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An analytic univalent in D = {z : |z| < 1} function f is said to be convex
if f(D) is a convex domain. It is well known that the condition

Re{l+zf"(2)/f'(2)} >0  (2€D)

is necessary and sufficient for the convexity of f. Function f is said to be close-
to-convex if there exists a convex in D function ® such that Re (f'(2)/®’(z))>0
(z € D). Close-to-convex function f has a characteristic property that the
complement G of the domain f(D) can be filled with rays which start from
OG and lie in G. Every close-to-convex in D function f is univalent in I and,
therefore, f'(0) # 0.

We indicate conditions on parameters 5o, 51, Yo, Y1, 72 and oo, a1, az of the
differential equation

22w + (Bo2” + Prz)w’ + (y02° + iz + y2)w = a2’ + a1z + az,

under which this equation has a polynomial solution
/4
[(2) =) faz" (deg f=p>2)
n=0

close-to-convex or convex in I together with all its derivatives f) (1 < j <
p — 1). The results depend on equality or inequality to zero of the parameter

Ya-
For example, it is proved that if p > 3, 72 # 0,

Yo =pBo+71 = B1+ 72 =ary2 + pBoaz =0
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holds, this equation has a polynomial solution

p
F(2) = anfye+ 2+ 2P IR0 +2(f Bll)ﬁo 22+ nzafnzn,

where the coefficients f, are defined by the equality

_ (p—n+1)Bo n
fn= (ni 1)(n+61)fn71 (3 < Sp)a

such that:

1) if (11p — 14)|fol/4 + 2Jao] < 2 — |81 and 11(p — 2)|Bo]/4 < 3 — || then f
is close-to-convex in D together with all its derivatives f) (1 < j < p—1);
2) if (41p — 50)|Bo|/8 + 4|ao| < 2 — [B1] and 33(p — 2)[Bo|/8 < 3 — |1 then f
is convex in D together with all its derivatives f\¥) (1 <j <p—1).

A similar result is obtained in the case 2 = 0.

Key words: linear non-homogeneous differential equation of the second
order, polynomial coefficient, polynomial solution, close-to-convex function,
convex function.

1. INTRODUCTION AND AUXILIARY RESULTS

An analytic univalent in D = {z : |z| < 1} function

n=0
is said to be convex if f(D) is a convex domain. It is well known [1, p. 203] (see also
[2, p. 8]) that the condition

Re{l+2f"(2)/f ()} >0 (z € D)

is necessary and sufficient for the convexity of f. By W. Kaplan [3] the function f is said
to be close-to-convex in D (see also [1, p. 583], [2, p. 11]) if there exists a convex in D
function ® such that
Re(f'(2)/®'(2)) > 0(z € D).

The close-to-convex function f has a characteristic property that the complement G of
the domain f(D) can be filled with rays which start from 0G and lie in G. Every close-
to-convex in D function f is univalent in D and, therefore, f'(0) # 0. Hence, it follows
that the function f is close-to-convex in D if and only if the function

(2) g(z):z—FZgnzn, In = fn/f1,
n=2

is close-to-convex in D). We also remark that function (2) is said to be starlike if f(D) is
a starlike domain regarding the origin and the condition

Re{zg'(2)/9(2)} > 0 (2 € D)

is necessary and sufficient for the starlikeness of ¢ [2, p. 9]. Clearly, every starlike function
is close-to-convex.
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S. M. Shah [4] indicated conditions on real parameters 5o, 51, Yo, V1, Y2 of the dif-
ferential equation

2w + (Bo2? + Br2)w’ + (y02% + 112 + Y2)w = 0,

under which there exists an entire transcendental solution (1) such that f and all its
derivatives are close-to-convex in D. The investigations are continued in the papers [5-10],
but in all of this papers the case of polynomial solutions was not investigated. In the
papers [11-14] properties of entire solutions of a linear differential equation of n-th order
with polynomial coefficients of n-th degree are investigated. Some results from these
papers are published also in monograph [2].
In [15], the equation
(3) 2w + (Boz? + Pr2)w’ + (7022 + 712+ 2w = a2 + a1z + o

is considered with real parameters and the existence and close-to-convexity of its
polynomial solutions are studied. In particular, it is proved that in order that the
polynomial

