that h(x) 6= h(y). We recall that
a semilattice is a commutative semigroup of idempotents. An element x of a semigroup
X is an idempotent if xx = x. A semigroup X is called an E-semigroup if the set

E(X)
def
= {x ∈ X : xx = x} is a subsemigroup of X.

Developing results of Putcha and Weissglass [19], in Theorem 5 we characterize
E-separated semigroup via suitable commutativity properties of the idempotents of the
semigroup.

In Proposition 8 we prove that the class of E-separated E-semigroups contains all
duo semigroups (and hence all commutative semigroups). A semigroup X is called duo

if xX = Xx for every x ∈ X. It is clear that each commutative semigroup is duo.
In Theorem 6 we establish some structural properties of E-separated E-semigroups. In
particular, we distinguish a natural subsemigroup mE(X) of X that admits homomorphic
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retractions onto the semilattice E(X) and also on the Cli�ord part H(X)
def
=

⋃
e∈E(X)

He

of X.
In Theorem 7 we characterize E-separated semigroups within the class of π-regular

E-semigroups.
The main instrument for studying E-separated semigroups is the binary quasiorder

whose properties are discussed in Section 2.

2. Preliminaries

In this section we collect some standard notions that will be used in the paper. We
refer to [10] for Fundamentals of Semigroup Theory.

We denote by ω the set of all �nite ordinals and by N def
= ω\{0} the set of all positive

integer numbers.
Let X be a semigroup. For an element x ∈ X let

xN
def
= {xn : n ∈ N}

be the monogenic subsemigroup of X, generated by the element x. For two subsets

A,B ⊆ X, let AB
def
= {ab : a ∈ A, b ∈ B} be the product of A,B in X. For a subset

A ⊆ X, let
N
√
A

def
=
⋃
n∈N

n
√
A where

n
√
A

def
= {x ∈ X : xn ∈ A}.

For an element a of a semigroup X, the set

Ha = {x ∈ X : (xX1 = aX1) ∧ (X1x = X1a)}

is called theH-class of a. Here X1 = X∪{1} where 1 is an element such that 1x = x = x1
for all x ∈ X1.

By Corollary 2.2.6 [10], for every idempotent e ∈ E(X) its H-class He coincides
with the maximal subgroup of X, containing the idempotent e. The union

H(X) =
⋃

e∈E(X)

He

of all maximal subgroups of X is called the Cli�ord part of X (it should be mentioned
that H(X) is not necessarily a subsemigroup of X).

For any element x ∈ H(X), there exists a unique element x−1 ∈ H(X) such that

xx−1x = x, x−1xx−1 = x−1, and xx−1 = x−1x.

The set
N
√
H(X) =

⋃
e∈E(X)

N
√
He

is called the eventually Cli�ord part of X. Let π : N
√
H(X) → E(X) be the function

assigning to each x ∈ N
√
H(X) the unique idempotent e ∈ E(X) such that xN ∩He 6= ∅.

The following lemma shows that the function π is well-de�ned.

Lemma 1. Let x be an element of a semigroup X such that xn ∈ He for some n ∈ N
and e ∈ E(X). Then xm ∈ He for all m ≥ n.
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Proof. To derive a contradiction, assume that xm /∈ He for some m ≥ n. We can assume
that m is the smallest number such that m ≥ n and xm /∈ He. It follows from xn ∈ He

and xm /∈ He that m > n > 1 and hence m − 2 ∈ N. The minimality of m ensures that
xm−1 ∈ He. Observe that

xmX1 ⊆ xm−1X1 = exm−1X1 ⊆ eX1

and
eX1 = x2(m−1)(x2(m−1))−1X1 ⊆ x2(m−1)X1 = xmxm−2X1 ⊆ xmX1.

Therefore, xmX1 = eX1. By analogy one can prove that X1xm = X1e. Therefore,
xm ∈ He, which contradicts the choice of m. �

A semigroup X is called

• Cli�ord if X = H(X);

• eventually Cli�ord if X = N
√
H(X).

In fact, the class of (eventually) Cli�ord semigroups coincides with the class of
completely (π-)regular semigroups, considered in [16] (and [7], [11], [17]).

Let us recall that a semigroup X is de�ned to be

• (completely) regular if for every x ∈ X there exists y ∈ X such that x = xyx
(and xy = yx);

• (completely) π-regular if for every x ∈ X there exist n ∈ N and y ∈ X such that
xn = xnyxn (and xny = yxn).

Each semilattice X carries the natural partial order ≤ de�ned by x ≤ y i�

xy = y = yx.

Let 2 denote the set {0, 1} endowed with the operation of multiplication inherited
from the ring Z. It is clear that 2 is a two-element semilattice, so it carries the natural
partial order, which coincides with the linear order inherited from Z.

For elements x, y of a semigroup X we write x . y if χ(x) ≤ χ(y) for every
homomorphism χ : X → 2. The relation . is a quasiorder, called the binary quasi-

order on X, see [2]. The obvious order properties of the semilattice 2 imply the following
(obvious) properties of the binary quasiorder on X.

Proposition 1. For any semigroup X and any elements x, y, a ∈ X, the following

statements hold:

(1) if x . y, then ax . ay and xa . ya;
(2) xy . yx . xy;
(3) x . x2 . x;
(4) xy . x and xy . y.

For an element a of a semigroup X and subset A ⊆ X, consider the following sets:

⇑a def
= {x ∈ X : a . x}, ⇓a def

= {x ∈ X : x . a}, and ma def
= {x ∈ X : a . x . a},

called the upper 2-class, lower 2-class and the 2-class of x, respectively. Proposition 1
implies that those three classes are subsemigroups of X.

