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We study the Gutik-Mykhalenych semigroup BF1
ω in the case when the

family F1 consists of the empty set and all singleton in ω. We show that
BF1

ω is isomorphic to subsemigroup B�
ω(ωmin) of the Brandt ω-extension of

the semilattice (ω,min) and describe all shift-continuous feebly compact T1-
topologies on the semigroup B�

ω(ωmin). In particular, we prove that every shift-
continuous feebly compact T1-topology τ on BF1

ω is compact and moreover in
this case the space

(
BF1

ω , τ
)
is homeomorphic to the one-point Alexandro�

compacti�cation of the discrete countable space D(ω).

Key words: semitopological semigroup, feebly compact, compact, Brandt
ω-extension.

We shall follow the terminology of [4, 5, 6, 7, 27]. By ω we denote the �rst in�nite
cardinal.

A semigroup S is called inverse if for any element x ∈ S there exists a unique
x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse
of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns to
every element x of S its inverse element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order 4 on E(S): e 4 f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order 4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te.
This order is called the natural partial order on S [28].
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The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is de�ned as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a
group congruence [5].

A topological (semitopological) semigroup is a topological space together with a
continuous (separately continuous) semigroup operation. If S is a semigroup and τ is
a topology on S such that (S, τ) is a topological semigroup, then we shall call τ a semi-

group topology on S, and if τ is a topology on S such that (S, τ) is a semitopological
semigroup, then we shall call τ a shift-continuous topology on S.

Next we shall describe the construction which is introduced by Gutik and
Mykhalenych in [10].

Let P(ω) be the family of all subsets of ω. For any F ∈P(ω) and n,m ∈ ω we put
n−m+ F = {n−m+ k : k ∈ F} if F 6= ∅ and n−m+ F = ∅ otherwise. A subfamily
F ⊆P(ω) is called ω-closed if F1 ∩ (−n+ F2) ∈ F for all n ∈ ω and F1, F2 ∈ F .

Let Bω be the bicyclic monoid and F be an ω-closed subfamily of P(ω). On the
set Bω ×F we de�ne the semigroup operation �·� in the following way

(i1, j1, F1) · (i2, j2, F2) =

{
(i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2), if j1 6 i2;
(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)), if j1 > i2.

In [10] it is proved that if the family F ⊆ P(ω) is ω-closed then (Bω × F , ·) is a
semigroup. Moreover, if an ω-closed family F ⊆ P(ω) contains the empty set ∅ then
the set I = {(i, j,∅) : i, j ∈ ω} is an ideal of the semigroup (Bω×F , ·). For any ω-closed
family F ⊆P(ω) the semigroup

BF
ω =

{
(Bω ×F , ·)/I, if ∅ ∈ F ;
(Bω ×F , ·), if ∅ /∈ F

is de�ned in [10]. The semigroup BF
ω generalizes the bicyclic monoid and the countable

semigroup of matrix units. It is proven in [10] that BF
ω is combinatorial inverse semi-

group and Green's relations, the natural partial order on BF
ω and its set of idempotents

are described. The criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the
semigroup BF

ω and when BF
ω has the identity, is isomorphic to the bicyclic semigroup or

the countable semigroup of matrix units are given. In particular, in [10] it is proved that

the semigroup BF
ω is isomorphic to the semigrpoup of ω×ω-matrix units if and only if

F consists of a sigleton and the empty set.
We de�ne

F1 = {A ⊆ ω : |A| 6 1} .

It is obvious that F1 is an ω-closed subfamily of P(ω) and hence BF1
ω is an inverse

semigroup with zero. Later by (i, j, {k}) we denote a non-zero element of BF1
ω for some

i, j, k ∈ ω and by 0 the zero of BF1
ω .
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In this paper we study properties of the semigroup BF1
ω . We show that BF1

ω is
isomorphic to the subsemigroup B�

ω(ωmin) of the Brandt ω-extension of the semilatti-
ce (ω,min) and describe all shift-continuous feebly compact T1-topologies on the semi-
group B�

ω(ωmin). In particular, we prove that every shift-continuous feebly compact T1-
topology τ on B�

ω(ωmin) is compact and moreover in this case the space (B�
ω(ωmin), τ)

is homeomorphic to the one-point Alexandro� compacti�cation of the discrete countable
space D(ω).

