ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2020. Випуск 90. С. 76-83 Visnyk of the Lviv Univ. Series Mech. Math. 2020. Issue 90. P. 76-83 http://publications.lnu.edu.ua/bulletins/index.php/mmf doi: http://dx.doi.org/10.30970/vmm.2020.90.076-083

УДК 515.12

ON SPACES OF *-MEASURES ON ULTRAMETRIC SPACES

Khrystyna SUKHORUKOVA, Mykhailo ZARICHNYI

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, Ukraine e-mail: zarichnyi@yahoo.com

The notion of *-measure on a compact Hausdorff space is introduced and investigated in a previous publication of the first named author. In the present note we consider the set of all *-measures of compact support on an ultrametric space. An ultrametrization of this set is provided, which determines a functor in the category of ultrametric spaces and non-expanding maps. We prove that this functor is locally non-expanding and preserves the class of complete ultrametric spaces.

Key words: ultrametric space, non-expanding map, *-measure.

1. INTRODUCTION

A metric d on a set X is called an ultrametric if it satisfies the strong triangle inequality:

$$d(x,y) \le \max\{d(x,z), d(z,y)\}, \ x, y, z \in X.$$

The ultrametric spaces were first introduced by Hausdorff in 1934. They find numerous applications not only in mathematics but also in another disciplines, e.g. biology, physics [2,14], computer science [6], logic programming and artificial intelligence [9], linguistics [10].

In [15] an ultrametric is defined on the set of probability measures of compact support on an ultrametric space. It is shown that this construction determines a locally nonexpansive functor in the category of ultrametric spaces and nonexpanding maps, and this functor "makes a useful building block for the definition of metric domains for probabilistic program constructs."

Some categorical properties of this construction are established in [3]. In particular, it is proved therein that the probability measure functor determines a monad on the category of ultrametric spaces and nonexpanding maps.

²⁰²⁰ Mathematics Subject Classification: 28A33, 46E27

[©] Sukhorukova, Kh., Zarichnyi, M., 2020

The notion of *-measure is introduced by the first-named author [13]. The aim of the present note is to define an ultrametric on the set of of *-measures of compact support defined on ultrametric spaces. We prove that the obtained construction determines a functor on the category of ultrametric spaces and non-expanding maps. Also, we show that this construction preserves completeness of ultrametric spaces.

2. **Results**

By \mathbb{I} we denote the unit segment [0, 1]. Recall that a triangular norm (a t-norm) is a continuous function $(a, b) \mapsto a * b \colon \mathbb{I} \times \mathbb{I} \to \mathbb{I}$ satisfying the conditions

- (1) * is associative;
- (2) * is commutative;

(3) * is monotone, i.e. $a \leq a'$ and $b \leq b'$ both imply $a * b \leq a' * b'$ for all $a, a', b, b' \in \mathbb{I}$; (4) 1 is a unit.

See. e.g., [4] for the details. The following are examples of t-norms: \cdot (multiplication), min, $(a, b) \mapsto \max\{a + b - 1, 0\}$ (Lukasiewicz t-norm).

Let us recall the notion of *-measure (see [13] for details). Given topological spaces X, Y, by C(X, Y) we denote the set of continuous functions from X to Y. By \vee we denote the operation of maximum of numbers as well as pointwise maximum of real-valued functions.

Definition 1. Let * be a t-norm. A functional $\mu: C(X, \mathbb{I}) \to \mathbb{I}$ is called a *-measure on a compact Hausdorff space X if the following is satisfied:

- (1) $\mu(c_X) = c$, where c_X denotes the constant function on X taking value c;
- (2) $\mu(\lambda * \varphi) = \lambda * \mu(\varphi);$
- (3) $\mu(\varphi \lor \psi) = \mu(\varphi) \lor \mu(\psi).$

The set of all *-measures on X is denoted by $M^*(X)$. It is known [13] that the set $M^*(X)$ is compact being endowed with the weak* topology. This construction determines a functor in the category **Comp** of compact Hausdorff spaces and continuous maps. This functor satisfies some natural properties. In particular, the notion of support is defined for any element $\mu \in M^*(X)$. By the definition, the support of μ is the minimal (with respect to the inclusion) closed subset A of X satisfying the following condition: for every $\varphi, \psi \in C(X, \mathbb{I})$,

$$\varphi|A = \psi|A \implies \mu(\varphi) = \mu(\psi).$$

Given an ultrametric space (X, d) and r > 0, denote by $\mathcal{F}_r(X)$ the set of all functions from X to I constant on all balls of radius r. We keep the notation $M^*(X)$ for the set of all *-measures on some Hausdorff compactification $bX \supset X$ whose support is a compact subset of X. Note that this is nothing but Chigogidze's extension of the normal functors [1].

