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An analytic univalent in D = {z : |z| < 1} function f is said to be convex
if f(D) is a convex domain. It is well known that the condition

Re {1 + zf ′′(z)/f ′(z)} > 0 (z ∈ D)

is necessary and su�cient for the convexity of f . Function f is said to be close-
to-convex if there exists a convex in D function Φ such that Re (f ′(z)/Φ′(z))>0
(z ∈ D). Close-to-convex function f has a characteristic property that the
complement G of the domain f(D) can be �lled with rays which start from
∂G and lie in G. Every close-to-convex in D function f is univalent in D and,
therefore, f ′(0) 6= 0.
We indicate conditions on parameters β0, β1, γ0, γ1, γ2 and α0, α1, α2 of the
di�erential equation

z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = α0z

2 + α1z + α2,

under which this equation has a polynomial solution

f(z) =

p∑
n=0

fnz
n (deg f = p ≥ 2)

close-to-convex or convex in D together with all its derivatives f (j) (1 ≤ j ≤
p − 1). The results depend on equality or inequality to zero of the parameter
γ2.
For example, it is proved that if p ≥ 3, γ2 6= 0,

γ0 = pβ0 + γ1 = β1 + γ2 = α1γ2 + pβ0α2 = 0
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holds, this equation has a polynomial solution

f(z) = α2/γ2 + z +
α0 + (p− 1)β0

2 + β1
z2 +

p∑
n=3

fnz
n,

where the coe�cients fn are de�ned by the equality

fn =
(p− n+ 1)β0

(n− 1)(n+ β1)
fn−1 (3 ≤ n ≤ p),

such that:
1) if (11p− 14)|β0|/4 + 2|α0| ≤ 2− |β1| and 11(p− 2)|β0|/4 ≤ 3− |β1| then f
is close-to-convex in D together with all its derivatives f (j) (1 ≤ j ≤ p− 1);
2) if (41p− 50)|β0|/8 + 4|α0| ≤ 2− |β1| and 33(p− 2)|β0|/8 ≤ 3− |β1| then f
is convex in D together with all its derivatives f (j) (1 ≤ j ≤ p− 1).
A similar result is obtained in the case γ2 = 0.

Key words: linear non-homogeneous di�erential equation of the second
order, polynomial coe�cient, polynomial solution, close-to-convex function,
convex function.

1. Introduction and auxiliary results

An analytic univalent in D = {z : |z| < 1} function

(1) f(z) =

∞∑
n=0

fnz
n

is said to be convex if f(D) is a convex domain. It is well known [1, p. 203] (see also
[2, p. 8]) that the condition

Re {1 + zf ′′(z)/f ′(z)} > 0 (z ∈ D)

is necessary and su�cient for the convexity of f . By W. Kaplan [3] the function f is said
to be close-to-convex in D (see also [1, p. 583], [2, p. 11]) if there exists a convex in D
function Φ such that

Re (f ′(z)/Φ′(z)) > 0 (z ∈ D).

The close-to-convex function f has a characteristic property that the complement G of
the domain f(D) can be �lled with rays which start from ∂G and lie in G. Every close-
to-convex in D function f is univalent in D and, therefore, f ′(0) 6= 0. Hence, it follows
that the function f is close-to-convex in D if and only if the function

(2) g(z) = z +

∞∑
n=2

gnz
n, gn = fn/f1,

is close-to-convex in D. We also remark that function (2) is said to be starlike if f(D) is
a starlike domain regarding the origin and the condition

Re {zg′(z)/g(z)} > 0 (z ∈ D)

is necessary and su�cient for the starlikeness of g [2, p. 9]. Clearly, every starlike function
is close-to-convex.
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S. M. Shah [4] indicated conditions on real parameters β0, β1, γ0, γ1, γ2 of the dif-
ferential equation

z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = 0,

under which there exists an entire transcendental solution (1) such that f and all its
derivatives are close-to-convex in D. The investigations are continued in the papers [5�10],
but in all of this papers the case of polynomial solutions was not investigated. In the
papers [11�14] properties of entire solutions of a linear di�erential equation of n-th order
with polynomial coe�cients of n-th degree are investigated. Some results from these
papers are published also in monograph [2].

In [15], the equation

(3) z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = α0z

2 + α1z + α2

is considered with real parameters and the existence and close-to-convexity of its
polynomial solutions are studied. In particular, it is proved that in order that the
polynomial

(4) f(z) =

p∑
n=0

fnz
n, deg f = p ≥ 2,

be a solution of the di�erential equation (3), it is necessary that γ0 = pβ0 + γ1 = 0.
Substituting (4) into (3), we get [15]

(5) γ2f0 = α2, (β1 + γ2)f1 = α1 + pβ0f0, (2 + 2β1 + γ2)f2 = α0 + (p− 1)β0f1

and for 3 ≤ n ≤ p

(6) (n(n+ β1 − 1) + γ2)fn = (p− n+ 1)β0fn−1.

