PROPERTIES OF POLYNOMIAL SOLUTIONS OF A DIFFERENTIAL EQUATION OF THE SECOND ORDER WITH POLYNOMIAL COEFFICIENTS OF THE SECOND DEGREE

Myroslav SHEREMETA, Yuriy TRUKHAN

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, Ukraine
e-mail: m.m.sheremeta@gmail.com, yurkotrukhan@gmail.com

An analytic univalent in $\mathbb{D}=\{z:|z|<1\}$ function f is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known that the condition

$$
\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0 \quad(z \in \mathbb{D})
$$

is necessary and sufficient for the convexity of f. Function f is said to be close-to-convex if there exists a convex in \mathbb{D} function Φ such that $\operatorname{Re}\left(f^{\prime}(z) / \Phi^{\prime}(z)\right)>0$ $(z \in \mathbb{D})$. Close-to-convex function f has a characteristic property that the complement G of the domain $f(\mathbb{D})$ can be filled with rays which start from ∂G and lie in G. Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f^{\prime}(0) \neq 0$.
We indicate conditions on parameters $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$ and $\alpha_{0}, \alpha_{1}, \alpha_{2}$ of the differential equation

$$
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2},
$$

under which this equation has a polynomial solution

$$
f(z)=\sum_{n=0}^{p} f_{n} z^{n} \quad(\operatorname{deg} f=p \geq 2)
$$

close-to-convex or convex in \mathbb{D} together with all its derivatives $f^{(j)}(1 \leq j \leq$ $p-1$). The results depend on equality or inequality to zero of the parameter γ_{2}.
For example, it is proved that if $p \geq 3, \gamma_{2} \neq 0$,

$$
\gamma_{0}=p \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}=0
$$

holds, this equation has a polynomial solution

$$
f(z)=\alpha_{2} / \gamma_{2}+z+\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} z^{2}+\sum_{n=3}^{p} f_{n} z^{n}
$$

where the coefficients f_{n} are defined by the equality

$$
f_{n}=\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}\right)} f_{n-1} \quad(3 \leq n \leq p)
$$

such that:

1) if $(11 p-14)\left|\beta_{0}\right| / 4+2\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right|$ and $11(p-2)\left|\beta_{0}\right| / 4 \leq 3-\left|\beta_{1}\right|$ then f is close-to-convex in \mathbb{D} together with all its derivatives $f^{(j)}(1 \leq j \leq p-1)$;
$2)$ if $(41 p-50)\left|\beta_{0}\right| / 8+4\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right|$ and $33(p-2)\left|\beta_{0}\right| / 8 \leq 3-\left|\beta_{1}\right|$ then f is convex in \mathbb{D} together with all its derivatives $f^{(j)}(1 \leq j \leq p-1)$. A similar result is obtained in the case $\gamma_{2}=0$.

Key words: linear non-homogeneous differential equation of the second order, polynomial coefficient, polynomial solution, close-to-convex function, convex function.

1. Introduction and auxiliary results

An analytic univalent in $\mathbb{D}=\{z:|z|<1\}$ function

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} f_{n} z^{n} \tag{1}
\end{equation*}
$$

is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known [1, p. 203] (see also [2, p. 8]) that the condition

$$
\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0 \quad(z \in \mathbb{D})
$$

is necessary and sufficient for the convexity of f. By W. Kaplan [3] the function f is said to be close-to-convex in \mathbb{D} (see also [1, p. 583], [2, p. 11]) if there exists a convex in \mathbb{D} function Φ such that

$$
\operatorname{Re}\left(f^{\prime}(z) / \Phi^{\prime}(z)\right)>0(z \in \mathbb{D})
$$

The close-to-convex function f has a characteristic property that the complement G of the domain $f(\mathbb{D})$ can be filled with rays which start from ∂G and lie in G. Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f^{\prime}(0) \neq 0$. Hence, it follows that the function f is close-to-convex in \mathbb{D} if and only if the function

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}, \quad g_{n}=f_{n} / f_{1} \tag{2}
\end{equation*}
$$

is close-to-convex in \mathbb{D}. We also remark that function (2) is said to be starlike if $f(\mathbb{D})$ is a starlike domain regarding the origin and the condition

$$
\operatorname{Re}\left\{z g^{\prime}(z) / g(z)\right\}>0(z \in \mathbb{D})
$$

is necessary and sufficient for the starlikeness of $g[2$, p. 9]. Clearly, every starlike function is close-to-convex.
S. M. Shah [4] indicated conditions on real parameters $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$ of the differential equation

$$
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=0
$$

under which there exists an entire transcendental solution (1) such that f and all its derivatives are close-to-convex in \mathbb{D}. The investigations are continued in the papers [5-10], but in all of this papers the case of polynomial solutions was not investigated. In the papers [11-14] properties of entire solutions of a linear differential equation of n-th order with polynomial coefficients of n-th degree are investigated. Some results from these papers are published also in monograph [2].

In [15], the equation

$$
\begin{equation*}
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2} \tag{3}
\end{equation*}
$$

is considered with real parameters and the existence and close-to-convexity of its polynomial solutions are studied. In particular, it is proved that in order that the polynomial

$$
\begin{equation*}
f(z)=\sum_{n=0}^{p} f_{n} z^{n}, \quad \operatorname{deg} f=p \geq 2 \tag{4}
\end{equation*}
$$

be a solution of the differential equation (3), it is necessary that $\gamma_{0}=p \beta_{0}+\gamma_{1}=0$. Substituting (4) into (3), we get [15]

$$
\begin{equation*}
\gamma_{2} f_{0}=\alpha_{2}, \quad\left(\beta_{1}+\gamma_{2}\right) f_{1}=\alpha_{1}+p \beta_{0} f_{0}, \quad\left(2+2 \beta_{1}+\gamma_{2}\right) f_{2}=\alpha_{0}+(p-1) \beta_{0} f_{1} \tag{5}
\end{equation*}
$$

and for $3 \leq n \leq p$

$$
\begin{equation*}
\left(n\left(n+\beta_{1}-1\right)+\gamma_{2}\right) f_{n}=(p-n+1) \beta_{0} f_{n-1} \tag{6}
\end{equation*}
$$

If we assume that $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $3 \leq n \leq p$, it allows us to rewrite the equality (6) in the form

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}} f_{n-1}, \quad 3 \leq n \leq p \tag{7}
\end{equation*}
$$

whence it follows that $f_{p}=0$, if $\beta_{0}=0$. Therefore, further we assume also that $\beta_{0} \neq 0$.
In the case of real parameters for the study of the close-to convexity of the polynomial

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{p} g_{n} z^{n} \tag{8}
\end{equation*}
$$

Alexander's criterion $[16,17]$ was used. Here we are going to consider a case of complex parameters $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}, \alpha_{0}, \alpha_{1}, \alpha_{2}$ and we will use the following lemma $[16,17]$.
Lemma 1. If $\sum_{n=2}^{p} n\left|g_{n}\right| \leq 1$ then polynomial (8) is a starlike function and if $\sum_{n=2}^{p} n^{2}\left|g_{n}\right| \leq 1$ then polynomial (8) is a convex function.

