УДК 517.926.4+517.546.1

PROPERTIES OF POLYNOMIAL SOLUTIONS OF A DIFFERENTIAL EQUATION OF THE SECOND ORDER WITH POLYNOMIAL COEFFICIENTS OF THE SECOND DEGREE

Myroslav SHEREMETA, Yuriy TRUKHAN

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, Ukraine e-mail: m.m.sheremeta@gmail.com, yurkotrukhan@gmail.com

An analytic univalent in $\mathbb{D} = \{z : |z| < 1\}$ function f is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known that the condition

Re
$$\{1 + zf''(z)/f'(z)\} > 0$$
 $(z \in \mathbb{D})$

is necessary and sufficient for the convexity of f. Function f is said to be closeto-convex if there exists a convex in \mathbb{D} function Φ such that $\operatorname{Re}(f'(z)/\Phi'(z))>0$ $(z \in \mathbb{D})$. Close-to-convex function f has a characteristic property that the complement G of the domain $f(\mathbb{D})$ can be filled with rays which start from ∂G and lie in G. Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f'(0) \neq 0$.

We indicate conditions on parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 and α_0 , α_1 , α_2 of the differential equation

 $z^{2}w'' + (\beta_{0}z^{2} + \beta_{1}z)w' + (\gamma_{0}z^{2} + \gamma_{1}z + \gamma_{2})w = \alpha_{0}z^{2} + \alpha_{1}z + \alpha_{2},$

under which this equation has a polynomial solution

$$f(z) = \sum_{n=0}^{p} f_n z^n \quad (\deg f = p \ge 2)$$

close-to-convex or convex in \mathbb{D} together with all its derivatives $f^{(j)}$ $(1 \leq j \leq p-1)$. The results depend on equality or inequality to zero of the parameter γ_2 .

For example, it is proved that if $p \ge 3$, $\gamma_2 \ne 0$,

$$\gamma_0 = p\beta_0 + \gamma_1 = \beta_1 + \gamma_2 = \alpha_1\gamma_2 + p\beta_0\alpha_2 = 0$$

 $[\]texttt{2020 Mathematics Subject Classification: 34M05, 30B10, 30C45}$

[©] Sheremeta, M., Trukhan, Yu., 2021

holds, this equation has a polynomial solution

$$f(z) = \alpha_2/\gamma_2 + z + \frac{\alpha_0 + (p-1)\beta_0}{2+\beta_1}z^2 + \sum_{n=3}^p f_n z^n$$

where the coefficients f_n are defined by the equality

$$f_n = \frac{(p-n+1)\beta_0}{(n-1)(n+\beta_1)} f_{n-1} \qquad (3 \le n \le p).$$

such that:

1) if $(11p - 14)|\beta_0|/4 + 2|\alpha_0| \leq 2 - |\beta_1|$ and $11(p - 2)|\beta_0|/4 \leq 3 - |\beta_1|$ then f is close-to-convex in \mathbb{D} together with all its derivatives $f^{(j)}$ $(1 \leq j \leq p - 1)$; 2) if $(41p - 50)|\beta_0|/8 + 4|\alpha_0| \leq 2 - |\beta_1|$ and $33(p - 2)|\beta_0|/8 \leq 3 - |\beta_1|$ then f is convex in \mathbb{D} together with all its derivatives $f^{(j)}$ $(1 \leq j \leq p - 1)$. A similar result is obtained in the case $\gamma_2 = 0$.

Key words: linear non-homogeneous differential equation of the second order, polynomial coefficient, polynomial solution, close-to-convex function, convex function.

1. INTRODUCTION AND AUXILIARY RESULTS

An analytic univalent in $\mathbb{D} = \{z : |z| < 1\}$ function

(1)
$$f(z) = \sum_{n=0}^{\infty} f_n z^n$$

is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known [1, p. 203] (see also [2, p. 8]) that the condition

$$\operatorname{Re} \{1 + zf''(z)/f'(z)\} > 0 \quad (z \in \mathbb{D})$$

is necessary and sufficient for the convexity of f. By W. Kaplan [3] the function f is said to be close-to-convex in \mathbb{D} (see also [1, p. 583], [2, p. 11]) if there exists a convex in \mathbb{D} function Φ such that

$$\operatorname{Re}\left(f'(z)/\Phi'(z)\right) > 0 \, (z \in \mathbb{D}).$$

The close-to-convex function f has a characteristic property that the complement G of the domain $f(\mathbb{D})$ can be filled with rays which start from ∂G and lie in G. Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f'(0) \neq 0$. Hence, it follows that the function f is close-to-convex in \mathbb{D} if and only if the function

(2)
$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n, \quad g_n = f_n / f_1,$$

is close-to-convex in \mathbb{D} . We also remark that function (2) is said to be starlike if $f(\mathbb{D})$ is a starlike domain regarding the origin and the condition

$$\operatorname{Re}\left\{zg'(z)/g(z)\right\} > 0 \ (z \in \mathbb{D})$$

is necessary and sufficient for the starlikeness of g [2, p. 9]. Clearly, every starlike function is close-to-convex.

S. M. Shah [4] indicated conditions on real parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 of the differential equation

$$z^{2}w'' + (\beta_{0}z^{2} + \beta_{1}z)w' + (\gamma_{0}z^{2} + \gamma_{1}z + \gamma_{2})w = 0,$$

under which there exists an entire transcendental solution (1) such that f and all its derivatives are close-to-convex in \mathbb{D} . The investigations are continued in the papers [5–10], but in all of this papers the case of polynomial solutions was not investigated. In the papers [11–14] properties of entire solutions of a linear differential equation of n-th order with polynomial coefficients of n-th degree are investigated. Some results from these papers are published also in monograph [2].