P
(4) Fz) =) faz", deg f=p=>2,

n=0
be a solution of the differential equation (3), it is necessary that v = pBy +v1 = 0.
Substituting (4) into (3), we get [15]
(5)  efo=az, (Bi+72)fi =ar+pbofo, (2+261+7)f2=a0+(—1)bf1
and for 3<n <p
(6) (n(n+pr = 1) +72)fn = (p =1+ 1)Bofn-1-

If we assume that n(n+ 81 — 1) + 2 # 0 for all 3 < n < p, it allows us to rewrite the
equality (6) in the form

whence it follows that f, = 0, if By = 0. Therefore, further we assume also that §y # 0.
In the case of real parameters for the study of the close-to convexity of the polynomi-

al
P

(8) g2) =2+ gus",
n=2

Alexander’s criterion [16,17] was used. Here we are going to consider a case of complex
parameters By, 1, Y0, Y1, Y2, 0, &1, a2 and we will use the following lemma [16,17].

P P

Lemma 1. Ifz n|gn| < 1 then polynomial (8) is a starlike function and zfz n?|gn|<1
n=2 n=2

then polynomial (8) is a convex function.

Using Lemma 1 we prove the following statement.
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Lemma 2. Let &, # 0, & = gn/gn-1 for 2<n <p and
n
f:max{§n|:3§n§p}.
n—1

If 2|go| < 1 — & then polynomial (8) is a starlike function and if 4|go| < 1 — 3£/2 then
polynomial (8) is a convez function.

Proof. Since g, = &,9n_1 for 2 < n < p, we have

P p

Zn|gn| = Zn|§n‘|gn—1‘ =

n=2 n=2

p—1
= "+ D)lens1llgal =
n=1

p

n—+1

= 2|go| + E n [€nt1lnlgnl, &pr1 =0,
n=2

n+1

P
. n+1 .
Le., E (1 i~ |§n+1|> nlgn| = 2|g2|. Since {41 = 0 and |€nt1| < & < 1 for

n
n=2

P
2 <n <p-—1, hence it follows that (1 — &) > n|g,| < 2|g2|. Therefore, if 2|ga] <1 — &
n=2
p

then Z n|gn| <1 and by Lemma 1 polynomial (8) is a starlike function.

2
g*:max{(nill) §n|:3§n§p}

P
and suppose that 4|ga] < 1 — £* then as above we get (1 — £*) Zn2|gn\ < 4ga|, i.e.,

n=2

n=2

If we put

P
Zn2|gn| < 1 and by Lemma 1 polynomial (8) is a convex function. Since £* < 3¢/2,

n=2
the proof of Lemma 2 is complete. O

In view of (5) and (6) it is clear that the existence of convex or close-to-convex
solution (4) of differential equation (3) depends on the equality to zero of the parameter
~2. Therefore, we will consider two cases: v # 0 and v = 0.

2. THE CASE 7, #0
From the first equality (5) it follows that fo = aa/72, and the second equality (5)
implies
(B1 +72) f1 = a1 + pPoaa/7e-

For the close-to-convexity of f the condition f; # 0 is necessary. This condition is not
necessary for the convexity of the function f, but since we are going to use Lemma 2,
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then we will assume that f; # 0. Therefore, from the last equality it follows that either
Bi+ 72 # 0 and an + pBoas/y2 # 0 or B1 + 72 = a1 + pBoaz/v2 = 0.

+ .
If 51472 # 0 and oy +pBoca/v2 # 0 then f; = w, and if 24281+ £ 0
Y2(B1 +72)
then from the third equality (5) we obtain
(p — 1)Bo(a1y2 + pPocz) + aoy2(B1 + 72)

f2= Y2(B1 +72)(2+ 251 +72)
Thus, the desired solution should be

_ oy oayetpboas (p—1)Bo(a1v2+pBoca) +enr2(Bity2) o | o n
® 1) = 72 (Bite) Y2 (B1+72)(242B1+72) : +7;)fnz

where the coefficients f,, satisfy (7). The following theorem is true.

