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An analytic univalent in D = {z : |z| < 1} function f is said to be convex if
f(D) is a convex domain and is said to be close-to-convex if there exists a convex
in D function Φ such that Re (f ′(z)/Φ′(z)) > 0 (z ∈ D). We indicate conditions
on real parameters β0, β1, γ0, γ1, γ2 and α0, α1, α2 of the di�erential equation

z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = α0z

2 + α1z + α2,

under which this equation has a polynomial solution

f(z) =

p∑
n=0

fnz
n (deg f = p ≥ 2)

close-to-convex in D together with all its derivatives f (j) (1 ≤ j ≤ p− 1).

Key words: linear non-homogeneous di�erential equation of the second
order, polynomial coe�cient, polynomial solution, close-to-convex function.

1. Introduction and auxiliary results

An analytic univalent in D = {z : |z| < 1} function

(1) f(z) =

∞∑
n=0

fnz
n

is said to be convex if f(D) is a convex domain. It is well known [1, p. 203] (see also
[2, p. 8]) that the condition Re {1 + zf ′′(z)/f ′(z)} > 0 (z ∈ D) is necessary and su�cient
for the convexity of f . A function f is said to be close-to-convex in D (W. Kaplan [3],
see also [1, p. 583], [2, p. 11]) if there exists a convex in D function Φ such that
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Re (f ′(z)/Φ′(z)) > 0 (z ∈ D). Any close-to-convex function f has a characteristic
property that the complement G of the domain f(D) can be �lled with rays which start
from ∂G and lie in G. Every close-to-convex in D function f is univalent in D and,
therefore, f ′(0) 6= 0. Hence it follows that any function f is close-to-convex in D if and

only if the function g(z) = z +

∞∑
n=2

gnz
n is close-to-convex in D, where gn = fn/f1.

S. M. Shah [4] indicated conditions on real parameters β0, β1, γ0, γ1, γ2 of the
di�erential equation

(2) z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = 0,

under which there exists an entire transcendental solution (1) such that f and all its
derivatives are close-to-convex in D. The investigations are continued in the papers [5�10],
but in all of these papers the case of polynomial solutions of (2) was not investigated.
In the papers [11�14] properties of entire solutions of a linear di�erential equation of n-
th order with polynomial coe�cients of n-th degree are investigated. Some results from
these papers are published also in monograph [2].

Here we consider a di�erential equation

(3) z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = α0z

2 + α1z + α2

with real parameters and study the existence and closeness-to-convexity of its polynomial
solutions.

At �rst we remark that a function (1) is a solution of the di�erential equation (3) if
and only if

∞∑
n=2

n(n− 1)fnz
n + β0

∞∑
n=2

(n− 1)fn−1z
n + γ0

∞∑
n=2

fn−2z
n+

+β1

∞∑
n=1

nfnz
n + γ1

∞∑
n=1

fn−1z
n + γ2

∞∑
n=0

fnz
n = α0z

2 + α1z + α2,

i. e.

(4) γ2f0 = α2, (β1 + γ2)f1 + γ1f0 = α1, (2 + 2β1 + γ2)f2 + (β0 + γ1)f1 + γ0f0 = α0

and for n ≥ 3

(5) (n(n+ β1 − 1) + γ2)fn + (β0(n− 1) + γ1)fn−1 + γ0fn−2 = 0.

Clearly, by some condition di�erential equation (3) may have a linear solution, which
obviously is convex function in D. We are going to investigate a solutions of degree ≥ 2.
In this case the following statement is true.

Lemma 1. In order that the polynomial

(6) f(z) =

p∑
n=0

fnz
n, deg f = p ≥ 2,

be a solution of the di�erential equation (3), it is necessary that γ0 = pβ0 + γ1 = 0.
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Proof. Indeed, for n = p+ 2 from (5) we get

((p+ 2)(p+ β1 + 1) + γ2)fp+2 + ((p+ 1)β0 + γ1)fp+1 + γ0fp = 0.

If f has the form (6) then fp+2 = fp+1 = 0 and fp 6= 0. Therefore, γ0 = 0 and from (5)
for n = p+ 1 we obtain

((p+ 1)(p+ β1) + γ2)fp+1 + (pβ0 + γ1)fp = 0.

Since fp+1 = 0 and fp 6= 0, it follows that pβ0 + γ1 = 0. Lemma 1 is proved. �

By the condition γ0 = pβ0 + γ1 = 0 from (4) and (5) we get

(7) γ2f0 = α2, (β1 + γ2)f1 = α1 + pβ0f0, (2 + 2β1 + γ2)f2 = α0 + (p− 1)β0f1

and for 3 ≤ n ≤ p

(8) (n(n+ β1 − 1) + γ2)fn = (p− n+ 1)β0fn−1.

