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We study feebly compact shift-continuous 77-topologies on the symmetric
inverse semigroup .#5' of finite transformations of the rank < n. It is proved
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1. INTRODUCTION AND PRELIMINARIES

We follow the terminology of the monographs [4, 6, 10, 29, 32, 33]. If X is a topologi-
cal space and A C X, then by clx(A) and intx (A) we denote the topological closure and
interior of A in X, respectively. By |A| we denote the cardinality of a set A, by AAB
the symmetric difference of sets A and B, by N the set of positive integers, and by w the
first infinite cardinal. By ©(w) and R we denote an infinite countable discrete space and
the real numbers with the usual topology, respectively.

A semigroup S is called inverse if every a in S possesses a unique inverse a™!, i.e.,
if there exists a unique element a~! in S such that

aa”a=a and a Taa”  =a

A map which associates to any element of an inverse semigroup its inverse is called the
1MVErsion.
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If S is a semigroup, then by E(S) we denote the subset of all idempotents of S.
On the set of idempotents E(S) there exists a natural partial order: e < f if and only if
ef = fe = e. A semilattice is a commutative semigroup of idempotents. We observe that
the set of idempotents of an inverse semigroup is a semilattice [34].

Every inverse semigroup S admits a partial order:

a<sb if and only if there exists e € E(S) such that a =eb.

We shall say that < is the natural partial order on S (see [4, 34]).

Let A be an arbitrary nonzero cardinal. A map « from a subset D of X\ into A is
called a partial transformation of A. In this case the set D is called the domain of « and
is denoted by dom . The image of an element xz € dom « under « is denoted by za.
Also, the set {z € A\: ya = x for some y € Y} is called the range of a and is denoted
by ran a.. For convenience we denote by @ the empty transformation, a partial mapping
with dom @ =ran @ = @.

Let .#, denote the set of all partial one-to-one transformations of A together with
the following semigroup operation:

z(af) = (za)f if x € dom(af) ={y € doma: ya € dom f}, for o,p € A

The semigroup .#) is called the symmetric inverse semigroup over the cardinal \ (see
[6])- For any o € £y the cardinality of dom « is called the rank of « and it is denoted
by rank o. The symmetric inverse semigroup was introduced by V. V. Wagner [34] and
it plays a major role in the theory of semigroups.

Put /) = {a € Z,: ranka < n},forn=1,2,3,.... Obviously, & (n =1,2,3,...)

are inverse semigroups, -#y" is an ideal of %), for each n = 1,2,3,.... The semigroup .#\"
is called the symmetric inverse semigroup of finite transformations of the rank < n [21].
By
< X1 To - Tn )
Yyi Y2 0 Yn

we denote a partial one-to-one transformation which maps x; onto y;, x2 onto yo, ...,
and z, onto y,. Obviously, in such case we have z; # z; and y; # y; for i # j (i,j =
1,2,3,...,n). The empty partial map @: A — X is denoted by 0. It is obvious that O is
zero of the semigroup #".

Let A be a nonzero cardinal. On the set By = (A x A\) U {0}, where 0 ¢ X\ x A, we
define the semigroup operation “-” as follows

@n-ea={ G0 Ege

and (a,b) -0 = 0 (a,b) = 0-0 = 0 for a,b,c,d € A. The semigroup B) is called
the semigroup of A X A\-matriz units (see [6]). Obviously, for any cardinal A > 0, the
semigroup of A\ x A-matrix units B, is isomorphic to .#}.
A subset A of a topological space X is called regular open if intx (clx(A)) = A.
We recall that a topological space X is said to be

o semiregular if X has a base consisting of regular open subsets;

e compact if each open cover of X has a finite subcover;

o sequentially compact if each sequence {z; };en of X has a convergent subsequence
in X;
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countably compact if each open countable cover of X has a finite subcover;

e H-closed if X is a closed subspace of every Hausdorff topological space in which

it is contained;

w-bounded-pracompact if X contains a dense subset D such that each countable
subset of D has the compact closure in X [20];

infra H-closed provided that any continuous image of X into any first countable
Hausdorff space is closed (see [27]);

totally countably pracompact if there exists a dense subset D of the space X such
that each sequence of points of the set D has a subsequence with the compact
closure in X [20];

