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We study the Gutik-Mykhalenych semigroup B! in the case when the
family .#1 consists of the empty set and all singleton in w. We show that
B7% is isomorphic to subsemigroup ., (wmin) of the Brandt w-extension of
the semilattice (w, min) and describe all shift-continuous feebly compact 73-
topologies on the semigroup ., (wmin). In particular, we prove that every shift-
continuous feebly compact 71-topology 7 on BZ1 is compact and moreover in
this case the space (B;?HT) is homeomorphic to the one-point Alexandroff
compactification of the discrete countable space D (w).
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We shall follow the terminology of [4} [l 6] [7) 27]. By w we denote the first infinite
cardinal.

A semigroup S is called inverse if for any element z € S there exists a unique
x~! € Ssuch that z2~'x = z and 2 'zoz~! = 2~ 1. The element 2~ is called the inverse
of x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to
every element x of § its inverse element x~! is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order < on E(S): e < f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order < on S: s < t if and only if there exists e € E(S) such that s = te.
This order is called the natural partial order on S [28].
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The bicyclic monoid €'(p, q) is the semigroup with the identity 1 generated by two
elements p and ¢ subjected only to the condition pg = 1. The semigroup operation on
€ (p,q) is defined as follows:

qkpl . qmpn _ qk+m7min{l,m}pl+n7min{l,m}'
It is well known that the bicyclic monoid € (p, ¢) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on %(p,q) is a
group congruence [5].

A topological (semitopological) semigroup is a topological space together with a
continuous (separately continuous) semigroup operation. If S is a semigroup and 7 is
a topology on S such that (S, 1) is a topological semigroup, then we shall call 7 a semi-
group topology on S, and if 7 is a topology on S such that (S,7) is a semitopological
semigroup, then we shall call 7 a shift-continuous topology on S.

Next we shall describe the construction which is introduced by Gutik and
Mykhalenych in [10].

Let Z(w) be the family of all subsets of w. For any F' € #(w) and n,m € w we put
n—m+F={n-—m+k: ke F}if F# & and n —m+ F = @ otherwise. A subfamily
F C P(w) is called w-closed if F1 N(—n+ Fp) € & forall n € w and F1, F; € F.

Let B, be the bicyclic monoid and .# be an w-closed subfamily of &7(w). On the
set B, x .# we define the semigroup operation “-” in the following way

(i1 — j1 + 12, j2, (1 —le + F1) N Fy), if j1 <ig;

(i1, 1, F1) - (i2, j2, F2) = { (1,41 —d2 + g2, F1 N (i2 — j1 + Fo)), if ji > i,

In [I0] it is proved that if the family .# C Z(w) is w-closed then (B, x %#,) is a
semigroup. Moreover, if an w-closed family .# C 2?(w) contains the empty set & then
the set I = {(i,7,9): i,j € w} is an ideal of the semigroup (B, x .%, ). For any w-closed
family .# C #(w) the semigroup

7 _ | (Bux 7)1, ifoe7,
© =\ (BuxZ,), ito¢F

is defined in [10]. The semigroup Bf generalizes the bicyclic monoid and the countable
semigroup of matrix units. It is proven in [10] that Bf is combinatorial inverse semi-
group and Green’s relations, the natural partial order on Bf and its set of idempotents
are described. The criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the
semigroup Bf and when Bf has the identity, is isomorphic to the bicyclic semigroup or
the countable semigroup of matrix units are given. In particular, in [10] it is proved that
the semigroup B:} is isomorphic to the semigrpoup of wxw-matrix units if and only if
Z consists of a sigleton and the empty set.
We define

F ={ACw: |A] < 1}.
It is obvious that . is an w-closed subfamily of 2?(w) and hence BZ' is an inverse

semigroup with zero. Later by (i, j, {k}) we denote a non-zero element of BZ* for some
i,j,k € w and by 0 the zero of BZ*.
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In this paper we study properties of the semigroup Bw'%. We show that Bfl is
isomorphic to the subsemigroup %" (wmin) of the Brandt w-extension of the semilatti-
ce (w,min) and describe all shift-continuous feebly compact T}-topologies on the semi-
group %' (wmin)- In particular, we prove that every shift-continuous feebly compact T-
topology 7 on %{': (wmin) is compact and moreover in this case the space (%Z (Wrmin), T)
is homeomorphic to the one-point Alexandroff compactification of the discrete countable
space D (w).

Proposition 2 of [10] implies Proposition [1| which describes the natural partial order
on Bfl.

Proposition 1. Let (i1, 1, {k1}) and (iz, j2, {ka}) be non-zero elements of the semigroup
B7'. Then (i1, j1, {k1}) < (ia, j2, {k2}) if and only if

ke —ki=i1 —ia=j1—ja=p
for some p € w.