In [15], the equation

(3)
$$z^2 w'' + (\beta_0 z^2 + \beta_1 z) w' + (\gamma_0 z^2 + \gamma_1 z + \gamma_2) w = \alpha_0 z^2 + \alpha_1 z + \alpha_2 z^2 + \alpha_1 z^2 + \alpha_2 z^2 + \alpha_2 z^2 + \alpha_1 z^2 + \alpha_2 z^2$$

is considered with real parameters and the existence and close-to-convexity of its polynomial solutions are studied. In particular, it is proved that in order that the polynomial

(4)
$$f(z) = \sum_{n=0}^{p} f_n z^n, \quad \deg f = p \ge 2,$$

be a solution of the differential equation (3), it is necessary that $\gamma_0 = p\beta_0 + \gamma_1 = 0$. Substituting (4) into (3), we get [15]

(5)
$$\gamma_2 f_0 = \alpha_2$$
, $(\beta_1 + \gamma_2) f_1 = \alpha_1 + p\beta_0 f_0$, $(2 + 2\beta_1 + \gamma_2) f_2 = \alpha_0 + (p - 1)\beta_0 f_1$
and for $3 \le n \le n$

and for $3 \le n \le p$

(6)
$$(n(n+\beta_1-1)+\gamma_2)f_n = (p-n+1)\beta_0 f_{n-1}.$$

If we assume that $n(n + \beta_1 - 1) + \gamma_2 \neq 0$ for all $3 \leq n \leq p$, it allows us to rewrite the equality (6) in the form

(7)
$$f_n = \frac{(p-n+1)\beta_0}{n(n+\beta_1-1)+\gamma_2} f_{n-1}, \quad 3 \le n \le p,$$

whence it follows that $f_p = 0$, if $\beta_0 = 0$. Therefore, further we assume also that $\beta_0 \neq 0$.

In the case of real parameters for the study of the close-to convexity of the polynomial

(8)
$$g(z) = z + \sum_{n=2}^{p} g_n z^n,$$

Alexander's criterion [16,17] was used. Here we are going to consider a case of complex parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 , α_0 , α_1 , α_2 and we will use the following lemma [16,17].

Lemma 1. If
$$\sum_{n=2}^{p} n|g_n| \leq 1$$
 then polynomial (8) is a starlike function and if $\sum_{n=2}^{p} n^2|g_n| \leq 1$ then polynomial (8) is a convex function

then polynomial (8) is a convex function.

Using Lemma 1 we prove the following statement.

 $\mathbf{74}$

Lemma 2. Let $\xi_n \neq 0$, $\xi_n = g_n/g_{n-1}$ for $2 \le n \le p$ and

$$\xi = \max\left\{\frac{n}{n-1}|\xi_n|: \ 3 \le n \le p\right\}.$$

If $2|g_2| \leq 1 - \xi$ then polynomial (8) is a starlike function and if $4|g_2| \leq 1 - 3\xi/2$ then polynomial (8) is a convex function.

Proof. Since $g_n = \xi_n g_{n-1}$ for $2 \le n \le p$, we have

$$\begin{split} \sum_{n=2}^{p} n|g_{n}| &= \sum_{n=2}^{p} n|\xi_{n}||g_{n-1}| = \\ &= \sum_{n=1}^{p-1} (n+1)|\xi_{n+1}||g_{n}| = \\ &= 2|g_{2}| + \sum_{n=2}^{p} \frac{n+1}{n}|\xi_{n+1}|n|g_{n}|, \qquad \xi_{p+1} = 0, \end{split}$$

i.e.,
$$\sum_{n=2}^{p} \left(1 - \frac{n+1}{n}|\xi_{n+1}|\right) n|g_{n}| = 2|g_{2}|. \text{ Since } \xi_{p+1} = 0 \text{ and } \frac{n+1}{n}|\xi_{n+1}| \le \xi < 0$$

 $2 \le n \le p-1$, hence it follows that $(1-\xi) \sum_{n=2}^{p} n|g_n| \le 2|g_2|$. Therefore, if $2|g_2| \le 1-\xi$

then $\sum_{\substack{n=2\\\text{If we put}}}^{p} n|g_n| \leq 1$ and by Lemma 1 polynomial (8) is a starlike function.

$$\xi^* = \max\left\{ \left(\frac{n}{n-1}\right)^2 |\xi_n| : \ 3 \le n \le p \right\}$$

and suppose that $4|g_2| \leq 1 - \xi^*$ then as above we get $(1 - \xi^*) \sum_{n=2}^p n^2 |g_n| \leq 4|g_2|$, i.e., $\sum_{n=2}^p n^2 |g_n| \leq 1$ and by Lemma 1 polynomial (8) is a convex function. Since $\xi^* \leq 3\xi/2$,

the proof of Lemma 2 is complete.

In view of (5) and (6) it is clear that the existence of convex or close-to-convex solution (4) of differential equation (3) depends on the equality to zero of the parameter γ_2 . Therefore, we will consider two cases: $\gamma_2 \neq 0$ and $\gamma_2 = 0$.

2. The case $\gamma_2 \neq 0$

From the first equality (5) it follows that $f_0 = \alpha_2/\gamma_2$, and the second equality (5) implies

$$(\beta_1 + \gamma_2)f_1 = \alpha_1 + p\beta_0\alpha_2/\gamma_2.$$

For the close-to-convexity of f the condition $f_1 \neq 0$ is necessary. This condition is not necessary for the convexity of the function f, but since we are going to use Lemma 2,

1 for

 \Box

then we will assume that $f_1 \neq 0$. Therefore, from the last equality it follows that either

 $\beta_1 + \gamma_2 \neq 0 \text{ and } \alpha_1 + p\beta_0\alpha_2/\gamma_2 \neq 0 \text{ or } \beta_1 + \gamma_2 = \alpha_1 + p\beta_0\alpha_2/\gamma_2 = 0.$ If $\beta_1 + \gamma_2 \neq 0$ and $\alpha_1 + p\beta_0\alpha_2/\gamma_2 \neq 0$ then $f_1 = \frac{\alpha_1\gamma_2 + p\beta_0\alpha_2}{\gamma_2(\beta_1 + \gamma_2)}$, and if $2 + 2\beta_1 + \gamma_2 \neq 0$

then from the third equality (5) we obtain

$$f_2 = \frac{(p-1)\beta_0(\alpha_1\gamma_2 + p\beta_0\alpha_2) + \alpha_0\gamma_2(\beta_1 + \gamma_2)}{\gamma_2(\beta_1 + \gamma_2)(2 + 2\beta_1 + \gamma_2)}$$

Thus, the desired solution should be

(9)
$$f(z) = \frac{\alpha_2}{\gamma_2} + \frac{\alpha_1 \gamma_2 + p\beta_0 \alpha_2}{\gamma_2 (\beta_1 + \gamma_2)} z + \frac{(p-1)\beta_0 (\alpha_1 \gamma_2 + p\beta_0 \alpha_2) + \alpha_0 \gamma_2 (\beta_1 + \gamma_2)}{\gamma_2 (\beta_1 + \gamma_2) (2 + 2\beta_1 + \gamma_2)} z^2 + \sum_{n=3}^p f_n z^n$$

where the coefficients f_n satisfy (7). The following theorem is true.

