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Given two elements x, y of a semigroup X we write x . y if for every
homomorphism χ : X → {0, 1} we have χ(x) ≤ χ(y). The quasiorder . is
called the binary quasiorder on X. It induces the equivalence relation m that
coincides with the least semilattice congruence on X. In the paper we discuss
some known and new properties of the binary quasiorder on semigroups.
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1. Introduction

In this paper we study the binary quasiorder on semigroups. Every semigroup carries
many important quasiorders (for example, those related to the Green relations). One
of them is the binary quasiorder . de�ned as follows. Given two elements x, y of a
semigroup X we write x . y if χ(x) ≤ χ(y) for any homomorphism χ : X → {0, 1}.
On every semigroup X the binary quasiorder generates a congruence, which coincides
with the least semilattice congruence, and decomposes the semigroup into a semilattice
of semilattice-indecomposable semigroups. This fundamental decomposition result was
proved by Tamura [34] (see also [25], [26], [37]). Because of its fundamental importance,
the least semilattice congruence has been deeply studied by many mathematicians, see the
papers [15], [16], [17], [18], [23], [29], [30], [31], [32], [25], [26], [33], [38], [35], [36], surveys
[22], [24], and monographs [13], [21], [27]. The aim of this paper is to provide a survey
of known and new results on the binary quasiorder and the least semilattice congruence
on semigroups. The obtained results will be applied in the theory of categorically closed
semigroups developed by the �rst author in collaboration with Serhii Bardyla, see [3, 4,
5, 6, 7].
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2. Preliminaries

In this section we collect some standard notions that will be used in the paper. We
refer to [19] for Fundamentals of Semigroup Theory.

We denote by ω the set of all �nite ordinals and by N def
= ω\{0} the set of all positive

integer numbers.
A semigroup is a set endowed with an associative binary operation. A semigroup X

is called a semilattice if X is commutative and every element x ∈ X is an idempotent

which means xx = x. Each semilattice X carries the natural partial order 6 de�ned by

x ≤ y i� xy = x. For a semigroup X we denote by E(X)
def
= {x ∈ X : xx = x} the set of

idempotents of X.
Let X be a semigroup. For an element x ∈ X let

xN
def
= {xn : n ∈ N}

be the monogenic subsemigroup of X generated by the element x. For two subsets A,B ⊆
X, let AB

def
= {ab : a ∈ A, b ∈ B} be the product of A,B in X.

For an element a of a semigroup X, the set

Ha = {x ∈ X : (xX1 = aX1) ∧ (X1x = X1a)}
is called theH-class of a. Here X1 = X∪{1} where 1 is an element such that 1x = x = x1
for all x ∈ X1. By Corollary 2.2.6 [19], for every idempotent e ∈ E(X) its H-class He

coincides with the maximal subgroup of X containing the idempotent e.

3. The binary quasiorder

In this section we discuss the binary quasiorder on a semigroup and its relation to
the least semilattice congruence. A quasiorder is a re�exive transitive relation.

Let 2 denote the set {0, 1} endowed with the operation of multiplication inherited
from the ring Z. It is clear that 2 is a two-element semilattice, so it carries the natural
partial order, which coincides with the linear order inherited from Z.

For elements x, y of a semigroup X we write x . y if χ(x) ≤ χ(y) for every
homomorphism χ : X → 2. It is clear that . is a quasiorder on X. This quasiorder
will be referred to as the binary quasiorder on X. The obvious order properties of the
semilattice 2 imply the following (obvious) properties of the binary quasiorder on X.

Proposition 1. For any semigroup X and any elements x, y, a ∈ X, the following

statements hold:

(1) if x . y, then ax . ay and xa . ya;
(2) xy . yx . xy;
(3) x . x2 . x;
(4) xy . x and xy . y.