If we assume that n(n + β1 − 1) + γ2 6= 0 for all 3 ≤ n ≤ p, it allows us to rewrite the
equality (6) in the form

(7) fn =
(p− n+ 1)β0

n(n+ β1 − 1) + γ2
fn−1, 3 ≤ n ≤ p,

whence it follows that fp = 0, if β0 = 0. Therefore, further we assume also that β0 6= 0.
In the case of real parameters for the study of the close-to convexity of the polynomi-

al

(8) g(z) = z +

p∑
n=2

gnz
n,

Alexander's criterion [16, 17] was used. Here we are going to consider a case of complex
parameters β0, β1, γ0, γ1, γ2, α0, α1, α2 and we will use the following lemma [16,17].

Lemma 1. If

p∑
n=2

n|gn| ≤ 1 then polynomial (8) is a starlike function and if

p∑
n=2

n2|gn|≤1

then polynomial (8) is a convex function.

Using Lemma 1 we prove the following statement.
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Lemma 2. Let ξn 6= 0, ξn = gn/gn−1 for 2 ≤ n ≤ p and

ξ = max

{
n

n− 1
|ξn| : 3 ≤ n ≤ p

}
.

If 2|g2| ≤ 1 − ξ then polynomial (8) is a starlike function and if 4|g2| ≤ 1 − 3ξ/2 then

polynomial (8) is a convex function.

Proof. Since gn = ξngn−1 for 2 ≤ n ≤ p, we have
p∑

n=2

n|gn| =
p∑

n=2

n|ξn||gn−1| =

=

p−1∑
n=1

(n+ 1)|ξn+1||gn| =

= 2|g2|+
p∑

n=2

n+ 1

n
|ξn+1|n|gn|, ξp+1 = 0,

i.e.,

p∑
n=2

(
1− n+ 1

n
|ξn+1|

)
n|gn| = 2|g2|. Since ξp+1 = 0 and

n+ 1

n
|ξn+1| ≤ ξ < 1 for

2 ≤ n ≤ p− 1, hence it follows that (1− ξ)
p∑

n=2
n|gn| ≤ 2|g2|. Therefore, if 2|g2| ≤ 1− ξ

then

p∑
n=2

n|gn| ≤ 1 and by Lemma 1 polynomial (8) is a starlike function.

If we put

ξ∗ = max

{(
n

n− 1

)2

|ξn| : 3 ≤ n ≤ p

}

and suppose that 4|g2| ≤ 1 − ξ∗ then as above we get (1 − ξ∗)
p∑

n=2

n2|gn| ≤ 4|g2|, i.e.,

p∑
n=2

n2|gn| ≤ 1 and by Lemma 1 polynomial (8) is a convex function. Since ξ∗ ≤ 3ξ/2,

the proof of Lemma 2 is complete. �

In view of (5) and (6) it is clear that the existence of convex or close-to-convex
solution (4) of di�erential equation (3) depends on the equality to zero of the parameter
γ2. Therefore, we will consider two cases: γ2 6= 0 and γ2 = 0.

2. The case γ2 6= 0

From the �rst equality (5) it follows that f0 = α2/γ2, and the second equality (5)
implies

(β1 + γ2)f1 = α1 + pβ0α2/γ2.

For the close-to-convexity of f the condition f1 6= 0 is necessary. This condition is not
necessary for the convexity of the function f , but since we are going to use Lemma 2,
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then we will assume that f1 6= 0. Therefore, from the last equality it follows that either
β1 + γ2 6= 0 and α1 + pβ0α2/γ2 6= 0 or β1 + γ2 = α1 + pβ0α2/γ2 = 0.

If β1+γ2 6= 0 and α1+pβ0α2/γ2 6= 0 then f1 =
α1γ2 + pβ0α2

γ2(β1 + γ2)
, and if 2+2β1+γ2 6= 0

then from the third equality (5) we obtain

f2 =
(p− 1)β0(α1γ2 + pβ0α2) + α0γ2(β1 + γ2)

γ2(β1 + γ2)(2 + 2β1 + γ2)
.

Thus, the desired solution should be

(9) f(z) =
α2

γ2
+
α1γ2+pβ0α2

γ2(β1+γ2)
z +

(p−1)β0(α1γ2+pβ0α2)+α0γ2(β1+γ2)

γ2(β1+γ2)(2+2β1+γ2)
z2+

p∑
n=3

fnz
n

where the coe�cients fn satisfy (7). The following theorem is true.