The following simple fact follows from the de�nition of the class mx.

Proposition 2. For every idempotent e of a semigroup X we have N
√
He ⊆ me.
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For two elements x, y of a semigroup X, we write x m y i� mx = my i� χ(x) = χ(y)
for any homomorphism χ : X → 2. Proposition 1 implies that m is a congruence on X.

We recall that a congruence on a semigroup X is an equivalence relation ≈ on X
such that for any elements x ≈ y of X and any a ∈ X we have ax ≈ ay and xa ≈ ya.
For any congruence ≈ on a semigroup X, the quotient set X/≈ has a unique semigroup
structure such that the quotient map X → X/≈ is a semigroup homomorphism. The
semigroup X/≈ is called the quotient semigroup of X by the congruence ≈ .

A congruence ≈ on a semigroup X is called a semilattice congruence if the quotient
semigroup X/≈ is a semilattice. Proposition 1 implies that m is a semilattice congruence
on X. Moreover, m is equal to the smallest semilattice congruence on X, see [2], [14],
[15], [22]. The quotient semigroup X/m is called the semilattice re�ection of X. More
information on the smallest semilattice congruence and semilattice decompositions of
semigroups can be found in [18], [8], [11], [12], [20].

A semigroup X is called 2-trivial if every homomorphism h : X → 2 is constant.
Tamura [22], [23] called 2-trivial semigroups semilattice-indecomposable (or briefy s-
indecomposable) semigroups. The following fundamental fact was �rst proved by Tamura
[21] and then reproved by another methods in [25], [14], [15], and [2].

Theorem 1 (Tamura). For every element x of a semigroup X its 2-class mx is a 2-trivial

semigroup.

The binary quasiorder admits an inner description via prime (co)ideals, which was
�rst noticed by Petrich [15] and Tamura [22].

A subset I of a semigroup X is called

• an ideal if (IX) ∪ (XI) ⊆ I;
• a prime ideal if I is an ideal such that X \ I is a subsemigroup of X;
• a (prime) coideal if the complement X \ I is a (prime) ideal in X.

According to this de�nition, the sets ∅ and X are prime (co)ideals in X.
Observe that a subset A of a semigroup X is a prime coideal in X if and only if its

characteristic function

χA : X → 2, χA : x 7→ χA(x)
def
=

{
1, if x ∈ A,
0, otherwise,

is a homomorphism. This function characterization of prime coideals implies the following
inner description of the 2-quasiorder, �rst noticed by Tamura in [22].

Proposition 3. For any element x of a semigroup X, its upper 2-class ⇑x coincides

with the smallest coideal of X that contains x.

Corollary 1. A semigroup X is 2-trivial if and only if every nonempty prime ideal in

X coincides with X.

Remark 1. By [1], [9] (see also [5], [6], [3], [4]), 2-trivial semigroups can contain non-trivial
ideals, in particular, there exist in�nite congruence-free (and hence 2-trivial) monoids
with zero.

The following inner description of the upper 2-classes is a modi�ed version of
Theorem 3.3 in [15]. Its proof can be found in [2].
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Proposition 4. For any element x of a semigroup X its upper 2-class ⇑x is equal to

the union
⋃
n∈ω
⇑nx, where ⇑0x = {x} and

⇑n+1x
def
= {y ∈ X : X1yX1 ∩ (⇑nx)2 6= ∅}

for n ∈ ω.

For duo semigroups, Proposition 4 simpli�es to the following form, proved in [2].

Proposition 5. For any element a ∈ X of a duo semigroup X we have

⇑a = {x ∈ X : aN ∩XxX 6= ∅}.

A semigroup X is called Archimedean if for any elements x, y ∈ X there exists n ∈ N
such that xn ∈ XyX for some a, b ∈ X. A standard example of an Archimedean semi-
group is the additive semigroup N of positive integers. For commutative semigroups the
following characterization (that can be easily derived from Proposition 5) was obtained
by Tamura and Kimura in [24].

Theorem 2. A duo semigroup X is 2-trivial if and only if X is Archimedean.

For viable semigroups we have another simpli�cation of Proposition 4 due to Putcha
and Weissglass [19]. Let us recall that a semigroup X is called viable if for any x, y ∈ X
with {xy, yx} ⊆ E(X) we have xy = yx.

Proposition 6 (Putcha�Weissglass). If X is a viable semigroup, then for every

idempotent e ∈ E(X) we have

⇑e = {x ∈ X : e ∈ X1xX1}.

Proof. Let

⇑1e
def
= {x ∈ X : e ∈ X1xX1}.

By Proposition 4, ⇑1e ⊆ ⇑e. The reverse inclusion will follow from the minimality of the
prime coideal ⇑e as soon as we prove that ⇑1e is a prime coideal in X. It is clear from
the de�nition that ⇑1e is a coideal. So, it remains to check that ⇑1e is a subsemigroup.
Given any elements x, y ∈ ⇑1e, �nd elements a, b, c, d ∈ X1 such that axb = e = cyd.
Then axbe = ee = e and

(beax)(beax) = be(axbe)ax = beeax = beax,

which means that beax is an idempotent. By the viability of X, axbe = e = beax.
By analogy we can prove that ecyd = e = ydec. Then beaxydex = ee = e and hence
xy ∈ ⇑1e. �

Following Tamura [23], we de�ne a semigroup X to be unipotent if X contains a
unique idempotent. The following fundamental result was proved by Tamura [23] and
reproved by a di�erent method in [2].