Theorem 1. Let $p \ge 3$, $\gamma_2 \ne 0$, $\gamma_0 = p\beta_0 + \gamma_1 = 0$, $\beta_1 + \gamma_2 \ne 0$, $\alpha_1\gamma_2 + p\beta_0\alpha_2 \ne 0$. Then:

1) if

(10)
$$\frac{5p-6}{2}|\beta_0| + 2\left|\frac{\alpha_0\gamma_2(\beta_1+\gamma_2)}{\alpha_1\gamma_2+p\beta_0\alpha_2}\right| \le 2-2|\beta_1|-|\gamma_2|$$

then differential equation (3) has polynomial solution (9) close-to-convex in \mathbb{D} and if $3(p-2)|\beta_0|/2 \le 2 - |\beta_1| - |\gamma_2|/3$ all its derivatives $f^{(j)}$ $(1 \le j \le p-1)$ are close-to-convex;

2) if

(11)
$$\frac{19p - 22}{4}|\beta_0| + 4\left|\frac{\alpha_0\gamma_2(\beta_1 + \gamma_2)}{\alpha_1\gamma_2 + p\beta_0\alpha_2}\right| \le 2 - 2|\beta_1| - |\gamma_2|$$

then differential equation (3) has polynomial solution (9) convex in \mathbb{D} and if $11(p-2)|\beta_0|/4 \le 2 - |\beta_1| - |\gamma_2|/3$ all its derivatives $f^{(j)}$ $(1 \le j \le p-1)$ are convex.

Proof. For polynomial (8) with $g_n = f_n/f_1$ we have

$$g_2 = \frac{(p-1)\beta_0}{2+2\beta_1+\gamma_2} + \frac{\alpha_0\gamma_2(\beta_1+\gamma_2)}{(2+2\beta_1+\gamma_2)(\alpha_1\gamma_2+p\beta_0\alpha_2)} = \xi_2 = \xi_2 g_1,$$

and since (10) implies $|2 + 2\beta_1 + \gamma_2| \ge 2 - 2|\beta_1| - |\gamma_2| > 0$, we get

(12)
$$|g_2| = |\xi_2| \le \frac{1}{2 - 2|\beta_1| - |\gamma_2|} \left((p-1)|\beta_0| + \left| \frac{\alpha_0 \gamma_2 (\beta_1 + \gamma_2)}{\alpha_1 \gamma_2 + p \beta_0 \alpha_2} \right| \right).$$

For $3 \le n \le p$ from (7) we obtain

$$g_n = \frac{f_n}{f_1} = \frac{\xi_n f_{n-1}}{f_1} = \xi_n g_{n-1},$$

where $\xi_n = \frac{(p-n+1)\beta_0}{n(n+\beta_1-1)+\gamma_2}$ and

$$\frac{n}{n-1}|\xi_n| \leq \frac{(p-n+1)|\beta_0|}{(n-1)(n-|\beta_1|-1-|\gamma_2|/n)} \leq \frac{(p-n+1)|\beta_0|}{(n-1)(2-2|\beta_1|-|\gamma_2|)}$$

i.e.,

(13)
$$\xi = \max\left\{\frac{n}{n-1}|\xi_n|: 3 \le n \le p\right\} \le \frac{(p-2)|\beta_0|}{2(2-2|\beta_1|-|\gamma_2|)}.$$

It is easy to check that (10), (12) and (13) imply the inequality $2|g_2| \leq 1-\xi$. Therefore, by Lemma 2 the polynomial g is a starlike function and, thus, function (9) is close-to-convex in \mathbb{D} .

For $1 \leq j \leq p-2$ the derivative

(14)
$$f^{(j)}(z) = j!f_j + (j+1)!f_{j+1}z + \sum_{n=2}^{p-j} (n+1)(n+2)\dots(n+j)f_{n+j}z^n$$

is close-to-convex in $\mathbb D$ if and only if the function

(15)
$$g_j(z) = z + \sum_{n=2}^{p-j} g_{n,j} z^n, \qquad g_{n,j} = \frac{(n+1)(n+2)\dots(n+j)f_{n+j}}{(j+1)!f_{j+1}},$$

is close-to-convex in D. For $1 \le j \le p-2$ and $2 \le n \le p-j$ we have $3 \le n+j \le p$, and in view of (7) and (15) we get

$$g_{n,j} = \frac{(n+1)(n+2)\dots(n+j)}{(j+1)!f_{j+1}} \frac{(p-n-j+1)\beta_0}{(n+j)(n+j+\beta_1-1)+\gamma_2} f_{n+j-1} = = \frac{(n+1)(n+2)\dots(n+j)}{(j+1)!f_{j+1}} \xi_{n+j} \frac{(j+1)!f_{j+1}}{n(n+1)\dots(n+j-1)} g_{n-1,j} = = \frac{n+j}{n} \xi_{n+j} g_{n-1,j},$$

where as above $\xi_n = \frac{(p-n+1)\beta_0}{n(n+\beta_1-1)+\gamma_2}$. Therefore, to apply Lemma 2, we need to find a condition under which

(16)
$$2|g_{2,j}| \le 1 - \max_{3 \le n \le p-j} \frac{n}{n-1} \frac{n+j}{n} |\xi_{n+j}| = 1 - \max_{3 \le n \le p-j} \frac{n+j}{n-1} |\xi_{n+j}|.$$

From (7) and (15) we have

(17)

$$2|g_{2,j}| = 2\frac{3\dots(j+2)|f_{j+2}|}{(j+1)!|f_{j+1}|} = 2\frac{j+2}{2}\frac{(p-(j+2)+1)|\beta_0|}{|(j+2)(j+2+\beta_1-1)+\gamma_2|} \le \frac{(p-j-1)|\beta_0|}{j+1-|\beta_1|-|\gamma_2|/(j+2)}$$

 and

(18)

$$\max_{3 \le n \le p-j} \frac{n+j}{n-1} |\xi_{n+j}| \le \max_{3 \le n \le p-j} \frac{n+j}{n-1} \frac{(p-n-j+1)|\beta_0|}{(n+j)(n+j-|\beta_1|-1)-|\gamma_2|)} \le \\
\le \max_{3 \le n \le p-j} \frac{1}{n-1} \frac{(p-n-j+1)|\beta_0|}{n+j-|\beta_1|-1-|\gamma_2|/(n+j)} \le \\
\le \frac{1}{2} \frac{(p-j-1)|\beta_0|}{j+1-|\beta_1|-|\gamma_2|/(j+2)}.$$

From (17) and (18) it follows that if

(19)
$$3(p-j-1)|\beta_0|/2 \le j+1-|\beta_1|-|\gamma_2|/(2+j)$$

for $1 \leq j \leq p-2$ then (16) holds and by Lemma 2 the derivative $f^{(j)}$ for $1 \leq j \leq p-2$ is close-to-convex in \mathbb{D} .