Theorem 1. Let p > 3, 72 # 0, vo = pBo+ 71 = 0, f1 + 72 # 0, ary2 + pBoas # 0.
Then:
) if

(10) P

-6
80| + 2 aoy2(B1 +72)
2 a1v2 + pBoa:
then differential equation (3) has polynomial solution (9) close-to-convex in D
and if 3(p — 2)|Bol/2 < 2 — |B1| — |2|/3 all its derivatives fO) (1 < j < p—1)
are close-to-conver;

2) if

(11)

<2—-2|B1] = |72l

19p — 22 a0y2(B1 +72)

4 172 + pPoae

then differential equation (3) has polynomial solution (9) convex in D and if

11(p — 2)|Bo|/4 < 2 — |B1| — |72|/3 all its derivatives f9) (1 < j < p—1) are
conver.

|Bol +4 <2-2/B] = |l

Proof. For polynomial (8) with g, = f/f1 we have

_ _(p=Dbo ag2(Br +72) .
92 = 5128 + + @26 + ) (@1 + phoa) =& =&,

and since (10) implies |2 + 281 + 72| > 2 — 2|51] — |72| > 0, we get

1
1) ol =lel < g (- i+ SREEC).
For 3 <n <p from (7) we obtain
g :ﬁzgnfnflzé.g
n fl fl nYn—1,
~ (p=n+1DB
where &, = 2t A=) + s and
Do le ondDl __ (pon+ DI
n—=1"""" (n=1)(n—[b]-1-|el/n) = (n—1)(2-2[B1] = |r2])’
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ie.,
n (p — 2)| 6ol
13 f:max{f :3<n<p}< .
) w1 22— 21| - 1)

It is easy to check that (10), (12) and (13) imply the inequality 2|g2| < 1—¢&. Therefore, by
Lemma 2 the polynomial g is a starlike function and, thus, function (9) is close-to-convex
in D.
For 1 < j < p — 2 the derivative
P—J
(14) FOR) =+ G+ D) e+ > (n+D(n+2)... (n+ ) far2"
n=2
is close-to-convex in D if and only if the function

I o S (A D)m42) (4 ) fuss
1 G =2t D gt gns = RS

is close-to-convex in D. For 1 < j <p—2and 2<n <p—j we have 3 <n+j <p, and

)

in view of (7) and (15) we get
A0t  pen=t DR
" (7 + D (n+ )+ +B—1)+7" "
D0+t G+ B
G+ Dim ") (ntg— 1)
n +3J
€n+7gn 1,55
(p—n+1)Bo

where as above &, =

. Therefore, to apply Lemma 2, we need to find
n(n+p1—1) +7 PPy
a condition under which

(16) 2yl <1— max T iono max 2 )
From (7) and (15) we have
Dgas| = 23 U+ 2 fjrel
(G + DUyl
- it2 -Gl
2 |(G+2)(G+2+061— 1)+
(p—3—1)|B
T+l (B] = el/+2)
and
max |§n+]|< max 4n+j ‘(p—n.—j+1)\,6’o| <
3<n<p—j n — ssnsp—jn—1(n+j)(n+j—|fl—1)— |l
» ¢ omae L on—gtDL
s<n<p—jn—1n+j—|[B1] =1~ |yl|/(n+j)

1 (p—3j—1)|Bol
T2j4+1— Bl = el/G+2)
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From (17) and (18) it follows that if
(19) Bp—7—=DlbBol/2<j+1—B1] = 1n2l/(2+)

for 1 < j < p— 2 then (16) holds and by Lemma 2 the derivative fU) for 1 <j <p—2
is close-to-convex in D.
Finally, we remark that (19) holds for all 1 < j <p —2if

3(p=2)|Pol/2 <2 —[B1| = 2l /3.

Since f(P=1) is a linear function and, thus, it is close-to-convex, the first part of Theorem 1
is proved.

If condition (11) holds then from (12) and (13) we obtain the inequality 4|gs| <
< 1-—3¢/2, and by Lemma 2 polynomial (9) is a convex function.

If
H(p—7—1)][Bo , .
(20) woI =Dl 511~ s+ )
for some 1 < j < p— 2 then (17) and (18) imply
3 n+j
4925l <1— 9 3<I7Ill<ap in— |§n+]‘

Therefore, by Lemma 2 function (15) is convex and, thus, function (14) is convex. Finally,
we remark that (20) holds for all 1 < j < p—2if 11(p — 2)|5o|/4 < 2 —|B1| — |12|/3. The
proof of Theorem 1 is complete. O

Now suppose that 81 + 72 = a1 + pBoaz/v2 = 0. Then from the second equality
(5) it follows that f; may be arbitrary. If we choose f; = 1 then under the condition

w. From (7) under

24 81 # 0 in view of the third equality (5) we get fo = 515
1

the condition n + 51 # 0 we obtain

(p—n+1)B
(n—=1)(n+ 1)

Thus, the desired solution has the form

22 f6) = 22 4oy 022D ﬂoQJern ,

(21) In= frn-1, 3<n<p.

where the coefficients f,, satisfy (21), and we will come to such a theorem.