Given $\mu, \nu \in M^*(X)$, we let

$$d(\mu,\nu) = \inf\{r > 0 | \mu(\varphi) = \nu(\varphi) \text{ for all } \varphi \in \mathcal{F}_r\}$$

Theorem 1. The function \tilde{d} is an ultrametric on $M^*(X)$.

Proof. First we show that the function \tilde{d} is well defined. Since the sets $\operatorname{supp}(\mu)$, $\operatorname{supp}(\nu)$ are compact, they are bounded. The latter means that there exist r > 0 and x_0 such that $\operatorname{supp}(\mu) \cup \operatorname{supp}(\nu) \subset B_r(x_0)$.

Consider the set $\mathcal{F}_r(X)$. Let $\varphi \in \mathcal{F}_r(X)$, then $\varphi|B_r(x_0) \equiv c$ is constant and $\mu(\varphi) = c = \nu(\varphi)$, for some $c \in \mathbb{I}$. It follows that the set of which we consider the infimum is nonempty and therefore the formal definition makes sense.

By the definition $\tilde{d}(\mu, \nu) \ge 0$. Furthermore, $\tilde{d}(\mu, \mu) = 0$.

Now let $\tilde{d}(\mu, \nu) = 0$. We have to show that $\mu = \nu$.

Note that for every r > 0 and for every $\varphi \in \mathcal{F}_r$ we have $\mu(\varphi) = \nu(\varphi)$. We need to show that $\mu(\varphi) = \nu(\varphi)$ for all $\varphi \in C(X, \mathbb{I})$.

Suppose the contrary, i.e. that there exists $\varphi \in C(X, \mathbb{I})$ such that $\mu(\varphi) \neq \nu(\varphi)$. Note that each $\mu \in M^*(X)$ is a continuous map with respect to the sup-metric on $C(X, \mathbb{I})$ for any zero-dimensional space X (see [13]).

Since each ultrametric space is a zero-dimensional space [16], we see that if $\varphi_i \xrightarrow[i \to \infty]{} \varphi$ with respect to the sup-metric, then $\mu(\varphi_i) \longrightarrow \mu(\varphi)$.

with respect to the sup-metric, then $\mu(\varphi_i) \xrightarrow[i \to \infty]{i \to \infty} \mu(\varphi)$. Construct a sequence of functions $\varphi_i \in \mathcal{F}_{r_i}(X)$ converging to φ . Since $supp \mu \cup supp \nu$ is a zero-dimensional compactum, we can choose for each $i \in \mathcal{N}$ a number $r_i > 0$ and a function $\varphi_i \in \mathcal{F}_{r_i}(X)$ such that $\|\varphi - \varphi_r\| \leq \varepsilon$. Therefore, choosing $\varepsilon = \frac{1}{2^i}$ we get a desired sequence (φ_i) . Then

$$\mu(\varphi) = \lim_{i \to \infty} \mu(\varphi_i) = \lim_{i \to \infty} \nu(\varphi_i) = \nu(\varphi).$$

The symmetry of the functions \tilde{d} obviously follows from the definition: $\tilde{d}(\mu, \nu) = \tilde{d}(\nu, \mu)$ for all $\mu, \nu \in M^*(X)$.