Proposition 2 of [10] implies Proposition 1 which describes the natural partial order

on BF1
ω .

Proposition 1. Let (i1, j1, {k1}) and (i2, j2, {k2}) be non-zero elements of the semigroup

BF1
ω . Then (i1, j1, {k1}) 4 (i2, j2, {k2}) if and only if

k2 − k1 = i1 − i2 = j1 − j2 = p

for some p ∈ ω.

Proposition 1 implies the structure of maximal chains in BF1
ω with the respect to

its natural partial order

Corollary 1. Let i, j be arbitrary elements of ω. Then the following �nite series

0 4 (i, j, {0});
0 4 (i+ 1, j + 1, {0}) 4 (i, j, {1});
0 4 (i+ 2, j + 2, {0}) 4 (i+ 1, j + 1, {1}) 4 (i, j, {2});

· · · · · · · · · · · · · · · · · ·
0 4 (i+ k, j + k, {0}) 4 (i+ k − 1, j + k − 1, {1}) 4 · · · 4 (i, j, {k});

· · · · · · · · · · · · · · · · · · · · · · · ·

describes maximal chains in the semigroup BF1
ω .

We need the following construction from [8].
Let S be a semigroup with zero and λ > 1 be a cardinal. On the set Bλ(S) =

(λ× S × λ) t {O} we de�ne a semigroup operation as follows

(α, s, β) · (γ, t, δ) =
{

(α, st, δ), if β = γ;
O, if β 6= γ

and (α, s, β) · O = O · (α, s, β) = O · O = O, for all α, β, γ, δ ∈ λ and s, t ∈ S. If S is
a monoid then the semigroup Bλ(S) is called the Brandt λ-extension of the semigroup

S [8]. Algebraic properties of Bλ(S) and its generalization Brandt λ0-extensions B0
λ(S) of

semigroups are studied in [8, 13]. The structures, topologizations of the semigroups Bλ(S)
and B0

λ(S), their algebraic, categorical properties, applications and generalizations are
established in [2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26].

By ωmin we denote the set ω with the binary operation

xy = min{x, y}, for x, y ∈ ω.
It is obvious that ωmin is a semilattice.

We de�ne a map f : BF1
ω → Bω(ωmin) by the formulae

(1) (i, j, {k})f = (i+ k, k, j + k) and (0)f = O,
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for i, j, k ∈ ω.

Proposition 2. The map f : BF1
ω → Bω(ωmin) is an isomorphic embedding.

Proof. It is obvious that the map f de�ned by formulae (1) is bijective.

Fix arbitrary (i1, j1, {k1}), (i2, j2, {k2}) ∈ BF1
ω . Then we have that

((i1, j1, {k1}) · (i2, j2, {k2}))f =

=



(i1 − j1 + i2, j2, (j1 − i2 + {k1}) ∩ {k2})f, if j1 < i2 and j1 + k1 = i2 + k2;
(0)f, if j1 < i2 and j1 + k1 6= i2 + k2;

(i1, j2, {k1} ∩ {k2})f, if j1 = i2 and k1 = k2;
(0)f, if j1 = i2 and k1 6= k2;

(i1, j1 − i2 + j2, {k1} ∩ (i2 − j1 + {k2}))f, if j1 > i2 and j1 + k1 = i2 + k2;
(0)f, if j1 > i2 and j1 + k1 6= i2 + k2

=

=


(i1 − j1 + i2, j2, {k2})f, if j1 < i2 and j1 + k1 = i2 + k2;

(i1, j2, {k1})f, if j1 = i2 and k1 = k2;
(i1, j1 − i2 + j2, {k1})f, if j1 > i2 and j1 + k1 = i2 + k2;

(0)f, if j1 + k1 6= i2 + k2

=

=


(i1 − j1 + i2 + k2, k2, j2 + k2), if j1 < i2 and j1 + k1 = i2 + k2;

