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We study the asymptotic behaviour of eigenvalues and eigenfunctions of a
boundary value problem for the Sturm-Liouville operator with general boun-
dary conditions and the weight function perturbed by the so-called δ′-like
sequence ε−2h(x/ε). The eigenvalue problem is realized as a family of non-
self-adjoint matrix operators acting on the same Hilbert space and the norm
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convergence of the perturbed spectra.
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1. Introduction

The vibrating systems with added masses have become the subject of research for
mathematicians and physicists since the time of Poisson and Bessel [1, Ch.2], and an
enormous number of studies have been devoted to these problems. Many authors have
investigated properties of one-dimensional continua (strings and rods) with the mass

density perturbed by the �nite or in�nite sum
∑
k

Mkδ(x − xk), where δ is the Dirac

function (see for instance [2, 3, 4, 5] and the references given there). The mathematical
models involving the δ-functions are in general non suitable for 2D and 3D elastic systems,
because the formal partial di�erential expressions which appear in the models often have
no mathematical meaning. Such models are also not adequate in the one-dimensional
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case, when the added masses Mk are large enough. The large adjoint mass can lead to a
strong local reaction which brings about a considerable change in the basic form of the
oscillations. But this reaction cannot be described on the discrete set which is a support
of singular distributions. It is natural that the geometry of a small part of the vibrating
system where the large mass is loaded should also have an e�ect on eigenfrequencies and
eigenvibrations. Since the works of E. S�anchez-Palencia [6, 7, 8], more adequate and more
complicated mathematical models of media with the concentrated masses have gained
popularity; the asymptotic analysis began to be applied to the spectral problems with
the perturbed mass density having the form

ρε(x) = ρ0(x) +
∑
k

ε−mkhk

(
x− xk
ε

)
,

where hk are functions of compact support and mk ∈ R. The most interesting cases of
the limit behaviour of eigenvalues and eigenfunctions as ε→ 0 arise when the powers mk

are greater than or equal to the dimension of vibrating system.
These improved models have attracted considerable attention in the mathematical

literature over three past decades (see review [9]). The classic elastic systems such as
strings, rods, membranes, plates and bodies with the perturbed density

ρε(x) = ρ0(x) + ε−mh(x/ε)

have been considered in [10, 11, 12, 13, 14, 15, 16, 17], where the convergence of spectra for
each realm and the complete asymptotic expansions of eigenvalues and eigenfunctions for
selected values of m have been obtained. The in�uence of the concentrated masses on the
spectral characteristics and oscillations of junctions, the objects with very complicated
geometry, has been studied in [18, 19, 20]. The asymptotic behaviour of eigenvalues
and eigenfunctions of membranes and bodies with many concentrated masses near the
boundary has been investigated in [21, 22, 23, 24, 25]. In [26, 27] the asymptotic analysis
has been applied to the spectral problems for membranes and plates with the density
perturbed in a thin neighbourhood of a closed smooth curve. The spectral problems on
metric graphs that describe the eigenvibrations of elastic networks with heavy nodes have
been studied in [28, 29].

A characteristic feature of such problems is the presence of perturbed density ρε
at the spectral parameter, which in turn leads to a self-adjoint operator realization of
the problem in a Hilbert space (a weighted Lebesgue space) that also depends on the
small parameter. The study of families of operators acting on varying spaces entails
some mathematical di�culties. First of all, the question arises how to understand the
convergence of such families. Next, if these operators do converge in some sense, does this
convergence implies the convergence of their spectra (see [15, III.1], [31, 32, 33] for more
details). Most of the above-mentioned publications deal with asymptotic approximations
of eigenvalues and eigenfunctions; justifying such asymptotics, the researchers used the
theory of quasimodes [34], and therefore the question of the operator convergence can be
avoided in the studies.

In this paper we consider the Sturm-Liouville operators and investigate the ei-
genvalue problems with general boundary conditions and the weight function perturbed
by the so-called δ′-like sequence ε−2h(x/ε). By abandoning the self-adjointness, we reali-
ze the perturbed problem as a family of non-self-adjoint matrix operators Aε acting on
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a �xed Hilbert space and prove the norm resolvent convergence of Aε as ε → 0. The
operators Aε are certainly similar to self-adjoint ones for each ε and their spectra are
real, discrete and simple. Surprisingly enough, the limit operator is essentially non-self-
adjoint, because it possesses multiple eigenvalues with non-trivial Jordan cells. Actually
the singularly perturbed problem gives us an example of some self-adjoint operators Tε
with compact resolvents acting on varying spaces Hε that �converge� to a non-self-adjoint
operator T0 in the space H0. More precisely, the spectra of Tε converge to the spectrum
of T0 in the Hausdor� sense, taking account of the algebraic multiplicities of eigenvalues;
moreover the limit position, as ε → 0, of the eigensubspaces of Tε can be described by
means of the root subspaces of T0.

Note that a partial case of the problem, namely the Sturm-Liouville operator without
a potential subject to the Dirichlet type boundary condition, was previously studied in
[13]. In Theorem 9, the Hausdor� convergence of the perturbed spectrum to some limit
set was proved. This limit set was treated as a union of spectra of three self-adjoint
operators (cf. Theorem 2 below), but the limit operator was not constructed and the
question of eigenvalue multiplicity was not discussed.