Now we need to prove the strong triangle inequality. Let $\mu, \nu, \tau \in M^*(X)$ and $\tilde{d}(\mu, \nu) = a, \tilde{d}(\nu, \tau) = b$. Without loss of generality, we may assume that $a \leq b$. Then, for every $\varepsilon > 0$ and every $\varphi \in \mathcal{F}_{a+\varepsilon}(X), \ \psi \in \mathcal{F}_{b+\varepsilon}(X)$, we have $\mu(\varphi) = \nu(\varphi)$ and $\nu(\psi) = \tau(\psi)$. And then, for every $\varphi \in \mathcal{F}_{b+\varepsilon}(X)$, we have $\mu(\varphi) = \nu(\varphi) = \tau(\varphi)$. Hence, $\tilde{d}(\mu, \tau) \leq b + \varepsilon$ and letting $\varepsilon \to 0$, we see that $\tilde{d}(\mu, \tau) \leq b$.

We denote by **Ultr** the category of ultrametric spaces and non-expanding maps. Let (X, d), (Y, d) be ultrametric spaces. Let $f: X \to Y$ be a non-expanding map.

Define $M^*(f): M^*(X) \to M^*(Y)$ by the formula:

$$M^*(f)(\mu)(\varphi) = \mu(\varphi f),$$

 $\mu \in M^*(X), \varphi \in C(X, \mathbb{I}).$

Proposition 1. The map $M^*(f)$ is non-expanding.

Proof. Let $\mu, \nu \in M^*(X)$ and $\tilde{d}(\mu, \nu) < r$.

Note that, since f is non-expanding, given $\varphi \in \mathcal{F}_r(Y)$, one has $\varphi f \in \mathcal{F}_r(X)$. Then

$$M^*(f)(\mu)(\varphi) = \mu(\varphi f) = \nu(\varphi f) = M^*(f)(\nu)(\varphi).$$

Therefore, $\tilde{\rho}(M^*(f)(\mu), M^*(f)(\nu)) < r$ and we see that the map $M^*(f)$ is non-expanding.

Actually, we obtain a functor in the category **Ultr**. We keep the notation M^* for this functor.

A functor F in the category **Ultr** is called locally non-expanding, if

$$\tilde{\rho}(F(f), F(g)) = \rho(f, g)$$

(see [15]).

Proposition 2. The functor M^* is locally non-expanding.

Proof. Let r > 0 and $\rho(f, g) < r$.

Then for all $x \in X$, $\rho(f(x), g(x)) < r$ and then $g(x) \in B_r(f(x))$. Let $\mu \in M^*(X)$. We need to show that $\tilde{\rho}(M^*(f)(\mu), M^*(g)(\mu)) < r$. Let $\varphi \in B_r(Y)$, that is we need to check the equality

$$M^*(f)(\mu)(\varphi) = \mu(\varphi f) = \mu(\varphi g) = M^*(g)(\mu)(\varphi)$$

Let $x \in X$, then $\rho(f(x), g(x)) < r$ and since φ is a constant function on the balls of radius r it follows that $g(x) \in B_r(f(x))$. This means that $\varphi f(x) = \varphi g(x)$ and therefore $\mu(\varphi f) = \mu(\varphi g)$.

On the other hand, let $x \in X$ and $\delta_x \in M^*(X)$. We have that

 $\tilde{\rho}(M^*(f)(\delta_x), M^*(g)(\delta_x)) = \tilde{\rho}(M^*(f)(\varphi)(x), M^*(g)(\varphi)(x)) \ge \rho(f(x), g(x)).$

And this proves the fact that the functor M^* is locally non-expanding.

Recall that the hyperspace $\exp X$ of a metric space X is the set of all nonempty compact subsets of X endowed with the Hausdorff metric

 $d_H(A, C) = \inf\{r > 0 \mid A \subset B_r(C), \ C \subset B_r(A)\}, \ A, C \in \exp X.$

For any $\mu \in M^*X$ its support is a nonempty compact subset of X, i.e., an element of the hyperspace exp X.

It is well-known that the Hausdorff metric on the hyperspace of an ultrametric space is also an ultrametric space. Moreover, exp is a functor on the category **Ultr**.

Proposition 3. The support map $s = s_X \colon M^*(X) \to \exp X$ is non-expanding.

Proof. Let $\mu, \nu \in M^*(X)$ and $\tilde{d}(\mu, \nu) < r$.

