CLOSE-TO-CONVEXITY OF POLYNOMIAL SOLUTIONS OF A DIFFERENTIAL EQUATION OF THE SECOND ORDER WITH POLYNOMIAL COEFFICIENTS OF THE SECOND DEGREE

Myroslav SHEREMETA, Yuriy TRUKHAN

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, Ukraine
e-mails:m.m.sheremeta@gmail.com, yurkotrukhan@gmail.com

An analytic univalent in $\mathbb{D}=\{z:|z|<1\}$ function f is said to be convex if $f(\mathbb{D})$ is a convex domain and is said to be close-to-convex if there exists a convex in \mathbb{D} function Φ such that $\operatorname{Re}\left(f^{\prime}(z) / \Phi^{\prime}(z)\right)>0(z \in \mathbb{D})$. We indicate conditions on real parameters $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$ and $\alpha_{0}, \alpha_{1}, \alpha_{2}$ of the differential equation

$$
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2}
$$

under which this equation has a polynomial solution

$$
f(z)=\sum_{n=0}^{p} f_{n} z^{n}(\operatorname{deg} f=p \geq 2)
$$

close-to-convex in \mathbb{D} together with all its derivatives $f^{(j)}(1 \leq j \leq p-1)$.
Key words: linear non-homogeneous differential equation of the second order, polynomial coefficient, polynomial solution, close-to-convex function.

1. Introduction and auxiliary results

An analytic univalent in $\mathbb{D}=\{z:|z|<1\}$ function

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} f_{n} z^{n} \tag{1}
\end{equation*}
$$

is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known [1, p. 203] (see also [2, p. 8]) that the condition $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0(z \in \mathbb{D})$ is necessary and sufficient for the convexity of f. A function f is said to be close-to-convex in \mathbb{D} (W. Kaplan $\sqrt{3}$, see also [1, p. 583], [2, p. 11]) if there exists a convex in \mathbb{D} function Φ such that
$\operatorname{Re}\left(f^{\prime}(z) / \Phi^{\prime}(z)\right)>0(z \in \mathbb{D})$. Any close-to-convex function f has a characteristic property that the complement G of the domain $f(\mathbb{D})$ can be filled with rays which start from ∂G and lie in G. Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f^{\prime}(0) \neq 0$. Hence it follows that any function f is close-to-convex in \mathbb{D} if and only if the function $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}$ is close-to-convex in \mathbb{D}, where $g_{n}=f_{n} / f_{1}$.
S. M. Shah 4 indicated conditions on real parameters $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$ of the differential equation

$$
\begin{equation*}
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=0 \tag{2}
\end{equation*}
$$

under which there exists an entire transcendental solution (1) such that f and all its derivatives are close-to-convex in \mathbb{D}. The investigations are continued in the papers $5-10$, but in all of these papers the case of polynomial solutions of (2) was not investigated. In the papers $11-14$ properties of entire solutions of a linear differential equation of n th order with polynomial coefficients of n-th degree are investigated. Some results from these papers are published also in monograph [2].

Here we consider a differential equation

$$
\begin{equation*}
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2} \tag{3}
\end{equation*}
$$

with real parameters and study the existence and closeness-to-convexity of its polynomial solutions.

At first we remark that a function (1) is a solution of the differential equation (3) if and only if

$$
\begin{array}{r}
\sum_{n=2}^{\infty} n(n-1) f_{n} z^{n}+\beta_{0} \sum_{n=2}^{\infty}(n-1) f_{n-1} z^{n}+\gamma_{0} \sum_{n=2}^{\infty} f_{n-2} z^{n}+ \\
+\beta_{1} \sum_{n=1}^{\infty} n f_{n} z^{n}+\gamma_{1} \sum_{n=1}^{\infty} f_{n-1} z^{n}+\gamma_{2} \sum_{n=0}^{\infty} f_{n} z^{n}=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2}
\end{array}
$$

i. e.
(4) $\gamma_{2} f_{0}=\alpha_{2}, \quad\left(\beta_{1}+\gamma_{2}\right) f_{1}+\gamma_{1} f_{0}=\alpha_{1}, \quad\left(2+2 \beta_{1}+\gamma_{2}\right) f_{2}+\left(\beta_{0}+\gamma_{1}\right) f_{1}+\gamma_{0} f_{0}=\alpha_{0}$
and for $n \geq 3$

$$
\begin{equation*}
\left(n\left(n+\beta_{1}-1\right)+\gamma_{2}\right) f_{n}+\left(\beta_{0}(n-1)+\gamma_{1}\right) f_{n-1}+\gamma_{0} f_{n-2}=0 \tag{5}
\end{equation*}
$$

Clearly, by some condition differential equation (3) may have a linear solution, which obviously is convex function in \mathbb{D}. We are going to investigate a solutions of degree ≥ 2. In this case the following statement is true.

Lemma 1. In order that the polynomial

$$
\begin{equation*}
f(z)=\sum_{n=0}^{p} f_{n} z^{n}, \quad \operatorname{deg} f=p \geq 2 \tag{6}
\end{equation*}
$$

be a solution of the differential equation (3), it is necessary that $\gamma_{0}=p \beta_{0}+\gamma_{1}=0$.