Theorem 1. Let p ≥ 3, γ2 6= 0, γ0 = pβ0 + γ1 = 0, β1 + γ2 6= 0, α1γ2 + pβ0α2 6= 0.
Then:

1) if

(10)
5p− 6

2
|β0|+ 2

∣∣∣∣α0γ2(β1 + γ2)

α1γ2 + pβ0α2

∣∣∣∣ ≤ 2− 2|β1| − |γ2|

then di�erential equation (3) has polynomial solution (9) close-to-convex in D
and if 3(p − 2)|β0|/2 ≤ 2 − |β1| − |γ2|/3 all its derivatives f (j) (1 ≤ j ≤ p − 1)
are close-to-convex;

2) if

(11)
19p− 22

4
|β0|+ 4

∣∣∣∣α0γ2(β1 + γ2)

α1γ2 + pβ0α2

∣∣∣∣ ≤ 2− 2|β1| − |γ2|

then di�erential equation (3) has polynomial solution (9) convex in D and if

11(p − 2)|β0|/4 ≤ 2 − |β1| − |γ2|/3 all its derivatives f (j) (1 ≤ j ≤ p − 1) are

convex.

Proof. For polynomial (8) with gn = fn/f1 we have

g2 =
(p− 1)β0

2 + 2β1 + γ2
+

α0γ2(β1 + γ2)

(2 + 2β1 + γ2)(α1γ2 + pβ0α2)
= ξ2 = ξ2g1,

and since (10) implies |2 + 2β1 + γ2| ≥ 2− 2|β1| − |γ2| > 0, we get

(12) |g2| = |ξ2| ≤
1

2− 2|β1| − |γ2|

(
(p− 1)|β0|+

∣∣∣∣α0γ2(β1 + γ2)

α1γ2 + pβ0α2

∣∣∣∣) .
For 3 ≤ n ≤ p from (7) we obtain

gn =
fn
f1

=
ξnfn−1
f1

= ξngn−1,

where ξn =
(p− n+ 1)β0

n(n+ β1 − 1) + γ2
and

n

n− 1
|ξn| ≤

(p− n+ 1)|β0|
(n− 1)(n− |β1| − 1− |γ2|/n)

≤ (p− n+ 1)|β0|
(n− 1)(2− 2|β1| − |γ2|)

,
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i.e.,

(13) ξ = max

{
n

n− 1
|ξn| : 3 ≤ n ≤ p

}
≤ (p− 2)|β0|

2(2− 2|β1| − |γ2|)
.

It is easy to check that (10), (12) and (13) imply the inequality 2|g2| ≤ 1−ξ. Therefore, by
Lemma 2 the polynomial g is a starlike function and, thus, function (9) is close-to-convex
in D.

For 1 ≤ j ≤ p− 2 the derivative

(14) f (j)(z) = j!fj + (j + 1)!fj+1z +

p−j∑
n=2

(n+ 1)(n+ 2) . . . (n+ j)fn+jz
n.

is close-to-convex in D if and only if the function

(15) gj(z) = z +

p−j∑
n=2

gn,jz
n, gn,j =

(n+ 1)(n+ 2) . . . (n+ j)fn+j

(j + 1)!fj+1
,

is close-to-convex in D. For 1 ≤ j ≤ p− 2 and 2 ≤ n ≤ p− j we have 3 ≤ n+ j ≤ p, and
in view of (7) and (15) we get

gn,j =
(n+ 1)(n+ 2) . . . (n+ j)

(j + 1)!fj+1

(p− n− j + 1)β0
(n+ j)(n+ j + β1 − 1) + γ2

fn+j−1 =

=
(n+ 1)(n+ 2) . . . (n+ j)

(j + 1)!fj+1
ξn+j

(j + 1)!fj+1

n(n+ 1) . . . (n+ j − 1)
gn−1,j =

=
n+ j

n
ξn+jgn−1,j ,

where as above ξn =
(p− n+ 1)β0

n(n+ β1 − 1) + γ2
. Therefore, to apply Lemma 2, we need to �nd

a condition under which

(16) 2|g2,j | ≤ 1− max
3≤n≤p−j

n

n− 1

n+ j

n
|ξn+j | = 1− max

3≤n≤p−j

n+ j

n− 1
|ξn+j |.