Theorem 2. Let p >3, 72 # 0, 0 = pBo + 71 = B1 + Y2 = a1y2 + pBoaz = 0. Then:
1) if

(23) L

|Bo| + 2|ao| <2 —[B]

then differential equation (3) has polynomial solution (22) close-to-convex in D
and if 9(p — 2)|Bo|/4 < 3 — |B1| all its derivatives fU) (1 < j < p—1) are
close-to-conver;
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41p — 50
ol + dlao] < 2 18y]

then differential equation (3) has polynomial solution (22) convez in D and if
33(p — 2)|Bol/8 < 3 — |1 all its derivatives fO) (1< j <p—1) are conver.

Proof. For polynomial (8) with g, = f,, for 1 <n < p now we have

o+ (p—1)Bo < lovo| + (p — 1)|Bol

(28) lo2] = 2+ 5 - 2— |

and in view of (21)
n_ (p—n+1)|bl
T A R e

3(p = 2)|Bol
43 = |B])
3(p — 2)|fol
42— [Al)
From (23), (25) and (26) it follows that 2|go| < 1 — £. Then by Lemma 2 the function g
is starlike and, thus, function (22) is close-to-convex.

If (24) holds then using (25), (26) and Lemma 2 similarly we prove the convexity
of polynomial (22).

Let us turn to the derivative f(9), 1 < j < p—2. For the coefficients gn,; of function
(15) now in view of (21) we have

(26)

A

n+j
gnj =~ En+ign-1j =

n+j (p—n—3j+1)b

T RS B o R
Therefore,
2+j  (p—J—1lBl
27 92,5 < - .
27 923l S T G DG T2 - 16
and
n+j., n+j  (p—n—j+1)B

max |ént;] < max - - <

(28) 3<n<pn —1 3<n<pn—1(n+j—1n+j—16])

<12+ = =1)Bl
T20G+HDE2+I B

If forsome 1 <j<p—2
(29) 32+ —i=Dlbol/2< G+ DG +2—1B1])
then (27) and (28) imply

n+j
2g2,5l <1— Jpax m\fmﬂ

and by Lemma 2 fU) is close-to-convex in ID.
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If for some 1 <j<p—2
(30) 112+ 5)(p—7 = DIbol/4< G+ 1) +2—5])
then (27) and (28) imply

3 n+j
4|g2’j| 1= 5 3I£a<p n—

|§7l+] ‘

and by Lemma 2 fU) is convex in D.
Finally, we remark that (29) holds for all 1 < j <p—21if 9(p — 2)|Bo|/4 < 3 —|B1],
and (30) holds for all 1 < j < p—2if 33(p—2)|5o|/8 < 3—|F1]. Theorem 2 is proved. O

3. THE CASE v =0

From first equality (5) it follows that s = 0 and fy may be arbitrary. If we choose
fo =0 then from (5) and (7) we get

(31) prf1 = au, 2014+ B1)fa= a0+ (p—1)Bof1
and
(p—n+1)B
32 n= "7 Jn-1, 3<n<p.
Since we consider f; # 0, from the first equality (31) it follows that either 81 # 0 and
ap #0Qor 1 =a; =0.If 51 #0 and a; # 0 then f; = B— and
1
_apB+ (p—1DaiBo
fa=
26811 + B1)
Thus, the desired solution has the form

ar agB+ (p—1)a1fo L2
33 z2)=—z+ + nz',
(33) 1z fr 2B1(1+ B1) Zf

where the coefficients f,, satisfy (32), and we will come to the following theorem.