We remark that the condition γ0 = pβ0 + γ1 = 0 is not su�cient in order that a solution
of di�erential equation (3) has the form (6). Indeed, although in view of (8) we have

((p+ 3)(p+ β1 + 2) + γ2)fp+3 = 0,

it does not follow from here that fp+3 = 0, since (p+ 3)(p+ β1 + 2) + γ2 can be equal to
zero. Therefore, further we assume that

n(n+ β1 − 1) + γ2 6= 0, 3 ≤ n ≤ p.

This condition allows us to rewrite the equality (8) in the form

(9) fn =
(p− n+ 1)β0

n(n+ β1 − 1) + γ2
fn−1, n ≥ 3,

whence it follows that fp = 0, if β0 = 0. Therefore, further we assume also that β0 6= 0.
To study the closeness-to-convexity of the polynomial (6), we will use the following

criterion of Alexander [15,16] (see also [2, p. 11]).

Lemma 2. If

1 ≥ 2g2 ≥ 3g3 ≥ · · · ≥ pgp > 0

then the polynomial g(z) =
∑p

n=0 gnz
n is close-to-convex in D.

In view of (4) and (5) it is clear that the existence of a close-to-convex solution (6) of
di�erential equation (3) depends on the equality to zero of the parameter γ2. Therefore,
we will consider two cases γ2 6= 0 and γ2 = 0.

2. Closeness-to-convexity provided γ2 6= 0

From the �rst equality of (7) it follows that f0 = α2/γ2, and the second equality of
(7) implies

(β1 + γ2)f1 = α1 + pβ0α2/γ2.

Since the condition f1 6= 0 is necessary for a closeness-to-convexity of f , from the last
equality it follows that either β1 + γ2 6= 0 and α1 + pβ0α2/γ2 6= 0 or

β1 + γ2 = α1 + pβ0α2/γ2 = 0.
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In the �rst case we have f1 =
α1γ2 + pβ0α2

γ2(β1 + γ2)
, and if 2 + 2β1 + γ2 6= 0 from the third

equality (7) we obtain

f2 =
(p− 1)β0(α1γ2 + pβ0α2) + α0γ2(β1 + γ2)

γ2(β1 + γ2)(2 + 2β1 + γ2)
.

Using these equalities and equality (9) we prove the following theorem.

Theorem 1. Let p ≥ 3, γ2 6= 0, γ0 = pβ0 + γ1 = 0, β1 + γ2 6= 0, α1γ2 + pβ0α2 6= 0 and

(10) 0 <
(p− 1)β0(α1γ2 + pβ0α2) + α0γ2(β1 + γ2)

(γ2α1 + pβ0α2)(2 + 2β1 + γ2)
≤ 1

2
.

If for all 3 ≤ n ≤ p

(11) 0 <
(p− n+ 1)β0

n(n+ β1 − 1) + γ2
≤ n− 1

n

then di�erential equation (3) has a close-to-convex in D polynomial solution

f(z) =
α2

γ2
+
α1γ2 + pβ0α2

γ2(β1 + γ2)
z+

+
(p− 1)β0(α1γ2 + pβ0α2) + α0γ2(β1 + γ2)

γ2(β1 + γ2)(2 + 2β1 + γ2)
z2 +

p∑
n=3

fnz
n

(12)

where the coe�cients fn satisfy (9).
If β0 > 0, 2+β1 > 0 and either γ2 > 0 and (p−2)β0 ≤ 2+β1 or −3(2+β1) < γ2 < 0

and 3(p− 2)β0 ≤ 3(2 + β1) + γ2 then di�erential equation (3) has a polynomial solution

(12) close-to-convex in D together with all its derivatives f (j) (1 ≤ j ≤ p− 1).

Proof. Let g(z) = z+

p∑
n=2

gnz
n, where gn = fn/f1. In view of (9), (10) and (11) f2/f1 > 0

and fn/f1 > 0 for all 3 ≤ n ≤ p, i. e. gn > 0 for all 2 ≤ n ≤ p. From (10) it follows also
that 2g2 ≤ 1, and (9) and (11) imply ngn ≤ (n − 1)gn−1 for all 3 ≤ n ≤ p. Therefore,
by Lemma 2 the function g and, thus, the function f are close-to-convex in D. The �rst
part of Theorem 1 is proved.