From (7) and (15) we have

2|g2,j | = 2
3 . . . (j + 2)|fj+2|

(j + 1)!|fj+1|
=

= 2
j + 2

2

(p− (j + 2) + 1)|β0|
|(j + 2)(j + 2 + β1 − 1) + γ2|

≤

≤ (p− j − 1)|β0|
j + 1− |β1| − |γ2|/(j + 2)

(17)

and

max
3≤n≤p−j

n+ j

n− 1
|ξn+j | ≤ max

3≤n≤p−j

n+ j

n− 1

(p− n− j + 1)|β0|
(n+ j)(n+ j − |β1| − 1)− |γ2|)

≤

≤ max
3≤n≤p−j

1

n− 1

(p− n− j + 1)|β0|
n+ j − |β1| − 1− |γ2|/(n+ j)

≤

≤ 1

2

(p− j − 1)|β0|
j + 1− |β1| − |γ2|/(j + 2)

.

(18)



78
Myroslav SHEREMETA, Yuriy TRUKHAN

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2021. Âèïóñê 91

From (17) and (18) it follows that if

(19) 3(p− j − 1)|β0|/2 ≤ j + 1− |β1| − |γ2|/(2 + j)

for 1 ≤ j ≤ p− 2 then (16) holds and by Lemma 2 the derivative f (j) for 1 ≤ j ≤ p− 2
is close-to-convex in D.

Finally, we remark that (19) holds for all 1 ≤ j ≤ p− 2 if

3(p− 2)|β0|/2 ≤ 2− |β1| − |γ2|/3.

Since f (p−1) is a linear function and, thus, it is close-to-convex, the �rst part of Theorem 1
is proved.

If condition (11) holds then from (12) and (13) we obtain the inequality 4|g2| ≤
≤ 1− 3ξ/2, and by Lemma 2 polynomial (9) is a convex function.

If

(20)
11(p− j − 1)|β0|

4
≤ j + 1− |β1| − |γ2|/(2 + j)

for some 1 ≤ j ≤ p− 2 then (17) and (18) imply

4|g2,j | ≤ 1− 3

2
max

3≤n≤p−j

n+ j

n− 1
|ξn+j |.

Therefore, by Lemma 2 function (15) is convex and, thus, function (14) is convex. Finally,
we remark that (20) holds for all 1 ≤ j ≤ p− 2 if 11(p− 2)|β0|/4 ≤ 2− |β1| − |γ2|/3. The
proof of Theorem 1 is complete. �

Now suppose that β1 + γ2 = α1 + pβ0α2/γ2 = 0. Then from the second equality
(5) it follows that f1 may be arbitrary. If we choose f1 = 1 then under the condition

2 + β1 6= 0 in view of the third equality (5) we get f2 =
α0 + (p− 1)β0

2 + β1
. From (7) under

the condition n+ β1 6= 0 we obtain

(21) fn =
(p− n+ 1)β0

(n− 1)(n+ β1)
fn−1, 3 ≤ n ≤ p.

Thus, the desired solution has the form

(22) f(z) =
α2

γ2
+ z +

α0 + (p− 1)β0
2 + β1

z2 +

p∑
n=3

fnz
n,

where the coe�cients fn satisfy (21), and we will come to such a theorem.

Theorem 2. Let p ≥ 3, γ2 6= 0, γ0 = pβ0 + γ1 = β1 + γ2 = α1γ2 + pβ0α2 = 0. Then:

1) if

(23)
11p− 14

4
|β0|+ 2|α0| ≤ 2− |β1|

then di�erential equation (3) has polynomial solution (22) close-to-convex in D
and if 9(p − 2)|β0|/4 ≤ 3 − |β1| all its derivatives f (j) (1 ≤ j ≤ p − 1) are

close-to-convex;
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2) if

(24)
41p− 50

8
|β0|+ 4|α0| ≤ 2− |β1|

then di�erential equation (3) has polynomial solution (22) convex in D and if

33(p− 2)|β0|/8 ≤ 3− |β1| all its derivatives f (j) (1 ≤ j ≤ p− 1) are convex.

Proof. For polynomial (8) with gn = fn for 1 ≤ n ≤ p now we have

(25) |g2| =
∣∣∣∣α0 + (p− 1)β0

2 + β1

∣∣∣∣ ≤ |α0|+ (p− 1)|β0|
2− |β1|

and in view of (21)

ξ ≤ max
3≤n≤p

n

n− 1

(p− n+ 1)|β0|
(n− 1)(n− |β1|)

≤

≤ 3(p− 2)|β0|
4(3− |β1|)

<

<
3(p− 2)|β0|
4(2− |β1|)

.

(26)

From (23), (25) and (26) it follows that 2|g2| ≤ 1− ξ. Then by Lemma 2 the function g
is starlike and, thus, function (22) is close-to-convex.

If (24) holds then using (25), (26) and Lemma 2 similarly we prove the convexity
of polynomial (22).

