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We study feebly compact shift-continuous T1-topologies on the symmetric
inverse semigroup I n

λ of �nite transformations of the rank 6 n. It is proved
that such T1-topology is sequentially pracompact if and only if it is feebly
compact. Also, we show that every shift-continuous feebly ω-bounded T1-
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1. Introduction and preliminaries

We follow the terminology of the monographs [4, 6, 10, 29, 32, 33]. If X is a topologi-
cal space and A ⊆ X, then by clX(A) and intX(A) we denote the topological closure and
interior of A in X, respectively. By |A| we denote the cardinality of a set A, by A4B
the symmetric di�erence of sets A and B, by N the set of positive integers, and by ω the
�rst in�nite cardinal. By D(ω) and R we denote an in�nite countable discrete space and
the real numbers with the usual topology, respectively.

A semigroup S is called inverse if every a in S possesses a unique inverse a−1, i.e.,
if there exists a unique element a−1 in S such that

aa−1a = a and a−1aa−1 = a−1.

A map which associates to any element of an inverse semigroup its inverse is called the
inversion.
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If S is a semigroup, then by E(S) we denote the subset of all idempotents of S.
On the set of idempotents E(S) there exists a natural partial order: e 6 f if and only if

ef = fe = e. A semilattice is a commutative semigroup of idempotents. We observe that
the set of idempotents of an inverse semigroup is a semilattice [34].

Every inverse semigroup S admits a partial order:

a 4 b if and only if there exists e ∈ E(S) such that a = eb.

We shall say that 4 is the natural partial order on S (see [4, 34]).
Let λ be an arbitrary nonzero cardinal. A map α from a subset D of λ into λ is

called a partial transformation of λ. In this case the set D is called the domain of α and
is denoted by domα. The image of an element x ∈ domα under α is denoted by xα.
Also, the set {x ∈ λ : yα = x for some y ∈ Y } is called the range of α and is denoted
by ranα. For convenience we denote by ∅ the empty transformation, a partial mapping
with dom∅ = ran∅ = ∅.

Let Iλ denote the set of all partial one-to-one transformations of λ together with
the following semigroup operation:

x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ domα : yα ∈ domβ}, for α, β ∈ Iλ.

The semigroup Iλ is called the symmetric inverse semigroup over the cardinal λ (see
[6]). For any α ∈ Iλ the cardinality of domα is called the rank of α and it is denoted
by rankα. The symmetric inverse semigroup was introduced by V. V. Wagner [34] and
it plays a major role in the theory of semigroups.

Put I n
λ = {α ∈ Iλ : rankα 6 n}, for n = 1, 2, 3, . . .. Obviously, I n

λ (n = 1, 2, 3, . . .)
are inverse semigroups, I n

λ is an ideal of Iλ, for each n = 1, 2, 3, . . .. The semigroup I n
λ

is called the symmetric inverse semigroup of �nite transformations of the rank 6 n [21].
By (

x1 x2 · · · xn
y1 y2 · · · yn

)
we denote a partial one-to-one transformation which maps x1 onto y1, x2 onto y2, . . .,
and xn onto yn. Obviously, in such case we have xi 6= xj and yi 6= yj for i 6= j (i, j =
1, 2, 3, . . . , n). The empty partial map ∅ : λ ⇀ λ is denoted by 0. It is obvious that 0 is
zero of the semigroup I n

λ .
Let λ be a nonzero cardinal. On the set Bλ = (λ × λ) ∪ {0}, where 0 /∈ λ × λ, we

de�ne the semigroup operation � · � as follows

(a, b) · (c, d) =

{
(a, d), if b = c;

0, if b 6= c,

and (a, b) · 0 = 0 · (a, b) = 0 · 0 = 0 for a, b, c, d ∈ λ. The semigroup Bλ is called
the semigroup of λ × λ-matrix units (see [6]). Obviously, for any cardinal λ > 0, the
semigroup of λ× λ-matrix units Bλ is isomorphic to I 1

λ .
A subset A of a topological space X is called regular open if intX(clX(A)) = A.
We recall that a topological space X is said to be

• semiregular if X has a base consisting of regular open subsets;
• compact if each open cover of X has a �nite subcover;
• sequentially compact if each sequence {xi}i∈N of X has a convergent subsequence
in X;
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• countably compact if each open countable cover of X has a �nite subcover;
• H-closed if X is a closed subspace of every Hausdor� topological space in which
it is contained;