Using Lemma 1 we prove the following statement.

Lemma 2. Let $\xi_{n} \neq 0, \xi_{n}=g_{n} / g_{n-1}$ for $2 \leq n \leq p$ and

$$
\xi=\max \left\{\frac{n}{n-1}\left|\xi_{n}\right|: 3 \leq n \leq p\right\}
$$

If $2\left|g_{2}\right| \leq 1-\xi$ then polynomial (8) is a starlike function and if $4\left|g_{2}\right| \leq 1-3 \xi / 2$ then polynomial (8) is a convex function.

Proof. Since $g_{n}=\xi_{n} g_{n-1}$ for $2 \leq n \leq p$, we have

$$
\begin{aligned}
\sum_{n=2}^{p} n\left|g_{n}\right| & =\sum_{n=2}^{p} n\left|\xi_{n} \|\left|g_{n-1}\right|=\right. \\
& =\sum_{n=1}^{p-1}(n+1)\left|\xi_{n+1}\right|\left|g_{n}\right|= \\
& =2\left|g_{2}\right|+\sum_{n=2}^{p} \frac{n+1}{n}\left|\xi_{n+1}\right| n\left|g_{n}\right|, \quad \xi_{p+1}=0,
\end{aligned}
$$

i.e., $\sum_{n=2}^{p}\left(1-\frac{n+1}{n}\left|\xi_{n+1}\right|\right) n\left|g_{n}\right|=2\left|g_{2}\right|$. Since $\xi_{p+1}=0$ and $\frac{n+1}{n}\left|\xi_{n+1}\right| \leq \xi<1$ for $2 \leq n \leq p-1$, hence it follows that $(1-\xi) \sum_{n=2}^{p} n\left|g_{n}\right| \leq 2\left|g_{2}\right|$. Therefore, if $2\left|g_{2}\right| \leq 1-\xi$ then $\sum_{n=2}^{p} n\left|g_{n}\right| \leq 1$ and by Lemma 1 polynomial (8) is a starlike function.

If we put

$$
\xi^{*}=\max \left\{\left(\frac{n}{n-1}\right)^{2}\left|\xi_{n}\right|: 3 \leq n \leq p\right\}
$$

and suppose that $4\left|g_{2}\right| \leq 1-\xi^{*}$ then as above we get $\left(1-\xi^{*}\right) \sum_{n=2}^{p} n^{2}\left|g_{n}\right| \leq 4\left|g_{2}\right|$, i.e., $\sum_{n=2}^{p} n^{2}\left|g_{n}\right| \leq 1$ and by Lemma 1 polynomial (8) is a convex function. Since $\xi^{*} \leq 3 \xi / 2$, the proof of Lemma 2 is complete.

In view of (5) and (6) it is clear that the existence of convex or close-to-convex solution (4) of differential equation (3) depends on the equality to zero of the parameter γ_{2}. Therefore, we will consider two cases: $\gamma_{2} \neq 0$ and $\gamma_{2}=0$.
2. The case $\gamma_{2} \neq 0$

From the first equality (5) it follows that $f_{0}=\alpha_{2} / \gamma_{2}$, and the second equality (5) implies

$$
\left(\beta_{1}+\gamma_{2}\right) f_{1}=\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2}
$$

For the close-to-convexity of f the condition $f_{1} \neq 0$ is necessary. This condition is not necessary for the convexity of the function f, but since we are going to use Lemma 2,
then we will assume that $f_{1} \neq 0$. Therefore, from the last equality it follows that either $\beta_{1}+\gamma_{2} \neq 0$ and $\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2} \neq 0$ or $\beta_{1}+\gamma_{2}=\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2}=0$.

If $\beta_{1}+\gamma_{2} \neq 0$ and $\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2} \neq 0$ then $f_{1}=\frac{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}$, and if $2+2 \beta_{1}+\gamma_{2} \neq 0$ then from the third equality (5) we obtain

$$
f_{2}=\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} .
$$

Thus, the desired solution should be
(9) $f(z)=\frac{\alpha_{2}}{\gamma_{2}}+\frac{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)} z+\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} z^{2}+\sum_{n=3}^{p} f_{n} z^{n}$
where the coefficients f_{n} satisfy (7). The following theorem is true.
Theorem 1. Let $p \geq 3, \gamma_{2} \neq 0, \gamma_{0}=p \beta_{0}+\gamma_{1}=0, \beta_{1}+\gamma_{2} \neq 0, \alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2} \neq 0$. Then:

1) if

$$
\begin{equation*}
\frac{5 p-6}{2}\left|\beta_{0}\right|+2\left|\frac{\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}\right| \leq 2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right| \tag{10}
\end{equation*}
$$

then differential equation (3) has polynomial solution (9) close-to-convex in \mathbb{D} and if $3(p-2)\left|\beta_{0}\right| / 2 \leq 2-\left|\beta_{1}\right|-\left|\gamma_{2}\right| / 3$ all its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are close-to-convex;
2) if

$$
\begin{equation*}
\frac{19 p-22}{4}\left|\beta_{0}\right|+4\left|\frac{\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}\right| \leq 2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right| \tag{11}
\end{equation*}
$$

then differential equation (3) has polynomial solution (9) convex in \mathbb{D} and if $11(p-2)\left|\beta_{0}\right| / 4 \leq 2-\left|\beta_{1}\right|-\left|\gamma_{2}\right| / 3$ all its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are convex.
Proof. For polynomial (8) with $g_{n}=f_{n} / f_{1}$ we have

$$
g_{2}=\frac{(p-1) \beta_{0}}{2+2 \beta_{1}+\gamma_{2}}+\frac{\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\left(2+2 \beta_{1}+\gamma_{2}\right)\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)}=\xi_{2}=\xi_{2} g_{1}
$$

and since (10) implies $\left|2+2 \beta_{1}+\gamma_{2}\right| \geq 2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right|>0$, we get

$$
\begin{equation*}
\left|g_{2}\right|=\left|\xi_{2}\right| \leq \frac{1}{2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right|}\left((p-1)\left|\beta_{0}\right|+\left|\frac{\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}\right|\right) \tag{12}
\end{equation*}
$$