Theorem 3 (Tamura, 1982). For the unique idempotent e of an unipotent 2-trivial

semigroup X, the maximal group He of e in X is an ideal in X.
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An element of a semigroup X is called central if it belongs to the center

Z(X)
def
= {z ∈ X : ∀x ∈ X (zx = xz)}

of the semigroup X.

Corollary 2. The unique idempotent e of a unipotent 2-trivial semigroup X is central

in X.

Proof. Let e be a unique idempotent of the unipotent semigroup X. By Tamura's
Theorem 3, the maximal subgroup He is an ideal in X. Then for every x ∈ X we have
xe, ex ∈ He. Taking into account that xe and ex are elements of the group He, we
conclude that ex = exe = xe. This means that the idempotent e is central in X. �

For any idempotent e of a semigroup X, let

He

e

def
= {x ∈ X : xe = ex ∈ He}.

The set He

e is a subsemigroup of X. Indeed, for any x, y ∈ He

e we have

xye = xyee = x(ey)e = (xe)(ye) ∈ HeHe = He

and
exy = eexy = e(xe)y = (ex)(ey) ∈ HeHe = He,

which implies that xy ∈ He

e .
The following theorem nicely complements Theorem 3 and Corollary 2.

Theorem 4. For any idempotent e we have

N
√
He ⊆ He

e ⊆ ⇑e.

Äîâåäåííÿ. Take any element x ∈ N
√
He. Since x ∈ N

√
He, there exists n ∈ N such that

xn ∈ He and hence x2n ∈ He. Observe that

xeX1 = xxnX1 ⊆ xnX1 = eX1

and
eX1 = x2nX1 ⊆ xn+1X1 = xeX1

and hence xeX1 = eX1. By analogy we can prove that X1xe = X1e. Then xe ∈ He by
the de�nition of the H-class He.

By analogy we can prove that ex ∈ He. It follows from xe, ex ∈ He that

ex = exe = ex ∈ He

and hence x ∈ He

e .
By Proposition 4,

He

e ⊆ {x ∈ X : e ∈ xHe ∩Hex} ⊆ {x ∈ X : e ∈ X1xX1} ⊆ ⇑e.
�

An idempotent e of a semigroup X is de�ned to be viable if the semigroup He

e is a
coideal in X.

Proposition 7. An idempotent e of a semigroup X is viable if and only if He

e = ⇑e. In
this case He is an ideal of the semigroup ⇑e and e ∈ Z(⇑e).
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Proof. If e is viable, then semigroup He

e is a prime coideal in X and hence ⇑e ⊆ He

e

as ⇑e is the smallest prime coideal containing e, see Proposition 3. Then He

e = ⇑e by
Theorem 4.

If He

e = ⇑e, then e is viable because ⇑e = He

e is a coideal in X.

Also He is an ideal in He

e and e ∈ Z(He

e ) by the de�nition of He

e . �

3. Characterizing E-separated semigroups

In this section we �nd several commutativity properties of semigroups, which are
equivalent to the E-separatedness.

De�nition 1. A semigroup X is de�ned to be

• E-commutative if xy = yx for any idempotents x, y ∈ E(X);
• E-viable if every idempotent of X is viable;
• E-central if for any e ∈ E(X) and x ∈ X we have ex = xe;
• E⇑-central if for any e ∈ E(X) and x ∈ ⇑e we have ex = xe;
• E-hypercentral if for any e ∈ E(X) and x, y ∈ X with xy = e we have xe = ex
and ye = ey;

• E-hypocentral if for any e ∈ E(X) and x, y ∈ X with xy = e we have xe = ex or
ye = ey;

• E-upcentral if for any idempotents e, f ∈ E(X) with fe = e = ef and any
x ∈ N

√
Hf we have xe = ex.

For any semigroup these commutativity properties relate as follows.

E-commutative

��

E-central +3ks

��

E⇑-central ks +3 E-separated +3 E-upcentral

E-semigroup viable ks +3 E-viable ks +3
��

KS

E-hypercentral
��

KS

+3 E-hypocentral

Nontrivial equivalences and implications in this diagram are proved in the following
theorem.

Theorem 5. For a semigroup X the following conditions are equivalent:

(1) X is E-separated;
(2) X is E-viable;
(3) X is E⇑-central;
(4) X is E-hypercentral;
(5) X is viable.

The equivalent conditions (1)�(5) imply the condition

(6) X is E-hypocentral and E-upcentral.

Proof. We shall prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) and
(4)⇒ (6).

(1) ⇒ (2) Assume that X is E-separated. To show that X is E-viable, take any
e ∈ E(X) and x ∈ ⇑e. Since X is E-separated, the 2-class me of e is unipotent. By
Tamura's Theorem 3, the group He is an ideal in me. Since me is an ideal in ⇑e, the
maximal subgroup He is an ideal in ⇑e. Then xe, ex ∈ He and hence xe = exe = ex ∈ He
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and x ∈ He

e . So ⇑e ⊆ He

e and ⇑e = He

e by Theorem 4. Then He

e = ⇑e is a coideal in X
and the idempotent e is viable, witnessing that the semigroup X is E-viable.

The implication (2)⇒ (3) follows from Proposition 7.

(3) ⇒ (4) Assume that X is E⇑-central. To show that X is E-hypercentral, take
any idempotent e ∈ E(X) and any elements x, y ∈ X with xy = e. Proposition 1 ensures
that e . x and e . y and hence x, y ∈ ⇑e. Applying the E⇑-centrality of X, we conclude
that ex = xe and ey = ye.