Now suppose that the condition

(13) 0 <
(p− (n+ j) + 1)β0

(n+ j)(n+ j + β1 − 1) + γ2
≤ n− 1

n+ j

holds for some 1 ≤ j ≤ p− 2 and all 2 ≤ n ≤ p− j and show that the derivative f (j) of
function (12) is close-to-convex in D.

Indeed, for 1 ≤ j ≤ p− 2 the derivative

f (j)(z) = j!fj + (j + 1)!fj+1z +

p−j∑
n=2

(n+ 1)(n+ 2) . . . (n+ j)fn+jz
n.

is close-to-convex in D if and only if the function

gj(z) = z +

p−j∑
n=2

gn,jz
n, gn,j =

(n+ 1)(n+ 2) . . . (n+ j)fn+j

(j + 1)!fj+1
,
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is close-to-convex in D. For the function gj the inequality 2g2,j ≤ 1 is equivalent to the
inequality

(p− j − 1)β0
(j + 2)(j + β1 + 1) + γ2

≤ 1

j + 2

which follows from the condition (13) with n = 2. If 3 ≤ n ≤ p − j then the inequality
ngn,j ≤ (n−1)gn−1,j is equivalent to condition (13). Therefore, by Lemma 2 the function

gj and, thus, the function f
(j) are close-to-convex in D.

Now suppose that β0 > 0, 2 + β1 > 0 and γ2 > 0. Then condition (11) holds for all

3 ≤ n ≤ p if
(p− n+ 1)β0
n(n+ β1 − 1)

≤ n− 1

n
, i. e.

(p− n+ 1)β0
(n− 1)(n+ β1 − 1)

≤ 1. Since the left

part of the last inequality decreases, this inequality holds if
(p− 2)β0
2(2 + β1)

≤ 1, i. e.

(p− 2)β0 ≤ 2 +β1. Similarly, condition (13) holds for all 1 ≤ j ≤ p− 2 and 2 ≤ n ≤ p− j

if
(p− (n+ j) + 1)β0

(n− 1)(n+ j + β1 − 1)
≤ 1 and the last inequality is true if

(p− 2)β0
2 + β1

≤ 1, i. e.

(p− 2)β0 ≤ 2(2 + β1).
Finally, let β0 > 0, 2 + β1 > 0 and γ2 < 0. Then for all 3 ≤ n ≤ p

(p− n+ 1)β0
n(n+ β1 − 1) + γ2

=
(p− n+ 1)β0

n(n+ β1 − 1− |γ2|/n)
≤ (p− n+ 1)β0
n(n+ β1 − 1− |γ2|/3)

.

Therefore, (11) holds for all 3 ≤ n ≤ p if

(p− n+ 1)β0
(n− 1)(n+ β1 − 1− |γ2|/3)

≤ 1,

whence as above it follows that (11) holds for all 3 ≤ n ≤ p if
(p− 2)β0

2(2 + β1 + γ2/3)
≤ 1,

i. e. −3(2 + β1) < γ2 < 0 and 3
2 (p − 2)β0 ≤ 3(2 + β1) + γ2. Similarly we prove that

condition (13) holds for all 1 ≤ j ≤ p − 2 and 2 ≤ n ≤ p − j if (p− 2)β0
2 + β1 + γ2/3

≤ 1, i. e.

−3(2+β1) < γ2 and 3(p−2)β0 ≤ 3(2+β1)+γ2. Thus, for all 1 ≤ j ≤ p−2 the derivative
f (j) is close-to-convex in D. Since the derivative f (p−1) is a linear function, the proof of
Theorem 1 is complete. �

Now we consider the case

β1 + γ2 = α1 + pβ0α2/γ2 = 0.

From the second equality (7) it follows that f1 may be arbitrary. If we choose f1 = 1
then under the condition 2 + β1 6= 0 in view of the third equality (7) we get

f2 =
α0 + (p− 1)β0

2 + β1
.

From (8) under the condition n+ β1 6= 0 we obtain

(14) fn =
(p− n+ 1)β0

(n− 1)(n+ β1)
fn−1, 3 ≤ n ≤ p.
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Theorem 2. Let p ≥ 3, γ2 6= 0, γ0 = pβ0 + γ1 = β1 + γ2 = α1γ2 + pβ0α2 = 0 and

(15) 0 <
α0 + (p− 1)β0

2 + β1
≤ 1

2
.