• ω-bounded-pracompact if X contains a dense subset D such that each countable
subset of D has the compact closure in X [20];

• infra H-closed provided that any continuous image of X into any �rst countable
Hausdor� space is closed (see [27]);

• totally countably pracompact if there exists a dense subset D of the space X such
that each sequence of points of the set D has a subsequence with the compact
closure in X [20];

• sequentially pracompact if there exists a dense subset D of the space X such that
each sequence of points of the set D has a convergent subsequence [20];

• countably compact at a subset A ⊆ X if every in�nite subset B ⊆ A has an
accumulation point x in X [1];

• countably pracompact if there exists a dense subset A in X such that X is
countably compact at A [1];

• feebly ω-bounded if for each sequence {Un}n∈N of nonempty open subsets of X
there is a compact subset K of X such that K ∩ Un 6= ∅ for each n [20];

• selectively sequentially feebly compact if for every family {Un : n ∈ N} of
nonempty open subsets of X, one can choose a point xn ∈ Un for every n ∈ N in
such a way that the sequence {xn : n ∈ N} has a convergent subsequence ([8]);

• sequentially feebly compact if for every family {Un : n ∈ N} of nonempty open
subsets of X, there exists an in�nite set J ⊆ N and a point x ∈ X such that the
set {n ∈ J : W ∩Un = ∅} is �nite for every open neighborhood W of x (see [9]);

• selectively feebly compact for each sequence {Un : n ∈ N} of nonempty open
subsets of X, one can choose a point x ∈ X and a point xn ∈ Un for each n ∈ N
such that the set {n ∈ N : xn ∈W} is in�nite for every open neighborhood W of
x ([8]);

• feebly compact (or lightly compact) if each locally �nite open cover of X is �ni-
te [3];

• d-feebly compact (or DFCC ) if every discrete family of open subsets in X is �nite
(see [31]);

• pseudocompact if X is Tychono� and each continuous real-valued function on X
is bounded;

• Y -compact for some topological space Y , if f(X) is compact, for any continuous
map f : X → Y .

According to Theorem 3.10.22 of [10], a Tychono� topological space X is feebly
compact if and only if X is pseudocompact. Also, a Hausdor� topological space X is
feebly compact if and only if every locally �nite family of nonempty open subsets of X is
�nite. Every compact space and every sequentially compact space are countably compact,
every countably compact space is countably pracompact, every countably pracompact
space is feebly compact (see [1]), every H-closed space is feebly compact too (see [19]).
Also, every space feebly compact is infra H-closed by Proposition 2 and Theorem 3 of
[27]. Using results of other authors we get that the following diagram which describes
relations between the above de�ned classes of topological spaces.
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A topological (semitopological) semigroup is a topological space together with a
continuous (separately continuous) semigroup operation. If S is a semigroup and τ is
a topology on S such that (S, τ) is a semitopological semigroup, then we shall call τ
a shift-continuous topology on S. An inverse topological semigroup with the continuous
inversion is called a topological inverse semigroup.
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Topological properties of an in�nite (semi)topological semigroup λ×λ-matrix units
were studied in [15, 17]. In [15] it was shown that on the in�nite semitopological semi-
group of λ×λ-matrix units Bλ there exists a unique compact shift-continuous Hausdor�
topology τc and also it is shown that every pseudocompact Hausdor� shift-continuous
topology τ on Bλ is compact. Also, in [15] it is proved that every nonzero element of a
Hausdor� semitopological semigroup of λ×λ-matrix units Bλ is an isolated point in the
topological space Bλ. In [15] it is shown that the in�nite semigroup of λ×λ-matrix units
Bλ cannot be embedded into a compact Hausdor� topological semigroup, every Hausdor�
topological inverse semigroup S that contains Bλ as a subsemigroup, contains Bλ as a
closed subsemigroup, i.e., Bλ is algebraically complete in the class of Hausdor� topologi-
cal inverse semigroups. This result in [14] is extended onto the called inverse semigroups
with tight ideal series and, as a corollary, onto the semigroup I n

λ . Also, in [21] it was
proved that for every positive integer n the semigroup I n