We use the following notation. Let L2(r, I) be the weighted Lebesgue space with the
norm

‖f‖L2(r,I) =

∫
I

r(x)|f(x)|2 dx

1/2

,

provided r is positive. Throughout the paper, W k
2 (I) stands for the Sobolev space of the

functions de�ned on I ⊂ R that belong to L2(I) together with their derivatives up to the
order k. The norm in W k

2 (I) is given by

‖f‖Wk
2 (I) :=

(
‖f (k)‖2L2(I) + ‖f‖2L2(I)

)1/2

,

where ‖f‖L2(I) is the usual L2-norm. The spectrum, point spectrum and resolvent set of
a linear operator T are denoted by σ(T ), σp(T ) and ρ(T ), respectively, and the Hilbert
space adjoint operator of T is T ∗. For any complex number z ∈ ρ(T ), the resolvent
operator Rz(T ) is de�ned by Rz(T ) = (T −z)−1. Also, we will sometimes abuse notation
and write column vectors as row vectors.

2. Statement of Problem

Let I = (a, b) be a �nite interval in R containing the origin and ε be a small positive
parameter. Set Ia = (a, 0), Ib = (0, b), Iεa = (a,−ε), Iεb = (ε, b) and J = (−1, 1). We
study the limiting behavior as ε → 0 of eigenvalues λε and eigenfunctions yε of the
problem

−y′′ε + q(x)yε = λεrε(x)yε, x ∈ I, (1)

yε(a) cosα+ y′ε(a) sinα = 0, (2)

yε(b) cosβ + y′ε(b) sinβ = 0 (3)
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with the singularly perturbed weight function

rε(x) =

{
r(x), x ∈ Iεa ∪ Iεb ,
ε−2h(ε−1x), x ∈ (−ε, ε).

Assume that α, β ∈ R, q, r ∈ L∞(I) and h ∈ L∞(J ); r and h are uniformly positive.
For any �xed real α, β and positive ε small enough, problem (1)�(3) admits a self-

adjoint realization in the weighted space L2(rε, I). Let us consider the Sturm-Liouville
di�erential expression τ(φ) = −φ′′ + qφ. We introduce the operator Tε de�ned by Tεφ =
r−1
ε τ(φ) on the functions φ ∈ W 2

2 (I) obeying boundary conditions (2) and (3). Hence
{Tε}ε>0 is a family of self-adjoint operators in the varying Hilbert spaces L2(rε, I). Of
course the spectrum of Tε is real, discrete and simple.

Problem (1)�(3) can be also associated with a non-self-adjoint matrix operator in
the �xed Hilbert space L = L2(r, Ia) × L2(h,J ) × L2(r, Ib) as follows. Subsequently,
we will write boundary conditions (2) and (3) for a function φ as `aφ = 0 and `bφ = 0
respectively. Let us introduce the new variable t = x/ε and set wε(t) = yε(εt). Then the
eigenvalue problem can be written in the form

− y′′ε + q(x)yε = λεr(x)yε, x ∈ Iεa, `ayε = 0, (4)

− w′′ε + ε2q(εt)wε = λεh(t)wε, t ∈ J , (5)

− y′′ε + q(x)yε = λεr(x)yε, x ∈ Iεb , `byε = 0 (6)

with the coupling conditions

yε(−ε) = wε(−1), yε(ε) = wε(1), (7)

εy′ε(−ε) = w′ε(−1), εy′ε(ε) = w′ε(1). (8)

Let Åa be the operator in L2(r, Ia) that is de�ned by Åaφ = r−1τ(φ) on the functions φ

belonging to the set D(Åa) =
{
φ ∈W 2

2 (Ia) : `aφ = 0
}
. Similarly, let Åb be the operator

in L2(r, Ib) such that Åbφ = r−1τ(φ) and D(Åb) =
{
φ ∈W 2

2 (Ib) : `bφ = 0
}
. We also

introduce the operator B̊ = −h−1 d
2

dt2
in L2(h,J ) with domain D(B̊) = W 2

2 (J ) and its

potential perturbation B̊ε = B̊ + ε2 q(εt)

h(t)
.

Let us consider the matrix operator

Aε =

Åa 0 0

0 B̊ε 0

0 0 Åb


in L, acting on the domain

D(Aε) =
{

(φa, ψ, φb) ∈ D(Åa)×D(B̊ε)×D(Åb) :

φa(−ε) = ψ(−1), φb(ε) = ψ(1), εφ′a(−ε) = ψ′(−1), εφ′b(ε) = ψ′(1)
}
.

A straightforward calculation shows that Aε is non-self-adjoint. Note that the spectral
equation (Aε − λε)Yε = 0 is slightly di�erent from eigenvalue problem (4)�(8). In fact,
if we display the components of the vector Yε by writing Yε = (yaε , wε, y

b
ε), then we see

at once that yaε is a solution of (4) on the whole interval Ia (not only in Iεa), and ybε
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is a solution of (6) on the whole interval Ib. However, this �extra information�, namely
the extensions of the solutions to the intervals Ia and Ib, does not prevent the operator
Aε from adequately describing the spectrum and the eigenfunctions of (4)�(8) (or also
(1)�(3)), because of the uniqueness of such extensions.