For an element a of a semigroup X and subset A ⊆ X, consider the following sets:

⇑a def
= {x ∈ X : a . x}, ⇓a def

= {x ∈ X : x . a}, and ma def
= {x ∈ X : a . x . a},

called the upper 2-class, lower 2-class and the 2-class of x, respectively. Proposition 1
implies that those three classes are subsemigroups of X.
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For two elements x, y ∈ X we write x m y i� mx = my i� χ(x) = χ(y) for any
homomorphism χ : X → 2. Proposition 1 implies that m is a congruence on X.

We recall that a congruence on a semigroup X is an equivalence relation ≈ on X
such that for any elements x ≈ y of X and any a ∈ X we have ax ≈ ay and xa ≈ ya.
For any congruence ≈ on a semigroup X, the quotient set X/≈ has a unique semigroup
structure such that the quotient map X → X/≈ is a semigroup homomorphism. The
semigroup X/≈ is called the quotient semigroup of X by the congruence ≈ .

A congruence ≈ on a semigroup X is called a semilattice congruence if the quotient
semigroup X/≈ is a semilattice. Proposition 1 implies that m is a semilattice congruence
on X. The intersection of all semilattice congruences on a semigroup X is a semilattice
congruence called the least semilattice congruence, denoted by η in [19], [20] (by ξ in [35],
[22], and by ρ0 in [13]). The minimality of η implies that η ⊆ m. The inverse inclusion
m ⊆ η will be deduced from the following (probably known) theorem on extensions of
2-valued homomorphisms.

Theorem 1. Let π : X → Y be a surjective homomorphism from a semigroup X to a

semilattice Y . For every subsemilattice S ⊆ Y and homomorphism f : π−1[S]→ 2 there

exists a homomorphism F : X → 2 such that F �π−1[S] = f .

Proof. We claim that the function F : X → 2 de�ned by

F (x) =

{
1, if ∃z ∈ π−1[S] such that π(xz) ∈ S and f(xz) = 1;

0, otherwise;

is a required homomorphism extending f .
To see that F extends f , take any x ∈ π−1[S]. If f(x) = 1, then for z = x we have

π(xz) = π(x)π(z) = π(x)π(x) = π(x) ∈ S
and

f(xz) = f(x)f(z) = f(x)f(x) = 1

and hence F (x) = 1 = f(x). If F (x) = 1, then there exists z ∈ π−1[S] such that π(xz) ∈ S
and

f(x)f(z) = f(xz) = f(zx) = 1,

which implies that f(x) = 1. Therefore, F (x) = 1 if and only if f(x) = 1. Since 2 has
only two elements, this implies that f = F �π−1[S].

To show that F is a homomorphism, we �rst establish two properties of the
homomorphism f .

Claim 1. Let x ∈ X and z ∈ π−1[S] be such that xz ∈ π−1[S]. If f(xz) = 1, then
f(z) = 1.

Proof. It follows from f(xz) = 1 that

f(xzxz) = f(xz)f(xz) = 1.

Taking into account that

π(xzx) = π(x)π(z)π(x) = π(x)π(z) = π(xz) ∈ S,
we conclude that

1 = f(xzxz) = f(xzx)f(z)
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and hence f(z) = 1. �

Claim 2. Let x, y ∈ X be such that xy ∈ π−1[S]. Then yx ∈ π−1[S] and f(xy) = f(yx).

Proof. It follows that

π(yx) = π(y)π(x) = π(x)π(y) = π(xy) ∈ S
and hence yx ∈ π−1[S]. By analogy we can prove that yxy, xyx ∈ π−1[S]. If f(xy) = 0,
then

f(yx) = f(yx)f(yx)f(yx)f(yx) = f(yxyxyxyx) = f(yxy)f(xy)f(xyx) = 0.

By analogy we can prove that f(yx) = 0 implies f(xy) = 0. Therefore, f(xy) = 0 if
and only if f(yx) = 0. Since the set 2 has only two elements, this implies that f(xy) =
f(yx). �

To show that F is a homomorphism, �x any elements x1, x2 ∈ X. We should prove
that

F (x1x2) = F (x1)F (x2).