(i1 + k1, k1, j2 + k1), if j1 = i2 and k1 = k2;
(i1 + k1, k1, j1 − i2 + j2 + k1), if j1 > i2 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2

=

=


(i1 + k1, k2, j2 + k2), if j1 < i2 and j1 + k1 = i2 + k2;
(i1 + k1, k1, j2 + k2), if j1 = i2 and k1 = k2;
(i1 + k1, k1, j2 + k2), if j1 > i2 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2,

and

((i1, j1, {k1})f · (i2, j2, {k2}))f = (i1 + k1, k1, j1 + k1) · (i2 + k2, k2, j2 + k2) =

=

{
(i1 + k1,min{k1, k2}, j2 + k2), if j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2
=

=


(i1 + k1, k2, j2 + k2), if k2 < k1 and j1 + k1 = i2 + k2;
(i1 + k1, k1, j2 + k2), if k2 = k1 and k1 = k2;
(i1 + k1, k1, j2 + k2), if k2 > k1 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2,

=

=


(i1 + k1, k2, j2 + k2), if j1 < i2 and j1 + k1 = i2 + k2;
(i1 + k1, k1, j2 + k2), if j1 = i2 and k1 = k2;
(i1 + k1, k1, j2 + k2), if j1 > i2 and j1 + k1 = i2 + k2;

O, if j1 + k1 6= i2 + k2.

Since 0 and O are the zeros of the semigroupsBF1
ω and Bω(ωmin), respectively, the above

equalities imply that the map f : BF1
ω → Bω(ωmin) is a homomorphism. This completes

the proof of the proposition. �

Next we de�ne

B�
ω(ωmin) = {O} ∪ {(i, k, j) ∈ Bω(ωmin) \ {O} : i, j > k} .



52
Oleksandra LYSETSKA

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2020. Âèïóñê 90

Simple veri�cations show that B�
ω(ωmin) is an inverse subsemigroup of Bω(ωmin).

Proposition 2 implies

Theorem 1. The semigroup BF1
ω is isomorphic to B�

ω(ωmin) by the map f.

For any i, j ∈ ω we denote

ω
(i,j)�
min =

{
(i, k, j) : (i, k, j) ∈ B�

ω(ωmin)
}
.

Proposition 3. Let τ be a shift-continuous T1-topology on the semigroup B�
ω(ωmin).

Then every non-zero element of B�
ω(ωmin) is an isolated point in

(
B�
ω(ωmin), τ

)
.

Proof. Fix arbitrary i, j ∈ ω. Since (i, 0, i) · (i, 0, j) · (j, 0, j) = (i, 0, j), the assumption
of the proposition implies that for any open neighbourhood W(i,0,j) 63 O of (i, 0, j) there

exists its open neighbourhood V(i,0,j) in the topological space
(
B�
ω(ωmin), τ

)
such that

(i, 0, i) ·V(i,0,j) ·(j, 0, j) ⊆W(i,0,j). The de�nition of the semigroup operation on B�
ω(ωmin)

implies that V(i,0,j) ⊆ ω
(i,j)�
min . Then the set ω

(i,j)�
min is an open subset of

(
B�
ω(ωmin), τ

)
because it is the full preimage of V(i,0,j) under the mapping

h : B�
ω(ωmin)→ B�

ω(ωmin), x 7→ (i, 0, i) · x · (j, 0, j).

By Corollary 1 the set ω
(i,j)�
min is �nite, which implies the statement of the proposition. �

Next we shall show that the semigroup B�
ω(ωmin) admits a compact shift-continuous

Hausdor� topology.

Example 1. A topology τAc on B�
ω(ωmin) is de�ned as follows:

a) all nonzero elements of B�
ω(ωmin) are isolated points in

(
B�
ω(ωmin), τAc

)
;

b) the family

BAc(O) =
{
U(i1,j1),...,(in,jn) = B�

ω(ωmin) \
(
ω
(i1,j1)�
min ∪ · · · ∪ ω(in,jn)�

min

)
:

n, i1, j1, . . . , in, jn ∈ ω
}

is a base of the topology τAc at the point O ∈ B�
ω(ωmin).