λ is algebraically h-complete in
the class of Hausdor� topological inverse semigroups, i.e., every homomorphic image of
I n
λ is algebraically complete in the class of Hausdor� topological inverse semigroups. In

the paper [22] this result is extended onto the class of Hausdor� semitopological inverse
semigroups and it is shown therein that for an in�nite cardinal λ the semigroup I n

λ

admits a unique Hausdor� topology τc such that (I n
λ , τc) is a compact semitopological

semigroup. Also, it was proved in [22] that every countably compact Hausdor� shift-
continuous topology τ on Bλ is compact. In [17] it was shown that a topological semi-
group of �nite partial bijections I n

λ with a compact subsemigroup of idempotents is
absolutely H-closed (i.e., every homomorphic image of I n

λ is algebraically complete in
the class of Hausdor� topological semigroups) and any Hausdor� countably compact
topological semigroup does not contain I n

λ as a subsemigroup for an arbitrary in�ni-
te cardinal λ and any positive integer n. In [17] there were given su�cient conditions
onto a topological semigroup I 1

λ to be non-H-closed. Also in [11] it is proved that an
in�nite semitopological semigroup of λ × λ-matrix units Bλ is H-closed in the class of
semitopological semigroups if and only if the space Bλ is compact. In the paper [12]
we studied feebly compact shift-continuous T1-topologies on the semigroup I n

λ . For any
positive integer n > 2 and any in�nite cardinal λ a Hausdor� countably pracompact
non-compact shift-continuous topology on I n

λ is constructed there. In [12] it is shown
that for an arbitrary positive integer n and an arbitrary in�nite cardinal λ for a shift�
continuous T1-topology τ on I n

λ the following conditions are equivalent: (i) τ is countably
pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) (I n

λ , τ) is H-closed;
(v) (I n

λ , τ) is D(ω)-compact; (vi) (I n
λ , τ) is R-compact; (vii) (I n

λ , τ) is infra H-closed.
Also in [12] we proved that for an arbitrary positive integer n and an arbitrary in�nite
cardinal λ every shift-continuous semiregular feebly compact T1-topology τ on I n

λ is
compact. Similar results were obtained for a semitopological semilattice (expnλ,∩) in
[23, 24, 25]. Also, in [26, 30] it is proved that feeble compactness implies compactness for
semitopological bicyclic extensions.

In this paper we study feebly compact shift-continuous T1-topologies on the
symmetric inverse semigroup I n

λ of �nite transformations of the rank 6 n. It is proved
that such T1-topology is sequentially pracompact if and only if it is feebly compact. Also,
we show that every shift-continuous feebly ω-bounded T1-topology on I n

λ is compact.
The results of this paper are announced in [13].
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2. On feebly compact shift continuous topologies on the

semigroup I n
λ

Later we shall assume that n is an arbitrary positive integer.
For every element α of the semigroup I n

λ we put

↑lα =
{
β ∈ I n

λ : αα−1β = α
}

and ↑rα =
{
β ∈ I n

λ : βα−1α = α
}
.

Then Proposition 5 of [22] implies that ↑lα = ↑rα and by Lemma 6 of [29, Section 1.4]
we have that α 4 β if and only if β ∈ ↑lα for α, β ∈ I n

λ . Hence we put ↑4α = ↑lα = ↑rα
for any α ∈ I n

λ .

Remark 1. Later we identify every element α of the semigroup I n
λ with the graph

graph(α) of the partial map α : λ ⇀ λ (see [29]). Then according to this identi�cation we
have that α 4 β if and only if α ⊆ β.

Lemma 1. Let n be an arbitrary positive integer and λ be any in�nite cardinal. Let α be

any nonzero element of the semigroup I n
λ with rankα = m 6 n. Then the poset (↑4α,4)

is order isomorphic to the poset (I n−m
λ ,4).