Finally, we remark that (19) holds for all $1 \le j \le p-2$ if

$$3(p-2)|\beta_0|/2 \le 2 - |\beta_1| - |\gamma_2|/3.$$

Since $f^{(p-1)}$ is a linear function and, thus, it is close-to-convex, the first part of Theorem 1 is proved.

If condition (11) holds then from (12) and (13) we obtain the inequality $4|g_2| \le \le 1 - 3\xi/2$, and by Lemma 2 polynomial (9) is a convex function. If

(20)
$$\frac{11(p-j-1)|\beta_0|}{4} \le j+1-|\beta_1|-|\gamma_2|/(2+j)$$

for some $1 \le j \le p-2$ then (17) and (18) imply

$$4|g_{2,j}| \le 1 - \frac{3}{2} \max_{3 \le n \le p-j} \frac{n+j}{n-1} |\xi_{n+j}|.$$

Therefore, by Lemma 2 function (15) is convex and, thus, function (14) is convex. Finally, we remark that (20) holds for all $1 \le j \le p-2$ if $11(p-2)|\beta_0|/4 \le 2-|\beta_1|-|\gamma_2|/3$. The proof of Theorem 1 is complete.

Now suppose that $\beta_1 + \gamma_2 = \alpha_1 + p\beta_0\alpha_2/\gamma_2 = 0$. Then from the second equality (5) it follows that f_1 may be arbitrary. If we choose $f_1 = 1$ then under the condition $2 + \beta_1 \neq 0$ in view of the third equality (5) we get $f_2 = \frac{\alpha_0 + (p-1)\beta_0}{2 + \beta_1}$. From (7) under the condition $n + \beta_1 \neq 0$ we obtain

(21)
$$f_n = \frac{(p-n+1)\beta_0}{(n-1)(n+\beta_1)} f_{n-1}, \quad 3 \le n \le p.$$

Thus, the desired solution has the form

(22)
$$f(z) = \frac{\alpha_2}{\gamma_2} + z + \frac{\alpha_0 + (p-1)\beta_0}{2+\beta_1} z^2 + \sum_{n=3}^p f_n z^n,$$

where the coefficients f_n satisfy (21), and we will come to such a theorem.

Theorem 2. Let $p \ge 3$, $\gamma_2 \ne 0$, $\gamma_0 = p\beta_0 + \gamma_1 = \beta_1 + \gamma_2 = \alpha_1\gamma_2 + p\beta_0\alpha_2 = 0$. Then: 1) if

(23)
$$\frac{11p - 14}{4}|\beta_0| + 2|\alpha_0| \le 2 - |\beta_1|$$

then differential equation (3) has polynomial solution (22) close-to-convex in \mathbb{D} and if $9(p-2)|\beta_0|/4 \leq 3 - |\beta_1|$ all its derivatives $f^{(j)}$ $(1 \leq j \leq p-1)$ are close-to-convex;

 $\mathbf{78}$

2) *if*

(24)
$$\frac{41p - 50}{8}|\beta_0| + 4|\alpha_0| \le 2 - |\beta_1|$$

then differential equation (3) has polynomial solution (22) convex in \mathbb{D} and if $33(p-2)|\beta_0|/8 \leq 3 - |\beta_1|$ all its derivatives $f^{(j)}$ $(1 \leq j \leq p-1)$ are convex.

Proof. For polynomial (8) with $g_n = f_n$ for $1 \le n \le p$ now we have

(25)
$$|g_2| = \left|\frac{\alpha_0 + (p-1)\beta_0}{2+\beta_1}\right| \le \frac{|\alpha_0| + (p-1)|\beta_0|}{2-|\beta_1|}$$

and in view of (21)

(26)
$$\xi \leq \max_{3 \leq n \leq p} \frac{n}{n-1} \frac{(p-n+1)|\beta_0|}{(n-1)(n-|\beta_1|)} \leq \frac{3(p-2)|\beta_0|}{4(3-|\beta_1|)} < \frac{3(p-2)|\beta_0|}{4(2-|\beta_1|)}.$$

From (23), (25) and (26) it follows that $2|g_2| \leq 1 - \xi$. Then by Lemma 2 the function g is starlike and, thus, function (22) is close-to-convex.

If (24) holds then using (25), (26) and Lemma 2 similarly we prove the convexity of polynomial (22).

Let us turn to the derivative $f^{(j)}$, $1 \le j \le p-2$. For the coefficients $g_{n,j}$ of function (15) now in view of (21) we have

$$g_{n,j} = \frac{n+j}{n} \xi_{n+j} g_{n-1,j} =$$

= $\frac{n+j}{n} \frac{(p-n-j+1)\beta_0}{(n+j-1)(n+j+\beta_1)} g_{n-1,j}$

Therefore,

(27)
$$|g_{2,j}| \le \frac{2+j}{2} \frac{(p-j-1)|\beta_0|}{(j+1)(j+2-|\beta_1|)}$$

 and

(28)
$$\max_{3 \le n \le p} \frac{n+j}{n-1} |\xi_{n+j}| \le \max_{3 \le n \le p} \frac{n+j}{n-1} \frac{(p-n-j+1)|\beta_0|}{(n+j-1)(n+j-|\beta_1|)} \le \frac{1}{2} \frac{(2+j)(p-j-1)|\beta_0|}{(j+1)(2+j-|\beta_1|)}.$$

If for some $1 \le j \le p - 2$ (29) 3(2 + 1)

$$3(2+j)(p-j-1)|\beta_0|/2 \le (j+1)(j+2-|\beta_1|)$$

then (27) and (28) imply

$$2|g_{2,j}| \le 1 - \max_{3 \le n \le p} \frac{n+j}{n-1} |\xi_{n+j}|$$

and by Lemma 2 $f^{(j)}$ is close-to-convex in \mathbb{D} .