(4) ⇒ (5) Assume that X is E-hypercentral. To show that X is viable, take any
elements x, y ∈ X such that {xy, yx} ⊆ E(X). The E-hypercentrality of X ensures that

xy = xyxy = x(yx)y = (yx)xy = yx(xy) = y(xy)x = yxyx = yx.

(5) ⇒ (1) To derive a contradiction, assume that X is viable but not E-separated.
Then there exist two distinct idempotents e, f ∈ E(X) such that ⇑e = ⇑f . By Proposi-
tion 6, there are elements a, b, c, d ∈ X1 such that e = afb and f = ced. Observe that
afbe = ee = e and

(beaf)(beaf) = be(afbe)af = beeaf = beaf

and hence afbe and beaf are idempotents. The viability of X ensures that afbe = beaf .
By analogy we can prove that eafb = e = fbea, cedf = f = dfce and fced = f = edfc.
These equalities imply that He = Hf and hence e = f because the group He = Hf

contains a unique idempotent. But the equality e = f contradicts the choice of the
idempotents e, f .

(4) ⇒ (6) Assume that X is E-hypercentral. Then X is E-hypocentral. To show
that X is E-upcentral, take any idempotents e, f ∈ E(X) and any element x ∈ N

√
Hf

such that fe = e = ef . By Lemma 1, there exists a number n ≥ 2 such that xn ∈ Hf .
Let g be the inverse element to xn in the group Hf . Then

e = fe = xnge = x(xn−1ge).

The E-hypercentrality of X ensures ex = xe. �

Remark 2. Viable semigroups were introduced and studied by Putcha andWeissglass who
proved in [19, Theorem 6] that a semigroupX is viable if and only if it is E-separated (this
is the equivalence (1) ⇔ (5) in Theorem 5). For another condition (involving J-classes),
equivalent to the conditions (1)�(5) of Theorem 5, see Theorem 23.7 in [13].

Example 1. Any semigroup X with left zero multiplication xy = x is E-hypocentral and
E-upcentral. If X contains more than one element, then X is not E-hypercentral. This
example shows that condition (6) of Theorem 5 is not equivalent to conditions (1)�(5).

Remark 3. By [1], [9], there exists an in�nite 0-simple congruence-free monoid X. Being
congruence-free, the semigroup X is 2-trivial. On the other hand, X contains at least
two central idempotents: 0 and 1. The polycyclic monoids (see [3], [4], [5], [6]) have the
similar properties. By Theorem 2.4 in [3], for any cardinal λ ≥ 2 the polycyclic monoid Pλ
is congruence-free and hence 2-trivial, but its contains two distinct central idempotents
0 and 1. These examples show that individual central idempotents are not necessarily
viable. On the other hand, if all idempotents of a semigroup are central, then all of them
are viable, by Theorem 5.
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4. E-separated E-semigroups

In this section we establish some results on the structure of E-separated E-
semigroups. But �rst we show that the class of such semigroups contains all duo
semigroups and hence all commutative semigroups. Let us recall that a semigroup X is
duo if Xx = xX for all x ∈ X.

Proposition 8. Each duo semigroup X is an E-separated E-semigroup.

Proof. First we show that X is an E-semigroup. Given two idempotents e, f , use the duo
property of X to �nd elements x, y ∈ X such that ef = xe and fe = yf . Then

efef = eyff = eyf = efe = xee = xe = ef

and hence ef is an idempotent. Therefore, X is an E-semigroup.
Assuming that X is not E-separated, we can �nd an idempotent e ∈ E(X) whose

2-class me contains an idempotent f 6= e. By Proposition 5,

e ∈ XfX = XXf ⊆ Xf = fX

and
f ∈ XeX = XXe ⊆ Xe = eX.

Then eX1 ⊆ fXX1 ⊆ fX1, fX1 ⊆ eXX1 ⊆ eX1, X1e ⊆ X1Xf ⊆ X1f , and X1f ⊆
X1Xe ⊆ X1e, which implies Hf = He and hence f = e as the group He = Hf contains
a unique idempotent. �

The following theorem describing properties of E-separated E-semigroups is the
main result of this section. The statements (2), (3) of this theorem hold true for any
E-separated semigroup.

Theorem 6. Any E-separated E-semigroup X has the following properties.

(1) E(X) is a semilattice.

(2) For any idempotent e ∈ E(X) the maximal subgroup He ⊆ X is an ideal in the

semigroup ⇑e.
(3) For any e ∈ E(X) and x ∈ ⇑e we have ex = xe ∈ He;

(4) For any idempotents x, y ∈ E(X), the inequality x . y in X is equivalent to the

inequality x ≤ y in E(X).
(5) The map πm : mE(X)→ E(X) assigning to each element x ∈ mE(X) the unique

idempotent in the semigroup mx is a well-de�ned homomorphic retraction of the

semigroup mE(X) onto E(X).
(6) The map ~m : mE(X)→ H(X), ~m : x 7→ xπm(x), is a well-de�ned homomorphic

retraction of the semigroup mE(X) onto the Cli�ord part H(X) of X.

(7) The Cli�ord part H(X) is a subsemigroup of X.

Proof. Let X/m be the semilattice re�ection of X and q : X → X/m be the quotient
homomorphism.

1. To see that E(X) is a semilattice, take any idempotents x, y ∈ E(X). Since X
is an E-semigroup, the products xy and yx are idempotents. Taking into account that
q : X → X/m is a homomorphism onto the semilattice X/m, we conclude that

q(xy) = q(x)q(y) = q(y)q(x) = q(yx)
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and hence mxy = myx. Since the semigroup X is E-separated, the idempotents xy and
yx are equal to the unique idempotent of the unipotent semigroup mxy = myx and hence
xy = yx.

