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The notion of ∗-measure on a compact Hausdor� space is introduced and
investigated in a previous publication of the �rst named author. In the present
note we consider the set of all ∗-measures of compact support on an ultrametric
space. An ultrametrization of this set is provided, which determines a functor in
the category of ultrametric spaces and non-expanding maps. We prove that this
functor is locally non-expanding and preserves the class of complete ultrametric
spaces.

Key words: ultrametric space, non-expanding map, ∗-measure.

1. Introduction

A metric d on a set X is called an ultrametric if it satis�es the strong triangle
inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}, x, y, z ∈ X.
The ultrametric spaces were �rst introduced by Hausdor� in 1934. They �nd numerous
applications not only in mathematics but also in another disciplines, e.g. biology, physics
[2, 14], computer science [6], logic programming and arti�cial intelligence [9], linguistics
[10].

In [15] an ultrametric is de�ned on the set of probability measures of compact
support on an ultrametric space. It is shown that this construction determines a locally
nonexpansive functor in the category of ultrametric spaces and nonexpanding maps,
and this functor �makes a useful building block for the de�nition of metric domains for
probabilistic program constructs.�

Some categorical properties of this construction are established in [3]. In particular,
it is proved therein that the probability measure functor determines a monad on the
category of ultrametric spaces and nonexpanding maps.
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The notion of ∗-measure is introduced by the �rst-named author [13]. The aim of the
present note is to de�ne an ultrametric on the set of of ∗-measures of compact support
de�ned on ultrametric spaces. We prove that the obtained construction determines a
functor on the category of ultrametric spaces and non-expanding maps. Also, we show
that this construction preserves completeness of ultrametric spaces.

2. Results

By I we denote the unit segment [0, 1]. Recall that a triangular norm (a t-norm) is
a continuous function (a, b) 7→ a ∗ b : I× I→ I satisfying the conditions

(1) ∗ is associative;
(2) ∗ is commutative;
(3) ∗ is monotone, i.e. a ≤ a′ and b ≤ b′ both imply a∗b ≤ a′ ∗b′ for all a, a′, b, b′ ∈ I;
(4) 1 is a unit.

See. e.g., [4] for the details. The following are examples of t-norms: · (multiplication),
min, (a, b) 7→ max{a+ b− 1, 0} ( Lukasiewicz t-norm).

Let us recall the notion of ∗-measure (see [13] for details). Given topological spaces
X,Y , by C(X,Y ) we denote the set of continuous functions from X to Y . By ∨ we
denote the operation of maximum of numbers as well as pointwise maximum of real-
valued functions.

De�nition 1. Let ∗ be a t-norm. A functional µ : C(X, I)→ I is called a ∗-measure on
a compact Hausdor� space X if the following is satis�ed:

(1) µ(cX) = c, where cX denotes the constant function on X taking value c;
(2) µ(λ ∗ ϕ) = λ ∗ µ(ϕ);
(3) µ(ϕ ∨ ψ) = µ(ϕ) ∨ µ(ψ).

The set of all ∗-measures on X is denoted by M∗(X). It is known [13] that the set
M∗(X) is compact being endowed with the weak* topology. This construction determines
a functor in the category Comp of compact Hausdor� spaces and continuous maps. This
functor satis�es some natural properties. In particular, the notion of support is de�ned
for any element µ ∈ M∗(X). By the de�nition, the support of µ is the minimal (with
respect to the inclusion) closed subset A of X satisfying the following condition: for every
ϕ,ψ ∈ C(X, I),

ϕ|A = ψ|A =⇒ µ(ϕ) = µ(ψ).

Given an ultrametric space (X, d) and r > 0, denote by Fr(X) the set of all functions
from X to I constant on all balls of radius r. We keep the notation M∗(X) for the
set of all ∗-measures on some Hausdor� compacti�cation bX ⊃ X whose support is a
compact subset of X. Note that this is nothing but Chigogidze's extension of the normal
functors [1].

Given µ, ν ∈M∗(X), we let

d̃(µ, ν) = inf{r > 0|µ(ϕ) = ν(ϕ) for all ϕ ∈ Fr}.

Theorem 1. The function d̃ is an ultrametric on M∗(X).
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Proof. First we show that the function d̃ is well de�ned. Since the sets supp(µ), supp(ν)
are compact, they are bounded. The latter means that there exist r > 0 and x0 such that
supp(µ) ∪ supp(ν) ⊂ Br(x0).

Consider the set Fr(X). Let ϕ ∈ Fr(X), then ϕ|Br(x0) ≡ c is constant and µ(ϕ) =
c = ν(ϕ), for some c ∈ I. It follows that the set of which we consider the in�mum is
nonempty and therefore the formal de�nition makes sense.

