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The notion of *-measure on a compact Hausdorff space is introduced and
investigated in a previous publication of the first named author. In the present
note we consider the set of all x-measures of compact support on an ultrametric
space. An ultrametrization of this set is provided, which determines a functor in
the category of ultrametric spaces and non-expanding maps. We prove that this
functor is locally non-expanding and preserves the class of complete ultrametric
spaces.
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1. INTRODUCTION

A metric d on a set X is called an ultrametric if it satisfies the strong triangle

inequality:

d(z,y) < max{d(z,2),d(z,y)}, =,y,z € X.
The ultrametric spaces were first introduced by Hausdorff in 1934. They find numerous
applications not only in mathematics but also in another disciplines, e.g. biology, physics
[2L]14], computer science [6], logic programming and artificial intelligence [9], linguistics
[10].

In [15] an ultrametric is defined on the set of probability measures of compact
support on an ultrametric space. It is shown that this construction determines a locally
nonexpansive functor in the category of ultrametric spaces and nonexpanding maps,
and this functor “makes a useful building block for the definition of metric domains for
probabilistic program constructs.”

Some categorical properties of this construction are established in [3]. In particular,
it is proved therein that the probability measure functor determines a monad on the
category of ultrametric spaces and nonexpanding maps.
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The notion of *-measure is introduced by the first-named author [13]. The aim of the
present note is to define an ultrametric on the set of of x-measures of compact support
defined on ultrametric spaces. We prove that the obtained construction determines a
functor on the category of ultrametric spaces and non-expanding maps. Also, we show
that this construction preserves completeness of ultrametric spaces.

2. REsuULTS

By I we denote the unit segment [0, 1]. Recall that a triangular norm (a t-norm) is
a continuous function (a,b) — a xb: I x I — T satisfying the conditions

(1) = is associative;

(2) = is commutative;

(3) * is monotone, i.e. a < @’ and b < V' both imply axb < a’ b for all a,a’,b,b’ € T;
(4) 11is a unit.

See. e.g., |[4] for the details. The following are examples of t-norms: - (multiplication),
min, (a,b) — max{a +b— 1,0} (Lukasiewicz t-norm).

Let us recall the notion of x-measure (see [13] for details). Given topological spaces
X,Y, by C(X,Y) we denote the set of continuous functions from X to Y. By V we
denote the operation of maximum of numbers as well as pointwise maximum of real-
valued functions.

Definition 1. Let * be a t-norm. A functional p: C(X,I) — I is called a *-measure on
a compact Hausdorff space X if the following is satisfied:

(1) p(cx) = ¢, where cx denotes the constant function on X taking value ¢;

(2) p(Axp) = Ax* p(p);
(3) wle V) = pule) Vv u@).

The set of all x-measures on X is denoted by M*(X). It is known [13] that the set
M*(X) is compact being endowed with the weak* topology. This construction determines
a functor in the category Comp of compact Hausdorff spaces and continuous maps. This
functor satisfies some natural properties. In particular, the notion of support is defined
for any element p € M*(X). By the definition, the support of u is the minimal (with
respect to the inclusion) closed subset A of X satistying the following condition: for every
) € C(X,T),

plA=9P[A = u(p) = p).

Given an ultrametric space (X, d) and r > 0, denote by F,.(X) the set of all functions
from X to I constant on all balls of radius ». We keep the notation M*(X) for the
set of all x-measures on some Hausdorff compactification bX O X whose support is a
compact subset of X. Note that this is nothing but Chigogidze’s extension of the normal
functors [1].

Given u,v € M*(X), we let

d(p,v) = inf{r > 0|u(yp) = v(p) for all p € F,}.