First assume that F (x1)F (x2) = 1 and hence F (x1) = 1 = F (x2). The de�nition
of F yields elements z1, z2 ∈ π−1[S] such that π(xizi) ∈ S and f(xizi) = 1 for every
i ∈ {1, 2}. Claims 1 and 2 imply

f(zixi) = f(xizi) = 1 = f(zi)

for every i ∈ {1, 2}. Also
π(x1x2z2z1) = π(z1x1x2z2z1) = π(x1z1)π(x2z2) ∈ SS ⊆ S,

so we can write

f(z1)f(x1x2z2z1) = f(z1x1x2z2z1) = f(z1x1)f(x2z2)f(z1) = 1 · 1 · 1 = 1

and conclude that f(x1x2z2z1) = 1 and F (x1x2) = 1 by the de�nition of F .
Next, assume that F (x1x2) = 1. Then there exists z ∈ π−1[S] such that π(x1x2z) ∈

S and f(x1x2z) = 1. For the element z1 = x2zx1x2z ∈ π−1[S] we have x1z1 ∈ π−1[S]
and

f(x1z1) = f(x1x2zx1x2z) = f(x1x2z)f(x1x2z) = 1 · 1 = 1,

which yields F (x1) = 1 by the de�nition of F .
On the other hand, Claim 2 ensures that f(x2zx1) = f(x1x2z) = 1 and then for the

element z2 = zx1x2zx1 ∈ π−1[S] we have x2z2 ∈ π−1[S] and

f(x2z2) = f(x2zx1x2zx1) = f(x2zx1)f(x2zx1) = 1,

which yields F (x2) = 1 by the de�nition of F .
Therefore, F (x1x2) = 1 if and only if F (x1)F (x2) = 1. Since 2 has only two elements,

this equivalence implies the equality F (x1x2) = F (x1)F (x2). �

Corollary 1. Any homomorphism f : S → 2 de�ned on a subsemilattice S of a semi-

lattice X can be extended to a homomorphism F : X → 2.

Proof. Apply Theorem 1 to the identity homomorphism π : X → X. �

Corollary 1 implies the following important fact, �rst noticed by Petrich [25], [26]
and Tamura [35].
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Theorem 2. The congruence m on any semigroup X coincides with the least semilattice

congruence on X.

Proof. Let η be the least semilattice congruence onX and η(·) : X → X/η be the quotient
homomorphism assigning to each element x ∈ X its equivalence class η(x) ∈ X/η. We
need to prove that η(x) = mx for every x ∈ X. Taking into account that m is a semilattice
congruence and η is the least semilattice congruence on X, we conclude that η ⊆ m and
hence η(x) ⊆ mx for all x ∈ X. Assuming that η 6= m, we can �nd elements x, y ∈ X such
that x m y but η(x) 6= η(y). Consider the subsemilattice S = {η(x), η(y), η(x)η(y)} of the
semilattice X/η. It follows from η(x) 6= η(y) that η(x)η(y) 6= η(x) or η(x)η(y) 6= η(y).
Replacing the pair x, y by the pair y, x, we can assume that η(x)η(y) 6= η(y). In this case
the unique function h : S → 2 with h−1(1) = {η(y)} is a homomorphism. By Corollary 1,
the homomophism h can be extended to a homomorphism H : X/η → 2. Then the

composition χ
def
= H ◦ η(·) : X → 2 is a homomorphism such that χ(x) = 0 6= 1 = χ(y),

which implies that mx 6= my. But this contradicts the choice of the points x, y. This
contradicton completes the proof of the equality m = η. �

A semigroup X is called 2-trivial if every homomorphism h : X → 2 is constant.
Tamura [35], [36] calls 2-trivial semigroups semilattice-indecomposable (or briefy s-
indecomposable) semigroups.

Theorem 1 implies the following fundamental fact �rst proved by Tamura [34] and
then reproved by another method in [37], see also [25], [26].

Theorem 3 (Tamura). For every element x of a semigroup X its 2-class mx is a 2-trivial

semigroup.