Proof. Indeed, for $n=p+2$ from (5) we get

$$
\left((p+2)\left(p+\beta_{1}+1\right)+\gamma_{2}\right) f_{p+2}+\left((p+1) \beta_{0}+\gamma_{1}\right) f_{p+1}+\gamma_{0} f_{p}=0
$$

If f has the form (6) then $f_{p+2}=f_{p+1}=0$ and $f_{p} \neq 0$. Therefore, $\gamma_{0}=0$ and from (5) for $n=p+1$ we obtain

$$
\left((p+1)\left(p+\beta_{1}\right)+\gamma_{2}\right) f_{p+1}+\left(p \beta_{0}+\gamma_{1}\right) f_{p}=0
$$

Since $f_{p+1}=0$ and $f_{p} \neq 0$, it follows that $p \beta_{0}+\gamma_{1}=0$. Lemma 1 is proved.
By the condition $\gamma_{0}=p \beta_{0}+\gamma_{1}=0$ from (4) and (5) we get
(7) $\quad \gamma_{2} f_{0}=\alpha_{2}, \quad\left(\beta_{1}+\gamma_{2}\right) f_{1}=\alpha_{1}+p \beta_{0} f_{0}, \quad\left(2+2 \beta_{1}+\gamma_{2}\right) f_{2}=\alpha_{0}+(p-1) \beta_{0} f_{1}$
and for $3 \leq n \leq p$

$$
\begin{equation*}
\left(n\left(n+\beta_{1}-1\right)+\gamma_{2}\right) f_{n}=(p-n+1) \beta_{0} f_{n-1} . \tag{8}
\end{equation*}
$$

We remark that the condition $\gamma_{0}=p \beta_{0}+\gamma_{1}=0$ is not sufficient in order that a solution of differential equation (3) has the form (6). Indeed, although in view of (8) we have

$$
\left((p+3)\left(p+\beta_{1}+2\right)+\gamma_{2}\right) f_{p+3}=0
$$

it does not follow from here that $f_{p+3}=0$, since $(p+3)\left(p+\beta_{1}+2\right)+\gamma_{2}$ can be equal to zero. Therefore, further we assume that

$$
n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0, \quad 3 \leq n \leq p .
$$

This condition allows us to rewrite the equality (8) in the form

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}} f_{n-1}, \quad n \geq 3 \tag{9}
\end{equation*}
$$

whence it follows that $f_{p}=0$, if $\beta_{0}=0$. Therefore, further we assume also that $\beta_{0} \neq 0$.
To study the closeness-to-convexity of the polynomial (6), we will use the following criterion of Alexander [15, 16] (see also [2, p. 11]).

Lemma 2. If

$$
1 \geq 2 g_{2} \geq 3 g_{3} \geq \cdots \geq p g_{p}>0
$$

then the polynomial $g(z)=\sum_{n=0}^{p} g_{n} z^{n}$ is close-to-convex in \mathbb{D}.
In view of (4) and (5) it is clear that the existence of a close-to-convex solution (6) of differential equation (3) depends on the equality to zero of the parameter γ_{2}. Therefore, we will consider two cases $\gamma_{2} \neq 0$ and $\gamma_{2}=0$.

2. Closeness-to-Convexity provided $\gamma_{2} \neq 0$

From the first equality of (7) it follows that $f_{0}=\alpha_{2} / \gamma_{2}$, and the second equality of (7) implies

$$
\left(\beta_{1}+\gamma_{2}\right) f_{1}=\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2}
$$

Since the condition $f_{1} \neq 0$ is necessary for a closeness-to-convexity of f, from the last equality it follows that either $\beta_{1}+\gamma_{2} \neq 0$ and $\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2} \neq 0$ or

$$
\beta_{1}+\gamma_{2}=\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2}=0
$$

In the first case we have $f_{1}=\frac{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}$, and if $2+2 \beta_{1}+\gamma_{2} \neq 0$ from the third equality (7) we obtain

$$
f_{2}=\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)}
$$

Using these equalities and equality (9) we prove the following theorem.
Theorem 1. Let $p \geq 3, \gamma_{2} \neq 0, \gamma_{0}=p \beta_{0}+\gamma_{1}=0, \beta_{1}+\gamma_{2} \neq 0, \alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2} \neq 0$ and

$$
\begin{equation*}
0<\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\left(\gamma_{2} \alpha_{1}+p \beta_{0} \alpha_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} \leq \frac{1}{2} \tag{10}
\end{equation*}
$$

If for all $3 \leq n \leq p$

$$
\begin{equation*}
0<\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}} \leq \frac{n-1}{n} \tag{11}
\end{equation*}
$$

then differential equation (3) has a close-to-convex in \mathbb{D} polynomial solution

$$
\begin{align*}
f(z)=\frac{\alpha_{2}}{\gamma_{2}} & +\frac{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)} z+ \\
& +\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{12}
\end{align*}
$$

where the coefficients f_{n} satisfy (9).
If $\beta_{0}>0,2+\beta_{1}>0$ and either $\gamma_{2}>0$ and $(p-2) \beta_{0} \leq 2+\beta_{1}$ or $-3\left(2+\beta_{1}\right)<\gamma_{2}<0$ and $3(p-2) \beta_{0} \leq 3\left(2+\beta_{1}\right)+\gamma_{2}$ then differential equation (3) has a polynomial solution (12) close-to-convex in \mathbb{D} together with all its derivatives $f^{(\vec{j})}(1 \leq j \leq p-1)$.

Proof. Let $g(z)=z+\sum_{n=2}^{p} g_{n} z^{n}$, where $g_{n}=f_{n} / f_{1}$. In view of (9), (10) and (11) $f_{2} / f_{1}>0$ and $f_{n} / f_{1}>0$ for all $3 \leq n \leq p$, i. e. $g_{n}>0$ for all $2 \leq n \leq p$. From 10 it follows also that $2 g_{2} \leq 1$, and (9) and (11) imply $n g_{n} \leq(n-1) g_{n-1}$ for all $3 \leq n \leq p$. Therefore, by Lemma 2 the function g and, thus, the function f are close-to-convex in \mathbb{D}. The first part of Theorem 1 is proved.