Proposition 1. σ(Aε) = σ(Tε).

Proof. Fix a positive ε. We will show that ρ(Aε) = ρ(Tε). Suppose �rst that ζ ∈ ρ(Tε) and
consider the equation (Aε−ζ)Y = F , where F belongs to L. Suppose that F = (fa, f0, fb).
Then we can construct the function

f(x) =


fa(x) for x ∈ Iεa,
f0(x/ε) for x ∈ (−ε, ε),
fb(x) for x ∈ Iεb

belonging to L2(rε, I). Next, y = (Tε − ζ)−1f is a unique solution of the problem

− y′′ + qy − ζry = rfa in Iεa, `ay = 0, (9)

− ε2y′′ + ε2qy − ζhy = hf0 in (−ε, ε), (10)

− y′′ + qy − ζry = rfb in Iεb , `by = 0, (11)

[y]−ε = 0, [y]ε = 0, [y′]−ε = 0, [y′]ε = 0, (12)

where [y]x0
is a jump of y at the point x0. Denote by ya the extension of y from Iεa to Ia

as a solution of (9). Recall that the right hand side fa is de�ned on the whole interval Ia.
This extension is uniquely de�ned. Similarly, we denote by yb the solution of (11) in Ib
such that yb(x) = y(x) for x ∈ Iεb . Then the vector Y (x) = (ya(x), y(x/ε), yb(x)) belongs
to D(Aε) and solves (Aε− ζ)Y = F . The last equation admits a unique solution Y ; if we
assume that there are more such solutions, then we immediately obtain a contradiction
with the uniqueness of y. Therefore, ρ(Aε) ⊂ ρ(Tε).

Conversely, suppose ζ ∈ ρ(Aε). We prove that (Tε− ζ)y = f is uniquely solvable for
all f ∈ L2(rε, I). Given f , construct the vector F = (fa(x), f(εt), fb(x)), where fa and
fb are the restrictions of f to Ia and Ib respectively. Then the problem

− φ′′a + qφa − ζrφa = rfa in Ia, `aφa = 0,

− ψ′′ + ε2q(ε ·)ψ − ζhψ = hf(ε ·) in J ,
− φ′′b + qφb − ζrφb = rfb in Ib, `bφb = 0,

φa(−ε) = ψ(−1), φb(ε) = ψ(1), εφ′a(−ε) = ψ′(−1), εφ′b(ε) = ψ′(1).

admits a unique solution Y = (Aε − ζ)−1F . If Y = (φa, ψ, φb), then function

y(x) =


φa(x) for x ∈ Iεa,
ψ(x/ε) for x ∈ (−ε, ε),
φb(x) for x ∈ Iεb

is a solution of (9)�(12). Since the spectrum of Tε is discrete, the solvability of (Tε−ζ)y =
f for all f ∈ L2(rε, I) ensures ζ ∈ ρ(Tε), and hence ρ(Tε) ⊂ ρ(Aε). �
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3. Norm Resolvent Convergence of Aε
In this section we will prove that the family of operators Aε converges in the norm

resolvent sense as ε→ 0. Let B be the restriction of B̊ to the domain

D(B) =
{
ψ ∈ D(B̊) : ψ′(−1) = 0, ψ′(1) = 0

}
.

We introduce the matrix operator

A =

Åa 0 0
0 B 0

0 0 Åb


in the space L acting on

D(A) =
{

(φa, ψ, φb) ∈ D(Åa)×D(B)×D(Åb) : φa(0) = ψ(−1), φb(0) = ψ(1)
}
.

This operator is associated with the eigenvalue problem

− u′′ + qu = λru in ∈ Ia, `au = 0, (13)

− w′′ = λhw, in ∈ J , w′(−1) = 0, w′(1) = 0, (14)

− v′′ + qv = λrv in ∈ Ib, `bv = 0, (15)

u(0) = w(−1), v(0) = w(1) (16)

which can be regarded as the limit problem. The following assertion is one of the main
results of this paper.

Theorem 1. The family of operators Aε converges to A as ε→ 0 in the norm resolvent
sense. In addition,

‖Rζ(Aε)− Rζ(A)‖ 6 c
√
ε, (17)

the constant c being independent of ε.

For the convenience of the reader we collect together the de�nitions of all operators
which will be used in the proof.

