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An analytic univalent in D = {z : |z| < 1} function f is said to be convex if
f(D) is a convex domain and is said to be close-to-convex if there exists a convex
in D function ® such that Re (f'(z)/®'(z)) > 0(z € D). We indicate conditions
on real parameters o, f1, Y0, V1, 72 and ag, a1, az of the differential equation

22w 4 (Boz” + Br2)w’ + (102" + iz + y2)w = a0z’ + a1z + ag,

under which this equation has a polynomial solution
P
F(z) =D faz" (deg f=p=>2)
n=0

close-to-convex in ID together with all its derivatives f) (1 < j <p—1).

Key words: linear non-homogeneous differential equation of the second
order, polynomial coefficient, polynomial solution, close-to-convex function.

1. INTRODUCTION AND AUXILIARY RESULTS

An analytic univalent in D = {z : |z| < 1} function

(1) f(Z) = Z fn2"
n=0

is said to be convex if f(D) is a convex domain. It is well known [1, p. 203] (see also
[2, p. 8]) that the condition Re {1+ zf"(z)/f'(z)} > 0 (= € D) is necessary and sufficient
for the convexity of f. A function f is said to be close-to-convex in D (W. Kaplan [3],
see also [1, p. 583], [2, p. 11]) if there exists a convex in D function ® such that
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Re(f'(2)/®'(2)) > 0(2 € D). Any close-to-convex function f has a characteristic
property that the complement G of the domain f(D) can be filled with rays which start
from OG and lie in G. Every close-to-convex in D function f is univalent in D and,
therefore, f'(0) # 0. Hence it follows that any function f is close-to-convex in D if and

only if the function g(z) = z + Z gnz" is close-to-convex in D, where g, = f,./ f1.

S. M. Shah [4] indicated condltlons on real parameters Sy, 51, Y0, 71, 72 of the
differential equation

(2) 2w + (Boz® + Brz)w’ + (y0z® + 712 +72)w =0,

under which there exists an entire transcendental solution such that f and all its
derivatives are close-to-convex in D. The investigations are continued in the papers [5H10],
but in all of these papers the case of polynomial solutions of was not investigated.
In the papers [11H14] properties of entire solutions of a linear differential equation of n-
th order with polynomial coefficients of n-th degree are investigated. Some results from
these papers are published also in monograph [2].

Here we consider a differential equation

(3) 2w + (Bo2? + Br2)w’ + (V2% + 712+ Y2)w = apz? + a1z + ay

with real parameters and study the existence and closeness-to-convexity of its polynomial
solutions.

At first we remark that a function is a solution of the differential equation if
and only if

o0
Z n_lfnz +5OZR—1fn 12" +")/0an 22"+
OO,
+B1 Y nfaz" +m Z frn-12" + 72 Z fo2" = a02® + a1z + g,
n=1 n=1 n=0

i. e.

(4) 2fo=az, (Br+v)fi+nfo=ar, 2+281+7)f2+ (Bo+1)fi +7/fo =0
and for n > 3

(5) (n(n+ 61— 1) + %) fn+ (Bo(n —1) +71) fam1 + Y0 fn—2 = 0.

Clearly, by some condition differential equation may have a linear solution, which
obviously is convex function in . We are going to investigate a solutions of degree > 2.
In this case the following statement is true.

Lemma 1. In order that the polynomial
P
(6) f(2) = fa2", deg f=p=>2,
n=0

be a solution of the differential equation , it is necessary that vo = pBy + 11 = 0.
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Proof. Indeed, for n = p + 2 from we get

(p+2)(p+ B +1)+72) fpre+ ((0+1)Bo +71) fo+1 + 70 = 0.
If f has the form (6) then f,42 = f,4+1 =0 and f, # 0. Therefore, v = 0 and from
for n = p 4+ 1 we obtain
(p+ D)+ B) +72) fpe1+ (pBo+ M) fp = 0.
Since fp+1 =0 and f, # 0, it follows that pSy +~v1 = 0. Lemma is proved. O

By the condition vy = pBy + 71 = 0 from (@) and (5 we get
(1) mfo=a2, (Br+r2)fi=a1+pBofo, 2+281+7)f2=a+(@—1)bf1
and for 3<n <p
(8) (nn+B1=1) +72)fo=(@—n+1)Bofu1.

