УДК 512.536

ON FEEBLY COMPACT TOPOLOGIES ON THE SEMIGROUP $\mathcal{B}^{\mathscr{F}_1}_{\omega}$

Oleksandra LYSETSKA

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, Ukraine e-mail: o.yu.sobol@gmail.com

We study the Gutik-Mykhalenych semigroup $\mathcal{B}_{\omega}^{\mathscr{F}_1}$ in the case when the family \mathscr{F}_1 consists of the empty set and all singleton in ω . We show that $\mathcal{B}_{\omega}^{\mathscr{F}_1}$ is isomorphic to subsemigroup $\mathscr{B}_{\omega}^{\dagger}(\omega_{\min})$ of the Brandt ω -extension of the semilattice (ω, \min) and describe all shift-continuous feebly compact T_1 -topologies on the semigroup $\mathscr{B}_{\omega}^{\dagger}(\omega_{\min})$. In particular, we prove that every shift-continuous feebly compact T_1 -topology τ on $\mathcal{B}_{\omega}^{\mathscr{F}_1}$ is compact and moreover in this case the space $(\mathcal{B}_{\omega}^{\mathscr{F}_1}, \tau)$ is homeomorphic to the one-point Alexandroff compactification of the discrete countable space $\mathfrak{D}(\omega)$.

Key words: semitopological semigroup, feebly compact, compact, Brandt $\omega\text{-extension.}$

We shall follow the terminology of [4, 5, 6, 7, 27]. By ω we denote the first infinite cardinal.

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse* of $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band of S). Then the semigroup operation on S determines the following partial order \preccurlyeq on E(S): $e \preccurlyeq f$ if and only if ef = fe = e. This order is called the *natural partial order* on E(S). A *semilattice* is a commutative semigroup of idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \preccurlyeq on S: $s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that s = te. This order is called the *natural partial order* on S [28].

²⁰²⁰ Mathematics Subject Classification: 22A15, 20A15, 54D10, 54D30, 54H12 (© Lysetska, O., 2020

The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathscr{C}(p,q)$ is defined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = q^{k+m-\min\{l,m\}}p^{l+n-\min\{l,m\}}.$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence simple) combinatorial *E*-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence [5].

A topological (semitopological) semigroup is a topological space together with a continuous (separately continuous) semigroup operation. If S is a semigroup and τ is a topology on S such that (S, τ) is a topological semigroup, then we shall call τ a semigroup topology on S, and if τ is a topology on S such that (S, τ) is a semitopological semigroup, then we shall call τ a shift-continuous topology on S.

Next we shall describe the construction which is introduced by Gutik and Mykhalenych in [10].

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω . For any $F \in \mathscr{P}(\omega)$ and $n, m \in \omega$ we put $n - m + F = \{n - m + k : k \in F\}$ if $F \neq \emptyset$ and $n - m + F = \emptyset$ otherwise. A subfamily $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is called ω -closed if $F_1 \cap (-n + F_2) \in \mathscr{F}$ for all $n \in \omega$ and $F_1, F_2 \in \mathscr{F}$.

Let B_{ω} be the bicyclic monoid and \mathscr{F} be an ω -closed subfamily of $\mathscr{P}(\omega)$. On the set $B_{\omega} \times \mathscr{F}$ we define the semigroup operation "." in the following way

$$(i_1, j_1, F_1) \cdot (i_2, j_2, F_2) = \begin{cases} (i_1 - j_1 + i_2, j_2, (j_1 - i_2 + F_1) \cap F_2), & \text{if } j_1 \leq i_2; \\ (i_1, j_1 - i_2 + j_2, F_1 \cap (i_2 - j_1 + F_2)), & \text{if } j_1 \geq i_2. \end{cases}$$