For $3 \leq n \leq p$ from (7) we obtain

$$
g_{n}=\frac{f_{n}}{f_{1}}=\frac{\xi_{n} f_{n-1}}{f_{1}}=\xi_{n} g_{n-1}
$$

where $\xi_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}}$ and

$$
\frac{n}{n-1}\left|\xi_{n}\right| \leq \frac{(p-n+1)\left|\beta_{0}\right|}{(n-1)\left(n-\left|\beta_{1}\right|-1-\left|\gamma_{2}\right| / n\right)} \leq \frac{(p-n+1)\left|\beta_{0}\right|}{(n-1)\left(2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right|\right)}
$$

i.e.,

$$
\begin{equation*}
\xi=\max \left\{\frac{n}{n-1}\left|\xi_{n}\right|: 3 \leq n \leq p\right\} \leq \frac{(p-2)\left|\beta_{0}\right|}{2\left(2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right|\right)} \tag{13}
\end{equation*}
$$

It is easy to check that (10), (12) and (13) imply the inequality $2\left|g_{2}\right| \leq 1-\xi$. Therefore, by Lemma 2 the polynomial g is a starlike function and, thus, function (9) is close-to-convex in \mathbb{D}.

For $1 \leq j \leq p-2$ the derivative

$$
\begin{equation*}
f^{(j)}(z)=j!f_{j}+(j+1)!f_{j+1} z+\sum_{n=2}^{p-j}(n+1)(n+2) \ldots(n+j) f_{n+j} z^{n} \tag{14}
\end{equation*}
$$

is close-to-convex in \mathbb{D} if and only if the function

$$
\begin{equation*}
g_{j}(z)=z+\sum_{n=2}^{p-j} g_{n, j} z^{n}, \quad g_{n, j}=\frac{(n+1)(n+2) \ldots(n+j) f_{n+j}}{(j+1)!f_{j+1}} \tag{15}
\end{equation*}
$$

is close-to-convex in \mathbb{D}. For $1 \leq j \leq p-2$ and $2 \leq n \leq p-j$ we have $3 \leq n+j \leq p$, and in view of (7) and (15) we get

$$
\begin{aligned}
g_{n, j} & =\frac{(n+1)(n+2) \ldots(n+j)}{(j+1)!f_{j+1}} \frac{(p-n-j+1) \beta_{0}}{(n+j)\left(n+j+\beta_{1}-1\right)+\gamma_{2}} f_{n+j-1}= \\
& =\frac{(n+1)(n+2) \ldots(n+j)}{(j+1)!f_{j+1}} \xi_{n+j} \frac{(j+1)!f_{j+1}}{n(n+1) \ldots(n+j-1)} g_{n-1, j}= \\
& =\frac{n+j}{n} \xi_{n+j} g_{n-1, j},
\end{aligned}
$$

where as above $\xi_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}}$. Therefore, to apply Lemma 2, we need to find a condition under which

$$
\begin{equation*}
2\left|g_{2, j}\right| \leq 1-\max _{3 \leq n \leq p-j} \frac{n}{n-1} \frac{n+j}{n}\left|\xi_{n+j}\right|=1-\max _{3 \leq n \leq p-j} \frac{n+j}{n-1}\left|\xi_{n+j}\right| . \tag{16}
\end{equation*}
$$

From (7) and (15) we have

$$
\begin{align*}
2\left|g_{2, j}\right| & =2 \frac{3 \ldots(j+2)\left|f_{j+2}\right|}{(j+1)!\left|f_{j+1}\right|}= \\
& =2 \frac{j+2}{2} \frac{(p-(j+2)+1)\left|\beta_{0}\right|}{\left|(j+2)\left(j+2+\beta_{1}-1\right)+\gamma_{2}\right|} \leq \tag{17}\\
& \leq \frac{(p-j-1)\left|\beta_{0}\right|}{j+1-\left|\beta_{1}\right|-\left|\gamma_{2}\right| /(j+2)}
\end{align*}
$$

and

$$
\begin{align*}
\max _{3 \leq n \leq p-j} \frac{n+j}{n-1}\left|\xi_{n+j}\right| & \leq \max _{3 \leq n \leq p-j} \frac{n+j}{n-1} \frac{(p-n-j+1)\left|\beta_{0}\right|}{\left.(n+j)\left(n+j-\left|\beta_{1}\right|-1\right)-\left|\gamma_{2}\right|\right)} \leq \\
& \leq \max _{3 \leq n \leq p-j} \frac{1}{n-1} \frac{(p-n-j+1)\left|\beta_{0}\right|}{n+j-\left|\beta_{1}\right|-1-\left|\gamma_{2}\right| /(n+j)} \leq \tag{18}\\
& \leq \frac{1}{2} \frac{(p-j-1)\left|\beta_{0}\right|}{j+1-\left|\beta_{1}\right|-\left|\gamma_{2}\right| /(j+2)} .
\end{align*}
$$

From (17) and (18) it follows that if

$$
\begin{equation*}
3(p-j-1)\left|\beta_{0}\right| / 2 \leq j+1-\left|\beta_{1}\right|-\left|\gamma_{2}\right| /(2+j) \tag{19}
\end{equation*}
$$

for $1 \leq j \leq p-2$ then (16) holds and by Lemma 2 the derivative $f^{(j)}$ for $1 \leq j \leq p-2$ is close-to-convex in \mathbb{D}.

Finally, we remark that (19) holds for all $1 \leq j \leq p-2$ if

$$
3(p-2)\left|\beta_{0}\right| / 2 \leq 2-\left|\beta_{1}\right|-\left|\gamma_{2}\right| / 3
$$

Since $f^{(p-1)}$ is a linear function and, thus, it is close-to-convex, the first part of Theorem 1 is proved.

If condition (11) holds then from (12) and (13) we obtain the inequality $4\left|g_{2}\right| \leq$ $\leq 1-3 \xi / 2$, and by Lemma 2 polynomial (9) is a convex function.