Theorem 1. The function d is an ultrametric on M*(X).
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Proof. First we show that the function d is well defined. Since the sets supp(u), supp(v)
are compact, they are bounded. The latter means that there exist » > 0 and z( such that
supp(p) Usupp(v) C By(z9).-

Consider the set F,.(X). Let ¢ € F.(X), then ¢|B,(zg) = c is constant and u(p) =
¢ = v(p), for some ¢ € 1. It follows that the set of which we consider the infimum is
nonempty and therefore the formal definition makes sense.

By the definition d(u,v) > 0. Furthermore, d(u, 1) = 0.

Now let d(p,v) = 0. We have to show that u = v.

Note that for every r > 0 and for every ¢ € F, we have u(¢) = v(y). We need to
show that p(p) = v(p) for all p € C(X,1).

Suppose the contrary, i.e. that there exists ¢ € C(X, 1) such that u(p) # v(p). Note
that each p € M*(X) is a continuous map with respect to the sup-metric on C(X,I) for
any zero-dimensional space X (see [13]).

Since each ultrametric space is a zero-dimensional space 16|, we see that if ; ¢

with respect to the sup-metric, then u(y;) e w(ep).

Construct a sequence of functions ¢; € Fp., (X) converging to ¢. Since suppuU suppv
is a zero-dimensional compactum, we can choose for each ¢ € A/ a number r; > 0 and
a function ¢; € F,,(X) such that ||¢ — ¢,| < e. Therefore, choosing ¢ = 5 we get a
desired sequence (¢;). Then

p(p) = lm p(pi) = lim v(pi) = v(p).
1—00 71— 00

The symmetry of the functions d obviously follows from the definition: d(, v) =
d(v, ) for all p,v € M*(X).

Now we need to prove the strong triangle inequality. Let u,v,7 € M *(X ) and
d(u,v) = a,d(v,7) = b. Without loss of generality, we may assume that a < b. Then,
for every € > 0 and every ¢ € Faie(X), ¢ € Fiye(X), we have u(p) = v(p ) and
v(y) = 7(¢0). And then, for every ¢ € Fpic(X), we have u(p) = v(¢) = 7(p). Hence,
d(p,7) < b+ ¢ and letting & — 0, we see that d(u, ) < b.

We denote by Ultr the category of ultrametric spaces and non-expanding maps. Let
(X,d), (Y, d) be ultrametric spaces. Let f: X — Y be a non-expanding map.

Define M*(f): M*(X) — M*(Y) by the formula:

M*(f)(w) () = nef),
uwe M (X),peCX,D).

Proposition 1. The map M*(f) is non-expanding.

Proof. Let p,v € M*(X) and d(p,v) <r
Note that, since f is non-expanding, given ¢ € F,.(Y), one has ¢f € F.(X).

Then
M (f)()(p) = wlpf) = vipf) = M*(f)(v)(¢).
Therefore, p(M*(f)(u), M*(f)(v)) < r and we see that the map M*(f) is non-
expanding.

Actually, we obtain a functor in the category Ultr. We keep the notation M* for
this functor.
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A functor F' in the category Ultr is called locally non-expanding, if

p(E(f), F(9)) = p(f,9)
(see [15]).

Proposition 2. The functor M* is locally non-expanding.

Proof. Let r > 0 and p(f,g) <.
Then for all x € X, p(f(x),g(x)) < r and then g(z) € B,(f(x)).
Let p € M*(X). We need to show that g(M*(f)(u), M*(g)(1)) < r.
Let ¢ € B,.(Y), that is we need to check the equality

ME(f)()(p) = m(ef) = plpg) = M*(g)(1)(¢)-

Let x € X, then p(f(z),g(x)) < r and since ¢ is a constant function on the balls of
radius r it follows that g(x) € B,(f(x)). This means that ¢ f(x) = pg(x) and therefore
u(pf) = p(eg).

On the other hand, let € X and 6, € M*(X). We have that

p(M*(£)(02), M*(9)(82)) = p(M™(f)(p) (), M"(9)(¢)(x)) = p(f(x), 9()).
And this proves the fact that the functor M* is locally non-expanding.