2,3. The statements 2 and 3 follow from Theorem 5 and Proposition 7.

4. Let x, y be two idempotents in X. If x ≤ y, then x = xy and hence

h(x) = h(x)h(y) ≤ h(y)

for any homomorphism h : X → 2. Then x . y by the de�nition of the quasiorder ..
Now assume that x . y. Multiplying this inequality by x from both sides and applying
Proposition 1, we obtain x = xx . xy . x and hence xy ∈ mx. Since X is an E-
semigroup, the product xy is an idempotent. Since the semigroup X is E-separated, the
semigroup mx is unipotent and hence the idempotent xy ∈ mx is equal to the unique
idempotent x of mx. By analogy we can prove that xy = x. The equality xy = x = yx
means that x ≤ y, by the de�nition of the partial order ≤ on the semilattice E(X).

5. Consider the map πm : mE(X) → E(X) assigning to each element x ∈ X the
unique idempotent in the unipotent semigroup mx. It is clear that πm is a retraction of
mE(X) onto E(X). Since m is a semilattice congruence, the quotient semigroup X/m is
a semilattice and the quotient map q : X → X/m is a semigroup homomorphism. By the
m-unipotence of X, the restriction

h
def
= q�E(X) : E(X)→ q[E(X)] ⊆ X/m

is bijective and hence h is a semigroup isomorphism and so is the inverse function h−1 :
q[E(X)]→ E(X). Then the function π = h−1 ◦ q�mE(X) is a semigroup homomorphism,
being a composition of two homomorphisms.

6. Since the function πm : mE(X) → E(X) is well-de�ned, so is the function ~m :
mE(X) → X, ~m : x 7→ xπm(x). To see that ~m is a homomorphism, take any elements
x, y ∈ mE(X) and applying Theorem 6(5,3), conclude that

~m(xy) = xyπm(xy) =

= xyπm(x)πm(y) =

= xπm(x)πm(y)y =

= xπm(x)yπm(y) =

= ~m(x)~m(y).

By Theorem 3, for any e ∈ E(X) and x ∈ me, the group He is an ideal in me and hence

~m(x) = xπm(x) = xe ∈ He ⊆ H(X).

If x ∈ H(X), then x ∈ He, and hence ~m(x) = xe = x. Therefore, ~m : mE(X) → H(X)
is a well-de�ned homomorphic retraction of mE(X) onto H(X).

7. Since ~m : mE(X) → X is a homomorphism, its image H(X) = ~m[mE(X)] is a
subsemigroup of X. �
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5. Characterizing E-separated π-regular E-semigroups

In this section we recognize E-separated semigroups among π-regular E-semigroups.
We recall that a semigroup X is π-regular if for every x ∈ X there exist n ∈ N and y ∈ X
such that xn = xnyxn. The class of π-regular semigroups includes all eventually Cli�ord
semigroups (called also completely π-regular semigroups). A semigroup X is eventually

Cli�ord if X = N
√
H(X). For any semigroup X by π : N

√
H(X) → E(X) we denote the

function assigning to each x ∈ N
√
H(X) the unique idempotent e ∈ E(X) such that

xN ∩He 6= ∅.

Proposition 9. If a semigroup X is E-commutative and E-upcentral, then

(1) for every e, f ∈ E(X) we have HeHf ⊆ Hef ;

(2) for every idempotents e, f ∈ E(X) with e ≤ f we have

( N
√
Hf ·He) ∪ (He · N

√
Hf ) ⊆ He;

(3) for every idempotents e, f ∈ E(X) and every elements x ∈ N
√
He and y ∈ N

√
Hf we

have (xy)nef ∈ Hef for all n ∈ N;
(4) for any x, y ∈ N

√
H(X) with xy ∈ N

√
H(X) we have π(x)π(y) ≤ π(xy);

(5) for any e ∈ E(X) and x ∈ X with {xe, ex} ⊆ N
√
H(X), we have π(xe) = π(ex);

(6) for any e ∈ E(X) and x ∈ N
√
H(X) with xe ∈ N

√
H(X) we have π(xe) = π(x)e.

Proof. 1. Let u ∈ He and v ∈ Hf . The E-upcentrality of X ensures that efu = uef and
efv = vef . Then efuv = uefv = uv, uvef = uefv = uv,

uvv−1u−1 = ufu−1 = uefu−1 = efuu−1 = efe = ef

and

v−1u−1uv = v−1ev = v−1efv = v−1vef = fef = ef.

Hence uv ∈ Hef , witnessing that HeHf ⊆ Hef .

2. For every e, f ∈ E(X) with e ≤ f and every x ∈ N
√
Hf , we have

xe = xfe ∈ N
√
Hffe ⊆ Hfe ⊆ Hfe = He,

see Theorem 4 and Proposition 9(1). By analogy we can prove that ex ∈ He.

3. Let e, f ∈ E(X) and x ∈ N
√
He, y ∈ N

√
Hf be any elements. By induction we shall

prove that (xy)nef ∈ Hef for every n ∈ N. For n = 1 we have

xyef = xefy ∈
(
N
√
He ·He

)
·
(
Hf · N

√
Hf

)
⊆ HeHf ⊆ Hef

by the E-upcentrality of X, Theorem 4 and Proposition 9(1). Assume that for some
n ∈ N we have proved that (xy)nef ∈ Hef . Then

(xy)n+1ef = xy(xy)nef ∈ xyHef = xyefHef ⊆ HefHef = Hef

by the inductive assumption and case n = 1.