Now suppose that the condition

$$
\begin{equation*}
0<\frac{(p-(n+j)+1) \beta_{0}}{(n+j)\left(n+j+\beta_{1}-1\right)+\gamma_{2}} \leq \frac{n-1}{n+j} \tag{13}
\end{equation*}
$$

holds for some $1 \leq j \leq p-2$ and all $2 \leq n \leq p-j$ and show that the derivative $f^{(j)}$ of function (12) is close-to-convex in \mathbb{D}.

Indeed, for $1 \leq j \leq p-2$ the derivative

$$
f^{(j)}(z)=j!f_{j}+(j+1)!f_{j+1} z+\sum_{n=2}^{p-j}(n+1)(n+2) \ldots(n+j) f_{n+j} z^{n}
$$

is close-to-convex in \mathbb{D} if and only if the function

$$
g_{j}(z)=z+\sum_{n=2}^{p-j} g_{n, j} z^{n}, \quad g_{n, j}=\frac{(n+1)(n+2) \ldots(n+j) f_{n+j}}{(j+1)!f_{j+1}}
$$

is close-to-convex in \mathbb{D}. For the function g_{j} the inequality $2 g_{2, j} \leq 1$ is equivalent to the inequality

$$
\frac{(p-j-1) \beta_{0}}{(j+2)\left(j+\beta_{1}+1\right)+\gamma_{2}} \leq \frac{1}{j+2}
$$

which follows from the condition with $n=2$. If $3 \leq n \leq p-j$ then the inequality $n g_{n, j} \leq(n-1) g_{n-1, j}$ is equivalent to condition (13). Therefore, by Lemma 2 the function g_{j} and, thus, the function $f^{(j)}$ are close-to-convex in \mathbb{D}.

Now suppose that $\beta_{0}>0,2+\beta_{1}>0$ and $\gamma_{2}>0$. Then condition 11 holds for all $3 \leq n \leq p$ if $\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)} \leq \frac{n-1}{n}$, i. e. $\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}-1\right)} \leq 1$. Since the left part of the last inequality decreases, this inequality holds if $\frac{(p-2) \beta_{0}}{2\left(2+\beta_{1}\right)} \leq 1$, i. e. $(p-2) \beta_{0} \leq 2+\beta_{1}$. Similarly, condition (13) holds for all $1 \leq j \leq p-2$ and $2 \leq n \leq p-j$ if $\frac{(p-(n+j)+1) \beta_{0}}{(n-1)\left(n+j+\beta_{1}-1\right)} \leq 1$ and the last inequality is true if $\frac{(p-2) \beta_{0}}{2+\beta_{1}} \leq 1$, i. e. $(p-2) \beta_{0} \leq 2\left(2+\beta_{1}\right)$.

Finally, let $\beta_{0}>0,2+\beta_{1}>0$ and $\gamma_{2}<0$. Then for all $3 \leq n \leq p$

$$
\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1-\left|\gamma_{2}\right| / n\right)} \leq \frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1-\left|\gamma_{2}\right| / 3\right)}
$$

Therefore, 11 holds for all $3 \leq n \leq p$ if

$$
\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}-1-\left|\gamma_{2}\right| / 3\right)} \leq 1,
$$

whence as above it follows that (11) holds for all $3 \leq n \leq p$ if $\frac{(p-2) \beta_{0}}{2\left(2+\beta_{1}+\gamma_{2} / 3\right)} \leq 1$, i. e. $-3\left(2+\beta_{1}\right)<\gamma_{2}<0$ and $\frac{3}{2}(p-2) \beta_{0} \leq 3\left(2+\beta_{1}\right)+\gamma_{2}$. Similarly we prove that condition holds for all $1 \leq j \leq p-2$ and $2 \leq n \leq p-j$ if $\frac{(p-2) \beta_{0}}{2+\beta_{1}+\gamma_{2} / 3} \leq 1$, i. e. $-3\left(2+\beta_{1}\right)<\gamma_{2}$ and $3(p-2) \beta_{0} \leq 3\left(2+\beta_{1}\right)+\gamma_{2}$. Thus, for all $1 \leq j \leq p-2$ the derivative $f^{(j)}$ is close-to-convex in \mathbb{D}. Since the derivative $f^{(p-1)}$ is a linear function, the proof of Theorem 1 is complete.

Now we consider the case

$$
\beta_{1}+\gamma_{2}=\alpha_{1}+p \beta_{0} \alpha_{2} / \gamma_{2}=0
$$

From the second equality (7) it follows that f_{1} may be arbitrary. If we choose $f_{1}=1$ then under the condition $2+\beta_{1} \neq 0$ in view of the third equality (7) we get

$$
f_{2}=\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}}
$$

From (8) under the condition $n+\beta_{1} \neq 0$ we obtain

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}\right)} f_{n-1}, \quad 3 \leq n \leq p \tag{14}
\end{equation*}
$$

Theorem 2. Let $p \geq 3, \gamma_{2} \neq 0, \gamma_{0}=p \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}=0$ and

$$
\begin{equation*}
0<\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} \leq \frac{1}{2} \tag{15}
\end{equation*}
$$

If for all $3 \leq n \leq p$

$$
\begin{equation*}
0<\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}\right)} \leq \frac{n-1}{n} \tag{16}
\end{equation*}
$$

then differential equation (3) has a close-to-convex in \mathbb{D} polynomial solution

$$
\begin{equation*}
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+z+\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{17}
\end{equation*}
$$

where the coefficients f_{n} satisfy (14).
If $\beta_{0}>0,2+\beta_{1}>0$ and $3(p-2) \beta_{0} \leq 2\left(3+\beta_{1}\right)$ then differential equation (3) has polynomial solution (17), which together with its derivatives $f^{(j)}(1 \leq j \leq p-1)$ are close-to-convex in \mathbb{D}.