Corollary 1 implies that the set ω
(i,j)�
min is �nite for any i, j ∈ ω which implies that(

B�
ω(ωmin), τAc

)
is the one-point Alexandro� compati�cation of the discrete space

B�
ω(ωmin) \ {O}.

Proposition 4.
(
B�
ω(ωmin), τAc

)
is a Hausdor� compact semitopological semigroup with

continuous inversion.

Proof. It is obvious that the topology τAc is Hausdor� and compact.
Fix any U(i1,j1),...,(in,jn) ∈ BAc(O) and (i, k, j), (l,m, p) ∈ B�

ω(ωmin) \ {O}. Put

K = {i, i1, . . . , in, j, j1, . . . , jn} and UK = B�
ω(ωmin) \

⋃
x,y∈K

ω
(x,y)�
min .

Then we have that UK ∈ BAc(O) and the following conditions hold

UK · {(i, k, j)} ⊆ U(i1,j1),...,(in,jn),

{(i, k, j)} · UK ⊆ U(i1,j1),...,(in,jn),
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{O} · {(i, k, j)} = {(i, k, j)} · {O} = {O} ⊆ U(i1,j1),...,(in,jn),

{O} · U(i1,j1),...,(in,jn) = U(i1,j1),...,(in,jn) · {O} = {O} ⊆ U(i1,j1),...,(in,jn),

{(i, k, j)} · {(l,m, p)} = {O} ⊆ U(i1,j1),...,(in,jn), if j 6= l,

{(i, k, j)} · {(l,m, p)} = {(i,min{k,m}, p)}, if j = l,(
U(j1,i1),...,(jn,in)

)−1 ⊆ U(i1,j1),...,(in,jn).

Therefore,
(
B�
ω(ωmin), τAc

)
is a semitopological inverse semigroup with continuous

inversion. �

We recall that a topological space X is said to be

• perfectly normal if X is normal and and every closed subset of X is a Gδ-set;
• scattered if X does not contain a non-empty dense-in-itself subspace;
• hereditarily disconnected (or totally disconnected) if X does not contain any
connected subsets of cardinality larger than one;

• compact if each open cover of X has a �nite subcover;
• countably compact if each open countable cover of X has a �nite subcover;
• H-closed if X is a closed subspace of every Hausdor� topological space in which
it contained;

• infra H-closed provided that any continuous image of X into any �rst countable
Hausdor� space is closed (see [24]);

• feebly compact (or lightly compact) if each locally �nite open cover of X is �ni-
te [1];

• d-feebly compact (or DFCC ) if every discrete family of open subsets in X is �nite
(see [25]);

• pseudocompact if X is Tychono� and each continuous real-valued function on X
is bounded;

• Y -compact for some topological space Y , if f(X) is compact for any continuous
map f : X → Y .

The relations between above de�ned compact-like spaces are presented at the di-
agram in [22].

Lemma 1. Every shift-continuous T1-topology τ on the semigroup B�
ω(ωmin) is regular.

Proof. By Proposition 3 every non-zero element of the semigroup B�
ω(ωmin) is an isolated

point in
(
B�
ω(ωmin), τ

)
. This implies that every open neighbourhood V (O) of the zero O

is a closed subset in
(
B�
ω(ωmin), τ

)
, and hence the space

(
B�
ω(ωmin), τ

)
is regular. �

Since in any countable T1-spaceX every open subset ofX is a Fσ-set, Theorem 1.5.17
from [7] and Lemma 1 imply the following corollary.

Corollary 2. Let τ be a shift-continuous T1-topology on the semigroup B�
ω(ωmin). Then(

B�
ω(ωmin), τ

)
is a perfectly normal, scattered, hereditarily disconnected space.

By D(ω) we denote the countable discrete space and by R the set of all real numbers
with the usual topology.

Theorem 2. Let τ be a shift-continuous T1-topology on the semigroup B�
ω(ωmin). Then

the following statements are equivalent:
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(i)
(
B�
ω(ωmin), τ

)
is compact;

(ii) τ = τAc;

(iii)
(
B�
ω(ωmin), τ

)
is H-closed;

(iv)
(
B�
ω(ωmin), τ

)
is feebly compact;

(v)
(
B�
ω(ωmin), τ

)
is infra H-closed;

(vi)
(
B�
ω(ωmin), τ

)
is d-feebly compact;

(vii)
(
B�
ω(ωmin), τ

)
is pseudocompact;

(viii)
(
B�
ω(ωmin), τ

)
is R-compact;

(ix)
(
B�
ω(ωmin), τ

)
is D(ω)-compact.