In [10] it is proved that if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω -closed then $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$ is a semigroup. Moreover, if an ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\mathbf{I} = \{(i, j, \varnothing) : i, j \in \omega\}$ is an ideal of the semigroup $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$. For any ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the semigroup

$$oldsymbol{B}_{\omega}^{\mathscr{F}} = \left\{ egin{array}{cc} (oldsymbol{B}_{\omega} imes \mathscr{F}, \cdot) / I, & ext{if } arnothing \in \mathscr{F}; \ (oldsymbol{B}_{\omega} imes \mathscr{F}, \cdot), & ext{if } arnothing \notin \mathscr{F}. \end{array}
ight.$$

is defined in [10]. The semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [10] that $\mathbf{B}_{\omega}^{\mathscr{F}}$ is combinatorial inverse semigroup and Green's relations, the natural partial order on $\mathbf{B}_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. The criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ and when $\mathbf{B}_{\omega}^{\mathscr{F}}$ has the identity, is isomorphic to the bicyclic semigroup or the countable semigroup of matrix units are given. In particular, in [10] it is proved that the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigroup of $\omega \times \omega$ -matrix units if and only if \mathscr{F} consists of a sigleton and the empty set.

We define

$$\mathscr{F}_1 = \{ A \subseteq \omega \colon |A| \leqslant 1 \}.$$

It is obvious that \mathscr{F}_1 is an ω -closed subfamily of $\mathscr{P}(\omega)$ and hence $\mathbf{B}_{\omega}^{\mathscr{F}_1}$ is an inverse semigroup with zero. Later by $(i, j, \{k\})$ we denote a non-zero element of $\mathbf{B}_{\omega}^{\mathscr{F}_1}$ for some $i, j, k \in \omega$ and by **0** the zero of $\mathbf{B}_{\omega}^{\mathscr{F}_1}$.

In this paper we study properties of the semigroup $B^{\mathscr{F}_1}_{\omega}$. We show that $B^{\mathscr{F}_1}_{\omega}$ is isomorphic to the subsemigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ of the Brandt ω -extension of the semilattice (ω , min) and describe all shift-continuous feebly compact T_1 -topologies on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$. In particular, we prove that every shift-continuous feebly compact T_1 topology τ on $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ is compact and moreover in this case the space $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$ is homeomorphic to the one-point Alexandroff compactification of the discrete countable space $\mathfrak{D}(\omega)$.

Proposition 2 of [10] implies Proposition 1 which describes the natural partial order on $\boldsymbol{B}^{\mathscr{F}_1}_{\omega}$.

Proposition 1. Let $(i_1, j_1, \{k_1\})$ and $(i_2, j_2, \{k_2\})$ be non-zero elements of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_1}$. Then $(i_1, j_1, \{k_1\}) \preccurlyeq (i_2, j_2, \{k_2\})$ if and only if

$$k_2 - k_1 = i_1 - i_2 = j_1 - j_2 = p$$

for some $p \in \omega$.

Proposition 1 implies the structure of maximal chains in $B^{\mathscr{F}_1}_{\omega}$ with the respect to its natural partial order

Corollary 1. Let *i*, *j* be arbitrary elements of ω . Then the following finite series

describes maximal chains in the semigroup $B^{\mathscr{F}_1}_{\omega}$.

We need the following construction from [8].

Let S be a semigroup with zero and $\lambda \ge 1$ be a cardinal. On the set $B_{\lambda}(S) =$ $(\lambda \times S \times \lambda) \sqcup \{ \mathcal{O} \}$ we define a semigroup operation as follows

$$(\alpha, s, \beta) \cdot (\gamma, t, \delta) = \begin{cases} (\alpha, st, \delta), & \text{if } \beta = \gamma; \\ \mathcal{O}, & \text{if } \beta \neq \gamma \end{cases}$$

and $(\alpha, s, \beta) \cdot \mathscr{O} = \mathscr{O} \cdot (\alpha, s, \beta) = \mathscr{O} \cdot \mathscr{O} = \mathscr{O}$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $s, t \in S$. If S is a monoid then the semigroup $\mathscr{B}_{\lambda}(S)$ is called the Brandt λ -extension of the semigroup S [8]. Algebraic properties of $\mathscr{B}_{\lambda}(S)$ and its generalization Brandt λ^0 -extensions $\mathscr{B}^0_{\lambda}(S)$ of semigroups are studied in [8, 13]. The structures, topologizations of the semigroups $\mathscr{B}_{\lambda}(S)$ and $\mathscr{B}^{0}_{\lambda}(S)$, their algebraic, categorical properties, applications and generalizations are established in [2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26].