We remark that the condition vg = pBy + 71 = 0 is not sufficient in order that a solution
of differential equation has the form (6). Indeed, although in view of we have

(p+3)(p+ B +2)+72) fprs =0,
it does not follow from here that f,;3 = 0, since (p+3)(p+ S1 +2) + 72 can be equal to
zero. Therefore, further we assume that

nn+p1—1)+72#0, 3<n<p.
This condition allows us to rewrite the equality in the form

p—n+1)8

(9) J— o
n(n+p1 —1) +7
whence it follows that f, =0, if By = 0. Therefore, further we assume also that §y # 0.

To study the closeness-to-convexity of the polynomial @, we will use the following
criterion of Alexander [15|]16] (see also |2, p. 11]).

f’nfh 7123,

Lemma 2. If
1>2gy>3g3 >+ 2pgp >0

n

then the polynomial g(z) = Y." _, gn,2™ is close-to-convez in D.

In view of and it is clear that the existence of a close-to-convex solution @ of
differential equation depends on the equality to zero of the parameter ~,. Therefore,
we will consider two cases 72 # 0 and v, = 0.

2. CLOSENESS-TO-CONVEXITY PROVIDED 7, # (
From the first equality of it follows that fo = as/72, and the second equality of
implies
(B1 +72) f1 = a1 + pPoaa/7e-
Since the condition f; # 0 is necessary for a closeness-to-convexity of f, from the last
equality it follows that either £ + 2 # 0 and a7 + pBoca/¥2 # 0 or

B1+ 72 = a1 + pBoaz/v2 = 0.
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a1v2 + pBoae

In the first case we have f1 =
Y2(B1 + 72)

, and if 2 4 261 + 2 # 0 from the third

equality (7)) we obtain
e (p — 1)Bo(a1yz + pBoaz) + aoy2(B1 + 72)
Y2(B1 +72)(2 + 281 + 72) '

Using these equalities and equality @D we prove the following theorem.
Theorem 1. Let p > 3, 72 #0, 70 =pBo + 11 =0, f1 +72 # 0, a1ye + pBoce # 0 and

(p — DBo(e172 + phoas) + agra(br +72) _ 1
(V201 + pBoc2) (2 + 281 + 72) =2

(10) 0<

If forall3<n<p
(p—n+1)5 <n—1
nn+pr—1)+v ~ n
then differential equation has a close-to-convex in D polynomial solution
az o172 + pPocs
fle) = 22 4 2 TPPC
Y2 7208+ 2)
-1 « + ) + + u
(p — 1)Bo(a1y2 + pBoaz) + apye (S 72)22 n Z £
n=3

(11)

z+
(12)
_|_

Y2(B1 +72)(2 + 281 + 72)

where the coefficients f, satisfy @

If By > 0, 2481 > 0 and either v2 > 0 and (p—2)8y < 2461 or —3(2+61) <2 <0
and 3(p — 2)Bo < 3(2+ B1) + 72 then differential equation has a polynomial solution
close-to-convez in D together with all its derivatives fU) (1 <j<p—1).

p
Proof. Let g(z) = z+Zgnz", where g, = fn/ f1. In view of (9), and f2/f1 >0
n=2

and f,/f1 >0forall 3<n<p,i e g,>0forall 2<n<p. From it follows also
that 2go < 1, and @D and imply ng, < (n —1)g,—1 for all 3 < n < p. Therefore,
by Lemma [2] the function g and, thus, the function f are close-to-convex in D. The first
part of Theorem [1|is proved.