If for all 3 ≤ n ≤ p

(16) 0 <
(p− n+ 1)β0

(n− 1)(n+ β1)
≤ n− 1

n

then di�erential equation (3) has a close-to-convex in D polynomial solution

(17) f(z) =
α2

γ2
+ z +

α0 + (p− 1)β0
2 + β1

z2 +

p∑
n=3

fnz
n

where the coe�cients fn satisfy (14).
If β0 > 0, 2 + β1 > 0 and 3(p− 2)β0 ≤ 2(3 + β1) then di�erential equation (3) has

polynomial solution (17), which together with its derivatives f (j) (1 ≤ j ≤ p − 1) are
close-to-convex in D.

Proof. From (14) and (16) the inequality fn > 0 follows for all n. Condition (15) implies
the inequality 2f2 ≤ 1 and condition (16) implies nfn ≤ (n − 1)fn−1 for all 3 ≤ n ≤ p.
Therefore, by Lemma 2 the function f is close-to-convex in D. The �rst part of Theorem 2
is proved.

Now we suppose the condition

(18) 0 <
(p− (n+ j) + 1)β0

(n+ j − 1)(n+ j + β1)
≤ n− 1

n+ j

holds for some 1 ≤ j ≤ p−2 and all 2 ≤ n ≤ p−j. The proof of the closeness-to-convexity
of the derivative f (j) (1 ≤ j ≤ p − 2) is the same as the proof in Theorem 1. Note only
that the inequality 2g2,j ≤ 1 is equivalent to the inequality

(p− j − 1)β0
j + 2 + β1

≤ j + 1

j + 2
,

which follows from condition (18) for n = 2, and the inequality ngn,j ≤ (n − 1)gn−1,j
coincides with condition (18).

Let β0 > 0 and 2 + β1 > 0. Since the values

(p− n+ 1)β0
n+ β1

,
n

(n− 1)2
,

n+ j

(n− 1)(n+ j − 1)

decrease with the increasing of n and the value

(2 + j)(p− j − 1)β0
(j + 1)(j + 2 + β1)

decreases with the increasing of j, conditions (16) and (18) hold if
3(p− 2)β0
2(3 + β1)

≤ 1, i. e.

3(p−2)β0 ≤ 2(3+β1). Thus, for all 1 ≤ j ≤ p−2 the derivative f (j) is close-to-convex in
D. Since the derivative f (p−1) is a linear function, the proof of Theorem 2 is complete. �
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3. Closeness-to-convexity provided γ2 = 0

Now (7) implies α2 = 0 and, thus, f0 may be arbitrary. If we choose f0 = 0 then
from (7) and (9) we get

(19) β1f1 = α1, 2(1 + β1)f2 = α0 + (p− 1)β0f1,

and for 3 ≤ n ≤ p

(20) fn =
(p− n+ 1)β0
n(n+ β1 − 1)

fn−1.

Since for the close-to-convex function f1 6= 0, from the �rst equality of (19) it follows
that either β1 6= 0 and α1 6= 0 or β1 = α1 = 0. In the �rst of these cases the following
theorem holds.

Theorem 3. Let p ≥ 3, γ2 = α2 = γ0 = γ1 + pβ0 = 0, β1 6= 0,α1 6= 0 and

(21) 0 <
(p− 1)β0α1 + α0β1

α1(1 + β1)
≤ 1

If for all 3 ≤ n ≤ p

(22) 0 <
(p− n+ 1)β0

(n− 1)(n+ β1 − 1)
≤ 1

then di�erential equation (3) has a close-to-convex in D polynomial solution

(23) f(z) =
α1

β1
z +

(p− 1)β0α1 + β1α0

2β1(1 + β1)
z2 +

p∑
n=3

fnz
n

where the coe�cients fn satisfy (20).
If β0 > 0, 2 + β1 > 0 and (p − 2)β0 ≤ 2 + β1 then di�erential equation (3) has a

polynomial solution (23) close-to-convex in D together with its derivatives f (j) (1 ≤ j ≤
≤ p− 1).

Proof. Suppose that the function g is de�ned as in the proof of Theorem 1. In view of (20),
(21) and (22) f2/f1 > 0 and fn/f1 > 0 for all 3 ≤ n ≤ p, i. e. gn > 0 for all 2 ≤ n ≤ p.
From (21) it follows also that 2g2 ≤ 1, and (22) and (20) imply ngn ≤ (n − 1)gn−1 for
all 3 ≤ n ≤ p. Therefore, by Lemma 2 the function g and, thus, the function (23) are
close-to-convex in D. The �rst part of Theorem 3 is proved.