Proof. Suppose that

α =

(
x1 · · · xm
y1 · · · ym

)
for some x1, . . . , xm, y1, . . . , ym ∈ λ. If m = n then the inequality α 4 β in (I n

λ ,4)
implies α = β, and hence later we assume that m < n. Then for any β ∈ I n

λ such that
α 4 β by Remark 1 we have that

β =

(
x1 · · · xm xm+1 · · · xn
y1 · · · ym ym+1 · · · yn

)
for some xm+1, . . . , xn, ym+1, . . . , yn ∈ λ. Since λ is in�nite,

|λ| = |λ \ {x1, . . . , xm}| = |λ \ {y1, . . . , ym}|,
and hence there exist bijective maps u : λ\{x1, . . . , xm} → λ and v : λ\{y1, . . . , ym} → λ.
Simple veri�cations show that the map I : (↑4α,4)→ (I n−m

λ ,4) de�ned in the following
way α 7→ 0 and(

x1 · · · xm xm+1 · · · xn
y1 · · · ym ym+1 · · · yn

)
7→
(

(xm+1)u · · · (xn)u
(ym+1)v · · · (yn)v

)
is an order isomorphism. �

Later we need the following technical lemma from [12].

Lemma 2 ([12, Lemma 3]). Let n be an arbitrary positive integer and λ be an arbitrary

in�nite cardinal. Let τ be a feebly compact shift-continuous T1-topology on the semigroup

I n
λ . Then for every α ∈ I n

λ and any open neighbourhood U(α) of α in (I n
λ , τ) there

exist �nitely many α1, . . . , αk ∈ ↑4α \ {α} such that

I n
λ \I n−1

λ ∩ ↑4α ⊆ U(α) ∪ ↑4α1 ∪ · · · ∪ ↑4αk.

Lemma 3. Let τ be a feebly compact topology on I 1
λ such that ↑4α is closed-and-open

for any α ∈ I 1
λ . Then τ is compact.
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The statement of Lemma 3 follows from the fact that all nonzero elements of the
semigroup I 1

λ are closed-and-open in (I 1
λ , τ).

A family of non-empty sets {Ai : i ∈ I } is called a ∆-system (a sun�ower or a
∆-family) if the pairwise intersections of its members are the same, i.e., Ai ∩Aj = S for
some set S (for i 6= j in I ) [28]. The following statement is well known as the Sun�ower
Lemma or the Lemma about a ∆-system (see [28, p. 107]).

Lemma 4. Every in�nite family of n-element sets (n < ω) contains an in�nite ∆-sub-

family.

Proposition 1. Let n be an arbitrary positive integer and λ be an arbitrary in�nite

cardinal. Then every feebly compact shift-continuous T1-topology τ on I n
λ is sequentially

pracompact.

Proof. Suppose to the contrary that there exists a feebly compact shift-continuous T1-
topology τ on I n

λ which is not sequentially countably pracompact. Then every dense
subset D of (I n

λ , τ) contains a sequence of points from D which has no a convergent
subsequence.

By Proposition 2 of [12] the subset I n
λ \I

n−1
λ is dense in (I n

λ , τ) and by Lemma 2

from [12] every point of the set I n
λ \ I n−1

λ is isolated in (I n
λ , τ). Then the set I n

λ \
I n−1
λ contains an in�nite sequence of points {χp : p ∈ N} which has no a convergent

subsequence. If we identify elements of the semigroups with their graphs then by Lemma 4
the sequence {χp : p ∈ N} contains an in�nite ∆-subfamily, that is an in�nite subsequence
{χpi : i ∈ N} such that there exists χ ∈ I n

λ such that χpi ∩ χpj = χ for any distinct
i, j ∈ N.

Suppose that χ = 0 is the zero of the semigroup I n
λ . Since the sequence {χpi : i ∈ N}

is an in�nite ∆-subfamily, the intersection {χpi : i ∈ N} ∩ ↑4γ contains at most one set
for every non-zero element γ ∈ I n

λ . Thus (I n
λ , τ) contains an in�nite locally �nite family

of open non-empty subsets which contradicts the feeble compactness of (I n
λ , τ).

If χ is a non-zero element of the semigroup I n
λ then by Lemma 2 from [12], ↑4χ is

an open-and-closed subspace of (I n
λ , τ), and hence by Theorem 14 from [3] the space ↑4χ

is feebly compact. We observe that the element χ is the minimum of the poset ↑4χ. Since
the sequence {χpi : i ∈ N} is an in�nite ∆-subfamily, the intersection {χpi : i ∈ N} ∩ ↑4γ
contains at most one set for every element γ ∈ ↑4χ \ {χ}. Thus the subspace ↑4χ
of (I n

λ , τ) contains an in�nite locally �nite family of open non-empty subsets which
contradicts the feeble compactness of (I n

λ , τ). �

Proposition 2. Let n be an arbitrary positive integer and λ be an arbitrary in�nite cardi-

nal. Then every feebly compact shift-continuous T1-topology τ on I n
λ is totally countably

pracompact.