Now suppose that the condition

(= (nti)+ Dy _n-1
m+i)n+ji+pBi—1)+7 " n+j
holds for some 1 < j < p—2and all 2 < n < p— j and show that the derivative f) of

function is close-to-convex in D.
Indeed, for 1 < j < p — 2 the derivative

p—J

FOR) =3+ G+ Dz + D> 4+ D(n+2)... (n+ ) far2"

n=2

(13)

is close-to-convex in D if and only if the function

(n+1)(n+2)...(n+J)fnsj
G+ D

)

p—J
9i(2) =2+ gns2"s Gnj=
n=2
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is close-to-convex in D. For the function g; the inequality 2g, ; < 1 is equivalent to the
inequality
(p—J—1)Bo P
(G+2)J+B1+1) 492~ j+2
which follows from the condition with n = 2. If 3 < n < p — j then the inequality
ngn.; < (n—1)gn_1,; is equivalent to condition (13). Therefore, by Lemma[2] the function
g; and, thus, the function f () are close-to-convex in ID.
Now suppose that Sy > 0, 2+ 51 > 0 and 2 > 0. Then condition holds for all
— 1 -1 — 1
(p—n+1)f < n , 1. e. (p—n+1)f < 1. Since the left
n(n+p1—1) n (n—=1)(n+p5 —1)
-2
part of the last inequality decreases, this inequality holds if M < 1, i e

22+ 1) ~
(p—2)Bp < 2+ 1. Similarly, condition holdsforall1 < j<p—2and 2 <

(p—(n+j)+1DBo (»—2)po
m—1)(n+j+p —1) 24 5
(p—2)Bo <2(2+ B1).
Finally, let 5o > 0, 2+ 51 > 0 and 72 < 0. Then for all 3<n <p
(p—n+1)5 _ (p—n+1)5 < (p—n+1)5
nn+pi—1)+7 nn+ph—1—|nl/n) = nn+p—1-|rl|/3)
Therefore, holds for all 3 < n < pif

(p—n+1)5
(Dt B —1—alj3) =

3<n<pif

<p-—jJ

n
< 1 and the last inequality is true if < 1,i e

(p—2)Bo
2+ 61 +7/3) — 7
i.e. =32+ 51) < 2 <0 and %(p —2)Bo < 3(2 + B1) + 2. Similarly we prove that
-2
condition holdsforall 1 < j<p—2and2<n<p-—jif (p JE0 <1,i. e

24014+ 7/3 ~
—3(24+ 1) < y2 and 3(p—2)5p < 3(2+ 1) +2- Thus, for all 1 < j < p—2 the derivative

19 is close-to-convex in . Since the derivative f(?—1) is a linear function, the proof of
Theorem 1] is complete. O

whence as above it follows that holds for all 3 < n < p if 5

Now we consider the case

B1+ v2 = a1 + pPoaa/v2 = 0.

From the second equality it follows that f; may be arbitrary. If we choose f; = 1
then under the condition 2 4+ 81 # 0 in view of the third equality we get

o+ (p—1)po
2+ By

From under the condition n + 81 # 0 we obtain

fa=
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Theorem 2. Let p > 3, v2 # 0, v0 = pBo + 71 = 1 + 72 = a1z + pPoce = 0 and

o+ (p —1)Bo 1
(15) O<W -

[\D

If forall3<n<p

(p—n+1)5 n—1
m-Dn+p) = n

then differential equation has a close-to-convez in D polynomial solution

(16) 0<

e a+(—1)5
(17) f(z)_£+z+ I 2+an

where the coefficients f, satisfy .

If Bo > 0,24 51 >0 and 3(p — 2)Bo < 2(3 + B1) then differential equation has
polynomial solution , which together with its derivatives f) (1<j<p-—1)are
close-to-convez in D.

Proof. From and the inequality f, > 0 follows for all n. Condition implies
the inequality 2f> < 1 and condition implies nf, < (n—1)f,—1 for all 3 <n < p.
Therefore, by Lemmal2]the function f is close-to-convex in . The first part of Theorem 2]
is proved.