If

$$
\begin{equation*}
\frac{11(p-j-1)\left|\beta_{0}\right|}{4} \leq j+1-\left|\beta_{1}\right|-\left|\gamma_{2}\right| /(2+j) \tag{20}
\end{equation*}
$$

for some $1 \leq j \leq p-2$ then (17) and (18) imply

$$
4\left|g_{2, j}\right| \leq 1-\frac{3}{2} \max _{3 \leq n \leq p-j} \frac{n+j}{n-1}\left|\xi_{n+j}\right|
$$

Therefore, by Lemma 2 function (15) is convex and, thus, function (14) is convex. Finally, we remark that (20) holds for all $1 \leq j \leq p-2$ if $11(p-2)\left|\beta_{0}\right| / 4 \leq 2-\left|\beta_{1}\right|-\left|\gamma_{2}\right| / 3$. The proof of Theorem 1 is complete.

Now suppose that $\beta_{1}+\gamma_{2}=\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2}=0$. Then from the second equality (5) it follows that f_{1} may be arbitrary. If we choose $f_{1}=1$ then under the condition $2+\beta_{1} \neq 0$ in view of the third equality (5) we get $f_{2}=\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}}$. From (7) under the condition $n+\beta_{1} \neq 0$ we obtain

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}\right)} f_{n-1}, \quad 3 \leq n \leq p \tag{21}
\end{equation*}
$$

Thus, the desired solution has the form

$$
\begin{equation*}
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+z+\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{22}
\end{equation*}
$$

where the coefficients f_{n} satisfy (21), and we will come to such a theorem.
Theorem 2. Let $p \geq 3, \gamma_{2} \neq 0, \gamma_{0}=p \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}=0$. Then:

1) if

$$
\begin{equation*}
\frac{11 p-14}{4}\left|\beta_{0}\right|+2\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right| \tag{23}
\end{equation*}
$$

then differential equation (3) has polynomial solution (22) close-to-convex in \mathbb{D} and if $9(p-2)\left|\beta_{0}\right| / 4 \leq 3-\left|\beta_{1}\right|$ all its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are close-to-convex;
2) if

$$
\begin{equation*}
\frac{41 p-50}{8}\left|\beta_{0}\right|+4\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right| \tag{24}
\end{equation*}
$$

then differential equation (3) has polynomial solution (22) convex in \mathbb{D} and if $33(p-2)\left|\beta_{0}\right| / 8 \leq 3-\left|\beta_{1}\right|$ all its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are convex.

Proof. For polynomial (8) with $g_{n}=f_{n}$ for $1 \leq n \leq p$ now we have

$$
\begin{equation*}
\left|g_{2}\right|=\left|\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}}\right| \leq \frac{\left|\alpha_{0}\right|+(p-1)\left|\beta_{0}\right|}{2-\left|\beta_{1}\right|} \tag{25}
\end{equation*}
$$

and in view of (21)

$$
\begin{align*}
\xi & \leq \max _{3 \leq n \leq p} \frac{n}{n-1} \frac{(p-n+1)\left|\beta_{0}\right|}{(n-1)\left(n-\left|\beta_{1}\right|\right)} \leq \\
& \leq \frac{3(p-2)\left|\beta_{0}\right|}{4\left(3-\left|\beta_{1}\right|\right)}< \tag{26}\\
& <\frac{3(p-2)\left|\beta_{0}\right|}{4\left(2-\left|\beta_{1}\right|\right)} .
\end{align*}
$$

From (23), (25) and (26) it follows that $2\left|g_{2}\right| \leq 1-\xi$. Then by Lemma 2 the function g is starlike and, thus, function (22) is close-to-convex.

If (24) holds then using (25), (26) and Lemma 2 similarly we prove the convexity of polynomial (22).

Let us turn to the derivative $f^{(j)}, 1 \leq j \leq p-2$. For the coefficients $g_{n, j}$ of function (15) now in view of (21) we have

$$
\begin{aligned}
g_{n, j} & =\frac{n+j}{n} \xi_{n+j} g_{n-1, j}= \\
& =\frac{n+j}{n} \frac{(p-n-j+1) \beta_{0}}{(n+j-1)\left(n+j+\beta_{1}\right)} g_{n-1, j} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|g_{2, j}\right| \leq \frac{2+j}{2} \frac{(p-j-1)\left|\beta_{0}\right|}{(j+1)\left(j+2-\left|\beta_{1}\right|\right)} \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
\max _{3 \leq n \leq p} \frac{n+j}{n-1}\left|\xi_{n+j}\right| & \leq \max _{3 \leq n \leq p} \frac{n+j}{n-1} \frac{(p-n-j+1)\left|\beta_{0}\right|}{(n+j-1)\left(n+j-\left|\beta_{1}\right|\right)} \leq \tag{28}\\
& \leq \frac{1}{2} \frac{(2+j)(p-j-1)\left|\beta_{0}\right|}{(j+1)\left(2+j-\left|\beta_{1}\right|\right)} .
\end{align*}
$$

If for some $1 \leq j \leq p-2$

$$
\begin{equation*}
3(2+j)(p-j-1)\left|\beta_{0}\right| / 2 \leq(j+1)\left(j+2-\left|\beta_{1}\right|\right) \tag{29}
\end{equation*}
$$

then (27) and (28) imply

$$
2\left|g_{2, j}\right| \leq 1-\max _{3 \leq n \leq p} \frac{n+j}{n-1}\left|\xi_{n+j}\right|
$$

and by Lemma $2 f^{(j)}$ is close-to-convex in \mathbb{D}.

If for some $1 \leq j \leq p-2$

$$
\begin{equation*}
11(2+j)(p-j-1)\left|\beta_{0}\right| / 4 \leq(j+1)\left(j+2-\left|\beta_{1}\right|\right) \tag{30}
\end{equation*}
$$

then (27) and (28) imply

$$
4\left|g_{2, j}\right| \leq 1-\frac{3}{2} \max _{3 \leq n \leq p} \frac{n+j}{n-1}\left|\xi_{n+j}\right|
$$

and by Lemma $2 f^{(j)}$ is convex in \mathbb{D}.
Finally, we remark that (29) holds for all $1 \leq j \leq p-2$ if $9(p-2)\left|\beta_{0}\right| / 4 \leq 3-\left|\beta_{1}\right|$, and (30) holds for all $1 \leq j \leq p-2$ if $33(p-2)\left|\beta_{0}\right| / 8 \leq 3-\left|\beta_{1}\right|$. Theorem 2 is proved.