4. Take any elements x, y ∈ N
√
H(X) with xy ∈ N

√
H(X). Since xy ∈ N

√
H(X), there

exists n ∈ N such that (xy)n ∈ Hπ(xy). By Proposition 9(1),

(xy)nπ(x)π(y) ∈ Hπ(xy)Hπ(x)Hπ(y) ⊆ Hπ(xy)π(x)π(y).
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On the other hand, Proposition 9(3) ensures that

(xy)nπ(x)π(y) ∈ Hπ(x)π(y).

Hence π(xy)π(x)π(y) = π(x)π(y), which means that π(x)π(y) ≤ π(xy).
5. Take any elements e ∈ E(X) and x ∈ X such that {xe, ex} ⊆ N

√
H(X). By

Lemma 1, there exists n ∈ N such that (xe)n ∈ Hπ(xe) and (ex)n ∈ Hπ(ex). Then

Hπ(xe) 3 (xe)n+1 = x(ex)ne =

= x(ex)nπ(ex)e =

= x(ex)neπ(ex) =

= (xe)n+1π(ex) ∈ Hπ(xe)π(ex) ⊆ Hπ(xe)π(ex)

and hence π(xe) = π(xe) · π(ex). By analogy we can prove that π(ex) = π(ex) · π(xe).
Then

π(xe) = π(xe)π(ex) = π(ex)π(xe) = π(ex).

6. Take any e ∈ E(X) and x ∈ N
√
H(X) with xe ∈ N

√
H(X). Find n ∈ N such that

{(xe)n, xn} ⊆ H(X). Let f
def
= π(xe) and observe that

Hf 3 (xe)n = (xe)ne ⊆ Hfe ⊆ Hfe

implies f = fe.
By induction we shall prove that (xf)k = (xe)kf . For k = 1 this follows from f = ef .

Assume that for some k ∈ N we have (xf)k = (xe)kf . By the inductive assumption and
Theorem 4,

(xf)k+1 = (xf)kxf =

= (xe)kfxef =

= (xe)kπ(xe)xef =

= (xe)kxeπ(xe)f =

= (xe)k+1ff =

= (xe)k+1f.

This completes the inductive step and also the proof of the equality (xf)k = (xe)kf for
all k ∈ N.

For k = n we obtain

(xf)n = (xe)nf ∈ Hπ(xe)f ⊆ Hπ(xe)f = Hf ,

which implies xf ∈ N
√
Hf and π(xf) = f .

By induction we shall prove that (xf)k = xkf . For k = 1 this is trivial. Assume
that for some k ∈ N we have proved that (xf)k = xkf . By the inductive assumption and
Theorem 4,

(xf)k+1 = (xf)kxf = xkfxf = xkπ(xf)xf = xkxfπ(xf) = xk+1ff = xk+1f.

This complete the inductive step and also the proof of the equality (xf)k = xkf for all
k ∈ N.
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The choice of n ensures that xn ∈ H(X) and hence xn ∈ Hπ(x) and x
n = xnπ(x).

By Proposition 9(4), π(x)e ≤ π(xe) = f and hence π(x)e = π(x)ef . Then

Hπ(x)e 3 xne = xnπ(x)e = xn(π(x)ef) = (xnπ(x))fe = xnfe = (xf)ne ∈ Hfe ⊆ Hfe

and �nally, π(x)e = fe = f = π(xe). �

Now we are able to prove the main result of this section.

Theorem 7. For a π-regular E-semigroup X, the following conditions are equivalent:

(1) me = N
√
He for every e ∈ E(X);

(2) X is E-separated;
(3) X is E-upcentral, E-hypocentral, and E-commutative.

Proof. We shall prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (1). Let q : X → X/m,
q : x 7→ mx, be the quotient homomorphism of X onto its semilattice re�ection.

(1) ⇒ (2) If me = N
√
He for every e ∈ E(X), then for every distinct idempotents

e, f ∈ E(X) we have

q(e) = me = N
√
He 6= N

√
Hf = mf = q(f),

which means that the semigroup X is E-separated.

(2) ⇒ (3) If X is E-separated, then X is E⇑-central and E-hypocentral by Theo-
rem 5. To see that X is E-commutative, take any idempotents x, y ∈ E(X). Since X is
an E-semigroup, the products xy, yx are idempotents. By Theorem 5, the E-separated
semigroup X is viable and hence xy = yx.

(3)⇒ (1) Assume that a π-regular semigroup X is E-upcentral, E-hypocentral, and
E-commutative.

Claim 1. The semigroup X is eventually Cli�ord.

Proof. Take any x ∈ X and using the π-regularity of X, �nd n ∈ N and y ∈ X such
that xn = xnyxn. It follows that e = xny and f = yxn are idempotents. Since X is
E-hypocentral, e = xny implies xne = exn or ey = ye. If xne = exn, then

f = ff = (yxn)(yxn) = y(xny)xn = yexn = yxne = fe.

If ey = ye, then

f = ff = (yxn)(yxn) = y(xny)xn = yexn = eyxn = ef = fe.

In both cases we obtain f = fe.
On the other hand, by the E-hypocentrality of X, the equality f = yxn implies

fy = yf or fxn = xnf . If fy = yf , then

e = ee = xnyxny = xnfy = xnyf = ef.

If fxn = xnf , then

e = ee = xnyxny = xnfy = fxny = fe = ef.