Now we suppose the condition

(p—(n+j)+1)Bo cn-
m+j-1D+j+p)  n+j
holds for some 1 < 7 < p—2and all 2 < n < p—j. The proof of the closeness-to-convexity

of the derivative f() (1 <j <p-—2)is the same as the proof in Theorem [1} Note only
that the inequality 2g, ; <1 is equivalent to the inequality

(p—j-Do _j+1
j+2+p T j+2

(18) 0<

which follows from condition for n = 2, and the inequality ng,n; < (n — 1)gn—1,;
coincides with condition (T8).
Let By > 0 and 2 + 31 > 0. Since the values
(p—n+1)B n n+j
n+tp T (n=12" (h-1)(n+j-1)

decrease with the increasing of n and the value

(2+5)@—j- Db

G+DG+2+5)

3~ 2)fo <1,i e
2B +p1) —

3(p—2)Bo < 2(3+F1). Thus, for all 1 < j < p—2 the derivative f\9) is close-to-convex in
D. Since the derivative f?—1 is a linear function, the proof of Theoremis complete. [

decreases with the increasing of j, conditions and . ) hold if
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3. CLOSENESS-TO-CONVEXITY PROVIDED 7, = ()

Now implies as = 0 and, thus, fy may be arbitrary. If we choose fy = 0 then
from (7) and (9) we get
(19) Brfi=a1, 2(1+p1)f2 =a0+ (p—1)Bof1,
and for 3<n<p

p—n+1)b
n(n+p; —1)
Since for the close-to-convex function f; # 0, from the first equality of it follows

that either 5; # 0 and a3 # 0 or $1 = a3 = 0. In the first of these cases the following
theorem holds.

(20) fn = fr-1-

Theorem 3. Letp >3, vo=as = =71 +pBo =0, 51 # 0,01 # 0 and

(p— 1)Boas + o <1
ai(1+5) -

(21) 0<

If for all3<n<p

(p—n+1)5
CEN RS

then differential equation has a close-to-convex in D polynomial solution

(22) 0<

o (p—1Dfoor +Brag 5 | o n
(23) f(z)—ﬁlz+ RN A +nz_:3fnz

where the coefficients f, satisfy .

If o > 0,24+ B1 > 0 and (p — 2)By < 2 + p1 then differential equation has a
polynomial solution close-to-convex in D together with its derivatives f) (1<5<
<p-1).

Proof. Suppose that the function g is defined as in the proof of Theorem 1} In view of (20)),
and fo/fi>0and f,/fi >0forall 3 <n<p,ie g, >0foral2<n<p.
From it follows also that 2¢gs < 1, and and imply ng, < (n — 1)g,—1 for
all 3 < n < p. Therefore, by Lemma [2| the function g and, thus, the function are
close-to-convex in ID. The first part of Theorem [3|is proved.

Now we suppose that

(- (n+i)+ Vb _,
m—1(n+j+p—1)
holds for some 1 < j < p—2 and for all 2 < n < p — j. Then the proof of the close-
to-convexity of the derivative f) is the same as the proof in Theorem (Il Note only
w < 1, which follows

j+1+5
from condition for n = 2, and the inequality ng, ; < (n — 1)g,—1,; coincides with

condition .

(24) 0<

the inequality 2g» ; < 1 is equivalent to the inequality
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It is easy to check that if 8y > 0, 2+ 5, > 0 then condition holds for all
-2
3<n<pifm<l,andholdsforall1<j<p—2andall2<n<p—1if
1
-2
% <1,ie. (p—2)Bp <2+ f1. The proof of Theoremis complete. O
1

In the second case the following theorem is true.

Theorem 4. Letp >3, 2o =as =7 =71+pBo =1 =01 =0and 0 < ag+(p—1)5y <
<L IfO< (p—n+1)By < (n—1)% for all 3 < n < p then differential equation has
a close-to-convex in D polynomial solution

1 p
(25) f(z)zz_k(p)gﬁow}z%"nzgfnzn
where the coefficients f, satisfy with B = 0.
If 0 < (p— 2)Bo < 2 then differential equation has polynomial solution
close-to-convex in D together with its derivatives fU) (1 <j<p—1).

Proof. From the conditions 0 < ag+ (p—1)3p <land 0 < (p —n+1)8y < (n—1)? for
all 3 > n > pin view of with 81 = 0 it follows as above that all f,, > 0, 2fs <1
and nf, < (n—1)fn—1 for all 3 < n < p. Therefore, by Lemma [2] the function is
close-to-convex in D. The first part of Theorem []is proved.

