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Given two elements z,y of a semigroup X we write z < y if for every
homomorphism x : X — {0,1} we have x(z) < x(y). The quasiorder < is
called the binary quasiorder on X. It induces the equivalence relation {§ that
coincides with the least semilattice congruence on X. In the paper we discuss
some known and new properties of the binary quasiorder on semigroups.
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1. INTRODUCTION

In this paper we study the binary quasiorder on semigroups. Every semigroup carries
many important quasiorders (for example, those related to the Green relations). One
of them is the binary quasiorder < defined as follows. Given two elements z,y of a
semigroup X we write z < y if x(2) < x(y) for any homomorphism x : X — {0,1}.
On every semigroup X the binary quasiorder generates a congruence, which coincides
with the least semilattice congruence, and decomposes the semigroup into a semilattice
of semilattice-indecomposable semigroups. This fundamental decomposition result was
proved by Tamura [34] (see also [25], [26], [37]). Because of its fundamental importance,
the least semilattice congruence has been deeply studied by many mathematicians, see the
papers [15], [16], [17], [18], [23], [29], [30], [31], [32], [25], [26], [33], [38], [35], [36], surveys
[22], [24], and monographs [13], [21], [27]. The aim of this paper is to provide a survey
of known and new results on the binary quasiorder and the least semilattice congruence
on semigroups. The obtained results will be applied in the theory of categorically closed
semigroups developed by the first author in collaboration with Serhii Bardyla, see [3, 4,
5,6, 7]

2020 Mathematics Subject Classification: 20M10
© Banakh, T., Hryniv, O., 2021



THE BINARY QUASIORDER ON SEMIGROUPS
ISSN 2078-3744. Bicuuk JIpBiB. yu-Ty. Cepis mex.-mar. 2021. Bumyck 91 29

2. PRELIMINARIES

In this section we collect some standard notions that will be used in the paper. We

refer to [19] for Fundamentals of Semigroup Theory.

We denote by w the set of all finite ordinals and by N «f w\ {0} the set of all positive

integer numbers.

A semigroup is a set endowed with an associative binary operation. A semigroup X
is called a semilattice if X is commutative and every element x € X is an idempotent
which means xx = x. Each semilattice X carries the natural partial order < defined by
x <y iff zy = . For a semigroup X we denote by E(X) oef {z € X : zx = x} the set of
idempotents of X.

Let X be a semigroup. For an element x € X let

deéf{x":nEN}

be the monogenic subsemigroup of X generated by the element x. For two subsets A, B C

X, let AB « {ab:a € A, b€ B} be the product of A, B in X.

For an element a of a semigroup X, the set
H,={zecX:(aX'=aX") A (X'z=X"'a)}

is called the H-class of a. Here X' = X U{1} where 1 is an element such that 1o = = = 1
for all z € X'. By Corollary 2.2.6 [19], for every idempotent e € F(X) its H-class H,
coincides with the maximal subgroup of X containing the idempotent e.

3. THE BINARY QUASIORDER

In this section we discuss the binary quasiorder on a semigroup and its relation to
the least semilattice congruence. A quasiorder is a reflexive transitive relation.

Let 2 denote the set {0,1} endowed with the operation of multiplication inherited
from the ring Z. It is clear that 2 is a two-element semilattice, so it carries the natural
partial order, which coincides with the linear order inherited from Z.

For elements z,y of a semigroup X we write x < y if x(z) < x(y) for every
homomorphism x : X — 2. It is clear that < is a quasiorder on X. This quasiorder
will be referred to as the binary quasiorder on X. The obvious order properties of the
semilattice 2 imply the following (obvious) properties of the binary quasiorder on X.

Proposition 1. For any semigroup X and any elements x,y,a € X, the following
statements hold:

(1) if x Sy, then ax < ay and za < ya;

(2) 2y Syx S wy;

(3) v Sa? Sy

(4) zy Sz and xy S y.

For an element a of a semigroup X and subset A C X, consider the following sets:

ﬁa(g{IGX:aSI}, l}adg{IGX:m,Sa}, and ﬁa(jéf{xEX:ania},

called the upper 2-class, lower 2-class and the 2-class of x, respectively. Proposition 1
implies that those three classes are subsemigroups of X.
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For two elements z,y € X we write z § y iff Jo = Jy iff x(z) = x(y) for any
homomorphism x : X — 2. Proposition 1 implies that { is a congruence on X.