Let us turn to the derivative f (j), 1 ≤ j ≤ p− 2. For the coe�cients gn,j of function
(15) now in view of (21) we have

gn,j =
n+ j

n
ξn+jgn−1,j =

=
n+ j

n

(p− n− j + 1)β0
(n+ j − 1)(n+ j + β1)

gn−1,j .

Therefore,

(27) |g2,j | ≤
2 + j

2

(p− j − 1)|β0|
(j + 1)(j + 2− |β1|)

and

max
3≤n≤p

n+ j

n− 1
|ξn+j | ≤ max

3≤n≤p

n+ j

n− 1

(p− n− j + 1)|β0|
(n+ j − 1)(n+ j − |β1|)

≤

≤ 1

2

(2 + j)(p− j − 1)|β0|
(j + 1)(2 + j − |β1|)

.

(28)

If for some 1 ≤ j ≤ p− 2

(29) 3(2 + j)(p− j − 1)|β0|/2 ≤ (j + 1)(j + 2− |β1|)
then (27) and (28) imply

2|g2,j | ≤ 1− max
3≤n≤p

n+ j

n− 1
|ξn+j |

and by Lemma 2 f (j) is close-to-convex in D.
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If for some 1 ≤ j ≤ p− 2

(30) 11(2 + j)(p− j − 1)|β0|/4 ≤ (j + 1)(j + 2− |β1|)

then (27) and (28) imply

4|g2,j | ≤ 1− 3

2
max
3≤n≤p

n+ j

n− 1
|ξn+j |

and by Lemma 2 f (j) is convex in D.
Finally, we remark that (29) holds for all 1 ≤ j ≤ p− 2 if 9(p− 2)|β0|/4 ≤ 3− |β1|,

and (30) holds for all 1 ≤ j ≤ p−2 if 33(p−2)|β0|/8 ≤ 3−|β1|. Theorem 2 is proved. �

3. The case γ2 = 0

From �rst equality (5) it follows that α2 = 0 and f0 may be arbitrary. If we choose
f0 = 0 then from (5) and (7) we get

(31) β1f1 = α1, 2(1 + β1)f2 = α0 + (p− 1)β0f1

and

(32) fn =
(p− n+ 1)β0
n(n+ β1 − 1)

fn−1, 3 ≤ n ≤ p.

Since we consider f1 6= 0, from the �rst equality (31) it follows that either β1 6= 0 and

α1 6= 0 or β1 = α1 = 0. If β1 6= 0 and α1 6= 0 then f1 =
α1

β1
and

f2 =
α0β1 + (p− 1)α1β0

2β1(1 + β1)
.

Thus, the desired solution has the form

(33) f(z) =
α1

β1
z +

α0β1 + (p− 1)α1β0
2β1(1 + β1)

z2 +

p∑
n=3

fnz
n,

where the coe�cients fn satisfy (32), and we will come to the following theorem.

Theorem 3. Let p ≥ 3, γ2 = α2 = γ0 = γ1 + pβ0 = 0, β1 6= 0 and α1 6= 0. Then:

1) if

(34)
3p− 4

2
|β0|+

∣∣∣∣α0β1
α1

∣∣∣∣ ≤ 1− |β1|

then di�erential equation (3) has polynomial solution (33) close-to-convex in D
and if 3(p − 2)|β0|/2 ≤ 2 − |β1| all its derivatives f (j) (1 ≤ j ≤ p − 1) are

close-to-convex;

2) if

(35)
11p− 14

4
|β0|+ 2

∣∣∣∣α0β1
α1

∣∣∣∣ ≤ 1− |β1|

then di�erential equation (3) has polynomial solution (33) convex in D and if

11(p− 2)|β0|/4 ≤ 2− |β1| all its derivatives f (j) (1 ≤ j ≤ p− 1) are convex.
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The proof of this theorem is the same as proofs those of the previous theorems.

We remark only that now |g2| ≤
|α0||β1|+ (p− 1)|α1||β0|

2|α1|(1− |β1|)
, ξn =

(p− n+ 1)β0
n(n+ β1 − 1)

and

ξ ≤ (p− 2)|β0|
2(1− |β1|)

, whence it follows that 2|g2| ≤ 1− ξ if (34) holds and 4|g2| ≤ 1− 3ξ/2 if

(35) holds. For some 1 ≤ j ≤ p− 1 as above we have gn,j =
n+ j

n
ξn+jgn−1,j , where now

ξn+j =
(p− n− j + 1)β0

(n+ j)(n+ j − β1 − 1)
,

whence |g2,j | ≤
(p− j − 1)|β0|
2(j + 1− |β1|)

and

ξ := max
3≤n≤p

n+ j

n− 1
|ξn+j | ≤

(p− j − 1)|β0|
2(j + 1− |β1|)

.