• Operators T εa (ζ), T εb (ζ), Ta(ζ) and Tb(ζ). We endow D(B̊) with the graph norm,

i.e., the norm of the Sobolev space W 2
2 (J ). Let T εa (ζ) : D(B̊) → L2(r, Ia) be

de�ned as follows. Given ζ ∈ C \R and ψ ∈ D(B̊), we compute ψ(−1), �nd then
a unique solution ua of the problem

− u′′ + qu− ζru = 0 in Ia, `au = 0, u(−ε) = ψ(−1) (18)

and �nally set T εa (ζ)ψ = ua. Similarly, we de�ne T εb (ζ) : D(B̊)→ L2(r, Ib) which
solves the problem

− v′′ + qv − ζrv = 0 in Ib, v(ε) = ψ(1), `bv = 0 (19)

for given ψ ∈ D(B̊). Next, the operators Ta(ζ) and Tb(ζ) stand for T εa (ζ) and
T εb (ζ), provided ε = 0. So Ta(ζ) (resp. Tb(ζ)) solves problem (18) (resp. (19)) for

given ψ ∈ D(B̊) and ε = 0.



66
Yuriy GOLOVATY

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2020. Âèïóñê 89

• Operators Sεa(ζ) and Sεb (ζ). Suppose that D(Åa) and D(Åb) are equipped by the
graph norms. These norms are equivalent to the norms of W 2

2 (Ia) and W 2
2 (Ib)

respectively. The operator Sεa(ζ) : D(Åa)→ L2(h,J ) is de�ned by Sεa(ζ)φ = wa,
where wa is a unique solution of

− w′′ + ε2q(ε ·)w = ζhw in J , w′(−1) = φ′(−ε), w′(1) = 0 (20)

for given φ ∈ D(Åb) and ζ ∈ C \ R. Similarly, the operator Sεb (ζ) : D(Åb) →
L2(h,J ) solves

− w′′ + ε2q(ε ·)w = ζhw in J , w′(−1) = 0, w′(1) = φ′(ε) (21)

for some φ ∈ D(Åa) and ζ ∈ C \ R.
• Operator Bε. This operator is the restriction of B̊ε to the domain

D(Bε) =
{
ψ ∈ D(B̊ε) : ψ′(−1) = 0, ψ′(1) = 0

}
.

• Operators Aεa, A
ε
b, Aa and Ab. Let A

ε
a and Aεb be the restrictions of Åa and Åb

respectively to the domains

D(Aεa) = {φ ∈ D(Åa) : φ(−ε) = 0},

D(Aεb) = {φ ∈ D(Åb) : φ(ε) = 0}.

The operators Aa and Ab stand for Aεa and Aεb, provided ε = 0.

We now construct the resolvents of Aε and A in the explicit form as follows. Fix ζ ∈
C\R. First of all, note that the operators T εa (ζ), T εb (ζ), Sεa(ζ) and Sεb (ζ) are well-de�ned
for such values of ζ. Moreover these operators are compact. Given F = (fa, f0, fb) ∈ L,
solve the equation (Aε − ζ)Y = F . The �rst component of Y = (φa, ψ, φb) is a solution
of the Dirichlet type problem

−φ′′ + qφ− ζrφ = rfa in Ia, `aφ = 0, φ(−ε) = ψ(−1).

This solution can be represented as the sum of a solution of the non-homogeneous equati-
on subject to the homogeneous boundary conditions and a solution of (18):

φa = Rζ(A
ε
a)fa + T εa (ζ)ψ. (22)

The same argument yields

φb = Rζ(A
ε
b)fb + T εb (ζ)ψ. (23)

The middle element ψ of Y is a solution of the Neumann type problem

−ψ′′ + ε2q(ε ·)ψ − ζhψ = hf0 in J , ψ′(−1) = εφ′a(−ε), ψ′(1) = εφ′b(ε),

and it can be written as

ψ = Rζ(Bε)f0 + εSεa(ζ)φa + εSεb (ζ)φb. (24)

Then (22)�(24) taken together yield

φa − T εa (ζ)ψ = Rζ(A
ε
a)fa,

−εSεa(ζ)φa + ψ − εSεb (ζ)φb = Rζ(Bε)f0,

−T εb (ζ)ψ + φb = Rζ(A
ε
b)fb.
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It follows that the resolvent of Aε has the form
Rζ(Aε) = Hε(ζ)−1Rε(ζ), (25)

where

Rε(ζ) =

Rζ(A
ε
a) 0 0

0 Rζ(Bε) 0
0 0 Rζ(A

ε
b)

 , (26)

Hε(ζ) =

 E −T εa (ζ) 0
−εSεa(ζ) E −εSεb (ζ)

0 −T εb (ζ) E

 , (27)

and E denotes the identity operator in the corresponding spaces. We shall prove below
that Hε(ζ) is invertible for ε small enough.

Now we consider the equation

(A− ζ)Y = F

for F ∈ L. In the coordinate representation we have (Åa− ζ)φa = fa, (B− ζ)ψ = f0 and

(Åb − ζ)φb = fb, where Y = (φa, ψ, φb) and F = (fa, f0, fb). Obviously, ψ = Rζ(B)f0.
The functions φa and φb are solutions of the problems

− φ′′ + qφ− ζrφ = rfa in Ia, `aφ = 0, φ(0) = ψ(−1);

− φ′′ + qφ− ζrφ = rfb in Ib, φ(0) = ψ(−1), `bφ = 0

respectively. By reasoning similar to that for (22) and (23), we �nd

φa = Rζ(Aa)fa + Ta(ζ)Rζ(B)f0, φb = Rζ(Ab)fb + Tb(ζ)Rζ(B)f0.