Now we suppose that

(24) 0 <
(p− (n+ j) + 1)β0

(n− 1)(n+ j + β1 − 1)
≤ 1

holds for some 1 ≤ j ≤ p − 2 and for all 2 ≤ n ≤ p − j. Then the proof of the close-
to-convexity of the derivative f (j) is the same as the proof in Theorem 1. Note only

the inequality 2g2,j ≤ 1 is equivalent to the inequality
(p− j − 1)β0
j + 1 + β1

≤ 1, which follows

from condition (24) for n = 2, and the inequality ngn,j ≤ (n − 1)gn−1,j coincides with
condition (24).
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It is easy to check that if β0 > 0, 2 + β1 > 0 then condition (22) holds for all

3 ≤ n ≤ p if (p− 2)β0
2(2 + β1)

≤ 1, and (24) holds for all 1 ≤ j ≤ p− 2 and all 2 ≤ n ≤ p− 1 if

(p− 2)β0
2 + β1

≤ 1, i.e. (p− 2)β0 ≤ 2 + β1. The proof of Theorem 3 is complete. �

In the second case the following theorem is true.

Theorem 4. Let p ≥ 3, γ2 = α2 = γ0 = γ1+pβ0 = β1 = α1 = 0 and 0 < α0+(p−1)β0 ≤
≤ 1. If 0 < (p− n+ 1)β0 < (n− 1)2 for all 3 ≤ n ≤ p then di�erential equation (3) has
a close-to-convex in D polynomial solution

(25) f(z) = z +
(p− 1)β0 + α0

2
z2 +

p∑
n=3

fnz
n

where the coe�cients fn satisfy (20) with β1 = 0.
If 0 < (p − 2)β0 ≤ 2 then di�erential equation (3) has polynomial solution (25)

close-to-convex in D together with its derivatives f (j) (1 ≤ j ≤ p− 1).

Proof. From the conditions 0 < α0 + (p− 1)β0 ≤ 1 and 0 < (p− n+ 1)β0 < (n− 1)2 for
all 3 ≥ n ≥ p in view of (20) with β1 = 0 it follows as above that all fn > 0, 2f2 ≤ 1
and nfn ≤ (n − 1)fn−1 for all 3 ≤ n ≤ p. Therefore, by Lemma 2 the function (25) is
close-to-convex in D. The �rst part of Theorem 4 is proved.

Now we suppose that

0 < (p− (n+ j) + 1)β0 ≤ (n− 1)(n+ j − 1)

for some 1 ≤ j ≤ p − 2 and all 2 ≤ n ≤ p − j. Then the proof of the close-to-convexity
of the derivative f (j) is the same as the proof in Theorem 1. Note only the inequality

2g2,j ≤ 1 is equivalent to the inequality
(p− j − 1)β0

j + 1
≤ 1, which follows from condition

0 < (p− (n+ j) + 1)β0 ≤ (n− 1)(n+ j − 1)

for n = 2, and the inequality ngn,j ≤ (n− 1)gn−1,j coincides with this condition. Hence
as in the proof of Theorem 3 we get the second part of Theorem 4. �

4. Other results

The condition p ≥ 3 in the proved theorems is not signi�cant. Repeating the proofs
of these theorems one can show that the following analogues of these theorems are hold
for p = 2.

Proposition 1. Let γ2 6= 0, γ0 = 2β0 +γ1 = 0, β1 +γ2 6= 0, α1γ2 +2β0α2 6= 0, 2+2β1 +
+γ2 6= 0 and

0 <
β0(α1γ2 + 2β0α2) + α0γ2(β1 + γ2)

(γ2α1 + 2β0α2)(2 + 2β1 + γ2)
≤ 1

2
.

Then di�erential equation (3) has a polynomial solution

f(z) =
α2

γ2
+
α1γ2 + 2β0α2

γ2(β1 + γ2)
z +

β0(α1γ2 + 2β0α2) + α0γ2(β1 + γ2)

γ2(β1 + γ2)(2 + 2β1 + γ2)
z2

close-to-convex in D.
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Proposition 2. Let γ2 6= 0, γ0 = 2β0+γ1 = β1+γ2 = α1γ2+2β0α2 = 0, 2+β1 6= 0 and

0 <
α0 + β0
2 + β1

≤ 1

2
. Then di�erential equation (3) has a polynomial solution

f(z) =
α2

γ2
+ z +

α0 + β0
2 + β1

z2

close-to-convex in D.