Proof. From (14) and (16) the inequality $f_{n}>0$ follows for all n. Condition (15) implies the inequality $2 f_{2} \leq 1$ and condition 16 implies $n f_{n} \leq(n-1) f_{n-1}$ for all $3 \leq n \leq p$. Therefore, by Lemma 2 the function f is close-to-convex in \mathbb{D}. The first part of Theorem 2 is proved.

Now we suppose the condition

$$
\begin{equation*}
0<\frac{(p-(n+j)+1) \beta_{0}}{(n+j-1)\left(n+j+\beta_{1}\right)} \leq \frac{n-1}{n+j} \tag{18}
\end{equation*}
$$

holds for some $1 \leq j \leq p-2$ and all $2 \leq n \leq p-j$. The proof of the closeness-to-convexity of the derivative $f^{(j)}(1 \leq j \leq p-2)$ is the same as the proof in Theorem 1 . Note only that the inequality $2 g_{2, j} \leq 1$ is equivalent to the inequality

$$
\frac{(p-j-1) \beta_{0}}{j+2+\beta_{1}} \leq \frac{j+1}{j+2}
$$

which follows from condition (18) for $n=2$, and the inequality $n g_{n, j} \leq(n-1) g_{n-1, j}$ coincides with condition (18).

Let $\beta_{0}>0$ and $2+\beta_{1}>0$. Since the values

$$
\frac{(p-n+1) \beta_{0}}{n+\beta_{1}}, \quad \frac{n}{(n-1)^{2}}, \quad \frac{n+j}{(n-1)(n+j-1)}
$$

decrease with the increasing of n and the value

$$
\frac{(2+j)(p-j-1) \beta_{0}}{(j+1)\left(j+2+\beta_{1}\right)}
$$

decreases with the increasing of j, conditions (16) and hold if $\frac{3(p-2) \beta_{0}}{2\left(3+\beta_{1}\right)} \leq 1$, i. e. $3(p-2) \beta_{0} \leq 2\left(3+\beta_{1}\right)$. Thus, for all $1 \leq j \leq p-2$ the derivative $f^{(j)}$ is close-to-convex in \mathbb{D}. Since the derivative $f^{(p-1)}$ is a linear function, the proof of Theorem 2 is complete.

3. Closeness-to-Convexity provided $\gamma_{2}=0$

Now (7) implies $\alpha_{2}=0$ and, thus, f_{0} may be arbitrary. If we choose $f_{0}=0$ then from (7) and (9) we get

$$
\begin{equation*}
\beta_{1} f_{1}=\alpha_{1}, \quad 2\left(1+\beta_{1}\right) f_{2}=\alpha_{0}+(p-1) \beta_{0} f_{1}, \tag{19}
\end{equation*}
$$

and for $3 \leq n \leq p$

$$
\begin{equation*}
f_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)} f_{n-1} \tag{20}
\end{equation*}
$$

Since for the close-to-convex function $f_{1} \neq 0$, from the first equality of 19 it follows that either $\beta_{1} \neq 0$ and $\alpha_{1} \neq 0$ or $\beta_{1}=\alpha_{1}=0$. In the first of these cases the following theorem holds.

Theorem 3. Let $p \geq 3, \gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+p \beta_{0}=0, \beta_{1} \neq 0, \alpha_{1} \neq 0$ and

$$
\begin{equation*}
0<\frac{(p-1) \beta_{0} \alpha_{1}+\alpha_{0} \beta_{1}}{\alpha_{1}\left(1+\beta_{1}\right)} \leq 1 \tag{21}
\end{equation*}
$$

If for all $3 \leq n \leq p$

$$
\begin{equation*}
0<\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}-1\right)} \leq 1 \tag{22}
\end{equation*}
$$

then differential equation (3) has a close-to-convex in \mathbb{D} polynomial solution

$$
\begin{equation*}
f(z)=\frac{\alpha_{1}}{\beta_{1}} z+\frac{(p-1) \beta_{0} \alpha_{1}+\beta_{1} \alpha_{0}}{2 \beta_{1}\left(1+\beta_{1}\right)} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{23}
\end{equation*}
$$

where the coefficients f_{n} satisfy 20 .
If $\beta_{0}>0,2+\beta_{1}>0$ and $(p-2) \beta_{0} \leq 2+\beta_{1}$ then differential equation (3) has a polynomial solution (23) close-to-convex in \mathbb{D} together with its derivatives $f^{(j)}(1 \leq j \leq$ $\leq p-1$).

Proof. Suppose that the function g is defined as in the proof of Theorem 1 In view of (20), (21) and (22) $f_{2} / f_{1}>0$ and $f_{n} / f_{1}>0$ for all $3 \leq n \leq p$, i. e. $g_{n}>0$ for all $2 \leq n \leq p$. From (21) it follows also that $2 g_{2} \leq 1$, and 22) and 20 imply $n g_{n} \leq(n-1) g_{n-1}$ for all $3 \leq n \leq p$. Therefore, by Lemma 2 the function g and, thus, the function $\sqrt{23}$ are close-to-convex in \mathbb{D}. The first part of Theorem 3 is proved.

Now we suppose that

$$
\begin{equation*}
0<\frac{(p-(n+j)+1) \beta_{0}}{(n-1)\left(n+j+\beta_{1}-1\right)} \leq 1 \tag{24}
\end{equation*}
$$

holds for some $1 \leq j \leq p-2$ and for all $2 \leq n \leq p-j$. Then the proof of the close-to-convexity of the derivative $f^{(j)}$ is the same as the proof in Theorem 1. Note only the inequality $2 g_{2, j} \leq 1$ is equivalent to the inequality $\frac{(p-j-1) \beta_{0}}{j+1+\beta_{1}} \leq 1$, which follows from condition 24 for $n=2$, and the inequality $n g_{n, j} \leq(n-1) g_{n-1, j}$ coincides with condition (24).