sequentially pracompact if there exists a dense subset D of the space X such that
each sequence of points of the set D has a convergent subsequence [20];
countably compact at a subset A C X if every infinite subset B C A has an
accumulation point z in X [1];

countably pracompact if there exists a dense subset A in X such that X is
countably compact at A [1];

feebly w-bounded if for each sequence {U, },en of nonempty open subsets of X
there is a compact subset K of X such that K NU,, # & for each n [20];
selectively sequentially feebly compact if for every family {U,: n € N} of
nonempty open subsets of X, one can choose a point x,, € U, for every n € N in
such a way that the sequence {z,: n € N} has a convergent subsequence ([8]);
sequentially feebly compact if for every family {U,: n € N} of nonempty open
subsets of X, there exists an infinite set J C N and a point = € X such that the
set {n € J: WNU, = @} is finite for every open neighborhood W of z (see |9]);
selectively feebly compact for each sequence {U,: n € N} of nonempty open
subsets of X, one can choose a point x € X and a point x,, € U,, for each n € N
such that the set {n € N: x,, € W} is infinite for every open neighborhood W of
z ([8));

feebly compact (or lightly compact) if each locally finite open cover of X is fini-
te [3];

d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite
(see [31]);

pseudocompact if X is Tychonoff and each continuous real-valued function on X
is bounded,;

Y'-compact for some topological space Y, if f(X) is compact, for any continuous
map f: X —- Y.

According to Theorem 3.10.22 of [10], a Tychonoff topological space X is feebly

compact if and only if X is pseudocompact. Also, a Hausdorff topological space X is
feebly compact if and only if every locally finite family of nonempty open subsets of X is
finite. Every compact space and every sequentially compact space are countably compact,
every countably compact space is countably pracompact, every countably pracompact
space is feebly compact (see [1]), every H-closed space is feebly compact too (see [19]).
Also, every space feebly compact is infra H-closed by Proposition 2 and Theorem 3 of
[27]. Using results of other authors we get that the following diagram which describes
relations between the above defined classes of topological spaces.
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A topological (semitopological) semigroup is a topological space together with a
continuous (separately continuous) semigroup operation. If S is a semigroup and 7 is
a topology on S such that (S,7) is a semitopological semigroup, then we shall call T

a shift-continuous topology on S. An inverse topological semigroup with the continuous
inversion is called a topological inverse semigroup.
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Topological properties of an infinite (semi)topological semigroup A X A-matrix units
were studied in [15, 17]. In [15] it was shown that on the infinite semitopological semi-
group of A X A-matrix units B) there exists a unique compact shift-continuous Hausdorff
topology 7. and also it is shown that every pseudocompact Hausdorff shift-continuous
topology T on B is compact. Also, in [15] it is proved that every nonzero element of a
Hausdorff semitopological semigroup of A x A-matrix units B) is an isolated point in the
topological space By. In [15] it is shown that the infinite semigroup of A X A-matrix units
B), cannot be embedded into a compact Hausdorff topological semigroup, every Hausdorff
topological inverse semigroup S that contains B) as a subsemigroup, contains B) as a
closed subsemigroup, i.e., By is algebraically complete in the class of Hausdorff topologi-
cal inverse semigroups. This result in [14] is extended onto the called inverse semigroups
with tight ideal series and, as a corollary, onto the semigroup #J". Also, in [21] it was
proved that for every positive integer n the semigroup %y is algebraically h-complete in
the class of Hausdorff topological inverse semigroups, i.e., every homomorphic image of