Proposition 3. Let γ2 = α2 = γ0 = γ1 + 2β0 = 0, β1 6= 0, α1 6= 0, 1 + β1 6= 0 and

0 <
β0α1 + α0β1
α1(1 + β1)

≤ 1. Then di�erential equation (3) has a polynomial solution

f(z) =
α1

β1
z +

β0α1 + β1α0

2β1(1 + β1)
z2

close-to-convex in D.

Proposition 4. Let γ2 = α2 = γ0 = γ1 + 2β0 = β1 = α1 = 0 and 0 < α0 +β0 ≤ 1. Then
di�erential equation (3) has a polynomial solution

f(z) = z +
β0 + α0

2
z2

close-to-convex in D.

Recall that before obtaining the above results we demanded the ful�llment of condi-
tions (9) and β0 6= 0. Now suppose that β0 = 0. Then by Lemma 2 γ0 = γ1 = 0, and
thus, from (7) and (8) we get

(26) γ2f0 = α2, (β1 + γ2)f1 = α1, (2 + 2β1 + γ2)f2 = α0

and for 3 ≤ n ≤ p
(27) (n(n+ β1 − 1) + γ2)fn = 0.

From (27) it follows that if p(p + β1 − 1) + γ2 = 0 then fp 6= 0 may be arbitrary. Two
cases are possible: 1) n(n+ β1 − 1) + γ2 6= 0 for all 3 ≤ n ≤ p and 2) there is 3 ≤ p1 < p
such that p1(p1 + β1 − 1) + γ2 = 0.

In the �rst case we have fp−1 = 0 provided p > 3 and it is impossible to use
Alexander's criterion. In the second case we have p1p = γ2 and p1+p = 1−β1. Therefore,
if either p1 > 3 or p > p1 + 1 then again we cannot apply Alexander's criterion. Thus,
we can apply Alexander's criterion if either n(n+ β1 − 1) + γ2 6= 0 for all 3 ≤ n ≤ p and
p = 3 or p1(p1 + β1 − 1) + γ2 = 0 for some 3 ≤ p1 < p and p1 = 3, p = 4.

Given the possible value of the parameter γ2, using (26) and choosing f3 = 2f2/3,
you can prove the following statement.

Proposition 5. Let β0 = γ0 = γ1 = 0, p = 3 and 3(2 + β1) + γ2 = 0. Then:

1) if γ2 6= 0, γ2 6= 3 and γ2 6= 6, α1 6= 0 and 0 <
α0(γ2 − 3)

α1(γ2 − 6)
≤ 1

4
then di�erential

equation (3) has a polynomial solution

f(z) =
α2

γ2
+

3α1

2(γ2 − 3)
z +

3α0

γ2 − 6
z2 +

2α0

γ2 − 6
z3

close-to-convex in D;
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2) if γ2 = 3, α1 = 0 and − 1
2 ≤ α0 < 0 then di�erential equation (3) has a polynomial

solution
f(z) = α2/3 + z − α0z

2 − 2α0z
3/3

close-to-convex in D;
3) if γ2 = 6, α0 = 0 and α1 6= 0 then di�erential equation (3) has a polynomial

solution

f(z) =
α2

6
+
α1

2
z +

α1

4
z2 +

α1

6
z3

close-to-convex in D;
4) if γ2 = α2 = 0 and 0 < α0/α1 ≤ 1/2 then di�erential equation (3) has a

polynomial solution

f(z) = −α1z/2− α0z
2/2− α0z

3/3

close-to-convex in D.

In the case when 3(2 + β1) + γ2 = 0 and 4(3 + β1) + γ2 = 0 (i. e. p1 = 3, p = 4)
from (26) we get f0 = α2/12, f1 = α1/6, f2 = α0/2, and choosing f3 = α0/3, f4 = α0/4
we obtain the following statement.

Proposition 6. If γ2 = 12, β0 = γ0 = γ1 = 0, 0 < α0/α1 < 1/6,

3(2 + β1) + γ2 = 4(3 + β1) + γ2 = 0

then di�erential equation (3) has a polynomial solution

f(z) =
α2

12
+
α1

6
z +

α0

2
z2 +

α0

3
z3 +

α0

4
z4

close-to-convex in D.

Finally, we remark that polynomial (6) can be close-to-convex in the case when
f2 = · · · = fp−1 = 0. Since each starlike function is close-to-convex, it follows from such
a lemma.

Lemma 3. If |α| ≤ 1/p then the polynomial f(z) = z + αzp is a starlike function.