Hence the resolvent of A can be written in the form

Rζ(A) =

Rζ(Aa) Ta(ζ)Rζ(B) 0
0 Rζ(B) 0
0 Tb(ζ)Rζ(B) Rζ(Ab)

 . (28)

To compare the resolvents of Aε and A, we need some auxiliary assertions.

Proposition 2. The operators Aεa, A
ε
b and Bε converge as ε → 0 to Aa, Ab and B

respectively in the norm resolvent sense. Moreover

‖Rζ(A
ε
a)− Rζ(Aa)‖ 6 C1

√
ε, ‖Rζ(A

ε
b)− Rζ(Ab)‖ 6 C2

√
ε, (29)

‖Rζ(Bε)− Rζ(B)‖ 6 C3ε
2, (30)

where the constants Ck do not depend on ε.

Proof. Fix ζ ∈ C \ R and let us compare the elements uε = Rζ(A
ε
b)f and u = Rζ(Ab)f

for given f ∈ L2(r, Ib). Since uε and u solve the problems

− u′′ε + quε − ζruε = rf in Ib, uε(ε) = 0, `buε = 0;

− u′′ + qu− ζru = rf in Ib, u(0) = 0, `bu = 0,

they are related by the equality

uε(x) = u(x)− u(ε)

z(ε)
z(x), x ∈ Ib,
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where z is a solution of the problem

− z′′ + qz − ζrz = 0 in Ib, z(0) = 1, `bz = 0. (31)

Obviously, z(ε) is di�erent from zero for ε small enough. Then we have

‖uε − u‖L2(r,Ib) 6
|u(ε)|
|z(ε)|

‖z‖L2(r,Ib) 6 c1|u(ε)| 6 c2
√
ε ‖u‖W 1

2 (Ib),

because z(ε)→ 1 as ε→ 0 and

|u(ε)| =

∣∣∣∣∣∣
ε∫

0

u′(x) dx

∣∣∣∣∣∣ 6 c3√ε ‖u‖W 1
2 (Ib).

Observe that Rζ(Ab) is a bounded operator from L2(r, Ib) to the domain of Ab equipped
with the graph norm. Since the domain is a subspace of W 1

2 (Ib), there exists a constant
c4 independent of f such that

‖u‖W 1
2 (Ib) 6 c4‖f‖L2(r,Ib).

Therefore ∥∥(Rζ(A
ε
b)− Rζ(Ab)

)
f
∥∥
L2(r,Ib)

6 C2

√
ε ‖f‖L2(r,Ib),

which establishes the norm resolvent convergence Aεb → Ab as ε→ 0 and the correspon-
ding estimate in (29). The proof for the operators Aεa is similar to that just given.

We now turn to the operators Bε and �rst we establish that ‖Rζ(Bε)‖ 6 c for all ε
small enough. Given g ∈ L2(h,J ), consider wε = Rζ(Bε)g which solves

−w′′ε + ε2q(ε ·)wε − ζhwε = hg in J , w′ε(−1) = 0, w′ε(1) = 0.

Recall that q and h are bounded in I and J respectively, and h is uniformly positive on
I. Then we have

‖Rζ(Bε)g‖L2(h,J ) =
∥∥Rζ(B)

(
g − ε2q(ε ·)h−1wε

)∥∥
L2(h,J )

6

6 ‖Rζ(B)g‖L2(h,J ) + ε2‖q‖L∞(I) ‖h−1‖L∞(J ) ‖wε‖L2(h,J ) 6

6 c0‖g‖L2(h,J ) + c1ε
2‖Rζ(Bε)g‖L2(h,J )

and therefore

‖Rζ(Bε)g‖L2(h,J ) 6
c0

1− c1ε2
‖g‖L2(h,J ) 6 c‖g‖L2(h,J ) (32)

if ε is small enough.
Next, we set w = Rζ(B)g. Then the di�erence sε = wε − w solves the problem

−s′′ε − ζhsε = −ε2q(ε ·)wε in J , s′ε(−1) = 0, s′ε(1) = 0.

Hence in view of (32) we deduce

‖(Rζ(Bε)− Rζ(B))g‖L2(h,J ) = ‖sε‖L2(h,J ) 6

6 c2ε
2‖wε‖L2(h,J ) =

= c2ε
2‖Rζ(Bε)g‖L2(h,J ) 6

6 c3ε
2‖g‖L2(h,J ),

which �nishes the proof. �
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Proposition 3. (i) For each ζ ∈ C \ R, we have the bounds

‖T εa (ζ)− Ta(ζ)‖ 6 cε, ‖T εb (ζ)− Tb(ζ)‖ 6 cε,

the constant c being independent of ε.
(ii) There exists a constant C such that

‖Sεa(ζ)‖+ ‖Sεb (ζ)‖ 6 C

for all ε small enough.