Theorem 3. Letp>3, o =as =% =71 +pBo =0, 81 #0 and oy # 0. Then:
1) if
aof

p — 4
4
(3) 1ol + |22

<1— |3

then differential equation (3) has polynomial solution (33) close-to-convex in D
and if 3(p — 2)|Bo|/2 < 2 — |B1| all its derivatives fU) (1 < j < p—1) are
close-to-conver;

2) if

1129 01051

|ﬁ0|

<1-—|B]

then differential equation (3) has polynomial solution (33) convez in D and if
11(p — 2)|Bo|/4 < 2 — |B1| all its derivatives f9) (1 <j<p—1) are conves.
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The proof of this theorem is the same as proofs those of the previous theorems.

|aol|B1] + (p — 1)[a || Bol (p—n+1)p
We remark only that now < , & = —— and
y S P (=T R e =
£< ;(1 — |)|ﬂﬁ(|)) whence it follows that 2|ga| < 1 —¢ if (34) holds and 4|go| <1 —3¢/2 if
(35) holds. For some 1 < j < p—1 as above we have g, ; = +‘7§nﬂgn 1,j, Where now
€y = (p—n—3j+1Bo
T4+ Bi—1)
(p )|Bol
whence ~— = and
9201 < 3T )
— (p—J —1)[Bo]
5 T 3r<117?‘<p n — |§n+]‘ = 2( |B1|)

Therefore, 2|g2 ;| < 1—-¢if 3(p— 75— 1)|fo]/2 < j+1— |51 and 4|g2 ;| < 1 —3£/2
if 11(p —j — 1)|Bol/4 < 7+ 1 — |F1]- It remains to notice that the last conditions
hold for all 1 < j < p — 1 provided 3(p — 2)|6o|/2 < 2 — |51] and 11(p — 2)|Bo|/4 <
< 2 — |B1| respectively and use Lemma 2.

If p1 = az = 0 from (31) it follows that fi; may be arbitrary. If we choose f1 =1

—1
then fy — M and
(p—n+1)Bo

== P f <n<np.
(36) fn n(n—l) fn 1, 3_n_p
Therefore, the desired solution has the form

Jr

(37) f() = 4 Lot 2= Do 5°2+§jﬁl,

where the coefficients f,, satisfy (36), and we will come to the following theorem.

Theorem 4. Let p > 3, v2 =as =7 =71 +pPo = P1 = a1 = 0. Then:
1) if (5p—6)|5o|/4+ || < 1 then differential equation (3) has polynomial solution
(37) close-to-convez in D and if 3(p — 2)|Bo| < 4 all its derivatives f9) (1< j <
p — 1) are close-to-convez in D;
2) if (19p — 22)|50]/8 + 2|ag| < 1 then differential equation (3) has polynomial
solution (37) convex in D and if 11(p — 2)|Bo| < 8 all its derivatives ) (1 <
Jj <p-—1) are convex in D.

Proof. Choosing g, = fn, we have 2|ga] < (p — 1)|Bo| + || and & < (p — 2)|5o|/4.
Therefore, in view of the condition (5p — 6)|5o|/4 + || < 1 we get 2|g2] < 1 — ¢ and,
thus, polynomial (37) is starlike. Also in view on the condition (19p—22)|5y|/842|ag| < 1
we get 4|ga| <1 —3£/2, i. e. polynomial (37) is convex.

(p =4 = Dbl

j+1
€= max " < (p—=j = Dlb|

Bax oy el < 2(j + 1)

Similarly, for some 1 < j < p — 1 we have 2|ga ;| < and

)
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whence 2[gp ;| < 1-£if 3(p—j—1)[Bo| < 2(j+1) and 4[gz ;| < 1-3¢/2if 11(p—j—1)[Bo| <
4(j+1). Since the last conditions hold if 3(p—2)|5y| < 4 and 11(p—2)|5y| < 8 respectively,
Theorem 4 is proved. D

4. ADDITIONS

First of all, we note that the condition p > 3 is not essential in Theorems 1 - 4.
Repeating their proofs, one can prove for p = 2 the following statements.

Proposition 1. Let v # 0, 70 = 280 +71 =0, B1 + 72 # 0, a1ya + 28paz # 0. Then
differential equation (3) has a polynomial solution

as a1z +2Boas | Bolarye +2Bpaz) + e (B +72) .2
2 72(B1+2) Y2(B1 +72)(2+ 281 +72)

which is close-to-convez if the condition

f(z) =

agy2(B1 +2)

213| + 2
[Pol a1y2 + 280

<2 —=2|B1] = |72l

holds, and convex in D if the condition

apy2 (1 + 72)

48| + 4
o a1y2 + 2Bpan

<2=2|B1] = |72l

holds.