Proof. By Proposition 2 of [12] the subset I n
λ \I

n−1
λ is dense in (I n

λ , τ) and by Lemma 2

from [12] every point of the set I n
λ \I

n−1
λ is isolated in (I n

λ , τ). We put D = I n
λ \I

n−1
λ .

Fix an arbitrary sequence {χp : p ∈ N} of points of D.
It is obvious that at least one of the following conditions holds:

(1) for any η ∈ I n
λ \ {0} the set ↑4η ∩ {χp : p ∈ N} is �nite;

(2) there exists η ∈ I n
λ \ {0} such that the set ↑4η ∩ {χp : p ∈ N} is in�nite.
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Suppose that case (1) holds. By Lemma 2 of [12] for every point α ∈ I n
λ \ {0}

there exists an open neighbourhood U(α) of α in (I n
λ , τ) such that U(α) ⊆ ↑4α and

hence our assumption implies that zero 0 is a unique accumulation point of the sequence
{χp : p ∈ N}. By Lemma 2 for an arbitrary open neighbourhoodW (0) of zero 0 in (I n

λ , τ)
there exist �nitely many nonzero elements η1, . . . , ηk ∈ I n

λ such that(
I n
λ \I n−1

λ

)
⊆W (0) ∪ ↑4η1 ∪ · · · ∪ ↑4ηk,

and hence we get that {0} ∪ {χp : p ∈ N} is a compact subset of (I n
λ , τ).

Suppose that case (2) holds: there exists η1∈I n
λ \ {0} such that the set

↑4η1 ∩ {χp : p∈N} is in�nite. Then by Lemma 2 of [12], ↑4y1 is an open-and-closed

subset of (I n
λ , τ) and hence by Theorem 14 from [3] the subspace ↑4η1 of (I n

λ , τ)

is feebly compact. By Lemma 1 the poset (↑4η1,4) is order isomorphic to the poset
(Im1

λ ,4) for some positive integer m1 = 2, . . . , n− 1.
Let {χ1

p : p ∈ N} be a subsequence of {χp : p ∈ N} such that{
χ1
p : p ∈ N

}
= ↑4η1 ∩ {χp : p ∈ N}.

Then for the feebly compact poset (↑4η1,4) and the sequence {χ1
p : p ∈ N} at least one

of the following conditions holds:

(1)∗ for any η ∈ ↑4η1 \ {η1} the set ↑4η ∩ {χ1
p : p ∈ N} is �nite;

(2)∗ there exists η ∈ ↑4η1 \ {η1} such that the set ↑4η ∩ {χ1
p : p ∈ N} is in�nite.

Since every chain in the poset (↑4η1,4) is �nite, repeating �nitely many times our
above procedure we obtain two chains of the length s 6 n:

(i) the chain 0 4 η1 4 · · · 4 ηs of distinct elements of the poset (↑4η1,4); and
(ii) the chain

{χp : p ∈ N} ⊇
{
χ1
p : p ∈ N

}
⊇ · · · ⊇

{
χsp : p ∈ N

}
of in�nite subsequences of the sequence {χp : p ∈ N},

such that the following conditions hold:

(a) {χjp : p ∈ N} ⊆ ↑4ηj for every j = 1, . . . , s;

(b) either {χsp : p ∈ N}∪{ηs} is a compact subset of the poset (↑4η1,4) or the poset

(↑4ηs,4) is order isomorphic to the poset (I 1
λ ,4).

If {χsp : p ∈ N} ∪ {ηs} is a compact subset of (I n
λ , τ) then our above part of the

proof implies that the sequence {χp : p ∈ N} has the subsequence {χsp : p ∈ N} with the
compact closure.