By ω_{\min} we denote the set ω with the binary operation

$$xy = \min\{x, y\}, \quad \text{for} \quad x, y \in \omega.$$

It is obvious that ω_{\min} is a semilattice. We define a map $\mathfrak{f} \colon \boldsymbol{B}_{\omega}^{\mathscr{F}_1} \to \mathscr{B}_{\omega}(\omega_{\min})$ by the formulae

(1)
$$(i,j,\{k\})\mathfrak{f} = (i+k,k,j+k)$$
 and $(0)\mathfrak{f} = \mathcal{O},$

50

for $i, j, k \in \omega$.

Proposition 2. The map $\mathfrak{f}: \mathbf{B}_{\omega}^{\mathscr{F}_1} \to \mathscr{B}_{\omega}(\omega_{\min})$ is an isomorphic embedding.

Proof. It is obvious that the map \mathfrak{f} defined by formulae (1) is bijective. Fix arbitrary $(i_1, j_1, \{k_1\}), (i_2, j_2, \{k_2\}) \in \mathbf{B}_{\omega}^{\mathscr{F}_1}$. Then we have that $((i_1, j_1, \{k_1\}) \cdot (i_2, j_2, \{k_2\}))\mathfrak{f} =$

$$\begin{aligned} &((i_1, j_1, \{k_1\}) \cdot (i_2, j_2, \{k_2\})) f = \\ &= \begin{cases} (i_1 - j_1 + i_2, j_2, (j_1 - i_2 + \{k_1\}) \cap \{k_2\}) f, & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(0) f, & \text{if } j_1 = i_2 \text{ and } k_1 = k_2; \\ &(i_1, j_2, \{k_1\} \cap \{k_2\}) f, & \text{if } j_1 = i_2 \text{ and } k_1 \neq k_2; \\ &(i_1, j_1 - i_2 + j_2, \{k_1\} \cap (i_2 - j_1 + \{k_2\})) f, & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(0) f, & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(0) f, & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 \neq i_2 + k_2 \end{cases} \\ &= \begin{cases} (i_1 - j_1 + i_2, j_2, \{k_2\}) f, & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1, j_2, \{k_1\}) f, & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1, j_2, \{k_1\}) f, & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1, j_1 - i_2 + j_2, \{k_1\}) f, & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(0) f, & \text{if } j_1 + k_1 \neq i_2 + k_2 \end{cases} \\ &= \begin{cases} (i_1 - j_1 + i_2 + k_2, k_2, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_1), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &(\ell_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &\ell_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ &\ell_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k$$

 and

$$\begin{split} ((i_1, j_1, \{k_1\})\mathfrak{f} \cdot (i_2, j_2, \{k_2\}))\mathfrak{f} &= (i_1 + k_1, k_1, j_1 + k_1) \cdot (i_2 + k_2, k_2, j_2 + k_2) = \\ &= \begin{cases} (i_1 + k_1, \min\{k_1, k_2\}, j_2 + k_2), & \text{if } j_1 + k_1 = i_2 + k_2; \\ \mathcal{O}, & \text{if } j_1 + k_1 \neq i_2 + k_2 \end{cases} = \\ &= \begin{cases} (i_1 + k_1, k_2, j_2 + k_2), & \text{if } k_2 < k_1 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } k_2 > k_1 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } k_2 > k_1 \text{ and } j_1 + k_1 = i_2 + k_2; \\ \mathcal{O}, & \text{if } j_1 + k_1 \neq i_2 + k_2, \end{cases} = \\ &= \begin{cases} (i_1 + k_1, k_2, j_2 + k_2), & \text{if } j_1 < i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 = i_2 \text{ and } k_1 = k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ (i_1 + k_1, k_1, j_2 + k_2), & \text{if } j_1 > i_2 \text{ and } j_1 + k_1 = i_2 + k_2; \\ \mathcal{O}, & \text{if } j_1 + k_1 \neq i_2 + k_2. \end{cases} \end{split}$$