Proof. (i) Let us show that T εb (ζ) converge to Tb(ζ) in the norm as ε → 0. The same
proof remains valid for T εa (ζ). Suppose that uε = T εb (ζ)ψ is a solution of (19) for given

ψ ∈ D(B̊). It is easily seen that

uε(x) =
ψ(1)

z(ε)
z(x), x ∈ Ia,

where z is de�ned by (31). If u = Tb(ζ)ψ, then we have u = ψ(1)z. Hence

‖(T εb (ζ)− Tb(ζ))ψ‖L2(r,Ib) =

∥∥∥∥ψ(1)

z(ε)
z − ψ(1)z

∥∥∥∥
L2(r,Ib)

6

6

∣∣∣∣z(ε)− 1

z(ε)

∣∣∣∣ |ψ(1)| ‖z‖L2(r,Ib) 6

6 c1ε ‖ψ‖D(B̊),

because z belongs to C1(Ib) and z(0) = 1. Recall also that D(B̊) = W 2
2 (J ) and hence

‖ψ‖C(J ) 6 C‖ψ‖D(B̊) by the Sobolev embedding theorem.

(ii) For each φ ∈ D(Åb), the function wε = Sεb (ζ)φ is a solution of (21) and satis�es
the estimate ‖wε‖L2(h,J ) 6 c2 |φ′(ε)| with a constant c2 independent of ε, since the
resolvents Rζ(Bε) are uniformly bounded on ε by Proposition 2. The trace operator

jε : D(Åb)→ C, jεφ = φ′(ε), is also uniformly bounded on ε. Therefore

‖Sεb (ζ)φ‖L2(h,J ) = ‖wε‖L2(h,J ) 6 C‖φ‖W 2
2 (Ib).

The same proof works for Sεa(ζ). �

We are now in a position to prove Theorem 1. In view of Proposition 3, we conclude
that the family of matrix operators Hε(ζ), given by (27), converges as ε→ 0 towards

H(ζ) =

E −Ta(ζ) 0
0 E 0
0 −Tb(ζ) E


in the norm. Moreover ‖Hε(ζ)−H(ζ)‖ 6 c1ε. Observe that H(ζ) is invertible and

H(ζ)−1 =

E Ta(ζ) 0
0 E 0
0 Tb(ζ) E

 .

Therefore Hε(ζ) is also invertible for ε small enough, and

‖Hε(ζ)−1 −H(ζ)−1‖ 6 c2ε. (33)
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Recalling (25) and applying Proposition 2, we deduce

Rζ(Aε) = Hε(ζ)−1Rε(ζ)

=

 E −T εa (ζ) 0
−εSεa(ζ) E −εSεb (ζ)

0 −T εb (ζ) E

−1Rζ(A
ε
a) 0 0

0 Rζ(Bε) 0
0 0 Rζ(A

ε
b)


→

E Ta(ζ) 0
0 E 0
0 Tb(ζ) E

Rζ(Aa) 0 0
0 Rζ(B) 0
0 0 Rζ(Ab)


=

Rζ(Aa) Ta(ζ)Rζ(B) 0
0 Rζ(B) 0
0 Tb(ζ)Rζ(B) Rζ(Ab)

 = Rζ(A) as ε→ 0,

by (28). Estimate (17) follows from the equality

Rζ(Aε)− Rζ(A) = Hε(ζ)−1(Rε(ζ)−R(ζ))− (Hε(ζ)−1 −H(ζ)−1)R(ζ)

and bounds (29), (30) and (33). Here R(ζ) = diag
{

Rζ(Aa),Rζ(B),Rζ(Ab)
}
.

4. Spectrum of A

The limit operator

A =

Åa 0 0
0 B 0

0 0 Åb

 ,
D(A) =

{
(φa, ψ, φb) ∈ D(Åa)×D(B)×D(Åb) :

φa(0) = ψ(−1), φb(0) = ψ(1)
}
.

constructed above is non-self-adjoint. Direct computations show that the adjoint operator
A∗ in L has the form

A∗ =

Aa 0 0

0 B̊ 0
0 0 Ab

 ,
D(A∗) =

{
(φa, ψ, φb) ∈ D(Aa)×D(B̊)×D(Ab) :

φ′a(0) = ψ′(−1), φ′b(0) = ψ′(1)
}
.

In what follows we will denote by uλ, vλ and wλ the eigenfunctions of Aa, Ab and
B respectively which correspond to an eigenvalue λ. So uλ, vλ and wλ are non-trivial
solutions of the problems

− u′′ + qu = λru in Ia, `au = 0, u(0) = 0; (34)

− v′′ + qv = λrv in Ib, v(0) = 0, `bv = 0; (35)

− w′′ = λhw in J , w′(−1) = 0, w′(1) = 0 (36)

respectively. Let us normalize these eigenfunctions by setting

‖uλ‖L2(r,Ia) = ‖vλ‖L2(r,Ib) = ‖wλ‖L2(h,J ) = 1. (37)

Denote also by Xλ the root subspace of A for λ, that is

Xλ = span
{

ker(A− λ)k : k ∈ N
}
.

The eigenvectors and root vectors of a non-self-adjoint operator are also called generali-
zed eigenvectors. So Xλ is a subspace of the generalized eigenfunctions corresponding to
the eigenvalue λ.
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Theorem 2. (i) The spectrum of A is real and discrete, and

σ(A) = σ(Aa) ∪ σ(B) ∪ σ(Ab). (38)

(ii) If λ belongs to only one of the sets σ(Aa), σ(B) or σ(Ab), then λ is a simple
eigenvalue of A.