PI‘OpOSitiOIl 2. Let Y2 7é 0, Yo = 2,80 + Y1 = 61 + Yo = (172 + 2,60042 = 0. Then
differential equation (3) has a polynomial solution

Qo ag+Bo
z)=—+z+——5>2
fz) V2 2+

which is close-to-convex if the condition 2|8y| + 2|ao| < 2 — |B1| holds, and convez in D
if the condition 4|Bo| + 4|ao| < 2 — |B1] holds.

Proposition 3. Let 72 = g = v9 = 11 + 260 =, f1 # 0 and a1 # 0. Then differential
equation (3) has a polynomial solution

a aof1 +a1bo o
2)= =2+ ———

1) Ej1 261(1+ B1)

which is starlike if the condition |Bo|+ |aoB1 /1] < 1— 81| holds, and convez in D if the

condition 2|Bo| + 2|1 /1| <1 — 81| holds.

Proposition 4. Let v = as = 79 = 71 + 280 = 1 = a1 = 0. Then differential equation
(3) has a polynomial solution

flz)=z+ 7040-2%3022

which is starlike if the condition |Bo| + |ao| < 1 holds, and convex in D if the condition
2‘50| + 2|Oéo| < 1 holds.
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Recall that before obtaining the above results we demanded the fulfillment of condi-
tions n(n+ 1 — 1) + 12 # 0 for all 3 <n < p and By # 0. Here we suppose that Sy = 0.
Then the equality 7o = pBo + 71 = 0 implies 79 = ~; = 0, and thus, from (5) and (7) we
get

(38) v2fo = aa, (Br+72)f1 = o, (24281 4+72)fe = a0
and for 3<n <p
(39) (n(n + 51 — 1) + 72)fn =0.

From (39) it follows that if p(p 4+ 81 — 1) + 72 = 0 then f, # 0 may be arbitrary. Two
cases are possible:

) nn+6—1)+1r#0forall3<n<porp=3; and
2) there is only one 3 < p; < p such that p;(p1 + 51 — 1) + 12 =0.

In the first case we have
f(2) = fo+ fiz+ faz? + fp2P
for p > 3. If 2 # 0 from (38) we obtain

(65) (651 (67))
40 = —, = s =
(40) Jo - fi Bt 2 525,
To use Lemma 1, we need to choose f, # 0 so that 2|fz/f1] + p|fp/f1] < 1,1. e.
(41) 2|0/ (2 + 281 +72)| + plfpl < lar/(Br +72)]

(clearly, this is possible if 2|ag/(2 + 281 + 72)| < |a1/(B1 +72)|)- If 72 = 0 then ay =0
and coeflicient f; can be chosen equal to zero. Then

(42) fo=0,  fi=a/B, fo=a0/(2+25)
and we need to choose f, # 0 so that
(43) |lao/(L+ Bu)| + plfp| < |/l

(this is possible if |ag /(14 B1)] < |a1/B1])-
Thus, the following statement is valid.

Proposition 5. Let 8y = 70 = 71 = 0, and (39) holds only for n = p > 3. Then
differential equation (3) has a polynomial solution

f(2) = fo+ fiz + f222 + fp2?

close-to-convex in D provided either vo # 0, a; # 0 and the coefficients are defined by
(40) and (41) or v5 =0, a1 # 0 and the coefficients are defined by (42) and (43).

Remark 1. If in Proposition 5 conditions (41) and (43) are replaced by the conditions
dlao/ (2 + 281 +72)| + P2 If,l < laa/(Br +72)]
and

2lao/(1+ Bu)| + P?|fpl < |/ Bi]
respectively then close-to-convexity should be replaced by convexity.
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Ifp>3, pp+ P —1)+72 =0and pi(p1 + 1 — 1) + 72 = 0 for some 3 < p; <p
then if 7o # 0 from (38) we obtain (40) and we choose fp,, # 0, f, # 0 so that

(44) 2{a0/(2+ 261 + 2)[ 4+ prlfp. | + Pl S| < lea/(Br +72)l.
If 45 = 0 then from (38) we obtain (42) and we choose f,, # 0, f, # 0 so that
(45) o/ (1 + Bl + palfpu | + plSpl < lea /Bl

Proposition 6. Let Sy = 70 = 11 = 0, and (39) holds for n = p; and n = p > 4,
3 < p1 < p. Then differential equation (3) has a polynomial solution

f(2) = fo+ fiz + fo2® + fp 2P + fp2?

close-to-convex in D provided either vo # 0, ay # 0 and the coefficients are defined by
(40) and (44) or v9 = as =0, a1 # 0 and the coefficients are defined by (42) and (45).