Proposition |1{ implies the structure of maximal chains in Bf ! with the respect to
its natural partial order

Corollary 1. Let i,j be arbitrary elements of w. Then the following finite series
0 < (4,5, {0});
0<(i+1,7+1,{0}) =< (i {1})
0<(i+2,7+2{0}) < (i+1,7+1,{1}) =< (4,4,{2});

0<(i+kj+k{0)<(+k-17+k-1{1})< - < (05, {k});

describes maximal chains in the semigroup Bfl.

We need the following construction from [8].
Let S be a semigroup with zero and A > 1 be a cardinal. On the set By)(S) =
(A x S xA)U{O} we define a semigroup operation as follows
_ ) (enst,0), i B=r;
(s ura) = { 0 R0
and (a,s,68)-0 =0 - (a,s,5) = O -0 = 0, for all a,p,7,0 € A and s,t € S. If S is
a monoid then the semigroup %,(5) is called the Brandt \-extension of the semigroup
S [8]. Algebraic properties of %, (S) and its generalization Brandt \°-extensions %9 (S) of
semigroups are studied in [8, [13]. The structures, topologizations of the semigroups %, (.5)
and .@9\(5 ), their algebraic, categorical properties, applications and generalizations are
established in [2, 3, [0} [T, 12, (13} 14, 15, 16, (17, I8, 19, 20, 21| 23, 26].
By wmin we denote the set w with the binary operation
xy = min{z, y}, for z,y € w.

It is obvious that wy;, is a semilattice.
We define a map f: BZ' — %, (wmin) by the formulae

(1) (i7ja {k})f: (Z+kak7.7+k) and (O)f: 0,
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for i, 5,k € w.
Proposition 2. The map f: Bfl — By (Wmin) 18 an isomorphic embedding.

Proof. 1t is obvious that the map f defined by formulae is bijective.
Fix arbitrary (i1, j1, {k1}), (i, jo, {k2}) € BZ*. Then we have that

((i1, 71, {k1}) - (i, jo, {k2}))f =

(i1 — j1 +i2,J2, (1 — d2 + {k1}) N {k2})f, if j1 <i2 and ji + k1 =2 + ko;
(0)f, if j1 < g and j1 + k1 # 2 + ko;
_ (11, J2, {k1} N {k2})F, if j1 =iz and ky = ky; _
- (O)f, if j1 = iQ and k‘l 7é kg;
(i1, 1 —i2 + j2, {k1} N (G2 — j1 + {k2}))f, if j1 > 42 and ji + k1 = iz + ko;
(0)f, if j1 >dg and jy + ki # 2 + ko
(il — 71 + %2, j2, {kz})f, if g1 < i2 and g1+ ki =19+ ]4;2;
_ (il,jg, {kl})f, lf j1 = ig and kl = k’g; _
) (i, g1 —d2 4 g, (R D), if g1 > do and gy + Ry =g + ks
(0)f, if j1 + k1 #io + ko
(iv — g1 +i2 + ko, ko, jo + k2), if j1 <o and ji + k1 = ia + ko;
_ (i1 + k1, k1, jo + k1), if j1 =iz and ky = ky; _
) (ki ka g —d2 g k), if 51 > i and gy + k= dg + ko
o, if j1 + ki #ia + ko
(i1 4 k1, k2, jo + k2), if j1 <z and j1 + k1 = i2 + ko;
_ ) (ia+ k1, Ry, jo + ko), if 1 =2 and ky = ko;
) (i ki kg2 +ke), if 51 > dp and gy + Ky = dg 4 Ko
o, if j1 + ki # o + ko,

and
((i1, 31, {k1 })F - (B2, g2, {R2 }))f = (i1 + k1, ki, g1 + k1) - (i2 + ko, ko, jo + ko) =

(i 4k, min{ky, ke, o + ko), if i+ Ky = do 4 ks
B 0, if j1 + k1 #ix+ k2
(i1 + k1, ko, o + ko), if ko < Ky and j1 + ki = dg + ko;
(i1 + ki, k1, jo + k2), if ko = k1 and k1 = ko;
(i1+k1,k1,jg+k2), if ko > k1 and j1+/€1:i2+k2;
o, if j1 + k1 # i2 + ka,
(i1 + k1, ko, jo + ko), if j1 <z and ji + k1 = d2 + ka;
(i1+/€1,k‘1,j2+k’2), if j1 =2 and k1 = ko;
(i1+k1,k1,jg+k2), lfjl > 49 and jl—l—k}l:ig—l-k'g;
0, ifj1+k‘17éi2+k'2.