Suppose that $d_H(s(\mu), s(\nu)) > r$, then $M^*(f)(\mu) = M^*(f)(\nu)$ and $f(s(\mu)) \neq f(s(\nu))$, where $f: X \to f(X)$ is the quotient map with respect to the decomposition of X into disjoint balls of radius r.

Without loss of generality one may assume that $f(s(\mu)) \setminus f(s(\nu)) \neq \emptyset$.

By the definition of support, there exist $\varphi, \psi \in C(f(X), \mathbb{I})$ such that $\varphi|f(s(\mu)) = \psi|f(s(\nu))$ and $M^*(f)(\mu)(\varphi) \neq M^*(f)(\nu)(\psi)$. This clearly contradicts to the choice of r.

Note that $s = (s_X)$ is a natural transformation of the functor M^* to the hyperspace functor exp.

Proposition 4. Let (X,d) be an ultrametric space. Then the map $\delta \colon X \to M^*(X)$, $\delta(x) = \delta_x$, is an isometric embedding.

Proof. We need to show that the equality $d(x, y) = \tilde{d}(\delta_x, \delta_y)$ is satisfied for all $x, y \in X$. By the definition,

$$d(\delta_x, \delta_y) = \inf\{r > 0 \mid \delta_x(\varphi) = \delta_y(\varphi), \forall \varphi \in \mathcal{F}_r\}$$

and $\delta_x(\varphi) = \varphi(x), \delta_y(\varphi) = \varphi(y).$

Let d(x,y) < r, then $x, y \in B_r(X)$ and $\varphi(x) = \varphi(y)$ for every $\varphi \in \mathcal{F}_r$. Therefore $\tilde{d}(\delta_x, \delta_y) \leq d(x, y)$.

Now let $\tilde{d}(\delta_x, \delta_y) < d(x, y)$. Then there exists r > 0 such that d(x, y) > r and $\varphi(x) = \varphi(y)$ for every $\varphi \in \mathcal{F}_r$.

Since d(x, y) > r, we see that $B_r(x) \cap B_r(y) = \emptyset$. We take $\varphi \in \mathcal{F}_r$ that $\varphi|B_r(x) = 0$ and $\varphi|X \setminus B_r(x) = 1$. From that $\varphi \in \mathcal{F}_r$ it follows that $\varphi(x) = \varphi(y)$. And we got to a contradiction.

Note that $\delta = (\delta_X)$ is a natural transformation of the identity functor into the functor M^* .

We denote by $M^*_{\omega}(X)$ the subset of $M^*(X)$ consisting of *-measures of finite support, i.e., *-measures of the form $\mu = \bigvee_{i=1}^n \lambda_i * \delta_{x_i}$.

Proposition 5. The set $M^*_{\omega}(X)$ is dense in $M^*(X)$.

Proof. Let $\mu \in M^*(X)$ and let r > 0. Let $\{B_r(x_i) \mid i = 1, \ldots, n\}$ be a finite disjoint cover of the set $\operatorname{supp}(\mu)$ by balls of radius r. By φ_i we denote the characteristic function of the set $B_r(x_i)$. Now let $\varphi \in \mathcal{F}_r(X)$. Without loss of generality one may assume that $\varphi \equiv 0$

on the set
$$X \setminus \bigcup_{i=1}^{n} B_r(x_i)$$
. Then $\varphi = \bigvee_{i=1}^{n} \varphi(x_i) * \varphi_i$.
Let $\nu = \bigvee_{i=1}^{n} \mu(\varphi_i) * \delta_{x_i}$. Note that

$$1 = \mu(1_X) = \mu\left(\bigvee_{i=1}^n \varphi_i\right) = \bigvee_{i=1}^n \mu(\varphi_i),$$

therefore $\nu \in M^*(X)$.

Now, given $\psi \in \mathcal{F}_r(X)$, one can write $\psi = \bigvee_{i=1}^n \psi(x_i) * \varphi$. Then $\nu(\psi) = \nu\left(\bigvee_{i=1}^n \psi(x_i) * \varphi\right) = \bigvee_{i=1}^n \psi(x_i) * \nu(\varphi_i) = \bigvee_{i=1}^n \psi(x_i) * \nu(\varphi_i) = \mu(\psi).$

Therefore, $\tilde{d}(\mu, \nu) < r$.