If the poset (↑4ηs,4) is order isomorphic to the poset (I 1
λ ,4), then by Lemma 2

of [12] the subspace ↑4ηs of (I n
λ , τ) is open-and-closed and hence by Lemmas 1 and 3

the poset (↑4ηs,4) is compact. Then the inclusion {χsp : p ∈ N} ⊆ ↑4ηs implies that the
sequence {χp : p ∈ N} has the subsequence {χsp : p ∈ N} with the compact closure. This
completes the proof of the proposition. �

We summarise our results in the following theorem.

Theorem 1. Let n be any positive integer and λ be any in�nite cardinal. Then for any

T1-semitopological semigroup I n
λ the following conditions are equivalent:

(i) I n
λ is sequentially pracompact;
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(ii) I n
λ is totally countably pracompact;

(iii) I n
λ is feebly compact.

Proof. Implications (i) ⇒ (iii) and (ii) ⇒ (iii) are trivial. The corresponding their
converse implications (iii) ⇒ (i) and (iii) ⇒ (ii) follow from Propositions 1 and 2,
respectively. �

It is well known that the (Tychono�) product of pseudocompact spaces is not
necessarily pseudocompact (see [10, Section 3.10]). On the other hand Comfort and
Ross in [7] proved that the Tychono� product of an arbitrary family of pseudocompact
topological groups is a pseudocompact topological group. The Comfort�Ross Theorem is
generalized in [2] and it is proved that a Tychono� product of an arbitrary non-empty
family of feebly compact paratopological groups is feebly compact. Also, a counterpart of
the Comfort�Ross Theorem for pseudocompact primitive topological inverse semigroups
and primitive inverse semiregular feebly compact semitopological semigroups with closed
maximal subgroups was proved in [16] and [18], respectively.

Since the Tychono� product of H-closed spaces is H-closed (see [5, Theorem 3] or
[10, 3.12.5 (d)]) Theorem 1 implies a counterpart of the Comfort�Ross Theorem for feebly
compact semitopological semigroups I n

λ :

Corollary 1. Let
{
I ni

λi
: i ∈J

}
be a family of non-empty feebly compact T1-

semitopological semigroups and ni ∈ N for all i ∈ I . Then the Tychono� product∏{
I ni

λi
: i ∈ I

}
is feebly compact.

De�nition 1. If {Xi : i ∈ I } is an uncountable family of sets, X =
∏
{Xi : i ∈J } is

their Cartesian product and p is a point in X, then the subset

Σ(p,X) = {x ∈ X : |{i ∈J : x(i) 6= p(i)}| 6 ω}

of X is called the Σ-product of {Xi : i ∈J } with the basis point p ∈ X. In the case when
{Xi : i ∈J } is a family of topological spaces we assume that Σ(p,X) is a subspace of
the Tychono� product X =

∏
{Xi : i ∈J }.

It is obvious that if {Xi : i ∈J } is a family of semigroups thenX =
∏
{Xi : i ∈J }

is a semigroup as well. Moreover Σ(p,X) is a subsemigroup of X for arbitrary idempotent
p ∈ X. Theorem 1 and Proposition 2.2 of [20] imply the following corollary.

Corollary 2. Let
{
I ni

λi
: i ∈J

}
be a family of non-empty feebly compact T1-

semitopological semigroups and ni ∈ N for all i ∈ J . Then for every idempotent p
of the product X =

∏{
I ni

λi
: i ∈J

}
the Σ-product Σ(p,X) is feebly compact.

3. On compact shift continuous topologies on the semigroup I n
λ

The following example implies that there exists a countable feebly compact
Hausdor� semitopological semigroup

(
I 2
ω ,
)
which is not ω-bounded-pracompact.

Example 1. The following family

Bc =
{
Uα(α1, . . . , αk) = ↑4α \ (↑4α1 ∪ · · · ∪ ↑4αk) :

αi ∈ ↑4α \ {α}, α, αi ∈ I 2
ω , i = 1, . . . , k

}
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determines a base of the topology τc on I 2
ω . By Proposition 10 from [22],

(
I 2
ω , τc

)
is a

Hausdor� compact semitopological semigroup with continuous inversion.
We construct a stronger topology τ2

fc
on I 2

λ in the following way. For every nonzero
element x ∈ I 2

λ we assume that the base B2
fc

(x) of the topology τ2
fc

at the point x
coincides with the base of the topology τ2c at x, and

B2
fc(0) =

{
UB(0) = U(0) \

(
I 2
λ \ {0}

}
: U(0) ∈ B2

c (0)
}

form a base of the topology τ2
fc

at zero 0 of the semigroup I 2
λ . Since

(
I 2
ω , τ

2
fc

)
is a

variant of the semitopological semigroup de�ned in Example 3 of [12], τ2
fc
is a Hausdor�

topology on I 2
λ . Moreover, by Proposition 1 of [12],

(
I 2
ω , τ

2
fc

)
is a countably pracompact

semitopological semigroup with continuous inversion.