By the de�nition d̃(µ, ν) > 0. Furthermore, d̃(µ, µ) = 0.

Now let d̃(µ, ν) = 0. We have to show that µ = ν.
Note that for every r > 0 and for every ϕ ∈ Fr we have µ(ϕ) = ν(ϕ). We need to

show that µ(ϕ) = ν(ϕ) for all ϕ ∈ C(X, I).
Suppose the contrary, i.e. that there exists ϕ ∈ C(X, I) such that µ(ϕ) 6= ν(ϕ). Note

that each µ ∈M∗(X) is a continuous map with respect to the sup-metric on C(X, I) for
any zero-dimensional space X (see [13]).

Since each ultrametric space is a zero-dimensional space [16], we see that if ϕi −→
i→∞

ϕ

with respect to the sup-metric, then µ(ϕi) −→
i→∞

µ(ϕ).

Construct a sequence of functions ϕi ∈ Fri(X) converging to ϕ. Since suppµ∪suppν
is a zero-dimensional compactum, we can choose for each i ∈ N a number ri > 0 and
a function ϕi ∈ Fri(X) such that ‖ϕ − ϕr‖ 6 ε. Therefore, choosing ε = 1

2i we get a
desired sequence (ϕi). Then

µ(ϕ) = lim
i→∞

µ(ϕi) = lim
i→∞

ν(ϕi) = ν(ϕ).

The symmetry of the functions d̃ obviously follows from the de�nition: d̃(µ, ν) =

d̃(ν, µ) for all µ, ν ∈M∗(X).
Now we need to prove the strong triangle inequality. Let µ, ν, τ ∈ M∗(X) and

d̃(µ, ν) = a, d̃(ν, τ) = b. Without loss of generality, we may assume that a 6 b. Then,
for every ε > 0 and every ϕ ∈ Fa+ε(X), ψ ∈ Fb+ε(X), we have µ(ϕ) = ν(ϕ) and
ν(ψ) = τ(ψ). And then, for every ϕ ∈ Fb+ε(X), we have µ(ϕ) = ν(ϕ) = τ(ϕ). Hence,

d̃(µ, τ) 6 b+ ε and letting ε→ 0, we see that d̃(µ, τ) 6 b.

We denote by Ultr the category of ultrametric spaces and non-expanding maps. Let
(X, d), (Y, d) be ultrametric spaces. Let f : X → Y be a non-expanding map.

De�ne M∗(f) : M∗(X)→M∗(Y ) by the formula:

M∗(f)(µ)(ϕ) = µ(ϕf),

µ ∈M∗(X), ϕ ∈ C(X, I).

Proposition 1. The map M∗(f) is non-expanding.

Proof. Let µ, ν ∈M∗(X) and d̃(µ, ν) < r.
Note that, since f is non-expanding, given ϕ ∈ Fr(Y ), one has ϕf ∈ Fr(X).
Then

M∗(f)(µ)(ϕ) = µ(ϕf) = ν(ϕf) = M∗(f)(ν)(ϕ).

Therefore, ρ̃(M∗(f)(µ),M∗(f)(ν)) < r and we see that the map M∗(f) is non-
expanding.

Actually, we obtain a functor in the category Ultr. We keep the notation M∗ for
this functor.
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A functor F in the category Ultr is called locally non-expanding, if

ρ̃(F (f), F (g)) = ρ(f, g)

(see [15]).

Proposition 2. The functor M∗ is locally non-expanding.

Proof. Let r > 0 and ρ(f, g) < r.
Then for all x ∈ X, ρ(f(x), g(x)) < r and then g(x) ∈ Br(f(x)).
Let µ ∈M∗(X). We need to show that ρ̃(M∗(f)(µ),M∗(g)(µ)) < r.
Let ϕ ∈ Br(Y ), that is we need to check the equality

M∗(f)(µ)(ϕ) = µ(ϕf) = µ(ϕg) = M∗(g)(µ)(ϕ).

Let x ∈ X, then ρ(f(x), g(x)) < r and since ϕ is a constant function on the balls of
radius r it follows that g(x) ∈ Br(f(x)). This means that ϕf(x) = ϕg(x) and therefore
µ(ϕf) = µ(ϕg).

On the other hand, let x ∈ X and δx ∈M∗(X). We have that

ρ̃(M∗(f)(δx),M∗(g)(δx)) = ρ̃(M∗(f)(ϕ)(x),M∗(g)(ϕ)(x)) > ρ(f(x), g(x)).