Now we provide an inner description of the binary quasiorder via prime (co)ideals,
following the approach of Petrich [26] and Tamura [35].

A subset I of a semigroup X is called

• an ideal in X if (IX) ∪ (XI) ⊆ I;
• a prime ideal if I is an ideal such that X \ I is a subsemigroup of X;
• a (prime) coideal if the complement X \ I is a (prime) ideal in X.

According to this de�nition, the sets ∅ and X are prime (co)ideals in X.
Observe that a subset A of a semigroup X is a prime coideal in X if and only if its

characteristic function

χA : X → 2, χA : x 7→ χA(x)
def
=

{
1, if x ∈ A,
0, otherwise,

is a homomorphism. This function characterization of prime coideals implies the following
inner description of the 2-quasiorder, �rst noticed by Tamura in [35].

Proposition 2. For any element x of a semigroup X, its upper 2-class ⇑x coincides

with the smallest coideal of X that contains x.

The following inner description of the upper 2-classes is a modi�ed version of
Theorem 3.3 in [26].
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Proposition 3. For any element x of a semigroup X its upper 2-class ⇑x is equal to

the union
⋃
n∈ω ⇑nx, where ⇑0x = {x} and

⇑n+1x
def
= {y ∈ X : X1yX1 ∩ (⇑nx)2 6= ∅}

for n ∈ ω.

Proof. Observe that for every n ∈ ω and y ∈ ⇑nx we have yy ∈ X1yX1∩ (⇑nx)2 6= ∅ and
hence y ∈ ⇑n+1x. Therefore, (⇑nx)n∈ω is an increasing sequence of sets. Also, for every
y, z ∈ ⇑nx we have yz ∈ X1yzX1 ∩ (⇑nx)2 and hence yz ∈ ⇑n+1x, which implies that the

union ⇑ωx
def
=

⋃
n∈ω ⇑nx is a subsemigroup of X.

The de�nition of the sets ⇑nx implies that the complement I = X \⇑ωx is an ideal in
X. Then ⇑ωx is a prime coideal in X. Taking into account that ⇑x is the smallest prime
coideal containing x, we conclude that ⇑x ⊆ ⇑ωx. To prove that ⇑ωx ⊆ ⇑x, it su�ces
to check that ⇑nx ⊆ ⇑x for every n ∈ ω. It is trivially true for n = 0. Assume that for
some n ∈ ω we have already proved that ⇑nx ⊆ ⇑x. Since ⇑x is a coideal in X, for any
y ∈ X \⇑x we have ∅ = X1yX1∩⇑x ⊇ X1yX1∩⇑nx, which implies that y /∈ ⇑n+1x and
hence ⇑n+1 ⊆ ⇑x. Consequently, ⇑nx ⊆ ⇑x for all n ∈ ω and hence ⇑ωx = ⇑x. �

For a positive integer n, let

2<n
def
=

⋃
k<n

{0, 1}k and 2≤n
def
=

⋃
k≤n

{0, 1}k.

For a sequence s = (s0, . . . , sn−1) ∈ 2n and a number k ∈ {0, 1} let

ŝ k
def
= (s0, . . . , sn−1, k) and k̂ s

def
= (k, s0, . . . , sn−1).

The following proposition provides a constructive description of elements of the sets ⇑nx
appearing in Proposition 3.

Proposition 4. For every n ∈ N and every element x of a semigroup X, the set ⇑nx
coincides with the set ⇑′nx of all elements y ∈ X for which there exist sequences {xs}s∈2≤n ,

{ys}s∈2≤n ⊆ X and {as}s∈2≤n , {bs}s∈2≤n ⊆ X1 satisfying the following conditions:

(1n) xs = x for all s ∈ 2n;
(2n) ys = asxsbs for every s ∈ 2≤n;
(3n) ys = xŝ 0xŝ 1 for every s ∈ 2<n;
(4n) x() = y for the unique element () of 20.