Since 0 and & are the zeros of the semigroups B;’? Y and A, (wmin), respectively, the above
equalities imply that the map §: Bf ! — AB,(Wmin) is a homomorphism. This completes
the proof of the proposition. O

Next we define
Bl (winin) = {0} U{(6,k, J) € Bo(wmin) \ {O} 14,5 > K}
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Simple verifications show that %" (wmiy) is an inverse subsemigroup of %, (Wmin)-
Proposition [2] implies

Theorem 1. The semigroup szl 1s 1somorphic to %’Z(wmin) by the map f.
For any i, j € w we denote
wii” = (k) (6K, ) € B (wmin) } -
Proposition 3. Let 7 be a shift-continuous Ty-topology on the semigroup PB. (wmin)-
Then every non-zero element of ., (wmin) is an isolated point in (B, (wmin),T).

Proof. Fix arbitrary 4,j € w. Since (¢,0,4) - (4,0,7) - (4,0,7) = (4,0, ), the assumption
of the proposition implies that for any open neighbourhood W; ¢ jy Z & of (i,0,j) there
exists its open neighbourhood V{; ¢ ;) in the topological space (%’Z (wmin),T) such that
(4,0,7)-Vis,0,5) - (4,0,7) € Weio,5)- The definition of the semigroup operation on B (Winin)
implies that V; ;) C w)" Then the set wr(zij)r is an open subset of (,@Z)(wmin),r)

min in

because it is the full preimage of V{; ¢ ;) under the mapping
b: %Z(Wmin) — %Z(wmin)a T (Z,O,Z) t L (],0,])
By Corollarythe set wr(égfl)” is finite, which implies the statement of the proposition. [

Next we shall show that the semigroup %’Z (wWmin) admits a compact shift-continuous
Hausdorff topology.

Example 1. A topology 7a. on &' (wmin) is defined as follows:

a) all nonzero elements of %Z (wmin) are isolated points in (93‘2 (Wrmin ), TAC);
b) the family

PBrc(0) = {U(ilvjl)""s(inajn) = ‘@Z}(Wmin) \ (wt(:lil[’ljl)r) U---u wr(;;Ln,Jn)r) :
nvilvjlv s 7in7jn S W}

is a base of the topology Ta. at the point & € %’Z (Wmin)-
Corollary [1] implies that the set w(i;fl)ﬁ is finite for any 4,j € w which implies that

m
(%Z(wmin),TAc) is the one-point Alexandroff compatification of the discrete space

*@Z) (Wmin) \ {0}

Proposition 4. (%’Z (Wmin )s TAC) is a Hausdorff compact semitopological semigroup with
continuous inversion.

Proof. 1t is obvious that the topology 7a. is Hausdorff and compact.
Fix any U(’il,jl),-.-,(’in,jn) € %Ac(ﬁ) and (Za k)j): (ly map) € ‘@Zz(wrﬂin) \ {ﬁ} Put

K ={ijit,... in,j,j1,---rjn}  and Uk = BL(wmn)\ |J wis?"
z,yce K
Then we have that U € $a.(€) and the following conditions hold
Uk {00k, 5)} C Uiy ji),s(in,gn)»
{5, 3)} Uk S Uy 1), i)



ON FEEBLY COMPACT TOPOLOGIES ON THE SEMIGROUP B!
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2020. Bumyck 90 53

{0} A6 k)Y ={Gk,5)} {0 ={0} S U, j1),s(inin)s
{ﬁ} ’ U(ilvjl) ----- (insdn) — U(ilajl) ~~~~~ (in,jn) {ﬁ} = {ﬁ} < U(ilel) ,,,,, (insdn)>
{(Z’k7])} ! {(l)map)} = {ﬁ} g U(’L'1,j1),‘..7(in,jn)a if .] 3& l7
{(kamj)} ’ {(lamap)} = {(ivmin{kam}vp)}a if Jj= lv
—1
(U(j17i1)7~-'7(j71,7in)) g U(ilvjl)a-“v(invjn)'

Therefore, (2!, (wmin),Tac) is a semitopological inverse semigroup with continuous
inversion. U

We recall that a topological space X is said to be

e perfectly normal if X is normal and and every closed subset of X is a Gs-set;

e scattered if X does not contain a non-empty dense-in-itself subspace;

o hereditarily disconnected (or totally disconnected) if X does not contain any
connected subsets of cardinality larger than one;

e compact if each open cover of X has a finite subcover;

e countably compact if each open countable cover of X has a finite subcover;

o H-closed if X is a closed subspace of every Hausdorff topological space in which
it contained;

o infra H-closed provided that any continuous image of X into any first countable
Hausdorff space is closed (see [24]);

e feebly compact (or lightly compact) if each locally finite open cover of X is fini-
te [1];

o d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite
(see [251);

e pseudocompact if X is Tychonoff and each continuous real-valued function on X
is bounded;

e Y-compact for some topological space Y, if f(X) is compact for any continuous
map f: X —- Y.