We recall that a congruence on a semigroup X is an equivalence relation ~ on X
such that for any elements x ~ y of X and any a € X we have ax ~ ay and za = ya.
For any congruence =~ on a semigroup X, the quotient set X/~ has a unique semigroup
structure such that the quotient map X — X/ is a semigroup homomorphism. The
semigroup X/ is called the quotient semigroup of X by the congruence = .

A congruence = on a semigroup X is called a semilattice congruence if the quotient
semigroup X/, is a semilattice. Proposition 1 implies that { is a semilattice congruence
on X. The intersection of all semilattice congruences on a semigroup X is a semilattice
congruence called the least semilattice congruence, denoted by n in [19], [20] (by £ in [35],
[22], and by po in [13]). The minimality of n implies that n C {. The inverse inclusion
$ € n will be deduced from the following (probably known) theorem on extensions of
2-valued homomorphisms.

Theorem 1. Let m : X — Y be a surjective homomorphism from a semigroup X to a
semilattice Y. For every subsemilattice S C'Y and homomorphism f : 7= 1[S] — 2 there
ezists a homomorphism F': X — 2 such that F| (g = f.

Proof. We claim that the function F': X — 2 defined by
Flz) = {17 if 32 € 7~1[S] such that (z2) € S and f(xz) = 1;

0, otherwise;

is a required homomorphism extending f.

To see that F extends f, take any z € 7~ 1[S]. If f(x) = 1, then for z = 2 we have

m(xz) = 7(x)n(z) = w(x)n(x) =7n(x) € S
and
f(xz) = f(2)f(2) = f(x)f(z) =1
and hence F(z) = 1 = f(z).If F(z) = 1, then there exists z € 7~ ![S] such that w(zz) € S
and
f@)f(z) = f(zz) = f(zx) =1,

which implies that f(x) = 1. Therefore, F(z) = 1 if and only if f(x) = 1. Since 2 has
only two elements, this implies that f = Flrg)-

To show that F' is a homomorphism, we first establish two properties of the
homomorphism f.

Claim 1. Let z € X and z € 7w '[S] be such that zz € ©=[S]. If f(xz) = 1, then
flz)=1.
Proof. Tt follows from f(zz) =1 that
flzzzz) = f(xz)f(xz) = 1.
Taking into account that
m(xzz) = w(x)w(2)n(x) = n(x)m(z) = w(xz) € S,

we conclude that

1= f(azez) = f(az) f(2)
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and hence f(z) = 1. O

Claim 2. Let v,y € X be such that xy € 7—1[S]. Then yx € 7~1[S] and f(xy) = f(yx).
Proof. 1t follows that
m(yx) = 7 (y)n(z) = m(x)7(y) = 7(ay) € S
and hence yz € 7~ ![S]. By analogy we can prove that yzy, zyx € 7—1[S]. If f(zy) = 0,
then
flyx) = fly) f(yx) f(yz) f(yz) = fyzyzyzyz) = f(yzy) f(ay) f(eyz) = 0.

By analogy we can prove that f(yz) = 0 implies f(zy) = 0. Therefore, f(zy) = 0 if
and only if f(yz) = 0. Since the set 2 has only two elements, this implies that f(zy)

f(yx).

To show that F'is a homomorphism, fix any elements x1,x2 € X. We should prove
that

o

F(lﬂll'g) = F(xl)F(xQ)

First assume that F(z1)F(z2) = 1 and hence F(z1) = 1 = F(z2). The definition
of F yields elements 21,29 € 77 1[S] such that n(z;2;) € S and f(z;2;) = 1 for every
1 € {1,2}. Claims 1 and 2 imply

f(zizi) = f(wizi) = 1= f(2)
for every i € {1,2}. Also
7T(.’L‘1(E22221) = 7T(21$1£L'22221) = 7T(£L'121)7T((E222) S SS Q S,

SO we can write

f(Z1)f(.131$22221) = f(Z1J311‘22221) = f(2’1$1)f(.1‘222)f(21) =1-1-1=1

and conclude that f(z1x22221) = 1 and F(z122) = 1 by the definition of F'.