If for some $1 \le j \le p-2$

$$11(2+j)(p-j-1)|\beta_0|/4 \le (j+1)(j+2-|\beta_1|)$$

then (27) and (28) imply

$$4|g_{2,j}| \le 1 - \frac{3}{2} \max_{3 \le n \le p} \frac{n+j}{n-1} |\xi_{n+j}|$$

and by Lemma 2 $f^{(j)}$ is convex in \mathbb{D} .

Finally, we remark that (29) holds for all $1 \le j \le p-2$ if $9(p-2)|\beta_0|/4 \le 3-|\beta_1|$, and (30) holds for all $1 \le j \le p-2$ if $33(p-2)|\beta_0|/8 \le 3-|\beta_1|$. Theorem 2 is proved. \Box

3. The case $\gamma_2 = 0$

From first equality (5) it follows that $\alpha_2 = 0$ and f_0 may be arbitrary. If we choose $f_0 = 0$ then from (5) and (7) we get

(31)
$$\beta_1 f_1 = \alpha_1, \qquad 2(1+\beta_1)f_2 = \alpha_0 + (p-1)\beta_0 f_1$$

 and

(32)
$$f_n = \frac{(p-n+1)\beta_0}{n(n+\beta_1-1)} f_{n-1}, \qquad 3 \le n \le p.$$

Since we consider $f_1 \neq 0$, from the first equality (31) it follows that either $\beta_1 \neq 0$ and $\alpha_1 \neq 0$ or $\beta_1 = \alpha_1 = 0$. If $\beta_1 \neq 0$ and $\alpha_1 \neq 0$ then $f_1 = \frac{\alpha_1}{\beta_1}$ and

$$f_2 = \frac{\alpha_0 \beta_1 + (p-1)\alpha_1 \beta_0}{2\beta_1 (1+\beta_1)}.$$

Thus, the desired solution has the form

(33)
$$f(z) = \frac{\alpha_1}{\beta_1} z + \frac{\alpha_0 \beta_1 + (p-1)\alpha_1 \beta_0}{2\beta_1 (1+\beta_1)} z^2 + \sum_{n=3}^p f_n z^n,$$

where the coefficients f_n satisfy (32), and we will come to the following theorem.

Theorem 3. Let $p \ge 3$, $\gamma_2 = \alpha_2 = \gamma_0 = \gamma_1 + p\beta_0 = 0$, $\beta_1 \ne 0$ and $\alpha_1 \ne 0$. Then: 1) if

(34)
$$\frac{3p-4}{2}|\beta_0| + \left|\frac{\alpha_0\beta_1}{\alpha_1}\right| \le 1 - |\beta_1|$$

then differential equation (3) has polynomial solution (33) close-to-convex in \mathbb{D} and if $3(p-2)|\beta_0|/2 \leq 2 - |\beta_1|$ all its derivatives $f^{(j)}$ $(1 \leq j \leq p-1)$ are close-to-convex;

$$2)$$
 if

(35)
$$\frac{11p - 14}{4}|\beta_0| + 2\left|\frac{\alpha_0\beta_1}{\alpha_1}\right| \le 1 - |\beta_1|$$

then differential equation (3) has polynomial solution (33) convex in \mathbb{D} and if $11(p-2)|\beta_0|/4 \leq 2 - |\beta_1|$ all its derivatives $f^{(j)}$ $(1 \leq j \leq p-1)$ are convex.

80

(30)

The proof of this theorem is the same as proofs those of the previous theorems. We remark only that now $|g_2| \leq \frac{|\alpha_0||\beta_1| + (p-1)|\alpha_1||\beta_0|}{2|\alpha_1|(1-|\beta_1|)}, \ \xi_n = \frac{(p-n+1)\beta_0}{n(n+\beta_1-1)}$ and $\xi \leq \frac{(p-2)|\beta_0|}{2(1-|\beta_1|)}$, whence it follows that $2|g_2| \leq 1-\xi$ if (34) holds and $4|g_2| \leq 1-3\xi/2$ if (35) holds. For some $1 \leq j \leq p-1$ as above we have $g_{n,j} = \frac{n+j}{n} \xi_{n+j} g_{n-1,j}$, where now

$$\xi_{n+j} = \frac{(p-n-j+1)\beta_0}{(n+j)(n+j-\beta_1-1)}$$

whence $|g_{2,j}| \le \frac{(p-j-1)|\beta_0|}{2(j+1-|\beta_1|)}$ and

$$\xi := \max_{3 \le n \le p} \frac{n+j}{n-1} |\xi_{n+j}| \le \frac{(p-j-1)|\beta_0|}{2(j+1-|\beta_1|)}.$$

Therefore, $2|g_{2,j}| \leq 1-\xi$ if $3(p-j-1)|\beta_0|/2 \leq j+1-|\beta_1|$ and $4|g_{2,j}| \leq 1-3\xi/2$ if $11(p-j-1)|\beta_0|/4 \leq j+1-|\beta_1|$. It remains to notice that the last conditions hold for all $1 \leq j \leq p-1$ provided $3(p-2)|\beta_0|/2 \leq 2-|\beta_1|$ and $11(p-2)|\beta_0|/4 \leq 2-|\beta_1|$ respectively and use Lemma 2.

If $\beta_1 = \alpha_1 = 0$ from (31) it follows that f_1 may be arbitrary. If we choose $f_1 = 1$ then $f_2 = \frac{\alpha_0 + (p-1)\beta_0}{2}$ and

(36)
$$f_n = \frac{(p-n+1)\beta_0}{n(n-1)} f_{n-1}, \quad 3 \le n \le p.$$

Therefore, the desired solution has the form

(37)
$$f(z) = z + \frac{\alpha_0 + (p-1)\beta_0}{2}z^2 + \sum_{n=3}^p f_n z^n$$

where the coefficients f_n satisfy (36), and we will come to the following theorem.