Therefore, 2|g2,j | ≤ 1 − ξ if 3(p − j − 1)|β0|/2 ≤ j + 1 − |β1| and 4|g2,j | ≤ 1 − 3ξ/2
if 11(p − j − 1)|β0|/4 ≤ j + 1 − |β1|. It remains to notice that the last conditions
hold for all 1 ≤ j ≤ p − 1 provided 3(p − 2)|β0|/2 ≤ 2 − |β1| and 11(p − 2)|β0|/4 ≤
≤ 2− |β1| respectively and use Lemma 2.

If β1 = α1 = 0 from (31) it follows that f1 may be arbitrary. If we choose f1 = 1

then f2 =
α0 + (p− 1)β0

2
and

(36) fn =
(p− n+ 1)β0
n(n− 1)

fn−1, 3 ≤ n ≤ p.

Therefore, the desired solution has the form

(37) f(z) = z +
α0 + (p− 1)β0

2
z2 +

p∑
n=3

fnz
n,

where the coe�cients fn satisfy (36), and we will come to the following theorem.

Theorem 4. Let p ≥ 3, γ2 = α2 = γ0 = γ1 + pβ0 = β1 = α1 = 0. Then:

1) if (5p− 6)|β0|/4 + |α0| ≤ 1 then di�erential equation (3) has polynomial solution

(37) close-to-convex in D and if 3(p− 2)|β0| ≤ 4 all its derivatives f (j) (1 ≤ j ≤
p− 1) are close-to-convex in D;

2) if (19p − 22)|β0|/8 + 2|α0| ≤ 1 then di�erential equation (3) has polynomial

solution (37) convex in D and if 11(p − 2)|β0| ≤ 8 all its derivatives f (j) (1 ≤
j ≤ p− 1) are convex in D.

Proof. Choosing gn = fn, we have 2|g2| ≤ (p − 1)|β0| + |α0| and ξ ≤ (p − 2)|β0|/4.
Therefore, in view of the condition (5p − 6)|β0|/4 + |α0| ≤ 1 we get 2|g2| ≤ 1 − ξ and,
thus, polynomial (37) is starlike. Also in view on the condition (19p−22)|β0|/8+2|α0| ≤ 1
we get 4|g2| ≤ 1− 3ξ/2, i. e. polynomial (37) is convex.

Similarly, for some 1 ≤ j ≤ p− 1 we have 2|g2,j | ≤
(p− j − 1)|β0|

j + 1
and

ξ = max
3≤n≤p

n+ j

n− 1
|ξn+j | ≤

(p− j − 1)|β0|
2(j + 1)

,
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whence 2|g2,j | ≤ 1−ξ if 3(p−j−1)|β0| ≤ 2(j+1) and 4|g2,j | ≤ 1−3ξ/2 if 11(p−j−1)|β0| ≤
4(j+1). Since the last conditions hold if 3(p−2)|β0| ≤ 4 and 11(p−2)|β0| ≤ 8 respectively,
Theorem 4 is proved. �

4. Additions

First of all, we note that the condition p ≥ 3 is not essential in Theorems 1 - 4.
Repeating their proofs, one can prove for p = 2 the following statements.

Proposition 1. Let γ2 6= 0, γ0 = 2β0 + γ1 = 0, β1 + γ2 6= 0, α1γ2 + 2β0α2 6= 0. Then
di�erential equation (3) has a polynomial solution

f(z) =
α2

γ2
+
α1γ2 + 2β0α2

γ2(β1 + γ2)
z +

β0(α1γ2 + 2β0α2) + α0γ2(β1 + γ2)

γ2(β1 + γ2)(2 + 2β1 + γ2)
z2

which is close-to-convex if the condition

2|β0|+ 2

∣∣∣∣α0γ2(β1 + γ2)

α1γ2 + 2β0α2

∣∣∣∣ ≤ 2− 2|β1| − |γ2|

holds, and convex in D if the condition

4β0|+ 4

∣∣∣∣α0γ2(β1 + γ2)

α1γ2 + 2β0α2

∣∣∣∣ ≤ 2− 2|β1| − |γ2|

holds.

Proposition 2. Let γ2 6= 0, γ0 = 2β0 + γ1 = β1 + γ2 = α1γ2 + 2β0α2 = 0. Then
di�erential equation (3) has a polynomial solution

f(z) =
α2

γ2
+ z +

α0 + β0
2 + β1

z2

which is close-to-convex if the condition 2|β0|+ 2|α0| ≤ 2− |β1| holds, and convex in D
if the condition 4|β0|+ 4|α0| ≤ 2− |β1| holds.