Next, assume that F(z122) = 1. Then there exists z € 7 1[S] such that 7(z1222) €
S and f(z1222) = 1. For the element z; = z9zx1792 € 7 1[S] we have 1121 € 7 1[S)]
and

flx121) = f(zr22221292) = f(T1222) f(T1222) =11 =1,

which yields F'(x1) = 1 by the definition of F.

On the other hand, Claim 2 ensures that f(z2z21) = f(21222) = 1 and then for the
element zy = zz179221 € T 1[S] we have z920 € 7 1[S] and

f(xozs) = f(aozmixozey) = f(xazay) f(xazzy) = 1,

which yields F(z2) = 1 by the definition of F.
Therefore, F'(x122) = 1 if and only if F/(z1)F (x2) = 1. Since 2 has only two elements,
this equivalence implies the equality F(z1z2) = F(x1)F (x2). O

Corollary 1. Any homomorphism f : S — 2 defined on a subsemilattice S of a semi-
lattice X can be extended to a homomorphism F : X — 2.

Proof. Apply Theorem 1 to the identity homomorphism 7 : X — X. O

Corollary 1 implies the following important fact, first noticed by Petrich [25], [26]
and Tamura [35].
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Theorem 2. The congruence { on any semigroup X coincides with the least semilattice
congruence on X.

Proof. Let 7 be the least semilattice congruence on X and n(-) : X — X/n be the quotient
homomorphism assigning to each element x € X its equivalence class n(x) € X/n. We
need to prove that n(z) = {z for every x € X. Taking into account that {} is a semilattice
congruence and 7 is the least semilattice congruence on X, we conclude that n C { and
hence n(z) C {Jz for all z € X. Assuming that n # {J, we can find elements x,y € X such
that = L y but n(z) # n(y). Consider the subsemilattice S = {n(z), n(y), n(z)n(y)} of the
semilattice X /7. It follows from n(z) # n(y) that n(x)n(y) # n(x) or n(x)n(y) # n(y)-
Replacing the pair z,y by the pair y, z, we can assume that 1(z)n(y) # n(y). In this case
the unique function h : S — 2 with h=1(1) = {n(y)} is a homomorphism. By Corollary 1,
the homomophism h can be extended to a homomorphism H : X/n — 2. Then the

composition y ¥ Ho n(-) : X — 2 is a homomorphism such that x(z) =0 # 1 = x(y),
which implies that $z # {y. But this contradicts the choice of the points z,y. This
contradicton completes the proof of the equality § = 7. O

A semigroup X is called 2-trivial if every homomorphism h : X — 2 is constant.
Tamura [35], [36] calls 2-trivial semigroups semilattice-indecomposable (or briefy s-
indecomposable) semigroups.

Theorem 1 implies the following fundamental fact first proved by Tamura [34] and
then reproved by another method in [37], see also [25], [26].

Theorem 3 (Tamura). For every element x of a semigroup X its 2-class {x is a 2-trivial
semigroup.

Now we provide an inner description of the binary quasiorder via prime (co)ideals,
following the approach of Petrich [26] and Tamura [35].

A subset I of a semigroup X is called

o an ideal in X if (IX)U (XI) C I;

e a prime ideal if T is an ideal such that X \ I is a subsemigroup of X;

o a (prime) coideal if the complement X \ I is a (prime) ideal in X.

According to this definition, the sets & and X are prime (co)ideals in X.
Observe that a subset A of a semigroup X is a prime coideal in X if and only if its
characteristic function

1, ifxe A,

def
Xa:X 22 xaize xale) = .
0, otherwise,

is a homomorphism. This function characterization of prime coideals implies the following
inner description of the 2-quasiorder, first noticed by Tamura in [35].

Proposition 2. For any element x of a semigroup X, its upper 2-class {tx coincides
with the smallest coideal of X that contains x.

The following inner description of the upper 2-classes is a modified version of
Theorem 3.3 in [26].
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Proposition 3. For any element x of a semigroup X its upper 2-class ftx is equal to
the union |, ., z, where fyz = {z} and

£
ﬂn+l$ d§

new
{ye X : X'yX"' N (f,2)* # 2}
forn e w.

Proof. Observe that for every n € w and y € f,,x we have yy € X'yX'N(f,2)? # @ and
hence y € f),, 2. Therefore, (},2)new is an increasing sequence of sets. Also, for every
Y,z € fh,x we have yz € X'yzX' N (f,7)? and hence yz € f,.12, which implies that the

union f,x %ef Unew M2 is a subsemigroup of X.