3. The case $\gamma_{2}=0$

From first equality (5) it follows that $\alpha_{2}=0$ and f_{0} may be arbitrary. If we choose $f_{0}=0$ then from (5) and (7) we get

$$
\begin{equation*}
\beta_{1} f_{1}=\alpha_{1}, \quad 2\left(1+\beta_{1}\right) f_{2}=\alpha_{0}+(p-1) \beta_{0} f_{1} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)} f_{n-1}, \quad 3 \leq n \leq p \tag{32}
\end{equation*}
$$

Since we consider $f_{1} \neq 0$, from the first equality (31) it follows that either $\beta_{1} \neq 0$ and $\alpha_{1} \neq 0$ or $\beta_{1}=\alpha_{1}=0$. If $\beta_{1} \neq 0$ and $\alpha_{1} \neq 0$ then $f_{1}=\frac{\alpha_{1}}{\beta_{1}}$ and

$$
f_{2}=\frac{\alpha_{0} \beta_{1}+(p-1) \alpha_{1} \beta_{0}}{2 \beta_{1}\left(1+\beta_{1}\right)}
$$

Thus, the desired solution has the form

$$
\begin{equation*}
f(z)=\frac{\alpha_{1}}{\beta_{1}} z+\frac{\alpha_{0} \beta_{1}+(p-1) \alpha_{1} \beta_{0}}{2 \beta_{1}\left(1+\beta_{1}\right)} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{33}
\end{equation*}
$$

where the coefficients f_{n} satisfy (32), and we will come to the following theorem.
Theorem 3. Let $p \geq 3, \gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+p \beta_{0}=0, \beta_{1} \neq 0$ and $\alpha_{1} \neq 0$. Then:

1) if

$$
\begin{equation*}
\frac{3 p-4}{2}\left|\beta_{0}\right|+\left|\frac{\alpha_{0} \beta_{1}}{\alpha_{1}}\right| \leq 1-\left|\beta_{1}\right| \tag{34}
\end{equation*}
$$

then differential equation (3) has polynomial solution (33) close-to-convex in \mathbb{D} and if $3(p-2)\left|\beta_{0}\right| / 2 \leq 2-\left|\beta_{1}\right|$ all its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are close-to-convex;
2) if

$$
\begin{equation*}
\frac{11 p-14}{4}\left|\beta_{0}\right|+2\left|\frac{\alpha_{0} \beta_{1}}{\alpha_{1}}\right| \leq 1-\left|\beta_{1}\right| \tag{35}
\end{equation*}
$$

then differential equation (3) has polynomial solution (33) convex in \mathbb{D} and if $11(p-2)\left|\beta_{0}\right| / 4 \leq 2-\left|\beta_{1}\right|$ all its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are convex.

The proof of this theorem is the same as proofs those of the previous theorems. We remark only that now $\left|g_{2}\right| \leq \frac{\left|\alpha_{0}\right|\left|\beta_{1}\right|+(p-1)\left|\alpha_{1}\right|\left|\beta_{0}\right|}{2\left|\alpha_{1}\right|\left(1-\left|\beta_{1}\right|\right)}, \xi_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)}$ and $\xi \leq \frac{(p-2)\left|\beta_{0}\right|}{2\left(1-\left|\beta_{1}\right|\right)}$, whence it follows that $2\left|g_{2}\right| \leq 1-\xi$ if (34) holds and $4\left|g_{2}\right| \leq 1-3 \xi / 2$ if (35) holds. For some $1 \leq j \leq p-1$ as above we have $g_{n, j}=\frac{n+j}{n} \xi_{n+j} g_{n-1, j}$, where now

$$
\xi_{n+j}=\frac{(p-n-j+1) \beta_{0}}{(n+j)\left(n+j-\beta_{1}-1\right)}
$$

whence $\left|g_{2, j}\right| \leq \frac{(p-j-1)\left|\beta_{0}\right|}{2\left(j+1-\left|\beta_{1}\right|\right)}$ and

$$
\xi:=\max _{3 \leq n \leq p} \frac{n+j}{n-1}\left|\xi_{n+j}\right| \leq \frac{(p-j-1)\left|\beta_{0}\right|}{2\left(j+1-\left|\beta_{1}\right|\right)} .
$$

Therefore, $2\left|g_{2, j}\right| \leq 1-\xi$ if $3(p-j-1)\left|\beta_{0}\right| / 2 \leq j+1-\left|\beta_{1}\right|$ and $4\left|g_{2, j}\right| \leq 1-3 \xi / 2$ if $11(p-j-1)\left|\beta_{0}\right| / 4 \leq j+1-\left|\beta_{1}\right|$. It remains to notice that the last conditions hold for all $1 \leq j \leq p-1$ provided $3(p-2)\left|\beta_{0}\right| / 2 \leq 2-\left|\beta_{1}\right|$ and $11(p-2)\left|\beta_{0}\right| / 4 \leq$ $\leq 2-\left|\beta_{1}\right|$ respectively and use Lemma 2.

If $\beta_{1}=\alpha_{1}=0$ from (31) it follows that f_{1} may be arbitrary. If we choose $f_{1}=1$ then $f_{2}=\frac{\alpha_{0}+(p-1) \beta_{0}}{2}$ and

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{n(n-1)} f_{n-1}, \quad 3 \leq n \leq p \tag{36}
\end{equation*}
$$

Therefore, the desired solution has the form

$$
\begin{equation*}
f(z)=z+\frac{\alpha_{0}+(p-1) \beta_{0}}{2} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{37}
\end{equation*}
$$

where the coefficients f_{n} satisfy (36), and we will come to the following theorem.
Theorem 4. Let $p \geq 3, \gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+p \beta_{0}=\beta_{1}=\alpha_{1}=0$. Then:

1) if $(5 p-6)\left|\beta_{0}\right| / 4+\left|\alpha_{0}\right| \leq 1$ then differential equation (3) has polynomial solution (37) close-to-convex in \mathbb{D} and if $3(p-2)\left|\beta_{0}\right| \leq 4$ all its derivatives $f^{(j)}(1 \leq j \leq$ $p-1)$ are close-to-convex in \mathbb{D};
2) if $(19 p-22)\left|\beta_{0}\right| / 8+2\left|\alpha_{0}\right| \leq 1$ then differential equation (3) has polynomial solution (37) convex in \mathbb{D} and if $11(p-2)\left|\beta_{0}\right| \leq 8$ all its derivatives $f^{(j)}(1 \leq$ $j \leq p-1)$ are convex in \mathbb{D}.
Proof. Choosing $g_{n}=f_{n}$, we have $2\left|g_{2}\right| \leq(p-1)\left|\beta_{0}\right|+\left|\alpha_{0}\right|$ and $\xi \leq(p-2)\left|\beta_{0}\right| / 4$. Therefore, in view of the condition $(5 p-6)\left|\beta_{0}\right| / 4+\left|\alpha_{0}\right| \leq 1$ we get $2\left|g_{2}\right| \leq 1-\xi$ and, thus, polynomial (37) is starlike. Also in view on the condition $(19 p-22)\left|\beta_{0}\right| / 8+2\left|\alpha_{0}\right| \leq 1$ we get $4\left|g_{2}\right| \leq 1-3 \xi / 2$, i. e. polynomial (37) is convex.