Proposition 3. Let γ2 = α2 = γ0 = γ1 + 2β0 =, β1 6= 0 and α1 6= 0. Then di�erential

equation (3) has a polynomial solution

f(z) =
α1

β1
z +

α0β1 + α1β0
2β1(1 + β1)

z2

which is starlike if the condition |β0|+ |α0β1/α1| ≤ 1− |β1| holds, and convex in D if the

condition 2|β0|+ 2|α0β1/α1| ≤ 1− |β1| holds.

Proposition 4. Let γ2 = α2 = γ0 = γ1 + 2β0 = β1 = α1 = 0. Then di�erential equation

(3) has a polynomial solution

f(z) = z +
α0 + β0

2
z2

which is starlike if the condition |β0| + |α0| ≤ 1 holds, and convex in D if the condition

2|β0|+ 2|α0| ≤ 1 holds.
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Recall that before obtaining the above results we demanded the ful�llment of condi-
tions n(n+ β1 − 1) + γ2 6= 0 for all 3 ≤ n ≤ p and β0 6= 0. Here we suppose that β0 = 0.
Then the equality γ0 = pβ0 + γ1 = 0 implies γ0 = γ1 = 0, and thus, from (5) and (7) we
get

(38) γ2f0 = α2, (β1 + γ2)f1 = α1, (2 + 2β1 + γ2)f2 = α0

and for 3 ≤ n ≤ p

(39) (n(n+ β1 − 1) + γ2)fn = 0.

From (39) it follows that if p(p + β1 − 1) + γ2 = 0 then fp 6= 0 may be arbitrary. Two
cases are possible:

1) n(n+ β1 − 1) + γ2 6= 0 for all 3 ≤ n < p or p = 3; and
2) there is only one 3 ≤ p1 < p such that p1(p1 + β1 − 1) + γ2 = 0.

In the �rst case we have

f(z) = f0 + f1z + f2z
2 + fpz

p

for p ≥ 3. If γ2 6= 0 from (38) we obtain

(40) f0 =
α2

γ2
, f1 =

α1

β1 + γ2
, f2 =

α0

2 + 2β1 + γ2
.

To use Lemma 1, we need to choose fp 6= 0 so that 2|f2/f1|+ p|fp/f1| ≤ 1, i. e.

(41) 2|α0/(2 + 2β1 + γ2)|+ p|fp| ≤ |α1/(β1 + γ2)|

(clearly, this is possible if 2|α0/(2 + 2β1 + γ2)| < |α1/(β1 + γ2)|). If γ2 = 0 then α2 = 0
and coe�cient f0 can be chosen equal to zero. Then

(42) f0 = 0, f1 = α1/β1, f2 = α0/(2 + 2β1)

and we need to choose fp 6= 0 so that

(43) |α0/(1 + β1)|+ p|fp| ≤ |α1/β1|

(this is possible if |α0/(1 + β1)| < |α1/β1|).
Thus, the following statement is valid.

Proposition 5. Let β0 = γ0 = γ1 = 0, and (39) holds only for n = p ≥ 3. Then
di�erential equation (3) has a polynomial solution

f(z) = f0 + f1z + f2z
2 + fpz

p

close-to-convex in D provided either γ2 6= 0, α1 6= 0 and the coe�cients are de�ned by

(40) and (41) or γ2 = 0, α1 6= 0 and the coe�cients are de�ned by (42) and (43).

Remark 1. If in Proposition 5 conditions (41) and (43) are replaced by the conditions

4|α0/(2 + 2β1 + γ2)|+ p2|fp| ≤ |α1/(β1 + γ2)|

and

2|α0/(1 + β1)|+ p2|fp| ≤ |α1/β1|
respectively then close-to-convexity should be replaced by convexity.
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If p > 3, p(p + β1 − 1) + γ2 = 0 and p1(p1 + β1 − 1) + γ2 = 0 for some 3 ≤ p1 < p
then if γ2 6= 0 from (38) we obtain (40) and we choose fp1 6= 0, fp 6= 0 so that

(44) 2|α0/(2 + 2β1 + γ2)|+ p1|fp1 |+ p|fp| ≤ |α1/(β1 + γ2)|.
If γ2 = 0 then from (38) we obtain (42) and we choose fp1

6= 0, fp 6= 0 so that

(45) |α0/(1 + β1)|+ p1|fp1
|+ p|fp| ≤ |α1/β1|.

Proposition 6. Let β0 = γ0 = γ1 = 0, and (39) holds for n = p1 and n = p ≥ 4,
3 ≤ p1 < p. Then di�erential equation (3) has a polynomial solution

f(z) = f0 + f1z + f2z
2 + fp1

zp1 + fpz
p

close-to-convex in D provided either γ2 6= 0, α1 6= 0 and the coe�cients are de�ned by

(40) and (44) or γ2 = α2 = 0, α1 6= 0 and the coe�cients are de�ned by (42) and (45).