Now we suppose that

0<(p—(n+j)+1DB<(n—1)(n+j—1)
for some 1 < j <p—2and all 2<n < p—j. Then the proof of the close-to-convexity
of the derivative f) is the same as the proof in Theorem [l Note only the inequality
(p=j=1h
Jj+1
0<(p—(+i)+DBo<m—1)(n+j—-1)
for n = 2, and the inequality ng, ;j < (n —1)g,—1,; coincides with this condition. Hence
as in the proof of Theorem [3] we get the second part of Theorem [4] O

2g2,; < 1is equivalent to the inequality < 1, which follows from condition

4. OTHER RESULTS

The condition p > 3 in the proved theorems is not significant. Repeating the proofs
of these theorems one can show that the following analogues of these theorems are hold
for p = 2.

Proposition 1. Let o # 0, 790 =28p+71 =0, B1+72 # 0, ayy2 +28pas # 0, 2+ 251 +

+v2 # 0 and

Bola1ye + 2Boaz) + aoy2(B1 +72)
(V201 + 28002) (2 + 261 + 72)

Then differential equation has a polynomial solution

£(2) = Q2 017 + 2Bpa ; Bo(a1v2 + 2Boaz) + apy2(B1 + 72) .2
y2 o 2(B1 +2) Y2(B1 +72)(2 + 261 + 72)

close-to-convex in D.

0<

1
< -
-2
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Proposition 2. Let v2 # 0, v0 = 260 +71 = f1+72 = auye +26pae =0, 2+ 51 # 0 and
1
0< O;o—:rﬁﬂo < 3 Then differential equation has a polynomial solution
1
Qo (&%) +BO 2
fz)=—+2z+ z
=) V2 245

close-to-convex in D.

Proposition 3. Let vo = as =99 =71 +260 =0, 51 #0, a1 #0, 1 + 81 # 0 and

0< Boan + aofy < 1. Then differential equation has a polynomial solution
a1(1 + ﬁl)
ar | Poar + Brag o
2)=—z+4+——""—2
1) B 281 (1 + B1)

close-to-convex in .

Proposition 4. Let o =as =y =m+260=p1=a1 =0 and 0 < ag+ fy < 1. Then
differential equation has a polynomial solution

f(2) =2+ L—gaof
close-to-convex in D.

Recall that before obtaining the above results we demanded the fulfillment of condi-
tions (9) and By # 0. Now suppose that Sy = 0. Then by Lemma [2| 70 = 71 = 0, and
thus, from and we get

(26) Yofo =2, (Bi+y)fi =01, (2+261+7)f2=a
and for 3<n<p
(27) (n(n+p1—1) +72)fn = 0.

From it follows that if p(p + 81 — 1) + 72 = 0 then f, # 0 may be arbitrary. Two
cases are possible: 1) n(n+ 81 —1)+v2 # 0 for all 3 <n < p and 2) thereis 3 <p; <p
such that p1(p1 + 61 — 1) + v =0.

In the first case we have f,_; = 0 provided p > 3 and it is impossible to use
Alexander’s criterion. In the second case we have p1p = v2 and p; +p = 1— 1. Therefore,
if either p; > 3 or p > p; + 1 then again we cannot apply Alexander’s criterion. Thus,
we can apply Alexander’s criterion if either n(n + 81 — 1) + 2 # 0 for all 3 < n < p and
p=3orp(p1+ 5 —1)+7v =0 for some 3<p; <pandp; =3,p=4.

Given the possible value of the parameter 79, using and choosing f3 = 2f5/3,
you can prove the following statement.

Proposition 5. Let o= =71 =0, p=3 and 3(2+ 51) + 72 = 0. Then:
-3
1) if 2 #0, v2a #3 and v #6, a1 #0 and0<m
1(72 —
equation has a polynomial solution

1
< 1 then differential

(0% 3&1 3&0 2 2&0 3
flz)=—+ z+ z“ 4+ z
) Y2 2(12-3) -6 1-6

close-to-convex in D;
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2) ify2 =3, a1 =0 and f% < ag < 0 then differential equation has a polynomial
solution
f(2) = /3 + 2 — apz? — 2092°/3
close-to-convez in D;
3) if 2 =6, ap = 0 and a1 # 0 then differential equation has a polynomial
solution
ap o Q1 3

_* ., M A
e R I

close-to-conver in D;
4) if 32 = a2 = 0 and 0 < ap/ay < 1/2 then differential equation has a
polynomial solution
f(2) = —a12/2 — apz?/2 — apz®/3
close-to-convex in .