Proof. This proposition will be proved by induction on n. For n = 1, we have

⇑1
def
= {y ∈ X : xx ∈ X1yX1} = {y ∈ X : ∃a, b ∈ X1 ayb = xx}
= {y ∈ X : ∃{xs}s∈2≤1 , {ys}s∈2≤1 ⊆ X, {as}a∈2≤1 , {bs}s∈2≤1 ⊆ X1,

x(0) = x(1) = x, y() = x(0)x(1), x() = y, y() = a()x()b()} = ⇑′1x.

Assume that for some n ∈ N the equality ⇑nx = ⇑′nx has been proved. To check
that ⇑n+1x ⊆ ⇑

′
n+1x, take any x() ∈ ⇑n+1x. The de�nition of ⇑n+1x ensures that

X1x()X
1 ∩ (⇑nx)2 6= ∅ and hence a()x()b() = x(0)x(1) for some a(), b() ∈ X1 and

x(0)x(1) ∈ ⇑nx = ⇑′nx. By the de�nition of the set ⇑′nx, for every k ∈ {0, 1}, there
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exist sequences {xk̂ s}s∈2≤n , {yk̂ s}s∈2≤n ⊆ X and {ak̂ s}s∈2≤n , {bk̂ s}s∈2≤n ⊆ X1 such
that

• xk̂ s = x for all s ∈ 2n;
• yk̂ s = ak̂ sxk̂ sbk̂ s for every s ∈ 2≤n;
• yk̂ s = xk̂ ŝ 0xk̂ ŝ 1 for every s ∈ 2<n.

Then the sequences {xs}s∈2≤n+1 , {ys}s∈2≤n+1 ⊆ X and {as}s∈2≤n+1 , {bs}s∈2≤n+1 ⊆ X1

witness that x() ∈ ⇑′n+1x, which completes the proof of the inclusion ⇑n+1x ⊆ ⇑
′
n+1x.

To prove that ⇑′n+1x ⊆ ⇑n+1x, take any x() ∈ ⇑′n+1x and by the de�nition of

⇑′n+1x, �nd sequences {xs}s∈2≤n+1 , {ys}s∈2≤n+1 ⊆ X and {as}s∈2≤n+1 , {bs}s∈2≤n+1 ⊆
X1 satisfying the conditions (1n+1)�(3n+1). Then for every k ∈ {0, 1} the sequences
{xk̂ s}s∈2≤n , {xk̂ s}s∈2≤n ⊆ X and {ak̂ s}s∈2≤n , {bk̂ s}s∈2≤n ⊆ X1 witness that x(0), x(1) ∈
⇑′n = ⇑nx and then the equalities a()x()b() = y() = x(0)x(1) ∈ (⇑nx)2 imply that

X1x()X
1 ∩ (⇑nx)2 6= ∅ and hence x() ∈ ⇑n+1x, which completes the proof of the equality

⇑n+1x = ⇑′n+1x. �

A semigroup X is called duo if aX = Xa for every a ∈ X. Observe that each
commutative semigroup is duo.

The upper 2-classes in duo semigroups have the following simpler description.

Theorem 4. For any element a ∈ X of a duo semigroup X we have

⇑a = {x ∈ X : aN ∩X1xX1 6= ∅}.