Proof. Recall that an analytic univalent in D function f(z) = z +

∞∑
n=2

fnz
n is said

to be starlike if f(D) is starlike domain with respect to the origin. It is well known
[1, p. 202] (see also [2, p. 9]) that the condition Re {zf ′(z)/f(z)} > 0 (z ∈ D) is necessary
and su�cient for the starlikeness of f . If f(z) = z + αzp then for |α| ≤ 1/p and |z| < 1
we have

Re
zf ′(z)

f(z)
= Re

{
1 +

(p− 1)αzp−1

1 + αzp−1

}
≥ 1−

∣∣∣∣ (p− 1)αzp−1

1 + αzp−1

∣∣∣∣ > 1− (p− 1)|α|
1− |α|

≥ 0,

i. e. the function f(z) = z + αzp starlike and, thus, close-to-convex. Lemma 3 is proved.
Suppose that γ2 6= 0,

α2 = α0 + (p− 1)β0 = p(p+ β1 − 1) + γ2 = 0,

β1 + γ2 = α1 and n(n+ β1 − 1) + γ2 6= 0 for all n = 1, 2, . . . , p− 1. Then in view of (7)
f0 = 0, f1 = 1, f2 = 0 and in view of (8) f3 = · · · = fp−1 = 0. Choosing fp = 1/p and
using Lemma 3 we get the following statement.
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Proposition 7. If γ2 6= 0,

α2 = α0 + (p− 1)β0 = p(p+ β1 − 1) + γ2 = 0

and n(n+ β1 − 1) + γ2 6= 0 for all n = 1, 2, . . . , p− 1 then di�erential equation (3) has a
polynomial solution f(z) = z + zp/p close-to-convex in D.
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Àíàëiòè÷íà îäíîëèñòà â D = {z : |z| < 1} ôóíêöiÿ f(z) =
∞∑

n=0

fnz
n íà-

çèâà¹òüñÿ îïóêëîþ, ÿêùî f(D) - îïóêëà îáëàñòü, i íàçèâà¹òüñÿ áëèçüêîþ
äî îïóêëî¨, ÿêùî iñíó¹ òàêà îïóêëà â D ôóíêöiÿ Φ, ùî Re (f ′(z)/Φ′(z)) > 0
(z ∈ D). Êîæíà áëèçüêà äî îïóêëî¨ â D ôóíêöiÿ f ¹ îäíîëèñòîþ â D, i îòæå,
f ′(0) 6= 0. Òîìó ôóíêöiÿ f ¹ áëèçüêîþ äî îïóêëî¨ â D òîäi i òiëüêè òîäi,
êîëè ôóíêöiÿ g(z) = z+

∑∞
n=2 gnz

n áëèçüêà äî îïóêëî¨ â D, äå gn = fn/f1.
Ñ.Ì. Øàõ âèçíà÷èâ óìîâè íà äiéñíi ïàðàìåòðè β0, β1, γ0, γ1, γ2, çà ÿêèõ
äèôåðåíöiàëüíå ðiâíÿííÿ z2w′′ + (β0z

2 + β1z)w
′ + (γ0z

2 + γ1z + γ2)w = 0
ìà¹ öiëi ðîçâ'ÿçêè, ÿêi ðàçîì çi ñâî¨ìè ïîõiäíèìè áëèçüêi äî îïóêëèõ â
D ôóíêöiÿìè. Áàãàòî àâòîðiâ ïðîäîâæèëè öi äîñëiäæåííÿ. Òóò ðîçãëÿäà¹-
òüñÿ íåîäíîðiäíå ðiâíÿííÿØàõà z2w′′+(β0z

2+β1z)w
′+(γ0z

2+γ1z+γ2)w =
= α0z

2 + α1z + α2 ç äiéñíèìè ïàðàìåòðàìè i âèâ÷à¹òüñÿ iñíóâàííÿ áëèçü-
êèõ äî îïóêëèõ éîãî ìíîãî÷ëåííèõ ðîçâ'ÿçêiâ. Íåâàæêî äîâåñòè, ùî äëÿ

òîãî, ùîá ìíîãî÷ëåí f(z) =

p∑
n=0

fnz
n, (deg f = p ≥ 2) áóâ ðîçâ'ÿçêîì öüîãî

ðiâíÿííÿ, íåîáõiäíî, ùîá γ0 = pβ0 + γ1 = 0. Îñíîâíi òàêi ðåçóëüòàòè:
1) ÿêùî p ≥ 3, γ0 = pβ0 + γ1 = 0, β1 + γ2 6= 0, α1γ2 + pβ0α2 6= 0, β0 > 0,
2 + β1 > 0,

0 <
(p− 1)β0(α1γ2 + pβ0α2) + α0γ2(β1 + γ2)