Proposition 3. The space
(
I 2
ω , τ

2
fc

)
is not ω-bounded-pracompact.

Proof. Since the space
(
I 2
ω , τ

2
fc

)
is feebly compact and Hausdor�, by Proposition 2 of

[12] the subset I 2
λ \ I 1

λ is dense in
(
I 2
ω , τ

2
fc

)
, and by Lemma 2 from [12] every point

of the set I 2
λ \ I 1

λ is isolated in
(
I 2
ω , τ

2
fc

)
. This implies that every dense subset D of(

I 2
ω , τ

2
fc

)
contains the set I n

λ \I n−1
λ . Then

cl(I 2
ω ,τ

2
fc
)(D) = cl(I 2

ω ,τ
2
fc
)(I 2

λ \I 1
λ ) = I 2

ω

for every dense subset D of
(
I 2
ω , τ

2
fc

)
. Since I 2

ω is countable, so is D, and hence the space(
I 2
ω , τ

2
fc

)
is not ω-bounded-pracompact, because

(
I 2
ω , τ

2
fc

)
is not compact. �

Proposition 4. Let n be any positive integer and λ be any in�nite cardinal. If I n
λ is a

T1-semitopological semigroup then the following statements hold:

(1) I n
A is a closed subsemigroup of I n

λ for any subset A ⊆ λ;
(2) the band E(I n

λ ) is a closed subset of I n
λ .

Proof. (1) Fix an arbitrary γ ∈ I n
λ \ I n

A . Then dom γ * A or ran γ * A. Since η 4
δ if and only if graph(η) ⊆ graph(δ) for η, δ ∈ I n

λ , the above arguments imply that
↑4γ ∩I n

A = ∅. By Lemma 2 of [12] the set ↑4γ is open in I n
λ , which implies statement

(1).
(2) Fix an arbitrary γ ∈ I n

λ \ E(I n
λ ). Since I n

λ is an inverse subsemigroup of the
symmetric inverse monoid Iλ, all idempotents of I n

λ is are partial identity maps of rank
6 n. Then similar arguments as in statement (1) imply that E(I n

λ ) is a closed subset of
I n
λ . �

Proposition 4 implies the following corollary.

Corollary 3. Let n be any positive integer, λ be any in�nite cardinal and A be an

arbitrary in�nite subset of λ. If I n
λ is a compact T1-semitopological semigroup then I n

A

with the induced topology from I n
λ is a compact semitopological semigroup.

Lemma 5. Let n be any positive integer, λ be any in�nite cardinal and A be an arbi-

trary in�nite countable subset of λ. If I n
λ is an ω-bounded-pracompact T1-semitopological

semigroup then I n
A \I n−1

A is a dense subset of I n
A , and hence I n

A is compact.
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Proof. For any α ∈ I n
A we denote ↑A4α = ↑4α ∩I n

A .

By induction we shall show that the set ↑A4α∩ (I n
A \I

n−1
A ) is dense in ↑A4α for any

α ∈ I n
A . In the case when rankα = n− 1 by Lemmas 1 and 3 we have that the set ↑4α

is compact, and hence by Proposition 4(1), ↑A4α is compact as well. Since all points of

I n
A \I n−1

A are isolated in I n
λ , the set ↑

A
4α ∩ (I n

A \I n−1
A ) is dense in ↑A4α.