In both cases we obtain e = ef . Therefore, e = ef = f .
Observe that eX1 = xnyX1 ⊆ xnX1 and

xnX1 = xnyxnX1 = exnX1 ⊆ eX1
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and hence eX1 = xnX1. On the other hand,

X1xn = X1xnyxn ⊆ X1yxn = X1f = X1e

and

X1e = X1f = X1yxn ⊆ X1xn

and hence X1e = X1xn. The equalities eX1 = xnX1 and X1e = X1xn imply xn ∈ He.
Then x ∈ N

√
He ⊆ N

√
H(X). �

Since the semigroup X is eventually Cli�ord, the map π : X → E(X) is well-de�ned

on the whole semigroup X = N
√
H(X).

Claim 2. For every e ∈ E(X), the upper 2-set ⇑e is equal to the set

⇑πe
def
= {x ∈ X : e ≤ π(x)}.

Proof. Given any x ∈ ⇑πe, �nd n ∈ N such that xn ∈ Hπ(x) and conclude that e ≤
π(x) m x implies x ∈ ⇑e, by Proposition 1. Therefore, ⇑πe ⊆ ⇑e. The equality ⇑πe = ⇑e
will follow from the minimality of the prime coideal ⇑e as soon as we check that the set
⇑πe is a prime coideal in X.

By Proposition 9(4), for every x, y ∈ ⇑πe we have
e = ee ≤ π(x)π(y) ≤ π(xy)

and hence xy ∈ ⇑πe and ⇑πe is a semigroup. Next, we show that I
def
= X \ ⇑πe is an ideal

in X. Assuming that I is not an ideal, we can �nd elements x ∈ I and y ∈ X such that
xy or yx belongs to X \ I = ⇑πe. First we consider the case xy ∈ ⇑πe. By Theorem 6(2),
exy ∈ He and hence there exists an element g ∈ He such that exyg = e. Assuming that
ex ∈ ⇑πe and applying Proposition 9(6), we conclude that

e ≤ π(ex) = π(eex) = eπ(ex) ≤ e
and hence e = π(ex). Applying Proposition 9(6) once more, we conclude that

e = π(ex) = eπ(x) ≤ π(x)
and x ∈ ⇑πe, which contradicts the choice of x. Therefore, ex /∈ ⇑πe. Replacing the
elements x, y by ex and yg, we can assume that ex = x, ye = y and xy = e. Consider
the product f = yx and observe that

ff = yxyx = yex = yx = f,

which means that f is an idempotent. By the E-hypocentrality of X, the equality xy = e
implies xe = ex or ye = ey. If xe = ex, then

f = yx = yex = yxe = fe.

If ye = ey, then

f = yx = yex = eyx = ef = fe.

In both cases we conclude that f = fe. By the E-hypocentrality of X, the equality
f = yx implies fy = yf or fx = xf . If fy = yf , then

f = ef = xyf = xfy = xyxy = ee = e.
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If fx = xf , then
f = fe = fxy = xfy = xyxy = e.

In both cases we obtain e = f .
Now observe that xX1 = exX1 ⊆ eX1 and eX1 = xyX−1 ⊆ xX1, which implies

xX1 = eX1. On the other hand,

X1x = X1ex = X1xyx ⊆ X1yx = X1f = X1e

and X1e = X1f = X1yx ⊆ X1x, which implies X1x = X1e. Therefore, x ∈ He ⊆ ⇑πe,
which contradicts the choice of x. By analogy we can derive a contradiction from the
assumption yx ∈ ⇑πe. Those contradictions show that ⇑πe is a prime coideal, equal to
⇑e. �

Now we can prove that for every e ∈ E(X) its 2-class me equals N
√
He. By Proposi-

tion 2, N
√
He ⊆ me. To prove that N

√
He = me, choose any element x ∈ me. Since X is

eventually Cli�ord, there exists an idempotent f ∈ E(X) such that x ∈ N
√
Hf . Then

there exists n ∈ N such that xn ∈ Hf and hence f m xn m x m e, see Proposition 1. By
Claim 2,

f ∈ me ⊆ ⇑e = {y ∈ X : e ≤ π(y)}
and hence e ≤ f . By analogy,

e ∈ me = mf ⊆ ⇑f = {y ∈ X : f ≤ π(y)}
implies f ≤ π(e) = e. The inequalities e ≤ f and f ≤ e imply e = f and hence
x ∈ N

√
Hf = N

√
He, and �nally, me = N

√
He. �

Theorems 6 and 7 imply the following theorem describing properties of E-
hypercentral π-regular E-semigroups.

Theorem 8. Every E-separated π-regular E-semigroup X has the following properties.

(1) X is eventually Cli�ord and E(X) is a semilattice.

(2) For every idempotent e ∈ E(X) we have me = N
√
He and ⇑e = {x ∈ X : e ≤ π(x)}.

(3) For any idempotent e ∈ E(X) the maximal subgroup He ⊆ X is an ideal in the

semigroup ⇑e.
(4) For any e ∈ E(X) and x ∈ ⇑e we have ex = xe;
(5) The map π : X → E(X) is a homomorphic retraction of X onto E(X).
(6) The map ~ : X → H(X), ~ : x 7→ xπ(x), is a homomorphic retraction of X onto

its Cli�ord part H(X).
(7) The Cli�ord part H(X) is a subsemigroup of X.