Since **0** and \mathscr{O} are the zeros of the semigroups $\mathbf{B}_{\omega}^{\mathscr{F}_1}$ and $\mathscr{B}_{\omega}(\omega_{\min})$, respectively, the above equalities imply that the map $\mathfrak{f}: \mathbf{B}_{\omega}^{\mathscr{F}_1} \to \mathscr{B}_{\omega}(\omega_{\min})$ is a homomorphism. This completes the proof of the proposition.

Next we define

$$\mathscr{B}_{\omega}^{\ell}(\omega_{\min}) = \{\mathscr{O}\} \cup \{(i,k,j) \in \mathscr{B}_{\omega}(\omega_{\min}) \setminus \{\mathscr{O}\} : i,j \geqslant k\}.$$

Simple verifications show that $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ is an inverse subsemigroup of $\mathscr{B}_{\omega}(\omega_{\min})$. Proposition 2 implies

Theorem 1. The semigroup $B^{\mathscr{F}_1}_{\omega}$ is isomorphic to $\mathscr{B}^{\not{\circ}}_{\omega}(\omega_{\min})$ by the map \mathfrak{f} .

For any $i, j \in \omega$ we denote

$$\omega_{\min}^{(i,j)_{\vec{r}}} = \left\{ (i,k,j) \colon (i,k,j) \in \mathscr{B}_{\omega}^{\vec{r}}(\omega_{\min}) \right\}.$$

Proposition 3. Let τ be a shift-continuous T_1 -topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$. Then every non-zero element of $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ is an isolated point in $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$.

Proof. Fix arbitrary $i, j \in \omega$. Since $(i, 0, i) \cdot (i, 0, j) \cdot (j, 0, j) = (i, 0, j)$, the assumption of the proposition implies that for any open neighbourhood $W_{(i,0,j)} \not \ni \mathcal{O}$ of (i, 0, j) there exists its open neighbourhood $V_{(i,0,j)}$ in the topological space $(\mathscr{B}^{\not{p}}_{\omega}(\omega_{\min}), \tau)$ such that $(i, 0, i) \cdot V_{(i,0,j)} \cdot (j, 0, j) \subseteq W_{(i,0,j)}$. The definition of the semigroup operation on $\mathscr{B}^{\not{p}}_{\omega}(\omega_{\min})$ implies that $V_{(i,0,j)} \subseteq \omega_{\min}^{(i,j)r}$. Then the set $\omega_{\min}^{(i,j)r}$ is an open subset of $(\mathscr{B}^{\not{p}}_{\omega}(\omega_{\min}), \tau)$ because it is the full preimage of $V_{(i,0,j)}$ under the mapping

$$\mathfrak{h}\colon \mathscr{B}^{\scriptscriptstyle\!\!\!\!\!P}_\omega(\omega_{\min})\to \mathscr{B}^{\scriptscriptstyle\!\!\!\!\!P}_\omega(\omega_{\min}),\;x\mapsto (i,0,i)\cdot x\cdot (j,0,j).$$

By Corollary 1 the set $\omega_{\min}^{(i,j)r}$ is finite, which implies the statement of the proposition. \Box

Next we shall show that the semigroup $\mathscr{B}^{r}_{\omega}(\omega_{\min})$ admits a compact shift-continuous Hausdorff topology.