V" is algebraically complete in the class of Hausdorff topological inverse semigroups. In
the paper [22] this result is extended onto the class of Hausdorff semitopological inverse
semigroups and it is shown therein that for an infinite cardinal A the semigroup 7"
admits a unique Hausdorff topology 7. such that (., 7.) is a compact semitopological
semigroup. Also, it was proved in [22] that every countably compact Hausdorff shift-
continuous topology 7 on B is compact. In [17] it was shown that a topological semi-
group of finite partial bijections .#* with a compact subsemigroup of idempotents is
absolutely H-closed (i.e., every homomorphic image of .#7" is algebraically complete in
the class of Hausdorff topological semigroups) and any Hausdorff countably compact
topological semigroup does not contain .#y" as a subsemigroup for an arbitrary infini-
te cardinal A and any positive integer n. In [17] there were given sufficient conditions
onto a topological semigroup .#) to be non-H-closed. Also in [11] it is proved that an
infinite semitopological semigroup of A x A-matrix units By is H-closed in the class of
semitopological semigroups if and only if the space B, is compact. In the paper [12]
we studied feebly compact shift-continuous 77-topologies on the semigroup .#y'. For any
positive integer n > 2 and any infinite cardinal A a Hausdorff countably pracompact
non-compact shift-continuous topology on .#* is constructed there. In [12] it is shown
that for an arbitrary positive integer n and an arbitrary infinite cardinal \ for a shift—
continuous Ti-topology 7 on .#3* the following conditions are equivalent: (i) 7 is countably
pracompact; (i) 7 is feebly compact; (ii¢) 7 is d-feebly compact; (iv) (#7, ) is H-closed;
(v) (F3,7) is D(w)-compact; (vi) (3, 7) is R-compact; (vii) (£, 7) is infra H-closed.
Also in [12] we proved that for an arbitrary positive integer n and an arbitrary infinite
cardinal A every shift-continuous semiregular feebly compact T3-topology 7 on )" is
compact. Similar results were obtained for a semitopological semilattice (exp, A,N) in
[23, 24, 25]. Also, in [26, 30] it is proved that feeble compactness implies compactness for
semitopological bicyclic extensions.

In this paper we study feebly compact shift-continuous Ti-topologies on the
symmetric inverse semigroup .#y' of finite transformations of the rank < n. It is proved
that such Ti-topology is sequentially pracompact if and only if it is feebly compact. Also,
we show that every shift-continuous feebly w-bounded Tj-topology on £ is compact.
The results of this paper are announced in [13].
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2. ON FEEBLY COMPACT SHIFT CONTINUOUS TOPOLOGIES ON THE
SEMIGROUP /'

Later we shall assume that n is an arbitrary positive integer.
For every element « of the semigroup .#)" we put

ha={B€ I aa'B=a} and ta={B€ S Bala=a}.
Then Proposition 5 of [22] implies that T;a = 1,.a and by Lemma 6 of [29, Section 1.4]

we have that o < 3 if and only if 8 € 1,a for o, 8 € #)'. Hence we put oo = t,a =1«
for any o € .

Remark 1. Later we identify every element a of the semigroup .#)* with the graph
graph(a) of the partial map a: A — A (see [29]). Then according to this identification we
have that a < S if and only if a C 3.

Lemma 1. Let n be an arbitrary positive integer and \ be any infinite cardinal. Let « be
any nonzero element of the semigroup #\' with rank a = m < n. Then the poset (14, <)
is order isomorphic to the poset ('™, ).

a: l‘l DY :I;m
Yy 0 Ym
for some x1,...,Tm,Y1,---,Ym € A. If m = n then the inequality o < 8 in (S, <)

implies o« = 3, and hence later we assume that m < n. Then for any 8 € .#* such that
a < [ by Remark 1 we have that

/B(xl PN T xm+1 e xn>

Proof. Suppose that

Y. o Ym Ym+1 0 Yn
for some 41,y Tny Ymt1, - -, Yn € A. Since A is infinite,
Al =12\ {z1, .. 2m} = A\ {y1,-- s Um
and hence there exist bijective maps u: A\ {z1,..., 2z} = Xand v: A\ {y1,...,ym} — A\

Simple verifications show that the map J: (T4, <) — (F'" ™, <) defined in the following
way a — 0 and

Yio Ym Yml 0 Un (Ums1)o - (yn)o
is an order isomorphism. O

Later we need the following technical lemma from [12].

Lemma 2 ([12, Lemma 3]). Let n be an arbitrary positive integer and X be an arbitrary
infinite cardinal. Let T be a feebly compact shift-continuous Ty -topology on the semigroup
F. Then for every a € F and any open neighbourhood U(c) of a in (F3,T) there
exist finitely many v, ..., a € Tga\ {a} such that

TN I N ga CU () Utgay U Utga.

Lemma 3. Let 7 be a feebly compact topology on % such that t<a is closed-and-open
for any a € Z}. Then 7 is compact.
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The statement of Lemma 3 follows from the fact that all nonzero elements of the
semigroup .7, are closed-and-open in (£}, 7).