In the case when 3(24+ 31) + 2 =0and 43+ 51) + 2 =0 (i.e. p1 =3,p =4)
from we get fo = 042/127 f1 = 041/6, f2 = 040/2, and choosing f3 = 040/3, f4 = 040/4
we obtain the following statement.

Proposition 6. If o =12, Sy =7 =7 =0, 0 < ap/ay < 1/6,
32+ P1) +72=4B+p1) +72=0
then differential equation has a polynomial solution
_02 a1 G0, Q05 Qo4
e TR R i T
close-to-convex in D.

Finally, we remark that polynomial @ can be close-to-convex in the case when
foa=---= fp—1 = 0. Since each starlike function is close-to-convex, it follows from such
a lemma.

Lemma 3. If || < 1/p then the polynomial f(z) = z + azP is a starlike function.

Proof. Recall that an analytic univalent in D function f(z) = z + Z fnz™ is said
—2

to be starlike if f(D) is starlike domain with respect to the origin. It is well known
[1} p. 202] (see also [2, p. 9]) that the condition Re {zf'(2)/f(z)} > 0 (z € D) is necessary
and sufficient for the starlikeness of f. If f(z) = 2z + 2P then for |o| < 1/p and |z] < 1
we have
!
zf'(2) 1_(p—1)|a| >0,
f(z) 1—|af
i. e. the function f(z) = z 4+ «az? starlike and, thus, close-to-convex. Lemma is proved.
Suppose that vo # 0,

az=ao+ (p—1)fo=plp+h—1)+72=0,
i+ =arand n(n+ By —1)+72 #0forall n=1,2,...,p— 1. Then in view of (7)

fo=0,fi =1, fo =0 and in view of (8) f3 =--- = f,—1 = 0. Choosing f, = 1/p and
using Lemma 3| we get the following statement.

Re

(p—Dazt! (p—Dazt!
=Re<14+————32>1—|—«"——
e{ + 1+ azr—t | = 1+ azpt
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Proposition 7. If v # 0,

ar=a+@-1B=pp+H—1)+72=0

andnin+ 81— 1)+~ #0 for alln=1,2,...,p— 1 then differential equation has a
polynomial solution f(z) = z + 2P /p close-to-convez in D.

10.

11.

12.

13.

14.

15.
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PO3B’A3KIB /INOEPEHIIAJIBHOTO PIBHAHHA IPYT'OT'O
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APYT'OI'O CTEIIEHS
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o0
Ananitiana ognommcra B D = {z : |z| < 1} bynkuia f(z) = > faz" Ha-
n=0

3uBa€TbCa omyksoi0, akmo f(D) - omykaa o6aacTh, i HA3MBAETHCA OJIN3BKOIO
JI0 OTTYKJIOT, IKIIO icHye Taka omyksa B D dynxmia ®, mo Re (f'(2)/®'(z)) > 0
(z € D). Koxna 6mm3bka 70 omykiol B D dyrkmia f € omrommcroio B D, i oTxke,
f'(0) # 0. Tomy bynkmisa f e 6imsbkoio 10 omyksoi B D Toxi i Timbxu Tosi,
ko byukmisa g(z) = z+ Yy oo, gnz" 6ausbka 10 omykioi B D, ne gn = fn/f1.
C.M. Ilax Bu3uauus ymoBu Ha aiticui mapamerpu [o, 51, Y0, V1, V2, 38 AKAX
mudepenrianpie pibuamna 22w’ + (Boz? + frz)w + (Y02° + 112 + y2)w = 0
Ma€ [y po3B’sI3KH, SKI pa30M 31 CBOIMH MOXiTHMMH GJIM3BKI 0 OMyKJINX B
D dyukmismu. BaraTo aBTopis mpomosxuin mi gocaimxkenss. Tyt po3risamae-
Thea meompopimne pisnanna Mlaxa z2w” 4 (o2 4 f12)w’ + (y02> +y12+7v2)w =
=l +a1z+as 3 MACHUMUI TIapaMeTPaMU i BUBYAETHCS ICHYBAHHS OJTN3b-
KHUX JI0 OIMyKJX HOro MHOrOYIeHHHX pO3B’s3KiB. HeBarkko moBecTH, mio st