It is easy to check that if $\beta_{0}>0,2+\beta_{1}>0$ then condition (22) holds for all $3 \leq n \leq p$ if $\frac{(p-2) \beta_{0}}{2\left(2+\beta_{1}\right)} \leq 1$, and (24) holds for all $1 \leq j \leq p-2$ and all $2 \leq n \leq p-1$ if $\frac{(p-2) \beta_{0}}{2+\beta_{1}} \leq 1$, i.e. $(p-2) \beta_{0} \leq 2+\beta_{1}$. The proof of Theorem 3is complete.

In the second case the following theorem is true.
Theorem 4. Let $p \geq 3, \gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+p \beta_{0}=\beta_{1}=\alpha_{1}=0$ and $0<\alpha_{0}+(p-1) \beta_{0} \leq$ ≤ 1. If $0<(p-n+1) \beta_{0}<(n-1)^{2}$ for all $3 \leq n \leq p$ then differential equation (3) has a close-to-convex in \mathbb{D} polynomial solution

$$
\begin{equation*}
f(z)=z+\frac{(p-1) \beta_{0}+\alpha_{0}}{2} z^{2}+\sum_{n=3}^{p} f_{n} z^{n} \tag{25}
\end{equation*}
$$

where the coefficients f_{n} satisfy 20 with $\beta_{1}=0$.
If $0<(p-2) \beta_{0} \leq 2$ then differential equation (3) has polynomial solution (25) close-to-convex in \mathbb{D} together with its derivatives $f^{(j)}(1 \leq j \leq p-1)$.
Proof. From the conditions $0<\alpha_{0}+(p-1) \beta_{0} \leq 1$ and $0<(p-n+1) \beta_{0}<(n-1)^{2}$ for all $3 \geq n \geq p$ in view of 20 with $\beta_{1}=0$ it follows as above that all $f_{n}>0,2 f_{2} \leq 1$ and $n f_{n} \leq(n-1) f_{n-1}$ for all $3 \leq n \leq p$. Therefore, by Lemma 2 the function (25) is close-to-convex in \mathbb{D}. The first part of Theorem 4 is proved.

Now we suppose that

$$
0<(p-(n+j)+1) \beta_{0} \leq(n-1)(n+j-1)
$$

for some $1 \leq j \leq p-2$ and all $2 \leq n \leq p-j$. Then the proof of the close-to-convexity of the derivative $f^{(j)}$ is the same as the proof in Theorem 1. Note only the inequality $2 g_{2, j} \leq 1$ is equivalent to the inequality $\frac{(p-j-1) \beta_{0}}{j+1} \leq 1$, which follows from condition

$$
0<(p-(n+j)+1) \beta_{0} \leq(n-1)(n+j-1)
$$

for $n=2$, and the inequality $n g_{n, j} \leq(n-1) g_{n-1, j}$ coincides with this condition. Hence as in the proof of Theorem 3 we get the second part of Theorem 4 .

4. Other results

The condition $p \geq 3$ in the proved theorems is not significant. Repeating the proofs of these theorems one can show that the following analogues of these theorems are hold for $p=2$.
Proposition 1. Let $\gamma_{2} \neq 0, \gamma_{0}=2 \beta_{0}+\gamma_{1}=0, \beta_{1}+\gamma_{2} \neq 0, \alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2} \neq 0,2+2 \beta_{1}+$ $+\gamma_{2} \neq 0$ and

$$
0<\frac{\beta_{0}\left(\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\left(\gamma_{2} \alpha_{1}+2 \beta_{0} \alpha_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} \leq \frac{1}{2}
$$

Then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+\frac{\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)} z+\frac{\beta_{0}\left(\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} z^{2}
$$

close-to-convex in \mathbb{D}.

Proposition 2. Let $\gamma_{2} \neq 0, \gamma_{0}=2 \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+2 \beta_{0} \alpha_{2}=0,2+\beta_{1} \neq 0$ and $0<\frac{\alpha_{0}+\beta_{0}}{2+\beta_{1}} \leq \frac{1}{2}$. Then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+z+\frac{\alpha_{0}+\beta_{0}}{2+\beta_{1}} z^{2}
$$

close-to-convex in \mathbb{D}.
Proposition 3. Let $\gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+2 \beta_{0}=0, \beta_{1} \neq 0, \alpha_{1} \neq 0,1+\beta_{1} \neq 0$ and $0<\frac{\beta_{0} \alpha_{1}+\alpha_{0} \beta_{1}}{\alpha_{1}\left(1+\beta_{1}\right)} \leq 1$. Then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{1}}{\beta_{1}} z+\frac{\beta_{0} \alpha_{1}+\beta_{1} \alpha_{0}}{2 \beta_{1}\left(1+\beta_{1}\right)} z^{2}
$$

close-to-convex in \mathbb{D}.
Proposition 4. Let $\gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+2 \beta_{0}=\beta_{1}=\alpha_{1}=0$ and $0<\alpha_{0}+\beta_{0} \leq 1$. Then differential equation (3) has a polynomial solution

$$
f(z)=z+\frac{\beta_{0}+\alpha_{0}}{2} z^{2}
$$

close-to-convex in \mathbb{D}.
Recall that before obtaining the above results we demanded the fulfillment of conditions (9) and $\beta_{0} \neq 0$. Now suppose that $\beta_{0}=0$. Then by Lemma $2 \gamma_{0}=\gamma_{1}=0$, and thus, from (7) and (8) we get

$$
\begin{equation*}
\gamma_{2} f_{0}=\alpha_{2}, \quad\left(\beta_{1}+\gamma_{2}\right) f_{1}=\alpha_{1}, \quad\left(2+2 \beta_{1}+\gamma_{2}\right) f_{2}=\alpha_{0} \tag{26}
\end{equation*}
$$

and for $3 \leq n \leq p$

$$
\begin{equation*}
\left(n\left(n+\beta_{1}-1\right)+\gamma_{2}\right) f_{n}=0 \tag{27}
\end{equation*}
$$

From (27) it follows that if $p\left(p+\beta_{1}-1\right)+\gamma_{2}=0$ then $f_{p} \neq 0$ may be arbitrary. Two cases are possible: 1) $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $3 \leq n \leq p$ and 2) there is $3 \leq p_{1}<p$ such that $p_{1}\left(p_{1}+\beta_{1}-1\right)+\gamma_{2}=0$.