(iii) If λ ∈ σ(Aa)∩σ(Ab), but λ is not an eigenvalue of B, then λ is a double eigenvalue
and Xλ = ker(A− λE).

(iv) Suppose that λ belongs to σ(Aa) ∩ σ(B) (resp. σ(Ab) ∩ σ(B)), but λ is not an
eigenvalue of Ab (resp. Aa), then λ is a double eigenvalue of A. Finally, if λ ∈
σ(Aa) ∩ σ(Ab) ∩ σ(B), then λ is an eigenvalue of A with multiplicity 3. In both
the cases we have Xλ = ker(A− λ)2, but Xλ 6= ker(A− λ).

Proof. (i) Equality (38) follows directly from the explicit representation (28) of Rζ(A).
Indeed, each of spectra σ(Aa), σ(Ab) and σ(B) is contained in the spectrum of A. If ζ
does not belongs to set σ(Aa)∪σ(Ab)∪σ(B), then not only Rζ(Aa), Rζ(Ab), Rζ(B), but
also Ta(ζ) and Tb(ζ) are bounded, because in this case problems (18) and (19) for ε = 0
are uniquely solvable for all ψ ∈ W 2

2 (J ). Therefore operator Rζ(A) is also bounded.
The operators Aa, Ab and B associated with eigenvalue problems (34), (35) and (36) are
self-adjoint and have compact resolvents. Consequently σ(A) is real and discrete.

(ii) Observe that the spectra of Aa, Ab and B are simple. A trivial veri�cation
shows that if λ belongs to only one of the sets σ(Aa), σ(Ab) or σ(B), then λ is a simple
eigenvalue of A with eigenvector (uλ, 0, 0) if λ ∈ σ(Aa), and (0, 0, vλ) if λ ∈ σ(Ab), and
(Ta(λ)wλ, wλ, Tb(λ)wλ) if λ ∈ σ(B).

(iii) In the case λ ∈ σ(Aa)∩σ(Ab) and λ 6∈ σ(B), there are two linearly independent
eigenvectors U = (uλ, 0, 0) and V = (0, 0, vλ). Moreover, equation

(A− λ)Y = c1U + c2V

is unsolvable for any c1 and c2 such that c21 + c22 6= 0. If for instance c1 is di�erent from
zero, then the problem

− u′′ + qu− λru = c1ruλ in Ia, `au = 0, u(0) = 0 (39)

has no solutions. Suppose, contrary to our claim, that such solution exists. Then multi-
plying equation (39) by uλ and integrating by parts yield c1‖uλ‖2L2(r,Ia) = 0. Therefore

Xλ = ker(A− λ) and dimXλ = 2.
(iv) Suppose that λ ∈ σ(Aa) ∩ σ(B) and λ 6∈ σ(Ab). In this case there exists the

eigenvector U = (uλ, 0, 0). Furthermore, we will show that the equation

(A− λ)U∗ = U

is solvable. We are thus looking for a solution U∗ = (u,w, v) of

− u′′ + qu− λru = ruλ in Ia, `au = 0, u(0) = w(−1); (40)

− w′′ − λhw = 0 in J , w′(−1) = 0, w′(1) = 0; (41)

− v′′ + qv − λrv = 0 in Ib, v(0) = w(1), `bv = 0. (42)

Obviously, w = c0wλ for some constant c0, where wλ is a normalized eigenfunction of B.
Then (42) admits a unique solution v∗ = c0 Tb(λ)wλ for each c0, since λ ∈ %(Ab). Next,
(40) is in general unsolvable, since λ is a point of σ(Aa). But we have the free parameter
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c0 in the boundary condition; (40) with the condition u(0) = c0wλ(−1) is solvable if and
only if

c0 =
1

wλ(−1)u′λ(0)
. (43)

This equality can be easily obtained by multiplying the equation in (40) by uλ and
integrating by parts. Remark that both of the values wλ(−1) and u′λ(0) are di�erent
from zero. If u0 is a solution of (40), then the operator A has a root vector

U∗ = (u0, c0 wλ, c0 Tb(λ)wλ) ,

where c0 is given by (43). Hence, the subspace Xλ is a linear span of the eigenvector U
and the root vector U∗. In addition, there are no other root vectors, because the equation

(A− λ)Y = U∗

leads to the problem

− w′′ − λhw = chwλ in J , w′(−1) = 0, w′(1) = 0, (44)

which is unsolvable for c 6= 0. The case λ ∈ σ(Ab) ∩ σ(B) and λ 6∈ σ(Aa) is treated
similarly.

Now we suppose that

λ ∈ σ(Aa) ∩ σ(Ab) ∩ σ(B).