Theorem 4. Let $p \ge 3$, $\gamma_2 = \alpha_2 = \gamma_0 = \gamma_1 + p\beta_0 = \beta_1 = \alpha_1 = 0$. Then:

- 1) if $(5p-6)|\beta_0|/4 + |\alpha_0| \le 1$ then differential equation (3) has polynomial solution (37) close-to-convex in \mathbb{D} and if $3(p-2)|\beta_0| \le 4$ all its derivatives $f^{(j)}$ $(1 \le j \le p-1)$ are close-to-convex in \mathbb{D} ;
- 2) if $(19p 22)|\beta_0|/8 + 2|\alpha_0| \leq 1$ then differential equation (3) has polynomial solution (37) convex in \mathbb{D} and if $11(p-2)|\beta_0| \leq 8$ all its derivatives $f^{(j)}$ $(1 \leq j \leq p-1)$ are convex in \mathbb{D} .

Proof. Choosing $g_n = f_n$, we have $2|g_2| \leq (p-1)|\beta_0| + |\alpha_0|$ and $\xi \leq (p-2)|\beta_0|/4$. Therefore, in view of the condition $(5p-6)|\beta_0|/4 + |\alpha_0| \leq 1$ we get $2|g_2| \leq 1-\xi$ and, thus, polynomial (37) is starlike. Also in view on the condition $(19p-22)|\beta_0|/8+2|\alpha_0| \leq 1$ we get $4|g_2| \leq 1-3\xi/2$, i. e. polynomial (37) is convex.

Similarly, for some $1 \le j \le p-1$ we have $2|g_{2,j}| \le \frac{(p-j-1)|\beta_0|}{j+1}$ and $\xi = \max_{3 \le n \le p} \frac{n+j}{n-1} |\xi_{n+j}| \le \frac{(p-j-1)|\beta_0|}{2(j+1)},$ whence $2|g_{2,j}| \le 1-\xi$ if $3(p-j-1)|\beta_0| \le 2(j+1)$ and $4|g_{2,j}| \le 1-3\xi/2$ if $11(p-j-1)|\beta_0| \le 4(j+1)$. Since the last conditions hold if $3(p-2)|\beta_0| \le 4$ and $11(p-2)|\beta_0| \le 8$ respectively, Theorem 4 is proved.

4. Additions

First of all, we note that the condition $p \ge 3$ is not essential in Theorems 1 - 4. Repeating their proofs, one can prove for p = 2 the following statements.

Proposition 1. Let $\gamma_2 \neq 0$, $\gamma_0 = 2\beta_0 + \gamma_1 = 0$, $\beta_1 + \gamma_2 \neq 0$, $\alpha_1\gamma_2 + 2\beta_0\alpha_2 \neq 0$. Then differential equation (3) has a polynomial solution

$$f(z) = \frac{\alpha_2}{\gamma_2} + \frac{\alpha_1 \gamma_2 + 2\beta_0 \alpha_2}{\gamma_2 (\beta_1 + \gamma_2)} z + \frac{\beta_0 (\alpha_1 \gamma_2 + 2\beta_0 \alpha_2) + \alpha_0 \gamma_2 (\beta_1 + \gamma_2)}{\gamma_2 (\beta_1 + \gamma_2) (2 + 2\beta_1 + \gamma_2)} z^2$$

which is close-to-convex if the condition

$$2|\beta_0| + 2\left|\frac{\alpha_0\gamma_2(\beta_1 + \gamma_2)}{\alpha_1\gamma_2 + 2\beta_0\alpha_2}\right| \le 2 - 2|\beta_1| - |\gamma_2|$$

holds, and convex in \mathbb{D} if the condition

$$4\beta_0| + 4 \left| \frac{\alpha_0 \gamma_2(\beta_1 + \gamma_2)}{\alpha_1 \gamma_2 + 2\beta_0 \alpha_2} \right| \le 2 - 2|\beta_1| - |\gamma_2|$$

holds.

Proposition 2. Let $\gamma_2 \neq 0$, $\gamma_0 = 2\beta_0 + \gamma_1 = \beta_1 + \gamma_2 = \alpha_1\gamma_2 + 2\beta_0\alpha_2 = 0$. Then differential equation (3) has a polynomial solution

$$f(z) = \frac{\alpha_2}{\gamma_2} + z + \frac{\alpha_0 + \beta_0}{2 + \beta_1} z^2$$

which is close-to-convex if the condition $2|\beta_0| + 2|\alpha_0| \le 2 - |\beta_1|$ holds, and convex in \mathbb{D} if the condition $4|\beta_0| + 4|\alpha_0| \le 2 - |\beta_1|$ holds.

Proposition 3. Let $\gamma_2 = \alpha_2 = \gamma_0 = \gamma_1 + 2\beta_0 =$, $\beta_1 \neq 0$ and $\alpha_1 \neq 0$. Then differential equation (3) has a polynomial solution

$$f(z) = \frac{\alpha_1}{\beta_1} z + \frac{\alpha_0 \beta_1 + \alpha_1 \beta_0}{2\beta_1 (1 + \beta_1)} z^2$$

which is starlike if the condition $|\beta_0| + |\alpha_0\beta_1/\alpha_1| \le 1 - |\beta_1|$ holds, and convex in \mathbb{D} if the condition $2|\beta_0| + 2|\alpha_0\beta_1/\alpha_1| \le 1 - |\beta_1|$ holds.

Proposition 4. Let $\gamma_2 = \alpha_2 = \gamma_0 = \gamma_1 + 2\beta_0 = \beta_1 = \alpha_1 = 0$. Then differential equation (3) has a polynomial solution

$$f(z) = z + \frac{\alpha_0 + \beta_0}{2} z^2$$

which is starlike if the condition $|\beta_0| + |\alpha_0| \leq 1$ holds, and convex in \mathbb{D} if the condition $2|\beta_0| + 2|\alpha_0| \leq 1$ holds.

Recall that before obtaining the above results we demanded the fulfillment of conditions $n(n + \beta_1 - 1) + \gamma_2 \neq 0$ for all $3 \leq n \leq p$ and $\beta_0 \neq 0$. Here we suppose that $\beta_0 = 0$. Then the equality $\gamma_0 = p\beta_0 + \gamma_1 = 0$ implies $\gamma_0 = \gamma_1 = 0$, and thus, from (5) and (7) we get

(38) $\gamma_2 f_0 = \alpha_2, \qquad (\beta_1 + \gamma_2) f_1 = \alpha_1, \qquad (2 + 2\beta_1 + \gamma_2) f_2 = \alpha_0$

and for $3 \leq n \leq p$

(39)

$$(n(n+\beta_1 - 1) + \gamma_2)f_n = 0.$$

From (39) it follows that if $p(p + \beta_1 - 1) + \gamma_2 = 0$ then $f_p \neq 0$ may be arbitrary. Two cases are possible:

- 1) $n(n + \beta_1 1) + \gamma_2 \neq 0$ for all $3 \le n < p$ or p = 3; and
- 2) there is only one $3 \le p_1 < p$ such that $p_1(p_1 + \beta_1 1) + \gamma_2 = 0$.