Example 1. A topology τ_{Ac} on $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ is defined as follows:

- a) all nonzero elements of $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ are isolated points in $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau_{Ac});$
- b) the family

$$\mathscr{B}_{\mathrm{Ac}}(\mathscr{O}) = \left\{ U_{(i_1,j_1),\dots,(i_n,j_n)} = \mathscr{B}_{\omega}^{\mathsf{P}}(\omega_{\min}) \setminus \left(\omega_{\min}^{(i_1,j_1)_{\mathsf{P}}} \cup \dots \cup \omega_{\min}^{(i_n,j_n)_{\mathsf{P}}} \right) : \\ n, i_1, j_1, \dots, i_n, j_n \in \omega \right\}$$

is a base of the topology τ_{Ac} at the point $\mathscr{O} \in \mathscr{B}^{\flat}_{\omega}(\omega_{\min})$.

Corollary 1 implies that the set $\omega_{\min}^{(i,j)^r}$ is finite for any $i, j \in \omega$ which implies that $(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau_{Ac})$ is the one-point Alexandroff compatification of the discrete space $\mathscr{B}^{r}_{\omega}(\omega_{\min}) \setminus \{\mathscr{O}\}.$

Proposition 4. $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau_{Ac})$ is a Hausdorff compact semitopological semigroup with continuous inversion.

Proof. It is obvious that the topology $\tau_{\rm Ac}$ is Hausdorff and compact.

Fix any
$$U_{(i_1,j_1),\ldots,(i_n,j_n)} \in \mathscr{B}_{Ac}(\mathscr{O})$$
 and $(i,k,j), (l,m,p) \in \mathscr{B}^{r}_{\omega}(\omega_{\min}) \setminus \{\mathscr{O}\}$. Put
 $\mathbf{K} = \{i, i_1, \ldots, i_n, j, j_1, \ldots, j_n\}$ and $U_{\mathbf{K}} = \mathscr{B}^{r}_{\omega}(\omega_{\min}) \setminus \bigcup_{x,y \in \mathbf{K}} \omega_{\min}^{(x,y)r}$.

Then we have that $U_{\mathbf{K}} \in \mathscr{B}_{Ac}(\mathscr{O})$ and the following conditions hold

$$U_{\mathbf{K}} \cdot \{(i,k,j)\} \subseteq U_{(i_1,j_1),\dots,(i_n,j_n)},$$

$$\{(i,k,j)\} \cdot U_{\mathbf{K}} \subseteq U_{(i_1,j_1),\dots,(i_n,j_n)},$$

$$\{\mathscr{O}\} \cdot \{(i,k,j)\} = \{(i,k,j)\} \cdot \{\mathscr{O}\} = \{\mathscr{O}\} \subseteq U_{(i_1,j_1),\dots,(i_n,j_n)}, \\ \{\mathscr{O}\} \cdot U_{(i_1,j_1),\dots,(i_n,j_n)} = U_{(i_1,j_1),\dots,(i_n,j_n)} \cdot \{\mathscr{O}\} = \{\mathscr{O}\} \subseteq U_{(i_1,j_1),\dots,(i_n,j_n)}, \\ \{(i,k,j)\} \cdot \{(l,m,p)\} = \{\mathscr{O}\} \subseteq U_{(i_1,j_1),\dots,(i_n,j_n)}, \quad \text{if} \quad j \neq l, \\ \{(i,k,j)\} \cdot \{(l,m,p)\} = \{(i,\min\{k,m\},p)\}, \quad \text{if} \quad j = l, \\ (U_{(j_1,i_1),\dots,(j_n,i_n)})^{-1} \subseteq U_{(i_1,j_1),\dots,(i_n,j_n)}. \end{cases}$$

Therefore, $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau_{Ac})$ is a semitopological inverse semigroup with continuous inversion.