Similarly, for some $1 \leq j \leq p-1$ we have $2\left|g_{2, j}\right| \leq \frac{(p-j-1)\left|\beta_{0}\right|}{j+1}$ and

$$
\xi=\max _{3 \leq n \leq p} \frac{n+j}{n-1}\left|\xi_{n+j}\right| \leq \frac{(p-j-1)\left|\beta_{0}\right|}{2(j+1)}
$$

whence $2\left|g_{2, j}\right| \leq 1-\xi$ if $3(p-j-1)\left|\beta_{0}\right| \leq 2(j+1)$ and $4\left|g_{2, j}\right| \leq 1-3 \xi / 2$ if $11(p-j-1)\left|\beta_{0}\right| \leq$ $4(j+1)$. Since the last conditions hold if $3(p-2)\left|\beta_{0}\right| \leq 4$ and $11(p-2)\left|\beta_{0}\right| \leq 8$ respectively, Theorem 4 is proved.

4. Additions

First of all, we note that the condition $p \geq 3$ is not essential in Theorems 1-4. Repeating their proofs, one can prove for $p=2$ the following statements.

Proposition 1. Let $\gamma_{2} \neq 0, \gamma_{0}=2 \beta_{0}+\gamma_{1}=0, \beta_{1}+\gamma_{2} \neq 0, \alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2} \neq 0$. Then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+\frac{\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)} z+\frac{\beta_{0}\left(\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} z^{2}
$$

which is close-to-convex if the condition

$$
2\left|\beta_{0}\right|+2\left|\frac{\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}}\right| \leq 2-2\left|\beta_{1}\right|-\left|\gamma_{2}\right|
$$

holds, and convex in \mathbb{D} if the condition

$$
4 \beta_{0}|+4| \frac{\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}}|\leq 2-2| \beta_{1}\left|-\left|\gamma_{2}\right|\right.
$$

holds.
Proposition 2. Let $\gamma_{2} \neq 0, \gamma_{0}=2 \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}=0$. Then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+z+\frac{\alpha_{0}+\beta_{0}}{2+\beta_{1}} z^{2}
$$

which is close-to-convex if the condition $2\left|\beta_{0}\right|+2\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right|$ holds, and convex in \mathbb{D} if the condition $4\left|\beta_{0}\right|+4\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right|$ holds.

Proposition 3. Let $\gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+2 \beta_{0}=, \beta_{1} \neq 0$ and $\alpha_{1} \neq 0$. Then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{1}}{\beta_{1}} z+\frac{\alpha_{0} \beta_{1}+\alpha_{1} \beta_{0}}{2 \beta_{1}\left(1+\beta_{1}\right)} z^{2}
$$

which is starlike if the condition $\left|\beta_{0}\right|+\left|\alpha_{0} \beta_{1} / \alpha_{1}\right| \leq 1-\left|\beta_{1}\right|$ holds, and convex in \mathbb{D} if the condition $2\left|\beta_{0}\right|+2\left|\alpha_{0} \beta_{1} / \alpha_{1}\right| \leq 1-\left|\beta_{1}\right|$ holds.

Proposition 4. Let $\gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+2 \beta_{0}=\beta_{1}=\alpha_{1}=0$. Then differential equation (3) has a polynomial solution

$$
f(z)=z+\frac{\alpha_{0}+\beta_{0}}{2} z^{2}
$$

which is starlike if the condition $\left|\beta_{0}\right|+\left|\alpha_{0}\right| \leq 1$ holds, and convex in \mathbb{D} if the condition $2\left|\beta_{0}\right|+2\left|\alpha_{0}\right| \leq 1$ holds.

Recall that before obtaining the above results we demanded the fulfillment of conditions $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $3 \leq n \leq p$ and $\beta_{0} \neq 0$. Here we suppose that $\beta_{0}=0$. Then the equality $\gamma_{0}=p \beta_{0}+\gamma_{1}=0$ implies $\gamma_{0}=\gamma_{1}=0$, and thus, from (5) and (7) we get

$$
\begin{equation*}
\gamma_{2} f_{0}=\alpha_{2}, \quad\left(\beta_{1}+\gamma_{2}\right) f_{1}=\alpha_{1}, \quad\left(2+2 \beta_{1}+\gamma_{2}\right) f_{2}=\alpha_{0} \tag{38}
\end{equation*}
$$

and for $3 \leq n \leq p$

$$
\begin{equation*}
\left(n\left(n+\beta_{1}-1\right)+\gamma_{2}\right) f_{n}=0 . \tag{39}
\end{equation*}
$$

From (39) it follows that if $p\left(p+\beta_{1}-1\right)+\gamma_{2}=0$ then $f_{p} \neq 0$ may be arbitrary. Two cases are possible:

1) $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $3 \leq n<p$ or $p=3$; and
2) there is only one $3 \leq p_{1}<p$ such that $p_{1}\left(p_{1}+\beta_{1}-1\right)+\gamma_{2}=0$.