In the first case we have $f_{p-1}=0$ provided $p>3$ and it is impossible to use Alexander's criterion. In the second case we have $p_{1} p=\gamma_{2}$ and $p_{1}+p=1-\beta_{1}$. Therefore, if either $p_{1}>3$ or $p>p_{1}+1$ then again we cannot apply Alexander's criterion. Thus, we can apply Alexander's criterion if either $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $3 \leq n \leq p$ and $p=3$ or $p_{1}\left(p_{1}+\beta_{1}-1\right)+\gamma_{2}=0$ for some $3 \leq p_{1}<p$ and $p_{1}=3, p=4$.

Given the possible value of the parameter γ_{2}, using (26) and choosing $f_{3}=2 f_{2} / 3$, you can prove the following statement.

Proposition 5. Let $\beta_{0}=\gamma_{0}=\gamma_{1}=0, p=3$ and $3\left(2+\beta_{1}\right)+\gamma_{2}=0$. Then:

1) if $\gamma_{2} \neq 0, \gamma_{2} \neq 3$ and $\gamma_{2} \neq 6, \alpha_{1} \neq 0$ and $0<\frac{\alpha_{0}\left(\gamma_{2}-3\right)}{\alpha_{1}\left(\gamma_{2}-6\right)} \leq \frac{1}{4}$ then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{\gamma_{2}}+\frac{3 \alpha_{1}}{2\left(\gamma_{2}-3\right)} z+\frac{3 \alpha_{0}}{\gamma_{2}-6} z^{2}+\frac{2 \alpha_{0}}{\gamma_{2}-6} z^{3}
$$

close-to-convex in \mathbb{D};
2) if $\gamma_{2}=3, \alpha_{1}=0$ and $-\frac{1}{2} \leq \alpha_{0}<0$ then differential equation (3) has a polynomial solution

$$
f(z)=\alpha_{2} / 3+z-\alpha_{0} z^{2}-2 \alpha_{0} z^{3} / 3
$$

close-to-convex in \mathbb{D};
3) if $\gamma_{2}=6, \alpha_{0}=0$ and $\alpha_{1} \neq 0$ then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{6}+\frac{\alpha_{1}}{2} z+\frac{\alpha_{1}}{4} z^{2}+\frac{\alpha_{1}}{6} z^{3}
$$

close-to-convex in \mathbb{D};
4) if $\gamma_{2}=\alpha_{2}=0$ and $0<\alpha_{0} / \alpha_{1} \leq 1 / 2$ then differential equation (3) has a polynomial solution

$$
f(z)=-\alpha_{1} z / 2-\alpha_{0} z^{2} / 2-\alpha_{0} z^{3} / 3
$$

close-to-convex in \mathbb{D}.
In the case when $3\left(2+\beta_{1}\right)+\gamma_{2}=0$ and $4\left(3+\beta_{1}\right)+\gamma_{2}=0$ (i. e. $p_{1}=3, p=4$) from (26) we get $f_{0}=\alpha_{2} / 12, f_{1}=\alpha_{1} / 6, f_{2}=\alpha_{0} / 2$, and choosing $f_{3}=\alpha_{0} / 3, f_{4}=\alpha_{0} / 4$ we obtain the following statement.

Proposition 6. If $\gamma_{2}=12, \beta_{0}=\gamma_{0}=\gamma_{1}=0,0<\alpha_{0} / \alpha_{1}<1 / 6$,

$$
3\left(2+\beta_{1}\right)+\gamma_{2}=4\left(3+\beta_{1}\right)+\gamma_{2}=0
$$

then differential equation (3) has a polynomial solution

$$
f(z)=\frac{\alpha_{2}}{12}+\frac{\alpha_{1}}{6} z+\frac{\alpha_{0}}{2} z^{2}+\frac{\alpha_{0}}{3} z^{3}+\frac{\alpha_{0}}{4} z^{4}
$$

close-to-convex in \mathbb{D}.
Finally, we remark that polynomial (6) can be close-to-convex in the case when $f_{2}=\cdots=f_{p-1}=0$. Since each starlike function is close-to-convex, it follows from such a lemma.

Lemma 3. If $|\alpha| \leq 1 / p$ then the polynomial $f(z)=z+\alpha z^{p}$ is a starlike function.

$$
\text { Proof. Recall that an analytic univalent in } \mathbb{D} \text { function } f(z)=z+\sum_{n=2}^{\infty} f_{n} z^{n} \text { is said }
$$ to be starlike if $f(\mathbb{D})$ is starlike domain with respect to the origin. It is well known [1] p. 202] (see also [2, p. 9]) that the condition $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>0(z \in \mathbb{D})$ is necessary and sufficient for the starlikeness of f. If $f(z)=z+\alpha z^{p}$ then for $|\alpha| \leq 1 / p$ and $|z|<1$ we have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}=\operatorname{Re}\left\{1+\frac{(p-1) \alpha z^{p-1}}{1+\alpha z^{p-1}}\right\} \geq 1-\left|\frac{(p-1) \alpha z^{p-1}}{1+\alpha z^{p-1}}\right|>1-\frac{(p-1)|\alpha|}{1-|\alpha|} \geq 0
$$

i. e. the function $f(z)=z+\alpha z^{p}$ starlike and, thus, close-to-convex. Lemma 3 is proved.