A family of non-empty sets {4;: i € £} is called a A-system (a sunflower or a
A-family) if the pairwise intersections of its members are the same, i.e., 4, N A; = S for
some set S (for i # j in &) [28]. The following statement is well known as the Sunflower
Lemma or the Lemma about a A-system (see [28, p. 107]).

Lemma 4. Every infinite family of n-element sets (n < w) contains an infinite A-sub-
family.

Proposition 1. Let n be an arbitrary positive integer and A be an arbitrary infinite
cardinal. Then every feebly compact shift-continuous Th-topology T on F3' is sequentially
pracompact.

Proof. Suppose to the contrary that there exists a feebly compact shift-continuous 77-
topology 7 on .#{" which is not sequentially countably pracompact. Then every dense
subset D of (£, 7) contains a sequence of points from D which has no a convergent
subsequence.

By Proposition 2 of [12] the subset .#7\ .#* ! is dense in (.#}*,7) and by Lemma 2
from [12] every point of the set .#7 \ £y~ ' is isolated in (.#,7). Then the set .7 \
fffl contains an infinite sequence of points {x,: p € N} which has no a convergent
subsequence. If we identify elements of the semigroups with their graphs then by Lemma 4
the sequence {x,: p € N} contains an infinite A-subfamily, that is an infinite subsequence
{Xp;: @ € N} such that there exists xy € .#3" such that x,, N x,, = x for any distinct
i,7 € N.

Suppose that x = 0 is the zero of the semigroup .#;". Since the sequence {x,, : i € N}
is an infinite A-subfamily, the intersection {x,,: i € N} N1y contains at most one set
for every non-zero element y € .#*. Thus (.#, 7) contains an infinite locally finite family
of open non-empty subsets which contradicts the feeble compactness of (£, 7).

If x is a non-zero element of the semigroup .#y" then by Lemma 2 from [12], T is
an open-and-closed subspace of (.#}’, 7), and hence by Theorem 14 from [3] the space 14 x
is feebly compact. We observe that the element x is the minimum of the poset T x. Since
the sequence {x,, : 7 € N} is an infinite A-subfamily, the intersection {x,,: 7 € N} N 14y
contains at most one set for every element v € Tox \ {x}. Thus the subspace Tx
of (#,7) contains an infinite locally finite family of open non-empty subsets which
contradicts the feeble compactness of (&}, 7). O

Proposition 2. Let n be an arbitrary positive integer and X be an arbitrary infinite cardi-
nal. Then every feebly compact shift-continuous Ti-topology T on F\' is totally countably
pracompact.

Proof. By Proposition 2 of [12] the subset .#*\ .~ ! is dense in (.#*, 7) and by Lemma 2
from [12] every point of the set .7\ . ! is isolated in (£, 7). We put D = #3\ .71
Fix an arbitrary sequence {x,: p € N} of points of D.
It is obvious that at least one of the following conditions holds:
(1) for any n € .#3 \ {0} the set T4n N {x,: p € N} is finite;
(2) there exists n € " \ {0} such that the set 17N {x,: p € N} is infinite.
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Suppose that case (1) holds. By Lemma 2 of [12| for every point a € £ \ {0}
there exists an open neighbourhood U(a) of a in (£, 7) such that U(a) C T4a and
hence our assumption implies that zero 0 is a unique accumulation point of the sequence
{xp: p € N}. By Lemma 2 for an arbitrary open neighbourhood W (0) of zero 0 in (., )
there exist finitely many nonzero elements 71, ...,n; € #)* such that

(I I CW(0) Utgm U+ Ut e,
and hence we get that {0} U {x,: p € N} is a compact subset of (., 7).

Suppose that case (2) holds: there exists n'€.# \ {0} such that the set
t<n' N {xp: peN} is infinite. Then by Lemma 2 of [12], T5y* is an open-and-closed
subset of (.#{",7) and hence by Theorem 14 from [3] the subspace tn' of (47, 7)
is feebly compact. By Lemma 1 the poset (T<771, <) is order isomorphic to the poset
(#", =) for some positive integer m; =2,...,n — 1.

Let {x,: p € N} be a subsequence of {x,: p € N} such that

{X,l)5 pE N} :T#nl N{xp: p € N}
Then for the feebly compact poset (T<n1, <) and the sequence {X;,: p € N} at least one
of the following conditions holds:
(1). for any n e t4n' \ {n'} the set T5n N {x,: p € N} is finite;
(2). there exists 7 € T4n' \ {n'} such that the set 141N {x,: p € N} is infinite.