In the sequel, we endow the set $C(X, \mathbb{I})$ with the sup-metric.

Lemma 1. Let X be a compact ultrametric space. The set $\mathcal{F}(X) = \bigcup_{r>0} \mathcal{F}_r(X)$ is dense in $C(X, \mathbb{I})$.

Theorem 2. Suppose that (X,d) is a complete ultrametric space. Then the space $(M^*(X), \tilde{d})$ is also complete.

Proof. Let (μ_i) be a Cauchy sequence in $M^*(X)$. From Proposition 3 it easily follows that the set $Y = \bigcup_{i=1}^{\infty} \operatorname{supp}(\mu_i)$ is compact. Without loss of generality, one may assume that Y = X.

Let $\varphi \in \mathcal{F}(Y)$. There exists r > 0 such that $\varphi \in \mathcal{F}_r(Y)$. There exists $N \in \mathbb{N}$ such that, for any $m, n \ge N$, $\tilde{d}(\mu_m, \mu_n) < r$. Therefore $\mu_m(\varphi) = \mu_n(\varphi)$ for any $m, n \ge N$. We let $\mu(\varphi) = \lim_{i \to \infty} \mu_i(\varphi) = \mu_N(\varphi)$.

Thus, we have defined a map $\mu \colon \mathcal{F}(Y) \to \mathbb{I}$. It is straightforward to verify that μ satisfies the conditions from Definition 1 if we replace $C(X,\mathbb{I})$ by $\mathcal{F}(Y)$.

Now we are going to extend μ over the set $C(Y, \mathbb{I})$.

Claim. The map $\mu \colon \mathcal{F}(Y) \to \mathbb{I}$ is uniformly continuous.

Let $\varepsilon > 0$. Since the map $*: \mathbb{I} \times \mathbb{I} \to \mathbb{I}$ is uniformly continuous, there exists $\delta > 0$ such that $|a - a'| < \delta$ and $|b - b'| < \delta$ together imply $|a * b - a' * b'| < \varepsilon$.

Let $\varphi', \varphi'' \in \mathcal{F}(Y)$. One may assume that $\varphi', \varphi'' \in \mathcal{F}_r(Y)$, for some r > 0. Let $\{B_r(x_i) \mid i = 1, \ldots, n\}$ be the disjoint cover of Y by balls. Let χ_i denote the characteristic function of the ball $B_r(x_i), = 1, \ldots, n$. Then one can write

$$\varphi' = \bigvee_{i=1}^{n} \alpha'_i * \chi_i, \ \varphi'' = \bigvee_{i=1}^{n} \alpha''_i * \chi_i,$$

for some $\alpha'_i, \alpha''_i \in \mathbb{I}$.

If
$$\|\varphi' - \varphi''\| < \delta$$
, then $\bigvee_{i=1}^{n} |\alpha'_i - \alpha''_i| < \delta$ and we obtain
 $|\mu(\varphi') - \mu(\varphi'')| = \left| \mu\left(\bigvee_{i=1}^n \alpha'_i * \chi_i\right) - \mu\left(\bigvee_{i=1}^n \alpha''_i * \chi_i\right) - \left| \bigvee_{i=1}^n \alpha'_i * \mu(\chi_i) - \bigvee_{i=1}^n \alpha''_i * \mu(\chi_i) \right| \\ \leq \bigvee_{i=1}^n |\alpha'_i * \mu(\chi_i) - \alpha''_i * \mu(\chi_i)| \leq \varepsilon.$

Let us return to the proof of the theorem. The map admits a unique continuous extension over the set $C(Y, \mathbb{I})$ (we keep the notation μ for this extension). Clearly, $\mu \in M^*(X)$ and $\mu = \lim_{i \to \infty} \mu_i$.

3. Remarks

Some of the results concerning fuzzy ultrametrization of functorial constructions are considered in numerous publications. Recall that fuzzy ultrametric spaces were introduced in [7,11].

Fuzzy ultrametrization of the sets of probability measures is considered in [12]. The case of idempotent measures is treated in [5]. We formulate the general problem of fuzzy ultrametrization of the sets of *-measures of compact support defined on fuzzy ultrametric spaces.