The definition of the sets f,,z implies that the complement I = X \ f},x is an ideal in
X. Then ),z is a prime coideal in X. Taking into account that ft= is the smallest prime
coideal containing z, we conclude that ffz C ), x. To prove that f,x C fz, it suffices
to check that f,,x C fiz for every n € w. It is trivially true for n = 0. Assume that for
some n € w we have already proved that {},,z C ftz. Since f}x is a coideal in X, for any
y € X \fz we have @ = X'y X' Nflz O X'yX' N1, 2, which implies that y ¢ 1,z and
hence 1, ,; € . Consequently, f),z C fiz for all n € w and hence |,z = fz. O

For a positive integer n, let

o< | J{0,1}F and 25" € | J{0,1}".

k<n k<n
For a sequence s = (S, ...,Sp—1) € 2" and a number k € {0,1} let
sk (s0y---,Sn—1,k) and k"s def (k,S0,--+ySn—1)-

The following proposition provides a constructive description of elements of the sets ),z
appearing in Proposition 3.

Proposition 4. For every n € N and every element x of a semigroup X, the set |, x
coincides with the set {},x of all elementsy € X for which there exist sequences {4} sco<n,
{Ystsco<n € X and {as}scocn, {bs}sco<n C X! satisfying the following conditions:

(1) zs =z for all s € 2™;

(2,) ys = asxsbs for every s € 257;
(3n) Ys = Ts0Ts1 for every s € 2<7;
(4,) () =y for the unique element () of 2°.

Proof. This proposition will be proved by induction on n. For n = 1, we have

T yeXiareXyX Y ={ye X:a,be X" ayb=zx}

- {y e X: EI{563}562517 {ys}s€2§1 g Xv {as}a€2§17 {bs}s€2§1 g Xla
To) = T(1) = T, Y = T)T(1), T =Y Yo = agrby} = M

Assume that for some n € N the equality fi,,# = {}'x has been proved. To check
that f,,,,2 C {41, take any x() € 4 2. The definition of f},, 2 ensures that
Xlx()Xl N (ﬂna:)2 # @ and hence a()x()b() = T(0)Z(1) for some a(),b() € X! and
z)r(1) € Mz = f,z. By the definition of the set fz, for every k € {0,1}, there
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exist sequences {ZTps}sco<n, {Uks}sco<n C X and {aps}tsco<n, {bks}scocn C X! such
that

e 1~ = x for all s € 2™;

® Uiy = QisTisbys for every s € 257;

® Yis = Tps0Tk sl fOr every s € 2<7,
Then the sequences {4} co<nti, {Ysfsca<ntt € X and {as}scocntt, {bs}tscocnit C X1
witness that z() € 1 1%, which completes the proof of the inclusion f},, ;2 C 1 1.

To prove that f, 2 C f,,,2, take any z() € 1, 2 and by the definition of
ﬂTIL—Fl’I’ find sequences {IS}S€2§“+1a{yS}s€2§“+1 c X and {a8}3€2§"+17{bs}s€2§"+1 -
X1 satisfying the conditions (1,41)—(3,+1). Then for every k € {0,1} the sequences
{xk)AS}sEQS"7 {xk”‘g}se2§n C X and {ak“s}seggn, {b}(s}s€2<n C X! witness that Z(0); (1) €
., = M,z and then the equalities apz(by = yy = z@©yra) € (f,2)* imply that
Xlx()Xl N (f),z)% # @ and hence x() € i, 17, which completes the proof of the equality
Mot1Z = ﬂ7IL+1x' U

A semigroup X is called duo if aX = Xa for every a € X. Observe that each

commutative semigroup is duo.
The upper 2-classes in duo semigroups have the following simpler description.