Recall that the hyperspace exp X of a metric space X is the set of all nonempty
compact subsets of X endowed with the Hausdorff metric

dg(A,C)=inf{r >0 AC B,.(C), C C B,(A)}, A,C €expX.

For any p € M*X its support is a nonempty compact subset of X, i.e., an element
of the hyperspace exp X.

It is well-known that the Hausdorff metric on the hyperspace of an ultrametric space
is also an ultrametric space. Moreover, exp is a functor on the category Ultr.

Proposition 3. The support map s = sx: M*(X) — exp X is non-expanding.

Proof. Let p,v € M*(X) and d(u,v) < .

Suppose that dg(s(p),s(v)) > r, then M*(f)(u) = M*(f)(v) and f(s(n)) #
f(s(v)), where f: X — f(X) is the quotient map with respect to the decomposition
of X into disjoint balls of radius r.

Without loss of generality one may assume that f(s(u))\ f(s(v)) # 0.

By the definition of support, there exist o, ¢ € C(f(X),I) such that ¢|f(s(u)) =
Y| f(s(v)) and M*(f)(u)() # M*(f)(v)(¢)). This clearly contradicts to the choice of r.

Note that s = (sx) is a natural transformation of the functor M* to the hyperspace
functor exp.

Proposition 4. Let (X,d) be an ultrametric space. Then the map §: X — M*(X),
d(x) = 04, is an isometric embedding.

Proof. We need to show that the equality d(z,y) = d(d,,d,) is satisfied for all z,y € X.
By the definition,

d((szvéy) = inf{r > 0 ‘ 596(90) = 5y(@)7v90 € f?”}
and 0, () = p(z), 0y (¢) = (y)-
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Let d(z,y) < r, then z,y € B,(X) and p(z) = ¢(y) for every ¢ € F,. Therefore
d(0z,0y) < d(z,y).

Now let d(d,,8,) < d(z,y). Then there exists > 0 such that d(z,y) > r and
o(x) = ¢(y) for every ¢ € F,.

Since d(z,y) > r, we see that B,.(z) N B,(y) = &. We take ¢ € F, that ¢|B,(x) =0
and ¢|X \ B,(x) = 1. From that ¢ € F, it follows that ¢(x) = ¢(y). And we got to a
contradiction.

Note that 6 = (dx) is a natural transformation of the identity functor into the
functor M*.

We denote by M (X) the subset of M*(X) consisting of *-measures of finite support,

i.e., x-measures of the form y = \/ Ai * Oy, -

i=1
Proposition 5. The set M} (X) is dense in M*(X).
Proof. Let € M*(X) and let » > 0. Let {B,(z;) | i = 1,...,n} be a finite disjoint cover
of the set supp(u) by balls of radius r. By ¢; we denote the characteristic function of the
set By(z;). Now let ¢ € F.(X). Without loss of generality one may assume that ¢ =0

on the set X\ U B, (z;). Then ¢ = \/ o(x;) * ;.

i=1 i=1
n

Let v = \/ 1(p;) * 0, . Note that
i=1

1=p(lx)=p (\/ w) =\/ ule:),
therefore v € M*(X).
Now, given ¢ € F,.(X), one can write ¢ = \/ ¥(x;) * p. Then
i=1

n

V() = v (\/ (i) * ¢> = \/ bla) *vlp) = \ (@) * o) = ule).

i=1 i=1 i=1
Therefore, d(p,v) < r.
In the sequel, we endow the set C'(X,I) with the sup-metric.

Lemma 1. Let X be a compact ultrametric space. The set F(X) = U Fr(X) is dense
r>0

in C(X,1).

Theorem~ 2. Suppose that (X,d) is a complete ultrametric space. Then the space
(M*(X),d) is also complete.