The relations between above defined compact-like spaces are presented at the di-
agram in [22].
Lemma 1. Every shift-continuous T -topology T on the semigroup B (wmin) is regular.
Proof. By Proposition every non-zero element of the semigroup %" (wmin) is an isolated

point in (%, (wmin), 7). This implies that every open neighbourhood V(&) of the zero &
is a closed subset in (%, (wmin), T), and hence the space (%L (wmin), ) is regular. O

Since in any countable T3 -space X every open subset of X is a F,;-set, Theorem 1.5.17
from [7] and Lemma [1] imply the following corollary.

Corollary 2. Let T be a shift-continuous T} -topology on the semigroup A" (wmin). Then
(%Z) (Wrmin)s 7') is a perfectly normal, scattered, hereditarily disconnected space.

By ©(w) we denote the countable discrete space and by R the set of all real numbers
with the usual topology.

Theorem 2. Let 7 be a shift-continuous Ty -topology on the semigroup A" (wmin). Then
the following statements are equivalent:
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((zg (2., (Wmin), T) is compact;
i) T=7Ta

(#1) (%’Z(wmm)m) is H-closed;

(iv) (B, (wmin), T) is feebly compact;
(v) (B (wmin), T) is infra H-closed;

(vi) (B, (Wmin), T) is d-feebly compact;

(vii) (B (wWmin), T) is pseudocompact;

(viii) (Bl (wmin),T) is R-compact;

(iz) (B (wWmin),T) is D(w)-compact.

Proof. Implications (i1) = (i) = (iii) = (iv) = (v) = (viii) = (iz) and (i) = (vii) =
(iv) = (vi) are trivial (see the diagram in [22]). Lemmal[l]implies implications (vi) = (iv)
and (7it) = (4).

(ix) = (i) Suppose to the contrary that there exists a shift-continuous T;-topology
7 on the semigroup %, (wmin) such that (2., (wmin),7) is a D(w)-compact non-compact
space. Then there exists an open cover % = {Uy,} of (%, (wmin), T) which has not a finite
subcover. Let U,, € % such that & € U,,. Since (%Z,(wmm)ﬁ) is not compact the set
B (Wimin) \ Ua, is infinite. We enumerate the set B (wimin) \ Uay, i.6., put {z;: i € w} =
Bl (wmin) \ Ua,- We identify D(w) with w and define a map §: (&, (wmin),7) — D(w)
in the following way

_J 0, ifx e Uyy;
(@) = { 1, ifxz=ux.

Propositionimplies that such defined map f is continuous. Also, the image (%", (wmin))f
is not a compact subset of ®(w), which contradicts the assumption. O

Theorem [2] implies

Corollary 3. FEvery shift-continuous Ty -topology D (w)-compact T on the semigroup Bfl
is compact. Moreover the semigroup Bfl admits the unique compact shift-continuous T} -
topology.

Remark 1. By Proposition 4 of [I0] the semigroup Bfl contains an isomorphic copy of
the w x w-matrix units. Then Theorem 5 from [16] implies that B does not embed
into a countably compact Hausdorff topological semigroup.
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Buswaerscs Hamisrpyma yrika-Muxanernaa B! y Bumanky, KO civ’s
F1 CKIIQMIAEThCS 3 TIOPOKHBOI MHOKWHHU Ta BCIX OJHOTOYKOBUX THAMHOKWH Y
w. Mu mosomumo, mo mamiBrpyma B! isomopdua minmamsrpym ., (Wmin)
w-po3mupenno Bpangra mamsrparku (w, min), omuCyeMO BCl TPaHC/IATIRHO
HeTepepBHi C/1abK0 KOMIMAKTHI 71-TOMOJIOTI] HA HAIMIBIPYIIi A, (Wmin). 30kpe-
Ma, JIOBEJIEHO, IO KOXKHA TPAHC/SAIIIHO HermepepBHA CIabKO KOMIAKTHA 11-
Tonoorisa T Ha HamiBrpyni B! € KOMIIAKTHOIO, 6a GilbIIe, y [HOMY BHIAIKY
IIPOCTIp (Bf L 7') romeoMopdHUN 0HOTOUKOBIH KoMmakTudikarii Anekcan/i-
POBa AMCKPETHOTO 3/IFEHHOTO MPOcTopy D (w).

Karowoet cao6a: HAMIBTOIIONIOTIYHA HAIIBrpyIa, CIA0KO KOMIAKTHUM, KOM-
HaKTHHI, w-po3mupenHio Bbpamara.
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