Next we show that the statement ↑A4α∩(I n
A \I

n−1
A ) is dense in ↑A4α for any α ∈ I n

A

with rankα = n − k, for all k < m implies that the same is true for any β ∈ I n
A with

rankβ = n−m, where m 6 n. Fix an arbitrary β ∈ I n
A with rankβ = n−m. Suppose

to the contrary that the set ↑A4β ∩ (I n
A \I n−1

A ) is not dense in ↑A4β. The assumption of

induction implies that γ ∈ clI n
A

(↑A4β ∩ (I n
A \I n−1

A )) for any γ ∈ ↑A4β \ {β}, and hence

β /∈ clI n
A

(↑A4β ∩ (I n
A \I n−1

A )). Then there exists an open neighbourhood U(β) of β in

I n
A such that U(β)∩ (↑A4β ∩ (I n

A \I n−1
A )) = ∅. By Lemma 2 from [12] for any δ ∈ I n

λ

the set ↑4δ is open-and-closed in I n
λ , τ , and hence ↑A4δ is open-and-closed in I n

A as well.
Hence we get that

clI n
A

(↑A4β ∩ (I n
A \I n−1

A )) = ↑A4β \ {β}

but the family U =
{
↑A4δ : δ ∈ ↑A4β \ {β}

}
is an open cover of ↑A4β which has no a �ni-

te subcover. This contradicts the condition that I n
λ is a ω-bounded-pracompact space,

which completes the proof of the �rst statement of the lemma. The last statement immedi-
ately follows from the �rst statement and the de�nition of the ω-bounded-pracompact
space. �

Theorem 2 describes feebly ω-bounded shift-continuous T1-topologies on the semi-
group I n

ω .

Theorem 2. Let n be any positive integer and λ be any in�nite cardinal. Then for any

T1-semitopological semigroup I n
λ the following conditions are equivalent:

(i) I n
λ compact;

(ii) I n
λ is ω-bounded-pracompact;

(iii) I n
λ is feebly ω-bounded.

Proof. Implications (i)⇒ (iii) and (ii)⇒ (iii) are trivial.

(iii) ⇒ (ii) Let I n
λ be a feebly ω-bounded T1-semitopological semigroup. By

Proposition 2 of [12] the set I n
λ \I

n−1
λ is dense in I n

λ . Fix an arbitrary in�nite countable

subset D = {αi : i ∈ N} in I n
λ \I

n−1
λ . By Lemma 2 from [12] every point of D is isolated

in I n
ω , and hence by feeble ω-boundedness of I n

λ we get that there exists a compact
subset K ⊆ I n

λ such that D ⊆ K. Since the closure of a subset in compact space is
compact, so is the closure of D. Hence the space I n

λ is ω-bounded-pracompact.

(ii)⇒ (i) Suppose the contrary: there exists a noncompact ω-bounded-pracompact
T1-semitopological semigroup I n

λ . By Theorem 1 of [12] the space I n
λ is not countably

compact. Then by Theorem 3.10.3 of [10] the space I n
λ has an in�nite countable closed

discrete subspace D. We put

A = {x ∈ λ : x ∈ domα ∪ ranα for some α ∈ D} .
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Since the set D is countable,
⋃
α∈D

(domα∪ ranα) is countable, and hence A is countable,

too. Then I n
A contains D. By Proposition 4(1), I n

A is a closed subspace of I n
λ , which

implies that D is an in�nite countable closed discrete subspace of I n
A . This contradicts

Lemma 5, and hence I n
λ is compact. �
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Âèâ÷à¹ìî ñëàáêî êîìïàêòíi òðàíñëÿöiéíî-íåïåðåðâíi T1-òîïîëîãi¨ íà
ñèìåòðè÷íié iíâåðñíié íàïiâãðóïi I n

λ ñêií÷åííèõ ïåðåòâîðåíü êàðäèíàëà λ
îáìåæåíîãî ðàíãó 6 n. Äîâåäåíî, ùî òàêà T1-òîïîëîãiÿ ñåêâåíöiàëüíî ïðà-
êîìïàêíà òîäi i òiëüêè òîäi, êîëè âîíà ñëàáêî êîìïàêòíà. Òàêîæ, ìè äî-
âåëè, ùî êîæíà òðàíñëÿöiéíî-íåïåðåðâíà ñëàáêî ω-îáìåæåíà T1-òîïîëîãiÿ
íà íàïiâãðóïi I n

λ êîìïàêòíà.
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íàïiâãðóïà, êîìïàêòíèé, ñåêâåíöiàëüíî ïðàêîìïàêòíèé, öiëêîì çëi÷åí-
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