Suppose that $\gamma_{2} \neq 0$,

$$
\alpha_{2}=\alpha_{0}+(p-1) \beta_{0}=p\left(p+\beta_{1}-1\right)+\gamma_{2}=0
$$

$\beta_{1}+\gamma_{2}=\alpha_{1}$ and $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $n=1,2, \ldots, p-1$. Then in view of (7) $f_{0}=0, f_{1}=1, f_{2}=0$ and in view of (8) $f_{3}=\cdots=f_{p-1}=0$. Choosing $f_{p}=1 / p$ and using Lemma 3 we get the following statement.

Proposition 7. If $\gamma_{2} \neq 0$,

$$
\alpha_{2}=\alpha_{0}+(p-1) \beta_{0}=p\left(p+\beta_{1}-1\right)+\gamma_{2}=0
$$

and $n\left(n+\beta_{1}-1\right)+\gamma_{2} \neq 0$ for all $n=1,2, \ldots, p-1$ then differential equation (3) has a polynomial solution $f(z)=z+z^{p} / p$ close-to-convex in \mathbb{D}.

References

1. G. M. Golusin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, 1969.
2. M. M. Sheremeta, Geometric properties of analytic solutions of differential equations, Publisher I. E. Chyzhykov, Lviv, 2019.
3. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), no. 2, 169-185. DOI: $10.1307 / \mathrm{mmj} / 1028988895$
4. S. M. Shah, Univalence of a function f and its successive derivatives when f satisfies a differential equation, II, J. Math. Anal. Appl. 142 (1989), no. 2, 422-430. DOI: 10.1016/0022-247X(89)90011-5
5. Z. M. Sheremeta, Close-to-convexity of entire solutions of a differential equation, Mat. Metody Fiz.-Mekh. Polya 42 (1999), no. 3, 31-35 (in Ukrainian).
6. З. М. Шеремета, О свойствах целъх решений одного дифференииалвного уравнения, Дифференц. уравнения 36 (2000), no. 8, 1045-1050; English version: Z. M. Sheremeta, The properties of entire solutions of one differential equation, Differ. Equ. 36 (2000), no. 8, 1155-1161. DOI: $10.1007 /$ BF02754183
7. Z. M. Sheremeta, On entire solutions of a differential equation, Mat. Stud. 14 (2000), no. 1, 54-58.
8. Z. M. Sheremeta, On the close-to-convexity of entire solutions of a differential equation, Visn. L'viv. Univ., Ser. Mekh.-Mat. 58 (2000), 54-56 (in Ukrainian).
9. З. М. Шеремета, М. Н. Шеремета, Близость к выпуклости целых решений одного дифференииалъного уравнения, Дифференц. уравнения 38 (2002), no. 4, 477-481; English version: Z. M. Sheremeta and M. N. Sheremeta, Closeness to convexity for entire solutions of a differential equation, Differ. Equ. 38 (2002), no. 4, 496-501. DOI: 10.1023/A:1016355531151
10. Z. M. Sheremeta and M. M. Sheremeta, Convexity of entire solutions of one differential equation, Mat. Metody Fiz.-Mekh. Polya 47 (2004), no. 2, 186-191 (in Ukrainian).
11. Ya. S. Mahola and M. M. Sheremeta, Properties of entire solutions of a linear differential equation of n-th order with polynomial coefficients of n-th degree, Mat. Stud. 30 (2008), no. 2, 153-162.
12. Ya. S. Mahola and M. M. Sheremeta, Close-to-convexity of entire solution of a linear differential equation with polynomial coefficients, Visn. L'viv. Univ., Ser. Mekh.-Mat. 70 (2009), 122-127 (in Ukrainian).
13. Я. С. Магола, М. М. Шеремета, Про властивості иілих розв'лзків лінійних диферениіалъних рівнлнъ з поліноміалъними коефічієнтами, Мат. методи фіз.-мех. поля 53 (2010), no. 4, 62-74: English version: Ya. S. Magola and M. M. Sheremeta, On properties of entire solutions of linear differential equations with polynomial coefficients, J. Math. Sci. (New York) 181 (2012), no. 3, 366-382. DOI: 10.1007/s10958-012-0691-9
14. Ya. S. Mahola, On entire solutions with two-member reccurent formula for Taylor coefficients of linear differential equation, Mat. Stud. 36 (2011), no. 2, 133-141.
15. J. F. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. (2) 17 (1915), no. 1, 12-22. DOI: 10.2307/2007212.
16. A. W. Goodman, Univalent function, Vol. II, Mariner Publishing Co., 1983.

БЛИЗЬКІСТЬ ДО ОПУКЛОСТІ МНОГОЧЛЕННИХ РОЗВ'ЯЗКІВ ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ДРУГОГО ПОРЯДКУ З МНОГОЧЛЕННИМИ КОЕФІЦІЄНТАМИ ДРУГОГО СТЕПЕНЯ

Мирослав ШЕРЕМЕТА, Юрій ТРУХАН
Лъвівсъкий націоналъний університет імені Івана Франка, вул. Університетсъка, 1, 79000, Лъвів
e-mail: m.m.sheremeta@gmail.com, yurkotrukhan@gmail.com