We recall that a topological space X is said to be

- perfectly normal if X is normal and and every closed subset of X is a G_{δ} -set;
- *scattered* if X does not contain a non-empty dense-in-itself subspace;
- hereditarily disconnected (or totally disconnected) if X does not contain any connected subsets of cardinality larger than one;
- *compact* if each open cover of X has a finite subcover;
- countably compact if each open countable cover of X has a finite subcover;
- H-closed if X is a closed subspace of every Hausdorff topological space in which it contained;
- *infra H-closed* provided that any continuous image of X into any first countable Hausdorff space is closed (see [24]);
- feebly compact (or lightly compact) if each locally finite open cover of X is finite [1];
- *d-feebly compact* (or *DFCC*) if every discrete family of open subsets in X is finite (see [25]);
- *pseudocompact* if X is Tychonoff and each continuous real-valued function on X is bounded;
- Y-compact for some topological space Y, if f(X) is compact for any continuous map $f: X \to Y$.

The relations between above defined compact-like spaces are presented at the diagram in [22].

Lemma 1. Every shift-continuous T_1 -topology τ on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ is regular.

Proof. By Proposition 3 every non-zero element of the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ is an isolated point in $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$. This implies that every open neighbourhood $V(\mathscr{O})$ of the zero \mathscr{O} is a closed subset in $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$, and hence the space $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$ is regular.

Since in any countable T_1 -space X every open subset of X is a F_{σ} -set, Theorem 1.5.17 from [7] and Lemma 1 imply the following corollary.

Corollary 2. Let τ be a shift-continuous T_1 -topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$. Then $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$ is a perfectly normal, scattered, hereditarily disconnected space.

By $\mathfrak{D}(\omega)$ we denote the countable discrete space and by \mathbb{R} the set of all real numbers with the usual topology.

Theorem 2. Let τ be a shift-continuous T_1 -topology on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$. Then the following statements are equivalent:

- (i) $(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau)$ is compact;
- (*ii*) $\tau = \tau_{\rm Ac}$;
- (*iii*) $(\mathscr{B}^{\mathcal{F}}_{\omega}(\omega_{\min}), \tau)$ is *H*-closed;
- (iv) $\left(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau\right)$ is feebly compact;
- (v) $\left(\mathscr{B}^{\mathcal{P}}_{\omega}(\omega_{\min}), \tau\right)$ is infra *H*-closed;
- (vi) $(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau)$ is d-feebly compact;
- (vii) $(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau)$ is pseudocompact;
- (viii) $(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau)$ is \mathbb{R} -compact;
- (ix) $(\mathscr{B}^{r}_{\omega}(\omega_{\min}), \tau)$ is $\mathfrak{D}(\omega)$ -compact.

Proof. Implications $(ii) \Rightarrow (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (viii) \Rightarrow (ix)$ and $(i) \Rightarrow (vii) \Rightarrow (iv) \Rightarrow (vi)$ are trivial (see the diagram in [22]). Lemma 1 implies implications $(vi) \Rightarrow (iv)$ and $(iii) \Rightarrow (i)$.

 $(ix) \Rightarrow (i)$ Suppose to the contrary that there exists a shift-continuous T_1 -topology τ on the semigroup $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min})$ such that $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$ is a $\mathfrak{D}(\omega)$ -compact non-compact space. Then there exists an open cover $\mathscr{U} = \{U_{\alpha}\}$ of $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$ which has not a finite subcover. Let $U_{\alpha_0} \in \mathscr{U}$ such that $\mathscr{O} \in U_{\alpha_0}$. Since $(\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau)$ is not compact the set $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}) \setminus U_{\alpha_0}$ is infinite. We enumerate the set $\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}) \setminus U_{\alpha_0}$, i.e., put $\{x_i : i \in \omega\} = \mathscr{B}^{\dagger}_{\omega}(\omega_{\min}) \setminus U_{\alpha_0}$. We identify $\mathfrak{D}(\omega)$ with ω and define a map $\mathfrak{f}: (\mathscr{B}^{\dagger}_{\omega}(\omega_{\min}), \tau) \to \mathfrak{D}(\omega)$ in the following way

$$(x)\mathfrak{f} = \begin{cases} 0, & \text{if } x \in U_{\alpha_0};\\ i, & \text{if } x = x_i. \end{cases}$$