Since every chain in the poset (157", <) is finite, repeating finitely many times our
above procedure we obtain two chains of the length s < n:

(i) the chain 0 7' 5 --- < 7 of distinct elements of the poset (141", <); and

(#4) the chain
{xp: p€N} D {x;:peN}Q---g{X;:peN}
of infinite subsequences of the sequence {x,: p € N},
such that the following conditions hold:
(a) {x}:peN} C 1ty forevery j=1,...,s;
(b) either {x;: p € N}U{n®} is a compact subset of the poset (t4n',<) or the poset
(T<n*, =) is order isomorphic to the poset (7}, <).

If {x7: p € N} U{n®} is a compact subset of (.#]',7) then our above part of the
proof implies that the sequence {x,: p € N} has the subsequence {x;: p € N} with the
compact closure.

If the poset (T57n°, <) is order isomorphic to the poset (#),<), then by Lemma 2
of [12] the subspace T4n° of (.#3', 7) is open-and-closed and hence by Lemmas 1 and 3
the poset (T4n°, <) is compact. Then the inclusion {x;: p € N} C 1_n° implies that the
sequence {x,: p € N} has the subsequence {x;: p € N} with the compact closure. This
completes the proof of the proposition. O

We summarise our results in the following theorem.

Theorem 1. Let n be any positive integer and X be any infinite cardinal. Then for any
T} -semitopological semigroup #\* the following conditions are equivalent:

(1) A is sequentially pracompact;
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(13) F3 is totally countably pracompact;
1) Z\ is feebly compact.
A

Proof. Implications (i) = (i44) and (#4) = (4¢i7) are trivial. The corresponding their
converse implications (#i7) = (i) and (i44) = (i¢) follow from Propositions 1 and 2,
respectively. O

It is well known that the (Tychonoff) product of pseudocompact spaces is not
necessarily pseudocompact (see [10, Section 3.10]). On the other hand Comfort and
Ross in [7] proved that the Tychonoff product of an arbitrary family of pseudocompact
topological groups is a pseudocompact topological group. The Comfort—Ross Theorem is
generalized in [2] and it is proved that a Tychonoff product of an arbitrary non-empty
family of feebly compact paratopological groups is feebly compact. Also, a counterpart of
the Comfort—Ross Theorem for pseudocompact primitive topological inverse semigroups
and primitive inverse semiregular feebly compact semitopological semigroups with closed
maximal subgroups was proved in [16] and [18], respectively.

Since the Tychonoff product of H-closed spaces is H-closed (see [5, Theorem 3] or
[10, 3.12.5 (d)]) Theorem 1 implies a counterpart of the Comfort—Ross Theorem for feebly
compact semitopological semigroups #y":

Corollary 1. Let {ffzej} be a family of non-empty feebly compact Ti-
semitopological semigroups and n; € N for all i € #. Then the Tychonoff product
11 {ff i€ .9} is feebly compact.

Definition 1. If {X;: i € .#} is an uncountable family of sets, X = [[{X;: i€ #}is
their Cartesian product and p is a point in X, then the subset
S(p.X) = {a € X: [{i€ 71 a(i) #pi)} < w)

of X is called the X-product of {X;: i € #} with the basis point p € X. In the case when
{X;:i€ ¢} is a family of topological spaces we assume that ¥ (p, X) is a subspace of
the Tychonoff product X =[[{X;: i€ £}

It is obvious that if {X;: ¢ € #} is a family of semigroups then X = [[{X;: i€ 7}
is a semigroup as well. Moreover X (p, X) is a subsemigroup of X for arbitrary idempotent
p € X. Theorem 1 and Proposition 2.2 of [20] imply the following corollary.

Corollary 2. Let {f/\”z’ i€ /} be a family of mnon-empty feebly compact Ti-
semitopological semigroups and n; € N for all i € _#. Then for every idempotent p
of the product X =] {f;“ i€ 7} the S-product S(p, X) is feebly compact.

3. ON COMPACT SHIFT CONTINUOUS TOPOLOGIES ON THE SEMIGROUP .}

The following example implies that there exists a countable feebly compact
Hausdorff semitopological semigroup (]ﬁ,) which is not w-bounded-pracompact.