(γ2α1 + pβ0α2)(2 + 2β1 + γ2)
≤ 1

2

i àáî γ2 > 0 òà (p− 2)β0 ≤ 2 + β1, àáî −3(2 + β1) < γ2 < 0 òà 3(p− 2)β0 ≤
≤ 3(2+β1)+γ2, òî íåîäíîðiäíå ðiâíÿííÿØàõà ìà¹ ìíîãî÷ëåííèé ðîçâ'ÿçîê

f(z) =
α2

γ2
+
α1γ2 + pβ0α2

γ2(β1 + γ2)
z +

(p− 1)β0(α1γ2 + pβ0α2) + α0γ2(β1 + γ2)

γ2(β1 + γ2)(2 + 2β1 + γ2)
z2 +

+
p∑

n=3

fnz
n, äå fn =

(p− n+ 1)β0
n(n+ β1 − 1) + γ2

fn−1 äëÿ 3 ≤ n ≤ p, ÿêèé ðàçîì ç

óñiìà ñâî¨ìè ïîõiäíèìè f (j) (1 ≤ j ≤ p − 1), áëèçüêèìè äî îïóêëèõ â D
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ôóíêöiÿìè;
2) ÿêùî p ≥ 3, γ2 6= 0, γ0 = pβ0 + γ1 = β1 + γ2 = α1γ2 + pβ0α2 = 0,

β0 > 0, 2 + β1 > 0, 3(p − 2)β0 ≤ 2(3 + β1) i 0 <
α0 + (p− 1)β0

2 + β1
≤ 1

2
, òî

íåîäíîðiäíå ðiâíÿííÿ Øàõà ìà¹ ìíîãî÷ëåííèé ðîçâ'ÿçîê f(z) =
α2

γ2
+ z +

+
α0 + (p− 1)β0

2 + β1
z2 +

p∑
n=3

fnz
n, äå fn =

(p− n+ 1)β0
(n− 1)(n+ β1)

fn−1 äëÿ 3 ≤ n ≤ p,

ÿêèé ðàçîì ç óñiìà ñâî¨ìè ïîõiäíèìè f (j) (1 ≤ j ≤ p − 1) áëèçüêèìè äî
îïóêëèõ â D ôóíêöiÿìè;
3) ÿêùî p ≥ 3, γ2 = α2 = γ0 = γ1+pβ0 = 0, β1 6= 0,α1 6= 0, β0 > 0, 2+β1 > 0,

(p − 2)β0 ≤ 2 + β1 i 0 <
(p− 1)β0α1 + α0β1

α1(1 + β1)
≤ 1, òî íåîäíîðiäíå ðiâíÿííÿ

Øàõà ìà¹ ìíîãî÷ëåííèé ðîçâ'ÿçîê f(z) =
α1

β1
z +

(p− 1)β0α1 + β1α0

2β1(1 + β1)
z2 +

+
p∑

n=3

fnz
n, äå fn =

(p− n+ 1)β0
n(n+ β1 − 1)

fn−1 äëÿ 3 ≤ n ≤ p, ÿêèé ðàçîì ç óñiìà

ñâî¨ìè ïîõiäíèìè f (j) (1 ≤ j ≤ p−1) áëèçüêèìè äî îïóêëèõ â D ôóíêöiÿìè;
4) ÿêùî p ≥ 3, γ2 = α2 = γ0 = γ1 + pβ0 = β1 = α1 = 0, (p − 2)β0 ≤ 2 i
0 < α0 + (p − 1)β0 ≤ 1, òî íåîäíîðiäíå ðiâíÿííÿ Øàõà ìà¹ ìíîãî÷ëåííèé

ðîçâ'ÿçîê f(z) = z+
(p− 1)β0 + α0

2
z2 +

p∑
n=3

fnz
n, äå fn =

(p− n+ 1)β0
n(n− 1)

fn−1

äëÿ 3 ≤ n ≤ p, ÿêèé ðàçîì ç óñiìà ñâî¨ìè ïîõiäíèìè f (j) (1 ≤ j ≤ p − 1)
áëèçüêèìè äî îïóêëèõ â D ôóíêöiÿìè.

Êëþ÷îâi ñëîâà: ëiíiéíå íåîäíîðiäíå äèôåðåíöiàëüíå ðiâíÿííÿ äðóãî-
ãî ïîðÿäêó, ìíîãî÷ëåííi êîåôiöi¹íòè, ìíîãî÷ëåííèé ðîçâ'ÿçîê, áëèçüêà äî
îïóêëî¨ ôóíêöiÿ.
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