In the first case we have

$$f(z) = f_0 + f_1 z + f_2 z^2 + f_p z^p$$

for $p \geq 3$. If $\gamma_2 \neq 0$ from (38) we obtain

(40)
$$f_0 = \frac{\alpha_2}{\gamma_2}, \quad f_1 = \frac{\alpha_1}{\beta_1 + \gamma_2}, \quad f_2 = \frac{\alpha_0}{2 + 2\beta_1 + \gamma_2}.$$

To use Lemma 1, we need to choose $f_p \neq 0$ so that $2|f_2/f_1| + p|f_p/f_1| \le 1$, i. e.

(41)
$$2|\alpha_0/(2+2\beta_1+\gamma_2)| + p|f_p| \le |\alpha_1/(\beta_1+\gamma_2)|$$

(clearly, this is possible if $2|\alpha_0/(2+2\beta_1+\gamma_2)| < |\alpha_1/(\beta_1+\gamma_2)|$). If $\gamma_2 = 0$ then $\alpha_2 = 0$ and coefficient f_0 can be chosen equal to zero. Then

(42)
$$f_0 = 0, \qquad f_1 = \alpha_1/\beta_1, \qquad f_2 = \alpha_0/(2+2\beta_1)$$

and we need to choose $f_p \neq 0$ so that

(43)
$$|\alpha_0/(1+\beta_1)| + p|f_p| \le |\alpha_1/\beta_1|$$

(this is possible if $|\alpha_0/(1+\beta_1)| < |\alpha_1/\beta_1|$).

Thus, the following statement is valid.

Proposition 5. Let $\beta_0 = \gamma_0 = \gamma_1 = 0$, and (39) holds only for $n = p \ge 3$. Then differential equation (3) has a polynomial solution

$$f(z) = f_0 + f_1 z + f_2 z^2 + f_p z^p$$

close-to-convex in \mathbb{D} provided either $\gamma_2 \neq 0$, $\alpha_1 \neq 0$ and the coefficients are defined by (40) and (41) or $\gamma_2 = 0$, $\alpha_1 \neq 0$ and the coefficients are defined by (42) and (43).

Remark 1. If in Proposition 5 conditions (41) and (43) are replaced by the conditions

$$4|\alpha_0/(2+2\beta_1+\gamma_2)| + p^2|f_p| \le |\alpha_1/(\beta_1+\gamma_2)|$$

 and

$$2|\alpha_0/(1+\beta_1)| + p^2|f_p| \le |\alpha_1/\beta_1|$$

respectively then close-to-convexity should be replaced by convexity.

If p > 3, $p(p + \beta_1 - 1) + \gamma_2 = 0$ and $p_1(p_1 + \beta_1 - 1) + \gamma_2 = 0$ for some $3 \le p_1 < p$ then if $\gamma_2 \ne 0$ from (38) we obtain (40) and we choose $f_{p_1} \ne 0$, $f_p \ne 0$ so that

(44)
$$2|\alpha_0/(2+2\beta_1+\gamma_2)| + p_1|f_{p_1}| + p|f_p| \le |\alpha_1/(\beta_1+\gamma_2)|$$

If $\gamma_2 = 0$ then from (38) we obtain (42) and we choose $f_{p_1} \neq 0, f_p \neq 0$ so that

(45)
$$|\alpha_0/(1+\beta_1)| + p_1|f_{p_1}| + p|f_p| \le |\alpha_1/\beta_1|.$$

Proposition 6. Let $\beta_0 = \gamma_0 = \gamma_1 = 0$, and (39) holds for $n = p_1$ and $n = p \ge 4$, $3 \le p_1 < p$. Then differential equation (3) has a polynomial solution

$$f(z) = f_0 + f_1 z + f_2 z^2 + f_{p_1} z^{p_1} + f_p z^p$$

close-to-convex in \mathbb{D} provided either $\gamma_2 \neq 0$, $\alpha_1 \neq 0$ and the coefficients are defined by (40) and (44) or $\gamma_2 = \alpha_2 = 0$, $\alpha_1 \neq 0$ and the coefficients are defined by (42) and (45).

Remark 2. If in Proposition 6 conditions (44) and (45) replaced by the conditions

$$4|\alpha_0/(2+2\beta_1+\gamma_2)| + p_1^2|f_{p_1}| + p^2|f_p| \le |\alpha_1/(\beta_1+\gamma_2)|$$

and

$$2|\alpha_0/(1+\beta_1)| + p_1^2|f_{p_1}| + p^2|f_p| \le |\alpha_1/\beta_1|$$

respectively then close-to-convexity should be replaced by convexity.

References

- 1. G. M. Golusin, *Geometric theory of functions of a complex variable*, Amer. Math. Soc., Providence, 1969.
- 2. M. M. Sheremeta, *Geometric properties of analytic solutions of differential equations*, Publisher I. E. Chyzhykov, Lviv, 2019.
- W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), no. 2, 169–185. DOI: 10.1307/mmj/1028988895
- S. M. Shah, Univalence of a function f and its successive derivatives when f satisfies a differential equation, II, J. Math. Anal. Appl. 142 (1989), no. 2, 422-430. DOI: 10.1016/0022-247X(89)90011-5
- 5. Z. M. Sheremeta, Close-to-convexity of entire solutions of a differential equation, Mat. Metody Fiz.-Mekh. Polya 42 (1999), no. 3, 31-35 (in Ukrainian).
- З. М. Шеремета, О свойствах целых решений одного дифференциального уравнения, Дифференц. уравнения 36 (2000), по. 8, 1045–1050; English version: Z. M. Sheremeta, The properties of entire solutions of one differential equation, Differ. Equ. 36 (2000), по. 8, 1155–1161. DOI: 10.1007/BF02754183
- Z. M. Sheremeta, On entire solutions of a differential equation, Mat. Stud. 14 (2000), no. 1, 54-58.
- 8. Z. M. Sheremeta, On the close-to-convexity of entire solutions of a differential equation, Visn. L'viv. Univ., Ser. Mekh.-Mat. 58 (2000), 54-56 (in Ukrainian).
- З. М. Шеремета, М. Н. Шеремета, Близость к выпуклости целых решений одного дифференциального уравнения, Дифференц. уравнения 38 (2002), по. 4, 477—481; English version: Z. M. Sheremeta and M. N. Sheremeta, Closeness to convexity for entire solutions of a differential equation, Differ. Equ. 38 (2002), по. 4, 496—501. DOI: 10.1023/A:1016355531151
- 10. Z. M. Sheremeta and M. M. Sheremeta, Convexity of entire solutions of one differential equation, Mat. Metody Fiz.-Mekh. Polya 47 (2004), no. 2, 186-191 (in Ukrainian).