Remark 2. If in Proposition 6 conditions (44) and (45) replaced by the conditions

4|α0/(2 + 2β1 + γ2)|+ p21|fp1
|+ p2|fp| ≤ |α1/(β1 + γ2)|

and
2|α0/(1 + β1)|+ p21|fp1

|+ p2|fp| ≤ |α1/β1|
respectively then close-to-convexity should be replaced by convexity.
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Àíàëiòè÷íà îäíîëèñòà â D = {z : |z| < 1} ôóíêöiÿ f íàçèâà¹òüñÿ
îïóêëîþ, ÿêùî f(D) - îïóêëà îáëàñòü. Äîáðå âiäîìî, ùî óìîâà

Re {1 + zf ′′(z)/f ′(z)} > 0 (z ∈ D)

¹ íåîáõiäíîþ i äîñòàòíüîþ äëÿ îïóêëîñòi f . Ôóíêöiÿ f íàçèâà¹òüñÿ áëèçü-
êîþ äî îïóêëî¨, ÿêùî iñíó¹ òàêà îïóêëà â D ôóíêöiÿ Φ, ùî

Re (f ′(z)/Φ′(z)) > 0 (z ∈ D).

Áëèçüêà äî îïóêëî¨ ôóíêöiÿ f õàðàêòåðèçó¹òüñÿ òèì, ùî äîïîâíåííÿ G
äî îáëàñòi f(D) ìîæíà ïîêðèòè ïðîìåíÿìè, ÿêi âèõîäÿòü ç ∂G i ëåæàòü
â G. Êîæíà áëèçüêà äî îïóêëî¨ â D ôóíêöiÿ f ¹ îäíîëèñòîþ â D i òîìó
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f ′(0) 6= 0.
Çíàéäåíî óìîâè íà ïàðàìåòðè β0, β1, γ0, γ1, γ2 i α0, α1, α2 äèôåðåíöiàëü-
íîãî ðiâíÿííÿ

z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = α0z

2 + α1z + α2,

çà ÿêèõ öå ðiâíÿííÿ ìà¹ ïîëiíîìiàëüíèé ðîçâ'ÿçîê

f(z) =

p∑
n=0

fnz
n (deg f = p ≥ 2),

áëèçüêèé äî îïóêëîãî àáî îïóêëèé â D ðàçîì ç óñiìà éîãî ïîõiäíèìè f (j)

(1 ≤ j ≤ p − 1). Ðåçóëüòàòè çàëåæàòü âiä ðiâíîñòi ÷è íåðiâíîñòi íóëåâi
ïàðàìåòðà γ2.
Íàïðèêëàä, äîâåäåíî, ùî çà óìîâ p ≥ 3, γ2 6= 0,

γ0 = pβ0 + γ1 = β1 + γ2 = α1γ2 + pβ0α2 = 0.

öå ðiâíÿííÿ ìà¹ ïîëiíîìiàëüíèé ðîçâ'ÿçîê

f(z) = α2/γ2 + z +
α0 + (p− 1)β0

2 + β1
z2 +

p∑
n=3

fnz
n,

äå êîåôiöi¹íòè fn âèçíà÷àþòüñÿ ðiâíiñòþ

fn =
(p− n+ 1)β0

(n− 1)(n+ β1)
fn−1 (3 ≤ n ≤ p),

òàêèé ùî:
1) ÿêùî (11p− 14)|β0|/4 + 2|α0| ≤ 2− |β1| i 11(p− 2)|β0|/4 ≤ 3− |β1|, òî f ¹

áëèçüêèì äî îïóêëîãî â D ðàçîì ç óñiìà éîãî ïîõiäíèìè f (j) (1 ≤ j ≤ p−1);
2) ÿêùî (73p− 82)|β0|/16 + 4|α0| ≤ 2− |β1| i 33(p− 2)|β0|/8 ≤ 3− |β1|, òî f
¹ îïóêëèì â D ðàçîì ç óñiìà éîãî ïîõiäíèìè f (j) (1 ≤ j ≤ p− 1).
Ïîäiáíèé ðåçóëüòàò îòðèìàíî é ó âèïàäêó γ2 = 0.

Êëþ÷îâi ñëîâà: ëiíiéíå íåîäíîðiäíå äèôåðåíöiàëüíå ðiâíÿííÿ äðóãîãî
ïîðÿäêó, ïîëiíîìiàëüíi êîåôiöi¹íòè, ïîëiíîìiàëüíèé ðîçâ'ÿçîê, áëèçüêà äî
îïóêëî¨ ôóíêöiÿ, îïóêëà ôóíêöiÿ.