Example 1. The following family

PBe ={Uas(ar,...,00) =10\ (tgor U - Utgayp):
a; € Tga\{a}, o, 04 €esli=1,...k}
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determines a base of the topology 7. on .#2. By Proposition 10 from [22], (,ﬂj,n) isa
Hausdorff compact semitopological semigroup with continuous inversion.

We construct a stronger topology 74 on .#¢ in the following way. For every nonzero
element z € #? we assume that the base %z (z) of the topology 74 at the point z
coincides with the base of the topology 72 at z, and

%ic(0) = {Up(0) = U(0) \ (S \{0}} : U(0) € £2(0)}

form a base of the topology 72 at zero 0 of the semigroup .#2. Since (f2 ch) is a
variant of the semitopological semigroup defined in Example 3 of [12], 72 is a Hausdorff
topology on .. Moreover, by Proposition 1 of [12], (.#2,72) is a countably pracompact
semitopological semigroup with continuous inversion.

Proposition 3. The space (fﬁ,T,?c) s not w-bounded-pracompact.

Proof. Since the space (ﬂ 2 ch) is feebly compact and Hausdorff, by Proposition 2 of
[12] the subset #2 \ .7 is dense in (.#2,72), and by Lemma 2 from [12]| every point
of the set .#2\ £ is isolated in (,ﬂ2 ch) This implies that every dense subset D of
(#2,72) contains the set .#* \ .#""". Then

Urz.r) (D) =z gy (RN I = 2

w

for every dense subset D of (.#2, 72). Since .#2 is countable, so is D, and hence the space
(£2,72) is not w-bounded-pracompact, because (£2,72) is not compact. O

Proposition 4. Let n be any positive integer and A be any infinite cardinal. If 7 is a
T1-semitopological semigroup then the following statements hold:

(1) ) is a closed subsemigroup of F for any subset A C \;
(2) the band E(Z)) is a closed subset of S

Proof. (1) Fix an arbitrary v € 4" \ .#%. Then dom~y ¢ A or rany ¢ A. Since n <
d if and only if graph(n) C graph(é) for n,6 € #7, the above arguments imply that
T<yN I} = @. By Lemma 2 of [12] the set 147 is open in £}, which implies statement
(1).

(2) Fix an arbitrary v € 4" \ E(.#}"). Since .#}" is an inverse subsemigroup of the
symmetric inverse monoid .#y, all idempotents of .#{" is are partial identity maps of rank
< n. Then similar arguments as in statement (1) imply that E(#)) is a closed subset of
I O

Proposition 4 implies the following corollary.

Corollary 3. Let n be any positive integer, A be any infinite cardinal and A be an
arbitrary infinite subset of A. If ' is a compact T -semitopological semigroup then .#}
with the induced topology from Z3 is a compact semitopological semigroup.

Lemma 5. Let n be any positive integer, A be any infinite cardinal and A be an arbi-
trary infinite countable subset of A. If 7' is an w-bounded-pracompact T -semitopological
semigroup then I3\ I is a dense subset of Z%, and hence 7 is compact.
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Proof. For any o € .#} we denote Tia =TganJgy.

By induction we shall show that the set Tia N(F£L\ F471) is dense in Tia for any
a € J). In the case when ranka = n — 1 by Lemmas 1 and 3 we have that the set T4«
is compact, and hence by Proposition 4(1), Tﬁa is compact as well. Since all points of
IR\ S are isolated in 77, the set T’;‘a N(FF\ F371) is dense in T’;‘a.

Next we show that the statement Tiaﬂ(ﬂj\f:f—l) is dense in T’;‘a foranya € I}
with ranka = n — k, for all k < m implies that the same is true for any g € .#} with
rank 8 = n —m, where m < n. Fix an arbitrary 8 € .#} with rank 3 = n — m. Suppose
to the contrary that the set Tiﬂ N(IL\ J;‘“l) is not dense in Tiﬁ. The assumption of
induction implies that v € cl s» (T’;‘ﬁ N(IF\ I3 1) for any v € Tiﬂ \ {8}, and hence
B ¢ clsy (Tiﬁ N (F5\ 4 1)). Then there exists an open neighbourhood U(j) of 3 in
% such that U(8) N (128N (F4\ #41)) = @. By Lemma 2 from [12] for any § € 7
the set 1,0 is open-and-closed in .#)', 7, and hence T25 is open-and-closed in .#} as well.
Hence we get that