Proof. First we prove that the set

aN

X

def
= {x ∈ X : aN ∩X1xX1 6= ∅}

is contained in ⇑a. In the opposite case, we can �nd a point x ∈ aN

X \ ⇑a. Taking into

account that ⇑a is a coideal containing a, we conclude that aN ⊆ ⇑a and

∅ = X1xX1 ∩ ⇑a ⊇ X1xX1 ∩ aN,

which contradicts the choice of the point x ∈ aN

X . This contradiction shows that aN

X ⊆ ⇑a.
Next, we prove that aN

X is a prime coideal. Since X is a duo semigroup, for every

x ∈ X we have X1x = xX1 = X1xX1. If x, y ∈ aN

X , then

X1x ∩ aN = X1xX1 ∩ aN 6= ∅ 6= X1yX1 ∩ aN = yX1 ∩ aN

and hence X1xyX1 ∈ aN 6= ∅, which means that xy ∈ aN

X . Therefore, a
N

X is a subsemi-

group of X. The de�nition of a
N

X ensures that X \ a
N

X is an ideal in X. Then aN

X ⊆ ⇑a is

a prime coideal in X and aN

X = ⇑a, by the minimality of ⇑a, see Proposition 2. �

Following Putcha and Weissglass [32], we de�ne a semigroup X to be viable if for
any elements x, y ∈ X with {xy, yx} ⊆ E(X), we have xy = yx. For various equivalent
conditions to the viability, see [2]. For viable semigroups Putcha and Weissglass [32]
proved the following simpli�cation of Proposition 3.

Proposition 5 (Putcha�Weissglass). If X is a viable semigroup, then for every

idempotent e ∈ E(X)we have ⇑e = {x ∈ X : e ∈ X1xX1}.
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Proof. We present a short proof of this theorem, for convenience of the reader. Let

⇑1e
def
= {x ∈ X : e ∈ X1xX1}. By Proposition 3, ⇑1e ⊆ ⇑e. The reverse inclusion will

follow from the minimality of the prime coideal ⇑e as soon as we prove that ⇑1e is a prime
coideal in X. It is clear from the de�nition that ⇑1e is a coideal. So, it remains to check
that ⇑1e is a subsemigroup. Given any elements x, y ∈ ⇑1e, �nd elements a, b, c, d ∈ X1

such that axb = e = cyd. Then axbe = ee = e and

(beax)(beax) = be(axbe)ax = beeax = beax,

which means that beax is an idempotent. By the viability of X, axbe = e = beax.
By analogy we can prove that ecyd = e = ydec. Then beaxydec = ee = e and hence
xy ∈ ⇑1e. �

Proposition 5 has an important corollary, proved in [32].

Corollary 2 (Putcha�Wiessglass). If X is a viable semigroup, then for every x ∈ X its

2-class mx contains at most one idempotent.

Proof. Take any idempotents e, f ∈ mx. By Proposition 5, there are elements a, b, c, d ∈
X1 such that e = afb and f = ced. Observe that afbe = ee = e and

(beaf)(beaf) = be(afbe)af = beeaf = beaf

and hence afbe and beaf are idempotents. The viability of X ensures that

e = afbe = beaf ∈ Xf

and hence X1e ⊆ X1f . By analogy we can prove that X1f ⊆ X1e, which implies
X1e = X1f . By analogy we can prove the equality eX1 = fX1. Then He = Hf and
�nally e = f (because the group He = Hf contains a unique idempotent). �

4. The structure of 2-trivial semigroups

Tamura's Theorem 3 motivates the problem of a deeper study of the structure of
2-trivial semigroups. This problem has been considered in the literature, see, e.g. [26,
�3]. Proposition 2 implies the following simple characterization of 2-trivial semigroups.

Theorem 5. A semigroup X is 2-trivial if and only if every nonempty prime ideal in

X coincides with X.

Observe that a semigroup X is 2-trivial if and only if X = ⇑x for every x ∈ X. This
observation and Propositions 3 and 4 imply the following characterization.

Proposition 6. A semigroup X is 2-trivial if and only if for every x, y ∈ X there

exists n ∈ N and sequences {as}s∈2≤n , {bs}s∈2≤n ⊆ X1 and {xs}s∈2≤n , {ys}s∈2≤n ⊆ X
satisfying the following conditions:

(1) xs = x for all s ∈ 2n;
(2) ys = asxsbs for every s ∈ 2≤n;
(3) ys = xŝ 0xŝ 1 for every s ∈ 2<n;
(4) x() = y for the unique element () of 20.
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A semigroup X is called Archimedean if for any elements x, y ∈ X there exists
n ∈ N such that xn ∈ XyX for some a, b ∈ X. A standard example of an Archimedean
semigroup is the additive semigroup N of positive integers. For commutative semigroups
the following characterization was obtained by Tamura and Kimura in [38].