- Ya. S. Mahola and M. M. Sheremeta, Properties of entire solutions of a linear differential equation of n-th order with polynomial coefficients of n-th degree, Mat. Stud. 30 (2008), no. 2, 153-162.
- Ya. S. Mahola and M. M. Sheremeta, Close-to-convexity of entire solution of a linear differential equation with polynomial coefficients, Visn. L'viv. Univ., Ser. Mekh.-Mat. 70 (2009), 122-127 (in Ukrainian).
- Я. С. Магола, М. М. Шеремета, Про властивості цілих розв'язків лінійних диференціальних рівнянь з поліноміальними коефіцієнтами, Мат. методи фіз.-мех. поля 53 (2010), по. 4, 62–74; English version: Ya. S. Magola and M. M. Sheremeta, On properties of entire solutions of linear differential equations with polynomial coefficients, J. Math. Sci. (New York) 181 (2012), по. 3, 366–382. DOI: 10.1007/s10958-012-0691-9
- 14. Ya. S. Mahola, On entire solutions with two-member recurrent formula for Taylor coefficients of linear differential equation, Mat. Stud. **36** (2011), no. 2, 133–141.
- M. M. Sheremeta and Yu. S. Trukhan, Close-to-convexity of polynomial solutions of a differential equation of the second order with polynomial coefficients of the second degree, Visnyk L'viv Univ. Ser. Mekh.-Mat. 90 (2020), 92-104.
 DOI: 10.30970/vmm.2020.90.092-104
- J. F. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. (2) 17 (1915), no. 1, 12-22. DOI: 10.2307/2007212.
- 17. A. W. Goodman, Univalent function, Vol. II, Mariner Publishing Co., 1983.

Стаття: надійшла до редколегії 31.01.2021 прийнята до друку 18.05.2021

ВЛАСТИВОСТІ ПОЛІНОМІАЛЬНИХ РОЗВ'ЯЗКІВ ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ДРУГОГО ПОРЯДКУ З ПОЛІНОМІАЛЬНИМИ КОЕФІЦІЄНТАМИ ДРУГОГО СТЕПЕНЯ

Мирослав ШЕРЕМЕТА, Юрій ТРУХАН

Львівський національний університет імені Івана Франка, вул. Університетська 1, 79000, м. Львів e-mail: m.m.sheremeta@gmail.com, yurkotrukhan@gmail.com

Аналітична однолиста в $\mathbb{D} = \{z : |z| < 1\}$ функція f називається опуклою, якщо $f(\mathbb{D})$ - опукла область. Добре відомо, що умова

Re
$$\{1 + zf''(z)/f'(z)\} > 0$$
 $(z \in \mathbb{D})$

є необхідною і достатньою для опуклості f. Функція f називається близькою до опуклої, якщо існує така опукла в \mathbb{D} функція Φ , що

$$\operatorname{Re}\left(f'(z)/\Phi'(z)\right) > 0 \qquad (z \in \mathbb{D}).$$

Близька до опуклої функція f характеризується тим, що доповнення G до області $f(\mathbb{D})$ можна покрити променями, які виходять з ∂G і лежать в G. Кожна близька до опуклої в \mathbb{D} функція f є однолистою в \mathbb{D} і тому

 $f'(0) \neq 0.$

Знайдено умови на параметри $\beta_0, \beta_1, \gamma_0, \gamma_1, \gamma_2$
і $\alpha_0, \alpha_1, \alpha_2$ диференціального рівняння

$$z^{2}w'' + (\beta_{0}z^{2} + \beta_{1}z)w' + (\gamma_{0}z^{2} + \gamma_{1}z + \gamma_{2})w = \alpha_{0}z^{2} + \alpha_{1}z + \alpha_{2},$$

за яких це рівняння має поліноміальний розв'язок

$$f(z) = \sum_{n=0}^{p} f_n z^n$$
 (deg $f = p \ge 2$),

близький до опуклого або опуклий в \mathbb{D} разом з усіма його похідними $f^{(j)}$ ($1 \leq j \leq p - 1$). Результати залежать від рівності чи нерівності нулеві параметра γ_2 .

Наприклад, доведено, що за умов $p \ge 3, \gamma_2 \ne 0$,

$$\gamma_0 = p\beta_0 + \gamma_1 = \beta_1 + \gamma_2 = \alpha_1\gamma_2 + p\beta_0\alpha_2 = 0.$$

це рівняння має поліноміальний розв'язок

$$f(z) = \alpha_2 / \gamma_2 + z + \frac{\alpha_0 + (p-1)\beta_0}{2+\beta_1} z^2 + \sum_{n=3}^p f_n z^n,$$

де коефіцієнти f_n визначаються рівністю

$$f_n = \frac{(p-n+1)\beta_0}{(n-1)(n+\beta_1)} f_{n-1} \qquad (3 \le n \le p),$$

такий що:

1) якщо $(11p-14)|\beta_0|/4+2|\alpha_0| \leq 2-|\beta_1|$ і $11(p-2)|\beta_0|/4 \leq 3-|\beta_1|$, то $f \in$ близьким до опуклого в \mathbb{D} разом з усіма його похідними $f^{(j)}$ $(1 \leq j \leq p-1)$; 2) якщо $(73p-82)|\beta_0|/16+4|\alpha_0| \leq 2-|\beta_1|$ і $33(p-2)|\beta_0|/8 \leq 3-|\beta_1|$, то $f \in$ опуклим в \mathbb{D} разом з усіма його похідними $f^{(j)}$ $(1 \leq j \leq p-1)$. Подібний результат отримано й у випадку $\gamma_2 = 0$.

Ключові слова: лінійне неоднорідне диференціальне рівняння другого порядку, поліноміальні коефіцієнти, поліноміальний розв'язок, близька до опуклої функція, опукла функція.