cloy (12BN (FE\ 7471 =128\ {8}

but the family % = {Tgé: o€ Tiﬁ \ {,6}} is an open cover of T:ﬁﬁ which has no a fini-

te subcover. This contradicts the condition that .#}" is a w-bounded-pracompact space,
which completes the proof of the first statement of the lemma. The last statement immedi-
ately follows from the first statement and the definition of the w-bounded-pracompact
space. O

Theorem 2 describes feebly w-bounded shift-continuous T;-topologies on the semi-
group #7.

Theorem 2. Let n be any positive integer and X be any infinite cardinal. Then for any
T -semitopological semigroup 73 the following conditions are equivalent:
(i) A7 compact;
(17) F is w-bounded-pracompact;
(i3) IV is feebly w-bounded.

Proof. Implications (i) = (i4i) and (i7) = (4i7) are trivial.

(t4i) = (it) Let & be a feebly w-bounded Tj-semitopological semigroup. By
Proposition 2 of [12] the set .#{*\ .#*~ " is dense in .#}". Fix an arbitrary infinite countable
subset D = {;: i € N}in £\ .#"'. By Lemma 2 from [12] every point of D is isolated
in .77, and hence by feeble w-boundedness of .#" we get that there exists a compact
subset ' C .#" such that D C K. Since the closure of a subset in compact space is
compact, so is the closure of D. Hence the space .#3* is w-bounded-pracompact.

(#4) = (i) Suppose the contrary: there exists a noncompact w-bounded-pracompact
T;-semitopological semigroup .#;". By Theorem 1 of [12] the space .#3" is not countably
compact. Then by Theorem 3.10.3 of [10] the space .#}* has an infinite countable closed
discrete subspace D. We put

A={z e Xz e€domaUrana for some o € D}.
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Since the set D is countable, U (dom aUran «) is countable, and hence A is countable,

aeD

too. Then £ contains D. By Proposition 4(1), £} is a closed subspace of .#}*, which
implies that D is an infinite countable closed discrete subspace of .. This contradicts
Lemma 5, and hence .#;* is compact. O
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3AYVBAKEHHS ITPO CJIABKO KOMITAKTHI
HAIIIBTOIIOJIOTITYHI CUMETPUYHI IHBEPCHI
HAIIIBI'PYIIN OBME2KEHOI'O CKIHYEHHOI'O PAHTI'Y

Ouer I'VTIK

JIveiecvrutl Haytonasbrul yrieepcumem iment leana Pparka,
sys. Ynisepcumemcoka 1, 79000, m. Jveis
e-mail: oleg.gqutik@Qlnu.edu.ua

Bupuaemo cabko KOMITAKTHI TpaHCIIHO-HenepepsHi 11-Tormosorii Ha
cuMeTpuyHiil inBepcHiil HamiBrpymi £y CKIHYEHHUX [IePETBOPEHDb KAaPAUHAIA A
obmerkenoro paury < n. Josegeno, mo taka 77-TOMOIOrisS CEKBEHIATBHO IIPa-
KOMIAKHa TOMI 1 TIIBKU TOJMi, KOJIA BOHA CJJAOKO KOMIIAKTHA. TaK0XK, MU JI0-
BeJIM, N[0 KOXKHA TPAHCJIAIIHHO-HEIIepepBHa CJIa0K0 w-0bMexkeHna 11 -To1oioris
Ha HAMIBrpym .#5' KOMITAKTHA.

Karowosl caosa: HamiBrpymna, iHBepCHa HAIBIpyIa, HAIIBTOIOJIOTiYHA
HAIIBrpyna, KOMIIAKTHUM, CEKBEHITIAJIbHO IPAKOMIIAKTHUM, ITIIKOM 3JHiYeH-
HO HPAKOMIAKTHHUN, w-00MeKeHHH-IIPAKOMIIAKTHUN, CJAa0KO w-00MeXKeHUI,
C/1abKO KOMMAKTHUM, A-CHUCTeMa, JeMa PO COHSIIHUK, T00yTOK, Y-T100yTOK.