Theorem 6. A duo semigroup X is 2-trivial if and only if X is Archimedean.

Proof. If X is 2-trivial, then by Theorem 4, for every x, y ∈ X there exists n ∈ ω such
that xn ∈ XyX, which means that X is Archimedean.

If X is Archimedean, then for every ∈ X, we have

⇑x = {y ∈ X : xN ∩ (XyX) 6= ∅} = X,

see Theorem 4, which means that the semigroup X is 2-trivial. �

Following Tamura [36], we de�ne a semigroup X to be unipotent if X contains a
unique idempotent.

Theorem 7 (Tamura). For the unique idempotent e of an unipotent 2-trivial semigroup

X, the maximal group He of e in X is an ideal in X.

Proof. This theorem was proved by Tamura in [36]. We present here an alternative (and
direct) proof. To derive a contradiction, assume that He is not an ideal in X. Then the
set

I
def
= {x ∈ X : {ex, xe} 6⊆ He}

is not empty. We claim that I is an ideal in X. Assuming the opposite, we could �nd
x ∈ I and y ∈ X such that xy /∈ I or yx /∈ I.

If xy /∈ I, then {exy, xye} ⊆ He. Taking into account that exy and xye are elements
of the group He, we conclude that exy = exye = xye. Let g be the inverse element to
xye in the group He. Then

exyg = xyeg = xyg = e.

Replacing y by yg, we can assume that ye = y and xy = e. Observe that

yxyx = y(xy)x = yex = (ye)x = yx,

which means that yx is an idempotent in S. Since e is a unique idempotent of the
semigroup X, yx = e = xy. It follows that

xe = x(yx) = (xy)x = ex

and

ey = (yx)y = y(xy) = ye = y.

Using this information it is easy to show that xe = ex ∈ He. By analogy we can show that
the assumption yx /∈ I implies ex = xe ∈ He. So, in both cases we obtain ex = xe ∈ He,
which contradicts the choice of x ∈ I.

This contradiction shows that I is an ideal in S. Observe that for any x, y ∈ X \ I
we have {ex, xe, ey, ye} ⊆ He. Then also

xye = x(eye) = (xe)(ye) ∈ He

and

exy = (exe)y = (ex)(ey) ∈ He,
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which means that xy ∈ X \ I and hence I is a nontrivial prime ideal in X. But the
existence of such an ideal contradicts the 2-triviality of X. �

An element z of a semigroup X is called central if zx = xz for all x ∈ X.

Corollary 3. The unique idempotent e of a unipotent 2-trivial semigroup X is central

in X.

Proof. Let e be a unique idempotent of the unipotent semigroup X. By Tamura's
Theorem 7, the maximal subgroup He of e is an ideal in X. Then for every x ∈ X we
have xe, ex ∈ He. Taking into account that xe and ex are elements of the group He, we
conclude that ex = exe = xe. This means that the idempotent e is central in X. �

As we already know a semigroup X is 2-trivial if and only if each nonempty prime
ideal in X is equal to X.

A semigroup X is called

• simple if every nonempty ideal in X is equal to X;

• congruence-free if every congruence on X is equal to X ×X or ∆X
def
= {(x, y) ∈

X ×X : x = y}.
It is clear that a semigroup X is 2-trivial if X is either simple or congruence-free.

On the other hand the additive semigroup of integers N is 2-trivial but not simple.

Remark 1. By [1], [14], there exists an in�nite congruence-free monoidX with zero. Being
congruence-free, the semigroup X is 2-trivial. On the other hand, X contains at least
two central idempotents: 0 and 1. The 2-trivial monoid X is not unipotent and its center
Z(X) = {z ∈ X : ∀x ∈ X (xz = zx)} is not 2-trivial. The polycyclic monoids (see [10],
[11], [8], [9]) have the similar properties. By Theorem 2.4 in [10], for λ ≥ 2 the polycyclic
monoid Pλ is congruence-free and hence 2-trivial, but its center Z(Pλ) = {0, 1} is not
2-trivial.
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