In the first case we have

$$
f(z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{p} z^{p}
$$

for $p \geq 3$. If $\gamma_{2} \neq 0$ from (38) we obtain

$$
\begin{equation*}
f_{0}=\frac{\alpha_{2}}{\gamma_{2}}, \quad f_{1}=\frac{\alpha_{1}}{\beta_{1}+\gamma_{2}}, \quad f_{2}=\frac{\alpha_{0}}{2+2 \beta_{1}+\gamma_{2}} . \tag{40}
\end{equation*}
$$

To use Lemma 1 , we need to choose $f_{p} \neq 0$ so that $2\left|f_{2} / f_{1}\right|+p\left|f_{p} / f_{1}\right| \leq 1$, i. e.

$$
\begin{equation*}
2\left|\alpha_{0} /\left(2+2 \beta_{1}+\gamma_{2}\right)\right|+p\left|f_{p}\right| \leq\left|\alpha_{1} /\left(\beta_{1}+\gamma_{2}\right)\right| \tag{41}
\end{equation*}
$$

(clearly, this is possible if $\left.2\left|\alpha_{0} /\left(2+2 \beta_{1}+\gamma_{2}\right)\right|<\left|\alpha_{1} /\left(\beta_{1}+\gamma_{2}\right)\right|\right)$. If $\gamma_{2}=0$ then $\alpha_{2}=0$ and coefficient f_{0} can be chosen equal to zero. Then

$$
\begin{equation*}
f_{0}=0, \quad f_{1}=\alpha_{1} / \beta_{1}, \quad f_{2}=\alpha_{0} /\left(2+2 \beta_{1}\right) \tag{42}
\end{equation*}
$$

and we need to choose $f_{p} \neq 0$ so that

$$
\begin{equation*}
\left|\alpha_{0} /\left(1+\beta_{1}\right)\right|+p\left|f_{p}\right| \leq\left|\alpha_{1} / \beta_{1}\right| \tag{43}
\end{equation*}
$$

(this is possible if $\left|\alpha_{0} /\left(1+\beta_{1}\right)\right|<\left|\alpha_{1} / \beta_{1}\right|$).
Thus, the following statement is valid.
Proposition 5. Let $\beta_{0}=\gamma_{0}=\gamma_{1}=0$, and (39) holds only for $n=p \geq 3$. Then differential equation (3) has a polynomial solution

$$
f(z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{p} z^{p}
$$

close-to-convex in \mathbb{D} provided either $\gamma_{2} \neq 0, \alpha_{1} \neq 0$ and the coefficients are defined by (40) and (41) or $\gamma_{2}=0, \alpha_{1} \neq 0$ and the coefficients are defined by (42) and (43).

Remark 1. If in Proposition 5 conditions (41) and (43) are replaced by the conditions

$$
4\left|\alpha_{0} /\left(2+2 \beta_{1}+\gamma_{2}\right)\right|+p^{2}\left|f_{p}\right| \leq\left|\alpha_{1} /\left(\beta_{1}+\gamma_{2}\right)\right|
$$

and

$$
2\left|\alpha_{0} /\left(1+\beta_{1}\right)\right|+p^{2}\left|f_{p}\right| \leq\left|\alpha_{1} / \beta_{1}\right|
$$

respectively then close-to-convexity should be replaced by convexity.

If $p>3, p\left(p+\beta_{1}-1\right)+\gamma_{2}=0$ and $p_{1}\left(p_{1}+\beta_{1}-1\right)+\gamma_{2}=0$ for some $3 \leq p_{1}<p$ then if $\gamma_{2} \neq 0$ from (38) we obtain (40) and we choose $f_{p_{1}} \neq 0, f_{p} \neq 0$ so that

$$
\begin{equation*}
2\left|\alpha_{0} /\left(2+2 \beta_{1}+\gamma_{2}\right)\right|+p_{1}\left|f_{p_{1}}\right|+p\left|f_{p}\right| \leq\left|\alpha_{1} /\left(\beta_{1}+\gamma_{2}\right)\right| . \tag{44}
\end{equation*}
$$

If $\gamma_{2}=0$ then from (38) we obtain (42) and we choose $f_{p_{1}} \neq 0, f_{p} \neq 0$ so that

$$
\begin{equation*}
\left|\alpha_{0} /\left(1+\beta_{1}\right)\right|+p_{1}\left|f_{p_{1}}\right|+p\left|f_{p}\right| \leq\left|\alpha_{1} / \beta_{1}\right| \tag{45}
\end{equation*}
$$

Proposition 6. Let $\beta_{0}=\gamma_{0}=\gamma_{1}=0$, and (39) holds for $n=p_{1}$ and $n=p \geq 4$, $3 \leq p_{1}<p$. Then differential equation (3) has a polynomial solution

$$
f(z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{p_{1}} z^{p_{1}}+f_{p} z^{p}
$$

close-to-convex in \mathbb{D} provided either $\gamma_{2} \neq 0, \alpha_{1} \neq 0$ and the coefficients are defined by (40) and (44) or $\gamma_{2}=\alpha_{2}=0, \alpha_{1} \neq 0$ and the coefficients are defined by (42) and (45).

Remark 2. If in Proposition 6 conditions (44) and (45) replaced by the conditions

$$
4\left|\alpha_{0} /\left(2+2 \beta_{1}+\gamma_{2}\right)\right|+p_{1}^{2}\left|f_{p_{1}}\right|+p^{2}\left|f_{p}\right| \leq\left|\alpha_{1} /\left(\beta_{1}+\gamma_{2}\right)\right|
$$

and

$$
2\left|\alpha_{0} /\left(1+\beta_{1}\right)\right|+p_{1}^{2}\left|f_{p_{1}}\right|+p^{2}\left|f_{p}\right| \leq\left|\alpha_{1} / \beta_{1}\right|
$$

respectively then close-to-convexity should be replaced by convexity.