Аналітична однолиста в $\mathbb{D}=\{z:|z|<1\}$ функція $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$ називається опуклою, якщо $f(\mathbb{D})$ - опукла область, і називається близькою до опуклої, якщо існує така опукла в \mathbb{D} функція Φ, що $\operatorname{Re}\left(f^{\prime}(z) / \Phi^{\prime}(z)\right)>0$ $(z \in \mathbb{D})$. Кожна близька до опуклої в \mathbb{D} функція f є однолистою в \mathbb{D}, i отже, $f^{\prime}(0) \neq 0$. Тому функція f є близькою до опуклої в \mathbb{D} тоді і тільки тоді, коли функція $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}$ близька до опуклої в \mathbb{D}, де $g_{n}=f_{n} / f_{1}$. C.M. Шах визначив умови на дійсні параметри $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$, за яких диференціальне рівняння $z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=0$ має цілі розв'язки, які разом зі своїми похідними близькі до опуклих в \mathbb{D} функціями. Багато авторів продовжили ці дослідження. Тут розглядається неоднорідне рівняння Шаха $z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=$ $=\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2}$ з дійсними параметрами і вивчається існування близьких до опуклих його многочленних розв'язків. Неважко довести, що для того, щоб многочлен $f(z)=\sum_{n=0}^{p} f_{n} z^{n},(\operatorname{deg} f=p \geq 2)$ був розв'язком цього рівняння, необхідно, щоб $\gamma_{0}=p \beta_{0}+\gamma_{1}=0$. Основні такі результати: 1) якщо $p \geq 3, \gamma_{0}=p \beta_{0}+\gamma_{1}=0, \beta_{1}+\gamma_{2} \neq 0, \alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2} \neq 0, \beta_{0}>0$, $2+\beta_{1}>0$,

$$
0<\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\left(\gamma_{2} \alpha_{1}+p \beta_{0} \alpha_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} \leq \frac{1}{2}
$$

i або $\gamma_{2}>0$ та $(p-2) \beta_{0} \leq 2+\beta_{1}$, або $-3\left(2+\beta_{1}\right)<\gamma_{2}<0$ та $3(p-2) \beta_{0} \leq$ $\leq 3\left(2+\beta_{1}\right)+\gamma_{2}$, то неоднорідне рівняння Шаха має многочленний розв'язок $f(z)=\frac{\alpha_{2}}{\gamma_{2}}+\frac{\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)} z+\frac{(p-1) \beta_{0}\left(\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}\right)+\alpha_{0} \gamma_{2}\left(\beta_{1}+\gamma_{2}\right)}{\gamma_{2}\left(\beta_{1}+\gamma_{2}\right)\left(2+2 \beta_{1}+\gamma_{2}\right)} z^{2}+$ $+\sum_{n=3}^{p} f_{n} z^{n}$, де $f_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)+\gamma_{2}} f_{n-1}$ для $3 \leq n \leq p$, який разом з усіма своїми похідними $f^{(j)}(1 \leq j \leq p-1)$, близькими до опуклих в \mathbb{D}

функціями;
2) якщо $p \geq 3, \gamma_{2} \neq 0, \gamma_{0}=p \beta_{0}+\gamma_{1}=\beta_{1}+\gamma_{2}=\alpha_{1} \gamma_{2}+p \beta_{0} \alpha_{2}=0$, $\beta_{0}>0,2+\beta_{1}>0,3(p-2) \beta_{0} \leq 2\left(3+\beta_{1}\right)$ i $0<\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} \leq \frac{1}{2}$, то неоднорідне рівняння Шаха має многочленний розв'язок $f(z)=\frac{\alpha_{2}}{\gamma_{2}}+z+$ $+\frac{\alpha_{0}+(p-1) \beta_{0}}{2+\beta_{1}} z^{2}+\sum_{n=3}^{p} f_{n} z^{n}$, де $f_{n}=\frac{(p-n+1) \beta_{0}}{(n-1)\left(n+\beta_{1}\right)} f_{n-1}$ для $3 \leq n \leq p$, який разом з усіма своїми похідними $f^{(j)}(1 \leq j \leq p-1)$ близькими до опуклих в \mathbb{D} функціями;
3) якщо $p \geq 3, \gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+p \beta_{0}=0, \beta_{1} \neq 0, \alpha_{1} \neq 0, \beta_{0}>0,2+\beta_{1}>0$, $(p-2) \beta_{0} \leq 2+\beta_{1}$ і $0<\frac{(p-1) \beta_{0} \alpha_{1}+\alpha_{0} \beta_{1}}{\alpha_{1}\left(1+\beta_{1}\right)} \leq 1$, то неоднорідне рівняння Шаха має многочленний розв'язок $f(z)=\frac{\alpha_{1}}{\beta_{1}} z+\frac{(p-1) \beta_{0} \alpha_{1}+\beta_{1} \alpha_{0}}{2 \beta_{1}\left(1+\beta_{1}\right)} z^{2}+$ $+\sum_{n=3}^{p} f_{n} z^{n}$, де $f_{n}=\frac{(p-n+1) \beta_{0}}{n\left(n+\beta_{1}-1\right)} f_{n-1}$ для $3 \leq n \leq p$, який разом з усіма своїми похідними $f^{(j)}(1 \leq j \leq p-1)$ близькими до опуклих в \mathbb{D} функціями; 4) якщо $p \geq 3, \gamma_{2}=\alpha_{2}=\gamma_{0}=\gamma_{1}+p \beta_{0}=\beta_{1}=\alpha_{1}=0,(p-2) \beta_{0} \leq 2$ i $0<\alpha_{0}+(p-1) \beta_{0} \leq 1$, то неоднорідне рівняння Шаха має многочленний розв'язок $f(z)=z+\frac{(p-1) \beta_{0}+\alpha_{0}}{2} z^{2}+\sum_{n=3}^{p} f_{n} z^{n}$, де $f_{n}=\frac{(p-n+1) \beta_{0}}{n(n-1)} f_{n-1}$ для $3 \leq n \leq p$, який разом з усіма своїми похідними $f^{(j)}(1 \leq j \leq p-1)$ близькими до опуклих в \mathbb{D} функціями.

Ключові слова: лінійне неоднорідне диференціальне рівняння другого порядку, многочленні коефіцієнти, многочленний розв'язок, близька до опуклої функція.