Proof. Implications (ii) ⇒ (i) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (viii) ⇒ (ix) and (i) ⇒ (vii) ⇒
(iv)⇒ (vi) are trivial (see the diagram in [22]). Lemma 1 implies implications (vi)⇒ (iv)
and (iii)⇒ (i).

(ix)⇒ (i) Suppose to the contrary that there exists a shift-continuous T1-topology
τ on the semigroup B�

ω(ωmin) such that
(
B�
ω(ωmin), τ

)
is a D(ω)-compact non-compact

space. Then there exists an open cover U = {Uα} of
(
B�
ω(ωmin), τ

)
which has not a �nite

subcover. Let Uα0 ∈ U such that O ∈ Uα0 . Since
(
B�
ω(ωmin), τ

)
is not compact the set

B�
ω(ωmin) \Uα0 is in�nite. We enumerate the set B�

ω(ωmin) \Uα0 , i.e., put {xi : i ∈ ω} =
B�
ω(ωmin) \ Uα0 . We identify D(ω) with ω and de�ne a map f :

(
B�
ω(ωmin), τ

)
→ D(ω)

in the following way

(x)f =

{
0, if x ∈ Uα0 ;
i, if x = xi.

Proposition 3 implies that such de�ned map f is continuous. Also, the image (B�
ω(ωmin))f

is not a compact subset of D(ω), which contradicts the assumption. �

Theorem 2 implies

Corollary 3. Every shift-continuous T1-topology D(ω)-compact τ on the semigroup BF1
ω

is compact. Moreover the semigroup BF1
ω admits the unique compact shift-continuous T1-

topology.

Remark 1. By Proposition 4 of [10] the semigroup BF1
ω contains an isomorphic copy of

the ω × ω-matrix units. Then Theorem 5 from [16] implies that BF1
ω does not embed

into a countably compact Hausdor� topological semigroup.
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ÍÀ ÍÀÏIÂÃÐÓÏI BF1
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Âèâ÷à¹òüñÿ íàïiâãðóïà Ãóòiêà�Ìèõàëåíè÷à BF1
ω ó âèïàäêó, êîëè ñiì'ÿ

F1 ñêëàäà¹òüñÿ ç ïîðîæíüî¨ ìíîæèíè òà âñiõ îäíîòî÷êîâèõ ïiäìíîæèí ó
ω. Ìè äîâîäèìî, ùî íàïiâãðóïà BF1

ω içîìîðôíà ïiäíàïiâãðóïi B�
ω(ωmin)

ω-ðîçøèðåííþ Áðàíäòà íàïiâ ðàòêè (ω,min), îïèñó¹ìî âñi òðàíñëÿöiéíî
íåïåðåðâíi ñëàáêî êîìïàêòíi T1-òîïîëîãi¨ íà íàïiâãðóïi B�

ω(ωmin). Çîêðå-
ìà, äîâåäåíî, ùî êîæíà òðàíñëÿöiéíî íåïåðåðâíà ñëàáêî êîìïàêòíà T1-
òîïîëîãiÿ τ íà íàïiâãðóïi BF1

ω ¹ êîìïàêòíîþ, áà áiëüøå, ó öüîìó âèïàäêó
ïðîñòið

(
BF1

ω , τ
)
ãîìåîìîðôíèé îäíîòî÷êîâié êîìïàêòèôiêàöi¨ Àë¹êñàíä-

ðîâà äèñêðåòíîãî çëi÷åííîãî ïðîñòîðó D(ω).

Êëþ÷îâi ñëîâà: íàïiâòîïîëîãi÷íà íàïiâãðóïà, ñëàáêî êîìïàêòíèé, êîì-
ïàêòíèé, ω-ðîçøèðåííþ Áðàíäòà.
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