Remark 2. If in Proposition 6 conditions (44) and (45) replaced by the conditions

Alao/(2+ 281 +92) + Pilfp, [+ P21l < lon/ (B +72)]
and
2|ao/(1+ Bu)| + Pi| .| + 1| fpl < lar /B
respectively then close-to-convexity should be replaced by convexity.
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BJIACTUBOCTI ITIOJIIHOMIAJIbHUNX PO3B’4A3KIB
JANOEPEHIIAJIBHOTI'O PIBHAHHA APYTOI'O ITIOPAJAKY
3 ITIOJITHOMIAJIbBHNUMU KOE®IIMIECHTAMMN APYIT'OI'O
CTEIIEHA

Mupocsas IITEPEMETA, IOpiii TPYXAH

Jveiecvruti HaytonarvHul ynisepcumem imens Isana Dparka,
eya. Yuisepcumemcovra 1, 79000, m. JIveis
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Ananitnuna ommommcra B D = {z : |z| < 1} dyskuis [ HasuBaeThCs
omyksoi0, akmo f(D) - omyksa obracte. Jobpe Bimomo, mo ymoBa
Re{l+zf"(2)/f ()} >0 ( € D)
€ HeoOXiIHOI0 1 MOCTaTHROIO st omykiocTi f. Dyukuis f HA3MBAETHCS GJIN3b-
KOIO JI0 OIYKJIOI, SIKIIO iCHy€ Taka omyksa B D dynkiis ¢, o
Re (f'(2)/®'(2)) > 0 (z € D).

Bausbka mo onyksiol dysknis f xapakTepusyeTbCd THM, WO J0noBHeHHA G
1o obsacti f(D) MoXKHA TOKPUTH TPOMEHsIMH, siki Buxoaarh 3 OG 1 jexarsb
B (. Koxmna 6im3pka 10 ouykimoi B D dynknis f € ogmonmcroo B D i Tomy
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f(0) #0.
3HaiieHo yMoBHu Ha mapametpu So, 51, Yo, Y1, Y2 1 &, a1, 2 audepeHIiaib-
HOTO DiBHAHHSA

22w 4 (Bo2” + Brz2)w’ + (Y027 + iz + y2)w = a2’ + a1z + az,

3a SAKUX Ile PIBHSHHS Ma€ MMOJIHOMIAJIBHUI PO3B’SI30K
P
fz) =) faz"  (deg f=p=>2),
n=0

6m3bKmil 10 omyksioro abo omykmauit B D pazom 3 ycima itoro moximaumu f €2
(1 < j < p—1). Pesysbraru 3anexarp Big piBHOCTI 4m HepiBHOCTI HyJeBi
mapamMerpa vz.
Hanpuknan, nosemeno, mo 3a ymos p > 3, y2 # 0,

Yo =pPBo+ 71 = B1+ 72 = a1y2 + pPoaz = 0.

11e PIBHSIHHSI MA€ OJIIHOMIAIBHUN PO3B’I30K

. a0+ (p—1)Bo 2 a n
f(z)=a2/y2+2+ 51 B z +nZ::3fnZ7
ne koedirienTr f,, BUSHAYAIOTHCS PIBHICTIO
(p—n+1)Bo

fn = far B <n<p),

(n—=1)(n+ B1)
TAKWH I10:
1) o (11p — 14) 8ol /4 + 2lao] < 2~ |B1] i 11(p— 2)[Aol/4 < 3~ |Bu], 10 f €
GuM3BLKEM 10 OIyKsoro B ID pasom 3 ycima ioro moximmmvu [ (1 < j < p—1);
2) o (73p — 82)| ol /16 + Alao| < 2 — |B1] i 33(p — 2)[Bo]/8 < 3 — |1, 10 f
¢ omykmam B D pasom 3 ycima itoro moxigmmm f9) (1< j <p—1).
IToni6uuit pesynaprar orpumano i y sunaaky vz = 0.

Karouost crosa: minitine Heommopigue mudepenmiaabae PIBHSIHHS IPYroro

MOPSIIKY, MOJiHOMIaIbHI KoedImieHTH, MOTIHOMIAIBHII PO3B’ 30K, 6/IM3bKA 10
omyky0l bYHKIIis, OIyKaa dYHKITiS.