Theorem 4. For any element a € X of a duo semigroup X we have
ffa={zec X :d"nXaX! +# 2}

Proof. First we prove that the set
o e X d N XaX! £ o)

is contained in fta. In the opposite case, we can find a point = € f‘X—N \ fta. Taking into

account that fja is a coideal containing a, we conclude that o C fla and

g=X2X'NnfaDd Xler1 Nnat,
which contradicts the choice of the point z € %. This contradiction shows that % C fta.
Next, we prove that YN is a prime c01deal. Since X is a duo semigroup, for every
z€ X wehave X'z =2X' = X'z X . Ifz,y € %, then
Xlznad = X2X'nd¥ # @ #leXl OaN =yX'na"

and hence X'ayX' € oV # @, Wthh means that xy e < Therefore, % is a subsemi-

group of X. The definition of % 7 ensures that X \ & 7 is an 1deal in X. Then “7 C fra is

a prime coideal in X and ‘;(—N = fta, by the minimality of {ta, see Proposition 2. O

Following Putcha and Weissglass [32], we define a semigroup X to be wviable if for
any elements z,y € X with {zy,yz} C E(X), we have zy = yx. For various equivalent
conditions to the viability, see [2]. For viable semigroups Putcha and Weissglass [32]
proved the following simplification of Proposition 3.

Proposition 5 (Putcha—Weissglass). If X is a wviable semigroup, then for every
idempotent e € E(X )we have e = {x € X : e € X1z X'}
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Proof. We present a short proof of this theorem, for convenience of the reader. Let

e def {z € X : e € X'zX'}. By Proposition 3, fye C fte. The reverse inclusion will

follow from the minimality of the prime coideal fte as soon as we prove that e is a prime
coideal in X. It is clear from the definition that {);e is a coideal. So, it remains to check
that fie is a subsemigroup. Given any elements z,y € fye, find elements a,b,c,d € X*
such that axb = e = cyd. Then azxbe = ee = e and

(beaz)(beax) = be(axbe)axr = beeaxr = beax,

which means that beax is an idempotent. By the viability of X, axbe = e = beax.
By analogy we can prove that ecyd = e = ydec. Then beaxydec = ee = e and hence
Ty € fhe. O

Proposition 5 has an important corollary, proved in [32].

Corollary 2 (Putcha—Wiessglass). If X is a viable semigroup, then for every x € X its
2-class & contains at most one idempotent.

Proof. Take any idempotents e, f € {lz. By Proposition 5, there are elements a,b,c,d €
X' such that e = afb and f = ced. Observe that afbe = ee = e and

(beaf)(beaf) = be(afbe)af = beeaf = beaf
and hence afbe and beaf are idempotents. The viability of X ensures that
e=afbe =beaf € Xf

and hence X'e C X'f. By analogy we can prove that X'f C X'e, which implies
X'e = X'f. By analogy we can prove the equality eX' = fX!. Then H, = Hy and
finally e = f (because the group H. = Hy contains a unique idempotent). O

4. THE STRUCTURE OF 2-TRIVIAL SEMIGROUPS

Tamura’s Theorem 3 motivates the problem of a deeper study of the structure of
2-trivial semigroups. This problem has been considered in the literature, see, e.g. [26,
§3]. Proposition 2 implies the following simple characterization of 2-trivial semigroups.

Theorem 5. A semigroup X is 2-trivial if and only if every nonempty prime ideal in
X coincides with X .

Observe that a semigroup X is 2-trivial if and only if X = {tx for every x € X. This
observation and Propositions 3 and 4 imply the following characterization.

Proposition 6. A semigroup X is 2-trivial if and only if for every x,y € X there
erists n € N and sequences {as}sco<n, {bs}scosn C X1 and {25} cocn, {Ys}sca<n € X
satisfying the following conditions:

(1) x5 =z for all s € 27;

(2) ys = asxsbs for every s € 257;

(3) ys = Ts0ws1 for every s € 2<7;

(4) z() =y for the unique element () of 2°.
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A semigroup X is called Archimedean if for any elements x,y € X there exists
n € N such that 2" € XyX for some a,b € X. A standard example of an Archimedean
semigroup is the additive semigroup N of positive integers. For commutative semigroups
the following characterization was obtained by Tamura and Kimura in [38].

Theorem 6. A duo semigroup X is 2-trivial if and only if X is Archimedean.

Proof. If X is 2-trivial, then by Theorem 4, for every z,y € X there exists n € w such
that 2" € XyX, which means that X is Archimedean.
If X is Archimedean, then for every € X, we have

fz={y e X : 2NN (XyX) # 2} = X,
see Theorem 4, which means that the semigroup X is 2-trivial. O

Following Tamura [36], we define a semigroup X to be unipotent if X contains a
unique idempotent.