Proof. Let (u;) be a Cauchy sequence in M*(X). From Proposition [3| it easily follows

o0
that the set Y = U supp(u;) is compact. Without loss of generality, one may assume

i=1
that Y = X.
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Let ¢ € F(Y). There exists r > 0 such that ¢ € F.(Y). There exists N € N such
that, for any m,n > N, J(um, tn) < r. Therefore p,,(¢) = pn(p) for any m,n > N. We
let p(p) = lim pi(p) = pn(p).

Thus, we have defined a map u: F(Y) — L. It is straightforward to verify that p
satisfies the conditions from Definition [1fif we replace C(X,I) by F(Y).

Now we are going to extend p over the set C(Y,I).

Claim. The map p: F(Y) — [ is uniformly continuous.

Let € > 0. Since the map *: I x I — I is uniformly continuous, there exists § > 0
such that |a — a/| < § and |b — V| < 0 together imply |axb—a' V| < e.

Let ¢, ¢"” € F(Y). One may assume that ¢',¢"” € F.(Y), for some r > 0. Let
{B,(x;) | i=1,...,n} be the disjoint cover of Y by balls. Let x; denote the characteristic
function of the ball B,(z;), = 1,...,n. Then one can write

n n
/ / /! 1
‘P:\/ai*XiaQO :\/Oéi*Xh
=1 =1

for some o}, o € 1.

If ||¢" — ¢"|| < 4, then \/ | — Y| < 6 and we obtain

i=1 i=1

n n
V i) =\ of *p(xi)
=1 =1

lu(e") — (") =

n
<V o *pu(xi) = of xp(xi) | <e.
1=1

Let us return to the proof of the theorem. The map admits a unique continuous
extension over the set C'(Y,I) (we keep the notation p for this extension). Clearly, u €
M*(X) and p = lim p;.

71— 00

3. REMARKS

Some of the results concerning fuzzy ultrametrization of functorial constructions
are considered in numerous publications. Recall that fuzzy ultrametric spaces were
introduced in [7}]11].

Fuzzy ultrametrization of the sets of probability measures is considered in [12].
The case of idempotent measures is treated in [5]. We formulate the general problem
of fuzzy ultrametrization of the sets of *-measures of compact support defined on fuzzy
ultrametric spaces.

Note that the space of probability measures of compact support on a complete
ultrametric space is complete as well [15].
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An ultrametric space (X,d) is said to be spherically complete if every descending
llection of closed balls in X has nonempty intersection.

It is not known whether the space of x-measures of compact support on a spherically
mplete ultrametric space is also spherically complete.
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ITPO ITPOCTOPU «-MIP HA VJIBTPAMETPUYHNX
ITPOCTOPAX

Xpucruna CYXOPYKOBA, Muxaitsio SAPIYHUI

JIveiecvrutl naytonasvrul yrieepcumenm iment leana Pparka,
eys. Ynisepcumemcovka, 1, 79000, JIveis
e-mail: zarichnyi@yahoo.com

TlonsiTTst *-Mipm Ha KOMIAKTHOMY TaycaopdOBOMY ITPOCTOPI 3aIIPOBaIKE-
HO 1 ZJOC/IKEHO IepInM aBTOPOM. Mu pO3IUIfIaEeM0 MHOXKHHY BCIX *-Mip 3
KOMIIAKTHUMH HOCIMH HA YJbTpaMeTpuuHoMy Ipoctopi. Hasemeno ymbTpa-
MeTPHU3AINIO Ti€l MHOXKWHM, TKa BU3HAYAE€ (PYHKTOD HA KaTeropii yabrpaMer-
PUYHHIX IIPOCTOPIB 1 HEpO3TATYyI0OUnX Binoodpaxens. loBeneno, mo neit pyHrTop
JIOKAJIbHO HEPO3TATYIOUNi i 30epirae Kjac MOBHUX YIbTPAMETPUUHUX IIPOCTO-
piB.

Karwwoei caosa: yapTpaMeTpUYHMI IIPOCTIpP, HEPO3TATYIOUe BiOOpaKeHHs,
*-Mipa.
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