And this proves the fact that the functor M∗ is locally non-expanding.

Recall that the hyperspace expX of a metric space X is the set of all nonempty
compact subsets of X endowed with the Hausdor� metric

dH(A,C) = inf{r > 0 | A ⊂ Br(C), C ⊂ Br(A)}, A, C ∈ expX.

For any µ ∈M∗X its support is a nonempty compact subset of X, i.e., an element
of the hyperspace expX.

It is well-known that the Hausdor� metric on the hyperspace of an ultrametric space
is also an ultrametric space. Moreover, exp is a functor on the category Ultr.

Proposition 3. The support map s = sX : M∗(X)→ expX is non-expanding.

Proof. Let µ, ν ∈M∗(X) and d̃(µ, ν) < r.
Suppose that dH(s(µ), s(ν)) > r, then M∗(f)(µ) = M∗(f)(ν) and f(s(µ)) 6=

f(s(ν)), where f : X → f(X) is the quotient map with respect to the decomposition
of X into disjoint balls of radius r.

Without loss of generality one may assume that f(s(µ)) \ f(s(ν)) 6= ∅.
By the de�nition of support, there exist ϕ,ψ ∈ C(f(X), I) such that ϕ|f(s(µ)) =

ψ|f(s(ν)) and M∗(f)(µ)(ϕ) 6= M∗(f)(ν)(ψ). This clearly contradicts to the choice of r.

Note that s = (sX) is a natural transformation of the functorM∗ to the hyperspace
functor exp.

Proposition 4. Let (X, d) be an ultrametric space. Then the map δ : X → M∗(X),
δ(x) = δx, is an isometric embedding.

Proof. We need to show that the equality d(x, y) = d̃(δx, δy) is satis�ed for all x, y ∈ X.
By the de�nition,

d̃(δx, δy) = inf{r > 0 | δx(ϕ) = δy(ϕ),∀ϕ ∈ Fr}
and δx(ϕ) = ϕ(x), δy(ϕ) = ϕ(y).
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Let d(x, y) < r, then x, y ∈ Br(X) and ϕ(x) = ϕ(y) for every ϕ ∈ Fr. Therefore

d̃(δx, δy) 6 d(x, y).

Now let d̃(δx, δy) < d(x, y). Then there exists r > 0 such that d(x, y) > r and
ϕ(x) = ϕ(y) for every ϕ ∈ Fr.

Since d(x, y) > r, we see that Br(x)∩Br(y) = ∅. We take ϕ ∈ Fr that ϕ|Br(x) = 0
and ϕ|X \ Br(x) = 1. From that ϕ ∈ Fr it follows that ϕ(x) = ϕ(y). And we got to a
contradiction.

Note that δ = (δX) is a natural transformation of the identity functor into the
functor M∗.

We denote byM∗ω(X) the subset ofM∗(X) consisting of ∗-measures of �nite support,

i.e., ∗-measures of the form µ =

n∨
i=1

λi ∗ δxi
.

Proposition 5. The set M∗ω(X) is dense in M∗(X).

Proof. Let µ ∈M∗(X) and let r > 0. Let {Br(xi) | i = 1, . . . , n} be a �nite disjoint cover
of the set supp(µ) by balls of radius r. By ϕi we denote the characteristic function of the
set Br(xi). Now let ϕ ∈ Fr(X). Without loss of generality one may assume that ϕ ≡ 0

on the set X \
n⋃

i=1

Br(xi). Then ϕ =

n∨
i=1

ϕ(xi) ∗ ϕi.

Let ν =

n∨
i=1

µ(ϕi) ∗ δxi
. Note that

1 = µ(1X) = µ

(
n∨

i=1

ϕi

)
=

n∨
i=1

µ(ϕi),

therefore ν ∈M∗(X).

Now, given ψ ∈ Fr(X), one can write ψ =

n∨
i=1

ψ(xi) ∗ ϕ. Then

ν(ψ) = ν

(
n∨

i=1

ψ(xi) ∗ ϕ

)
=

n∨
i=1

ψ(xi) ∗ ν(ϕi) =

n∨
i=1

ψ(xi) ∗ ν(ϕi) = µ(ψ).

Therefore, d̃(µ, ν) < r.

In the sequel, we endow the set C(X, I) with the sup-metric.

Lemma 1. Let X be a compact ultrametric space. The set F(X) =
⋃
r>0

Fr(X) is dense

in C(X, I).
Theorem 2. Suppose that (X, d) is a complete ultrametric space. Then the space

(M∗(X), d̃) is also complete.