Theorem 7 (Tamura). For the unique idempotent e of an unipotent 2-trivial semigroup
X, the mazimal group H. of e in X is an ideal in X.

Proof. This theorem was proved by Tamura in [36]. We present here an alternative (and
direct) proof. To derive a contradiction, assume that H, is not an ideal in X. Then the
set

1% {zx € X : {ex,ze} L H.}
is not empty. We claim that I is an ideal in X. Assuming the opposite, we could find
x €l and y € X such that zy ¢ I or yx ¢ I.

If zy ¢ I, then {exy, zye} C H.. Taking into account that exy and zye are elements
of the group H., we conclude that exy = exye = zye. Let g be the inverse element to
zye in the group H.. Then

exyg = xYeg = Tyg = €.
Replacing y by yg, we can assume that ye = y and zy = e. Observe that

yryr = y(zy)r = yex = (ye)zr = yz,

which means that yz is an idempotent in S. Since e is a unique idempotent of the
semigroup X, yr = e = zy. It follows that

ze = z(yz) = (zy)r = ex
and

ey = (yz)y = y(zy) = ye = y.

Using this information it is easy to show that xe = ex € H,. By analogy we can show that
the assumption yz ¢ I implies ex = xe € H.. So, in both cases we obtain ex = ze € H,,
which contradicts the choice of x € I.

This contradiction shows that I is an ideal in S. Observe that for any z,y € X \ I

we have {ex, ze,ey,ye} C H,. Then also

zye = z(eye) = (ze)(ye) € He
and

exy = (exe)y = (ex)(ey) € He,
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which means that zy € X \ I and hence I is a nontrivial prime ideal in X. But the
existence of such an ideal contradicts the 2-triviality of X. O

An element z of a semigroup X is called central if zx = xz for all x € X.

Corollary 3. The unique idempotent e of a unipotent 2-trivial semigroup X is central
mn X.

Proof. Let e be a unique idempotent of the unipotent semigroup X. By Tamura’s
Theorem 7, the maximal subgroup H, of e is an ideal in X. Then for every x € X we
have ze,ex € H,. Taking into account that xe and ex are elements of the group H., we
conclude that ex = exe = xe. This means that the idempotent e is central in X. O

As we already know a semigroup X is 2-trivial if and only if each nonempty prime
ideal in X is equal to X.
A semigroup X is called

e simple if every nonempty ideal in X is equal to X;

e congruence-free if every congruence on X is equal to X x X or Ax def {(z,y) €

X xX:z=y}
It is clear that a semigroup X is 2-trivial if X is either simple or congruence-free.
On the other hand the additive semigroup of integers N is 2-trivial but not simple.

Remark 1. By [1], [14], there exists an infinite congruence-free monoid X with zero. Being
congruence-free, the semigroup X is 2-trivial. On the other hand, X contains at least
two central idempotents: 0 and 1. The 2-trivial monoid X is not unipotent and its center
Z(X)={z€ X :Vz € X (rz = zx)} is not 2-trivial. The polycyclic monoids (see [10],
[11], [8], [9]) have the similar properties. By Theorem 2.4 in [10], for A > 2 the polycyclic
monoid Py is congruence-free and hence 2-trivial, but its center Z(Py) = {0,1} is not
2-trivial.
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g nBox enementis z,y namsrpynu X mumemo z S y, akmo X (z) < x(y)
st goBisHOTO roMomopdismy x : X — {0,1}. BigHomenns < Ha3MBa€THCS
binaprum Keadinopadkom Ha X. BiH MOPOMKYE BIIHOIIEHHS €KBIBaJIEHTHOCTI
{, mo 36iraeThcs 3 HANMEHIIO HATIBI' PATKOBOIO KOHTpYyeHmjeo Ha X . ITomano
OTJISIZ BIIOMUX 1 HOBUX BJIACTHBOCTEH OiHAPHOrO KBA3IMOPSAKY Ha HAMIBIPY-
max.

Karowoet caosa: GiHApHUI KBa3IiNOPsI0K, MiHIMAJ/IbHA HAMMIBI'DATKOBA KOH-
TDYyeHIlis, IePBUHHAMI KOi/leaJs, YHIIOTEHTHA HAIBIPYyIIa.