Proposition 3 implies that such defined map \mathfrak{f} is continuous. Also, the image $(\mathscr{B}_{\omega}^{\dagger}(\omega_{\min}))\mathfrak{f}$ is not a compact subset of $\mathfrak{D}(\omega)$, which contradicts the assumption. \Box

Theorem 2 implies

Corollary 3. Every shift-continuous T_1 -topology $\mathfrak{D}(\omega)$ -compact τ on the semigroup $B_{\omega}^{\mathscr{F}_1}$ is compact. Moreover the semigroup $B_{\omega}^{\mathscr{F}_1}$ admits the unique compact shift-continuous T_1 -topology.

Remark 1. By Proposition 4 of [10] the semigroup $B_{\omega}^{\mathscr{F}_1}$ contains an isomorphic copy of the $\omega \times \omega$ -matrix units. Then Theorem 5 from [16] implies that $B_{\omega}^{\mathscr{F}_1}$ does not embed into a countably compact Hausdorff topological semigroup.

Acknowledgements

The author acknowledge her PhD Advisor Oleg Gutik and the referee for their comments and suggestions.

References

- R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudocompact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500-506. DOI: 10.1090/S0002-9939-1958-0097043-2
- S. Bardyla, An alternative look at the structure of graph inverse semigroups, Mat. Stud. 51 (2019), no. 1, 3-11. DOI: 10.15330/ms.51.1.3-11

- T. Berezovski, O. Gutik, and K. Pavlyk, Brandt extensions and primitive topological inverse semigroups, Int. J. Math. Math. Sci. 2010 (2010) Article ID 671401, 13 pages. DOI: 10.1155/2010/671401
- 4. J. H. Carruth, J. A. Hildebrant and R. J. Koch, *The theory of topological semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
- 5. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- 7. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- 8. O. V. Gutik, On Howie semigroup, Mat. Metody Fiz.-Mekh. Polya **42** (1999), no. 4, 127–132 (in Ukrainian).
- 9. O. Gutik, On the group of automorphisms of the Brandt λ^0 -extension of a monoid with zero, Proceedings of the 16th ITAT Conference Information Technologies Applications and Theory (ITAT 2016), Tatranske Matliare, Slovakia, September 15-19, 2016. CEUR-WS, Bratislava, 2016, pp. 237–240.
- 10. O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. **90** (2020) (to appear) (in Ukrainian).
- 11. O. V. Gutik, and K. P. Pavlyk, *H*-closed topological semigroups and topological Brandt λ -extensions, Mat. Metody Fiz.-Mekh. Polya **44** (2001), no. 3, 20–28, (in Ukrainian).
- 12. O. Gutik and K. Pavlyk, Topological Brandt λ -extensions of absolutely H-closed topological inverse semigroups, Visn. L'viv. Univ., Ser. Mekh.-Mat. **61** (2003), 98-105.
- 13. O. V. Gutik and K. P. Pavlyk, On Brandt λ^0 -extensions of semigroups with zero, Mat. Metody Fiz.-Mekh. Polya **49** (2006), no. 3, 26-40.
- O. V. Gutik and K. P. Pavlyk, Pseudocompact primitive topological inverse semigroups, Mat. Metody Fiz.-Mekh. Polya 56 (2013), no. 2, 7-19; reprinted version: J. Math. Sci. 203 (2014), no. 1, 1-15. DOI: 10.1007/s10958-014-2087-5
- 15. O. V. Gutik and K. P. Pavlyk, On pseudocompact topological Brandt λ^0 -extensions of semitopological monoids, Topol. Algebra Appl. 1 (2013), 60–79. DOI: 10.2478/taa-2013-0007
- 16. O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ^0 -extensions, Mat. Stud. **32** (2009), no. 2, 115–131.
- O. V. Gutik, K. P. Pavlyk, and A. R. Reiter, On topological Brandt semigroups, Mat. Metody Fiz.-Mekh. Polya 54 (2011), no. 2, 7-16 (in Ukrainian); English version in: J. Math. Sci. 184 (2012), no. 1, 1-11. DOI: 10.1007/s10958-012-0847-7
- O. Gutik and O. Ravsky, On feebly compact inverse primitive (semi)topological semigroups, Mat. Stud. 44 (2015), no.1, 3-26.
- O. V. Gutik and O. V. Ravsky, Pseudocompactness, products and Brandt λ⁰-extensions of semitopological monoids, Mat. Metody Fiz.-Mekh. Polya 58 (2015), no. 2, 20-37; reprinted version: J. Math. Sci. 223 (2017), no. 1, 18-38. DOI: 10.1007/s10958-017-3335-2
- 20. O. Gutik and D. Repovš, On 0-simple countably compact topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x
- O. Gutik and D. Repovš, On Brandt λ⁰-extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8–32. DOI: 10.1007/s00233-009-9191-8
- 22. O. V. Gutik and O. Yu. Sobol, On feebly compact semitopological semilattice $\exp_n \lambda$, Mat. Metody Fiz.-Mekh. Polya **61** (2018), no. 3, 16–23; reprinted version: J. Math. Sc. **254** (2021), no. 1, 3–20. DOI: 10.1007/s10958-021-05284-8
- 23. O. Gutik and O. Sobol, Extensions of semigroups by symmetric inverse semigroups of a bounded finite rank, Visn. L'viv. Univ., Ser. Mekh.-Mat. 87 (2019), 5-36.