Proof. Let (µi) be a Cauchy sequence in M∗(X). From Proposition 3 it easily follows

that the set Y =

∞⋃
i=1

supp(µi) is compact. Without loss of generality, one may assume

that Y = X.
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Let ϕ ∈ F(Y ). There exists r > 0 such that ϕ ∈ Fr(Y ). There exists N ∈ N such

that, for any m,n ≥ N , d̃(µm, µn) < r. Therefore µm(ϕ) = µn(ϕ) for any m,n ≥ N . We
let µ(ϕ) = lim

i→∞
µi(ϕ) = µN (ϕ).

Thus, we have de�ned a map µ : F(Y ) → I. It is straightforward to verify that µ
satis�es the conditions from De�nition 1 if we replace C(X, I) by F(Y ).

Now we are going to extend µ over the set C(Y, I).

Claim. The map µ : F(Y )→ I is uniformly continuous.

Let ε > 0. Since the map ∗ : I × I → I is uniformly continuous, there exists δ > 0
such that |a− a′| < δ and |b− b′| < δ together imply |a ∗ b− a′ ∗ b′| < ε.

Let ϕ′, ϕ′′ ∈ F(Y ). One may assume that ϕ′, ϕ′′ ∈ Fr(Y ), for some r > 0. Let
{Br(xi) | i = 1, . . . , n} be the disjoint cover of Y by balls. Let χi denote the characteristic
function of the ball Br(xi), = 1, . . . , n. Then one can write

ϕ′ =

n∨
i=1

α′i ∗ χi, ϕ
′′ =

n∨
i=1

α′′i ∗ χi,

for some α′i, α
′′
i ∈ I.

If ‖ϕ′ − ϕ′′‖ < δ, then

n∨
i=1

|α′i − α′′i | < δ and we obtain

|µ(ϕ′)− µ(ϕ′′)| =

∣∣∣∣∣µ
(

n∨
i=1

α′i ∗ χi

)
− µ

(
n∨

i=1

α′′i ∗ χi

)∣∣∣∣∣
=

∣∣∣∣∣
n∨

i=1

α′i ∗ µ (χi)−
n∨

i=1

α′′i ∗ µ (χi)

∣∣∣∣∣
≤

n∨
i=1

|α′i ∗ µ (χi)− α′′i ∗ µ (χi) | ≤ ε.

Let us return to the proof of the theorem. The map admits a unique continuous
extension over the set C(Y, I) (we keep the notation µ for this extension). Clearly, µ ∈
M∗(X) and µ = lim

i→∞
µi.

3. Remarks

Some of the results concerning fuzzy ultrametrization of functorial constructions
are considered in numerous publications. Recall that fuzzy ultrametric spaces were
introduced in [7, 11].

Fuzzy ultrametrization of the sets of probability measures is considered in [12].
The case of idempotent measures is treated in [5]. We formulate the general problem
of fuzzy ultrametrization of the sets of ∗-measures of compact support de�ned on fuzzy
ultrametric spaces.

Note that the space of probability measures of compact support on a complete
ultrametric space is complete as well [15].
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An ultrametric space (X, d) is said to be spherically complete if every descending
collection of closed balls in X has nonempty intersection.

It is not known whether the space of ∗-measures of compact support on a spherically
complete ultrametric space is also spherically complete.
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Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,
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Ïîíÿòòÿ ∗-ìiðè íà êîìïàêòíîìó ãàóñäîðôîâîìó ïðîñòîði çàïðîâàäæå-
íî i äîñëiäæåíî ïåðøèì àâòîðîì. Ìè ðîçãëÿäà¹ìî ìíîæèíó âñiõ ∗-ìið ç
êîìïàêòíèìè íîñiÿìè íà óëüòðàìåòðè÷íîìó ïðîñòîði. Íàâåäåíî óëüòðà-
ìåòðèçàöiþ öi¹¨ ìíîæèíè, ÿêà âèçíà÷à¹ ôóíêòîð íà êàòåãîði¨ óëüòðàìåò-
ðè÷íèõ ïðîñòîðiâ i íåðîçòÿãóþ÷èõ âiäîáðàæåíü. Äîâåäåíî, ùî öåé ôóíêòîð
ëîêàëüíî íåðîçòÿãóþ÷èé i çáåðiãà¹ êëàñ ïîâíèõ óëüòðàìåòðè÷íèõ ïðîñòî-
ðiâ.

Êëþ÷îâi ñëîâà: óëüòðàìåòðè÷íèé ïðîñòið, íåðîçòÿãóþ÷å âiäîáðàæåííÿ,
∗-ìiðà.


	1. Introduction
	2. Results
	3. Remarks