References

1. G. M. Golusin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, 1969.
2. M. M. Sheremeta, Geometric properties of analytic solutions of differential equations, Publisher I. E. Chyzhykov, Lviv, 2019.
3. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), no. 2, 169-185. DOI: $10.1307 / \mathrm{mmj} / 1028988895$
4. S. M. Shah, Univalence of a function f and its successive derivatives when f satisfies a differential equation, II, J. Math. Anal. Appl. 142 (1989), no. 2, 422-430. DOI: 10.1016/0022-247X(89)90011-5
5. Z. M. Sheremeta, Close-to-convexity of entire solutions of a differential equation, Mat. Metody Fiz.-Mekh. Polya 42 (1999), no. 3, 31-35 (in Ukrainian).
6. З. М. Шеремета, О свойствах целых решений одного дифференциалвного уравнения, Дифференц. уравнения 36 (2000), no. 8, 1045-1050; English version: Z. M. Sheremeta, The properties of entire solutions of one differential equation, Differ. Equ. 36 (2000), no. 8, 1155-1161. DOI: $10.1007 /$ BF02754183
7. Z. M. Sheremeta, On entire solutions of a differential equation, Mat. Stud. 14 (2000), no. 1, 54-58.
8. Z. M. Sheremeta, On the close-to-convexity of entire solutions of a differential equation, Visn. L'viv. Univ., Ser. Mekh.-Mat. 58 (2000), 54-56 (in Ukrainian).
9. З. М. Шеремета, М. Н. Шеремета, Близость к выпуклости целых решений одного дифференииалъного уравнения, Дифференц. уравнения 38 (2002), no. 4, 477-481; English version: Z. M. Sheremeta and M. N. Sheremeta, Closeness to convexity for entire solutions of a differential equation, Differ. Equ. 38 (2002), no. 4, 496-501. DOI: 10.1023/A:1016355531151
10. Z. M. Sheremeta and M. M. Sheremeta, Convexity of entire solutions of one differential equation, Mat. Metody Fiz.-Mekh. Polya 47 (2004), no. 2, 186-191 (in Ukrainian).
11. Ya. S. Mahola and M. M. Sheremeta, Properties of entire solutions of a linear differential equation of n-th order with polynomial coefficients of n-th degree, Mat. Stud. 30 (2008), no. 2, 153-162.
12. Ya. S. Mahola and M. M. Sheremeta, Close-to-convexity of entire solution of a linear differential equation with polynomial coefficients, Visn. L'viv. Univ., Ser. Mekh.-Mat. 70 (2009), 122-127 (in Ukrainian).
13. Я. С. Магола, М. М. Шеремета, Про властивості иілих розв'лзків лінійних диференціалъних рівнянь з поліноміалъними коефічієнтами, Мат. методи фіз.-мех. поля 53 (2010), no. 4, 62-74; English version: Ya. S. Magola and M. M. Sheremeta, On properties of entire solutions of linear differential equations with polynomial coefficients, J. Math. Sci. (New York) 181 (2012), no. 3, 366-382. DOI: 10.1007/s10958-012-0691-9
14. Ya. S. Mahola, On entire solutions with two-member reccurent formula for Taylor coefficients of linear differential equation, Mat. Stud. 36 (2011), no. 2, 133-141.
15. M. M. Sheremeta and Yu. S. Trukhan, Close-to-convexity of polynomial solutions of a differential equation of the second order with polynomial coefficients of the second degree, Visnyk L'viv Univ. Ser. Mekh.-Mat. 90 (2020), 92-104. DOI: $10.30970 / \mathrm{vmm} .2020 .90 .092-104$
16. J. F. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. (2) $\mathbf{1 7}$ (1915), no. 1, 12-22. DOI: 10.2307/2007212.
17. A. W. Goodman, Univalent function, Vol. II, Mariner Publishing Co., 1983.

Стаття: надійшла до редколегії 31.01.2021
прийнята до друку 18.05.2021

ВЛАСТИВОСТІ ПОЛІНОМІАЛЬНИХ РОЗВ'ЯЗКІВ ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ДРУГОГО ПОРЯДКУ З ПОЛННОМІАЛЬНИМИ КОЕФІЦІЄНТАМИ ДРУГОГО СТЕПЕНЯ

Мирослав ШЕРЕМЕТА, Юрій ТРУХАН
Лъвівсъкий націоналъний університет імені Івана Франка, вул. Університетська 1, 79000, м. Львів
e-mail: m.m.sheremeta@gmail.com, yurkotrukhan@gmail.com

Аналітична однолиста в $\mathbb{D}=\{z:|z|<1\}$ функція f називається опуклою, якщо $f(\mathbb{D})$ - опукла область. Добре відомо, що умова

$$
\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0 \quad(z \in \mathbb{D})
$$

ϵ необхідною і достатньою для опуклості f. Функція f називається близькою до опуклої, якщо існує така опукла в \mathbb{D} функція Φ, що

$$
\operatorname{Re}\left(f^{\prime}(z) / \Phi^{\prime}(z)\right)>0 \quad(z \in \mathbb{D})
$$

Близька до опуклої функція f характеризується тим, що доповнення G до області $f(\mathbb{D})$ можна покрити променями, які виходять з ∂G і лежать в G. Кожна близька до опуклої в \mathbb{D} функція f є однолистою в \mathbb{D} і тому
$f^{\prime}(0) \neq 0$.
Знайдено умови на параметри $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$ i $\alpha_{0}, \alpha_{1}, \alpha_{2}$ диференціального рівняння

$$
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2},
$$

за яких це рівняння має поліноміальний розв'язок

$$
f(z)=\sum_{n=0}^{p} f_{n} z^{n} \quad(\operatorname{deg} f=p \geq 2)
$$

близький до опуклого або опуклий в \mathbb{D} разом з усіма його похідними $f^{(j)}$ ($1 \leq j \leq p-1$). Результати залежать від рівності чи нерівності нулеві параметра γ_{2}.
Наприклад, доведено, що за умов $p \geq 3, \gamma_{2} \neq 0$,

$$
\gamma_{0}=p \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}=0 .
$$

це рівняння має поліноміальний розв'язок

$$
f(z)=\alpha_{2} / \gamma_{2}+z+\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} z^{2}+\sum_{n=3}^{p} f_{n} z^{n},
$$

де коефіцієнти f_{n} визначаються рівністю

$$
f_{n}=\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}\right)} f_{n-1} \quad(3 \leq n \leq p)
$$

такий що:

1) якщо $(11 p-14)\left|\beta_{0}\right| / 4+2\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right|$ i $11(p-2)\left|\beta_{0}\right| / 4 \leq 3-\left|\beta_{1}\right|$, то $f \epsilon$ близьким до опуклого в \mathbb{D} разом з усіма його похідними $f^{(\bar{j})}(1 \leq j \leq p-1)$; 2) якщо $(73 p-82)\left|\beta_{0}\right| / 16+4\left|\alpha_{0}\right| \leq 2-\left|\beta_{1}\right|$ і $33(p-2)\left|\beta_{0}\right| / 8 \leq 3-\left|\beta_{1}\right|$, то f ϵ опуклим в \mathbb{D} разом з усіма його похідними $f^{(j)}(1 \leq j \leq p-1)$.
Подібний результат отримано й у випадку $\gamma_{2}=0$.
Ключові слова: лінійне неоднорідне диференціальне рівняння другого порядку, поліноміальні коефіцієнти, поліноміальний розв'язок, близька до опуклої функція, опукла функція.