- D. W. Hajek and A. R. Todd, Compact spaces and infra H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), no. 2, 479-482. DOI: 10.1090/S0002-9939-1975-0370499-3
- 25. M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.
- 26. K. Pavlyk, Absolutely H-closed topological semigroups and Brandt λ -extensions, Applied Problems of Mechanics and Mathematics, **2** (2004), 61–68.
- W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. DOI: 10.1007/BFb0073675
- V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

Стаття: надійшла до редколегії 07.11.2019 доопрацьована 31.10.2020 прийнята до друку 17.11.2021

ПРО СЛАБКО КОМПАКТНІ ТОПОЛОГІЇ НА НАПІВГРУПІ $B_{\omega}^{\mathscr{F}_1}$

Олесандра ЛИСЕЦЬКА

Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000, Львів e-mail: o.yu.sobol@qmail.com

Вивчається напівгрупа Гутіка-Михаленича $\mathcal{B}^{\mathscr{F}_1}_{\omega}$ у випадку, коли сім'я \mathscr{F}_1 складається з порожньої множини та всіх одноточкових підмножин у ω . Ми доводимо, що напівгрупа $\mathcal{B}^{\mathscr{F}_1}_{\omega}$ ізоморфна піднапівгрупі $\mathscr{B}^{\mathsf{r}}_{\omega}(\omega_{\min})$ ω -розширенню Брандта напівгратки (ω, \min) , описуємо всі трансляційно неперервні слабко компактні T_1 -топології на напівгрупі $\mathscr{B}^{\mathsf{r}}_{\omega}(\omega_{\min})$. Зокрема, доведено, що кожна трансляційно неперервна слабко компактна T_1 -топологія τ на напівгрупі $\mathcal{B}^{\mathscr{F}_1}_{\omega}$ є компактною, ба більше, у цьому випадку простір $(\mathcal{B}^{\mathscr{F}_1}_{\omega}, \tau)$ гомеоморфний одноточковій компактифікації Алєксандрова дискретного зліченного простору $\mathfrak{D}(\omega)$.

Ключові слова: напівтопологічна напівгрупа, слабко компактний, компактний, ω -розширенню Брандта.

 $\mathbf{56}$