32
Taras BANAKH

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 92

References

1. F. Al-Kharousi, A. J. Cain, V. Maltcev, and A. Umar, A countable family of �nitely presented

in�nite congruence-free monoids, Acta Sci. Math. (Szeged) 81 (2015), no. 3�4, 437�445.
DOI: 10.14232/actasm-013-028-z

2. T. Banakh and O. Hryniv, The binary quasiorder on semigroups, Visnyk Lviv Univ. Ser.
Mech. Math. 91 (2021), 28�39.DOI: 10.30970/vmm.2021.91.028-039

3. S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Math. Bull. Shev.
Sci. Soc. 13 (2016), 13�28.

4. S. Bardyla, On universal objects in the class of graph inverse semigroups, Eur. J. Math. 6
(2020), 4�13. DOI: 10.1007/s40879-018-0300-7

5. S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discrete Math.
21 (2016), no. 2, 163�183.

6. S. Bardyla and O. Gutik, On a complete topological inverse polycyclic monoid, Carp. Math.
Publ. 8 (2016), no. 2, 183�194. DOI: 10.15330/cmp.8.2.183-194

7. S. Bogdanovi�c and M. �Ciri�c, Primitive π-regular semigroups, Proc. Japan Acad. Ser. A
Math. Sci. 68 (1992), no. 10, 334�337.

8. S. Bogdanovi�c, M. �Ciri�c, and �Z. Popovi�c, Semilattice decompositions of semigroups, Uni-
versity of Ni�s, Ni�s, 2011, viii+321 pp.

9. A. Cain and V. Maltcev, A simple non-bisimple congruence-free �nitely presented monoid,
Semigroup Forum 90 (2015), no. 1, 184�188. DOI: 10.1007/s00233-014-9607-y

10. J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
11. M. Mitrovi�c, Semilattices of Archimedean semigroups, With a foreword by Donald B. McAli-

ster. University of Ni�s. Faculty of Mechanical Engineering, Ni�s, 2003. xiv+160 pp.
12. M. Mitrovi�c, On semilattices of Archimedean semigroup � a survey, Semigroups and

languages, World Sci. Publ., River Edge, NJ, 2004, pp. 163�195.
DOI: 10.1142/9789812702616_0010

13. M. Mitrovi�c and S. Silvestrov, Semilatice decompositions of semigroups. Hereditariness and
periodicity�an overview, Algebraic structures and applications, Springer Proc. Math. Stat.,
317, Springer, Cham, 2020, pp. 687�721. DOI: 10.1007/978-3-030-41850-2_29

14. M. Petrich, The maximal semilattice decomposition of a semigroup, Bull. Amer. Math. Soc.
69 (1963), no. 3, 342�344. DOI: 10.1090/S0002-9904-1963-10912-X

15. M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Z. 85 (1964),
68�82. DOI: 10.1007/BF01114879

16. M. Petrich and N. R. Reilly, Completely regular semigroups, A Wiley-Intersci. Publ. John
Wiley & Sons, Inc., New York, 1999.

17. �Z. Popovi�c, �S. Bogdanovi�c, and M. �Ciri�c, A note on semilattice decompositions of completely

π-regular semigroups, Novi Sad J. Math. 34 (2004), no. 2, 167�174.
18. M. Putcha, Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), no. 1,

12�34. DOI: 10.1007/BF02389104
19. M. Putcha and J. Weissglass, A semilattice decomposition into semigroups having at most

one idempotent, Paci�c J. Math. 39 (1971), 225�228. DOI: 10.2140/pjm.1971.39.225

20. R. �Sulka, The maximal semilattice decomposition of a semigroup, radicals and nilpotency,
Mat. Casopis Sloven. Akad. Vied 20 (1970), 172�180.

21. T. Tamura, The theory of construction of �nite semigroups, I, Osaka Math. J. 8 (1956),
243�261.

22. T. Tamura, Semilattice congruences viewed from quasi-orders, Proc. Amer. Math. Soc. 41
(1973), no. 1, 75�79. DOI: 10.1090/S0002-9939-1973-0333048-X



E-SEPARATED SEMIGROUPS
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 92 33

23. T. Tamura, Semilattice indecomposable semigroups with a unique idempotent, Semigroup
Forum 24 (1982), no. 1, 77�82. DOI: 10.1007/BF02572757

24. T. Tamura and N. Kimura, On decompositions of a commutative semigroup, Kodai Math.
Sem. Rep. 6 (1954), no. 4, 109�112. DOI: 10.2996/kmj/1138843534

25. T. Tamura and J. Shafer, Another proof of two decomposition theorems of semigroups, Proc.
Japan Acad. 42 (1966), no. 7, 685�687. DOI: 10.3792/pja/1195521874

Ñòàòòÿ: íàäiéøëà äî ðåäêîëåãi¨ 07.07.2021

äîîïðàöüîâàíà 31.08.2021

ïðèéíÿòà äî äðóêó 19.12.2021

E-ÂIÄÎÊÐÅÌËÞÂÀÍI ÍÀÏIÂÃÐÓÏÈ

Òàðàñ ÁÀÍÀÕ

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåòñüêà, 1, 79000, Ëüâiâ,

Jan Kochanowski University in Kielce, Poland

e-mails: t.o.banakh@gmail.com

Íàïiâãðóïà íàçèâàòüñÿ E-âiäîêðåìëþâàíîþ, ÿêùî ãîìîìîðôiçìè â
íàïiâ ðàòêè ðîçäiëÿþòü iäåìïîòåíòè íàïiâãðóïè. Îõàðàêòåðèçîâàíî E-
âiäîêðåìëþâàíi íàïiâãðóïè íà ìîâi êîìóòàòèâíèõ âëàñòèâîñòåé iäåìïî-
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