Note that the space of probability measures of compact support on a complete ultrametric space is complete as well [15].

An ultrametric space (X, d) is said to be spherically complete if every descending collection of closed balls in X has nonempty intersection.

It is not known whether the space of *-measures of compact support on a spherically complete ultrametric space is also spherically complete.

References

- 1. A. Chigogidze, On extension of normal functors, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. (1984), no. 6, 23-26 (Russian).
- B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I.V. Volovich, On p-adic mathematical physics, p-Adic Numbers Ultrametric Anal. Appl. 1 (2009), no. 1, 1–17. DOI: 10.1134/S2070046609010014
- 3. O. Hubal and M. Zarichnyi, Idempotent probability measures on ultrametric spaces, J. Math. Anal. Appl. 343 (2008), no. 2, 1052–1060. DOI: 10.1016/j.jmaa.2008.01.095
- 4. E. P. Klement, R. Mesiar, and E. Pap, Triangular norms, Kluwer, Dordrecht, 2000.
- 5. C. Li and Zh. Yang, Fuzzy ultrametrics based on idempotent probability measures, J. Fuzzy Math. 22, (2014), no. 2, 463-476.
- F. Murtagh, On ultrametricity, data coding, and computation, Journal of Classiffication 21, (2004), no. 2, 167–184. DOI: 10.1007/s00357-004-0015-y
- D. Miheţ, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 159 (2008), no. 6, 739-744. DOI: 10.1016/j.fss.2007.07.006
- R. Rammal, G. Touluse, and M. A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys. 58 (1986), no. 4, 765–788. DOI: 10.1103/RevModPhys.58.765
- S. Priess-Crampe and P. Ribenboim, Ultrametric spaces and logic programming, J. Log. Program. 42, no. 2, (2000), 59-70. DOI: 10.1016/S0743-1066(99)00002-3
- 10. M. D. Roberts, Ultrametric distance in syntax, Prague Bull. Math. Linguist. 103, (2015), 111-130. DOI: 10.1515/pralin-2015-0006
- S. Romaguera, A. Sapena, and P. Tiradoi, The Banach fixed point theorem in fuzzy quasimetric spaces with application to the domain of words, Topology Appl. 154 (2007), no. 10, 2196-2203. DOI: 10.1016/j.topol.2006.09.018
- 12. A. Savchenko and M. Zarichnyi, Probability measure monad on the category of fuzzy ultrametric spaces, Azerb. J. Math. 1 (2011), no. 1, 114-121.
- 13. Kh. Sukhorukova, Spaces of non-additive measures generated by triangular norms, Proc. Intern. Geometry Center, (submitted).
- M. O. Vlad, Fractal time, ultrametric topology and fast relation, Phys. Lett., A 189 (1994), no. 4, 299-303. DOI: 10.1016/0375-9601(94)90099-X
- J. I. den Hartog and E.P. de Vink, Building metric structures with the Meas-functor, Liber Amicorum Jaco de Bakker, CWI, Amsterdam, (2002), pp. 93-108.
- 16. N. Bourbaki, General topology, Chapters 5-10, Berlin, Springer, 1998.

Стаття: надійшла до редколегії 03.10.2020 доопрацьована 03.11.2020 прийнята до друку 17.11.2021

 $\mathbf{82}$

ПРО ПРОСТОРИ *-МІР НА УЛЬТРАМЕТРИЧНИХ ПРОСТОРАХ

Христина СУХОРУКОВА, Михайло ЗАРІЧНИЙ

Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000, Львів e-mail: zarichnyi@yahoo.com

Поняття *-міри на компактному гаусдорфовому просторі запроваджено і досліджено першим автором. Ми розглядаємо множину всіх *-мір з компактними носіями на ультраметричному просторі. Наведено ультраметризацію цієї множини, яка визначає функтор на категорії ультраметричних просторів і нерозтягуючих відображень. Доведено, що цей функтор локально нерозтягуючий і зберігає клас повних ультраметричних просторів.

Ключові слова: ультраметричний простір, нерозтягуюче відображення, *-міра.