P
Toro, mob muorouren f(z) = Z fnz", (deg f = p > 2) 6yB po3B’43KOM LIHOIO
n=0

piBHsAHHS, HEOOXiAHO, MO0 Yo = pBo + 71 = 0. OcHoBHI Taki pe3yabraTn:

1) akwo p > 3, v0 = pBo+ 7 =0, b1 + 72 # 0, a1y2 + pPoaz # 0, Bo > 0,
24+ 61 >0,

(p — 1)Bo(a1y2 + pBoaz) + awoy2(B1+72) 1

0< < Z
(year + pPoaz)(2 + 261 + 72) -

2

iaboy2 >0mra (p—2)B <2+ B1,a60 —3(2+ B1) <2 <0 r1a3(p—2)F <

< 3(2+1)+"2, T0 HeoxHOPiHe piBHAHHS ITTaxa Ma€ MHOTOUICHHUN PO3B’I30K

flz) = Qz o172 JFP/B(JCVZ’Z (p — 1)Bo(a1y2 + pBoaz) + coy2(B1 + 72)
Y2 72(Brt+72) Y2(Br +72)(24 281 + 72)

L n __ (p—n+1)po
+nz::3fnz , e fn = n(n+ﬁ1—1)+’yz

ycima cBoivu moxigamvm f) 1 <j<p-1), 6m3bkuvu 10 onykaux B D

22+

n—1 g 3 < n < p, akuii pa3oMm 3
) p
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byHKIIMIT;
2) skmo p > 3, 72 # 0, 0 = plo+ 711 = f1+ 72 = arye + phoaz = 0,
a0+ (p—1)fo 1

50>0,2+ﬂ1>0,3(p—2),80§2(3+ﬂ1)10<W§§,TO
. . . Q2
HeomHOpimHe piBusHHs [llaxa Mae MHOrO4WIeHHMI pO3B'sI30K f (z) = ’7 +z+
2
aw+P—1)p o & n (p—n+1)Bo
72 + n2yme fn=———""—"<fno1a1a3<n<p,
2+ fr 2 A I = T g T A P

AKIH pa3oM 3 ycima cBoimm moximpmvm f0) (1 <j<p-1) 6mm3pkumMu 10
onykiaux B D dyHKIigMIE;

3) axmo p > 3, 72 = a2 =0 = y1+pPo =0, 1 # 0,01 # 0, Bo > 0, 2451 > 0,
-1
(p—2)f0 < 2+ i 0 < L= Dbocr T a0y

< 1, TO HEOJHOpIAHE PIBHAHHS

a1(1+ B1)
[ITaxa Mae MHOrodaeHHu po3s’si30k f(z) = %z + (p 72;)'6()(?1 ; flao 2%+
1 1 1
(p—n+1)Bo

p
+ w2, me fn = n—1 g 3 < n < p, GKUH pa3oM 3 yciMa
nZ:Igf , e f n(n+51_1)f 17 <n<p, P y

cBOIMY TIOXimHUME f G (1 <j <p-1) 6mm3bkumu 10 onykanx B D dyrKmiamm;

4)axkmo p >3, 2 =az =7 =7 +pbo =1 =1 =0, (p—2)fo <21i

0<ao+ (p—1)8 <1, To Heomropimae piBasHAs [Ilaxa Ma€ MHOTOUICHHNI
— p —

g 3 < n < p, gkuil pasoM 3 ycima cBoiMu moxigmamu f¢) 1<ji<p-1)

6m3bKUME 10 omykiux B D dyHKIigMA.

pose’s3ok f(z) = z+

Karowosi caosa: JliHiliHe HEOOHOPiTHE mudepeHIiiaabHe PiBHIHHS IPYTO-
r'0 MOPSIIKY, MHOTOJIEHH] KOeDiIlieHTH, MHOTOWIeHHN PO3B’I30K, OJIM3bKA 10
OIyKJI01 (bYHKIIis.
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