Then the operator A has two linearly independent eigenvectors U = (uλ, 0, 0) and V =
(0, 0, vλ). Note also that A has no eigenvectors Y = (u,w, v), where w is di�erent from
zero. In this case, the values w(−1) and w(1) are always di�erent from zero and hence
the problems for u and v are unsolvable. We will prove that Xλ = ker(A − λ)2 and
dimXλ = 3. Let us consider the equation

(A− λ)Y = c1U + c2V

with arbitrary constants c1 and c2, that is to say,

− u′′ + qu− λru = c1ruλ in Ia, `au = 0, u(0) = w(−1); (45)

− w′′ − λhw = 0 in J , w′(−1) = 0, w′(1) = 0; (46)

− v′′ + qv − λrv = c2rvλ in Ib, v(0) = w(1), `bv = 0. (47)

Reasoning as above, we establish that w = c0wλ and problems (45) and (47) admit
solutions simultaneously if and only if the following equalities

c1 = c0wλ(−1)u′λ(0), c2 = −c0wλ(1)v′λ(0)

hold. Then the conditions c0 6= 0 and

c1 = −wλ(−1)u′λ(0)

wλ(1)v′λ(0)
c2

ensure the existence of a root vector Y∗ of A. Furthermore there are no other root
vectors, by reasoning similar to that in the previous case. Hence the subspace Xλ for a
triple eigenvalue λ is generated by the eigenvectors U , V and the root vector Y∗. �
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5. Convergence of Spectra

Let us denote by

λε1 < λε2 < · · · < λεn < · · ·

the eigenvalues of problem (1)�(3), i.e., the eigenvalues of Aε. Note that each eigenvalue
λεn is simple. Let

λ1 6 λ2 6 · · · 6 λn 6 · · ·

be the eigenvalues of limit problem (13)�(16) (or also the operator A), counted with
algebraic multiplicities.

Theorem 3. For each n ∈ N, the eigenvalue λεn of problem (13)�(16) converges as ε→ 0
to the eigenvalue λn of (13)�(16) with the same number. That is, if λ is an eigenvalue
of (13)�(16) with algebraic multiplicity m, then there exists a neighbourhood of λ which
contains exactly m eigenvalues of (1)�(3) for ε small enough.

Proof. The theorem follows from the norm resolvent convergence of Aε proved in
Theorem 1 and some general results on the approximation of eigenvalues of compact
operators. Let K be a compact operator in a separable Hilbert space H. Suppose that
{Kε}ε>0 is a sequence of compact operators in H such that Kε → K as ε → 0 in the
uniform norm. Let µ1, µ2, . . . be the nonzero eigenvalues of K ordered by decreasing
magnitude taking account of algebraic multiplicities. Then for each ε > 0 there is an
ordering of the eigenvalues µ1(ε), µ2(ε), . . . of Kε such that limε→0 µn(ε) = µn, for
each natural number n. Suppose that µ is a nonzero eigenvalue of K with algebraic
multiplicity m and Γµ is a circle centered at µ which lies in ρ(K) and contains no other
points of σ(K). Then, there is an ε0 such that, for 0 < ε 6 ε0, there are exactly m
eigenvalues (counting algebraic multiplicities) of Kε lying inside Γµ and all points of
σ(Kε) are bounded away from Γµ [35, Ch.1], [36, Ch.XI-9], [37].

We apply these results to K = Rζ(A) and Kε = Rζ(Aε). Then we have

σp(Rζ(A)) =

{
1

λn − ζ
, n ∈ N

}
, σp(Rζ(Aε)) =

{
1

λεn − ζ
, n ∈ N

}
;

both eigenvalue sequences are ordered by decreasing magnitude. Since Aε → A in the
norm resolvent sense as ε → 0, that is, ‖Rζ(Aε) − Rζ(A)‖ → 0 as ε → 0, we have the
�number-by-number� convergence of the eigenvalues

1

λεn − ζ
→ 1

λn − ζ
, as ε→ 0,

from which the desired conclusion follows. �

Remark 1. We expect that the estimate

|λεn − λn| 6 Cn
√
ε

to be correct for each n ∈ N and some constants Cn. However, it does not follow directly
from bound (17), because the resolvents Rζ(A) and Rζ(Aε) are not in general normal
operators.
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6. Some Remarks On Eigenfunction Convergence

Since the multiplicity of eigenvalues of the limit operator is up to 3, the bifurcation
pictures for multiple eigenvalues of (13)�(16) are quite complicated. The bifurcations of
eigenvalues as well the eigensubspaces can be described by a more accurate asymptotic
analysis. We omit the details here, because we will consider these questions in a forth-
coming publication. However we can obtain some results on the limit behaviour of ei-
genfunctions that follow directly from the norm resolvent convergence Aε → A.

Let us return to the compact operators K and Kε which appeared in the previous
section. We consider the Riesz spectral projections

E(µ) =
1

2πi

∫
Γµ

Rz(A) dz, Eε(µ) =
1

2πi

∫
Γµ

Rz(Aε) dz.

The range R(E(µ)) of E(µ) is the space of generalized eigenfunctions of K corresponding
to µ and R(Eε(µ)) is the direct sum of the subspaces of generalized eigenfunctions of Kε

associated with the eigenvalues of Kε inside Γµ. If Kε → K as ε→ 0 in the norm, then
Eε(µ)→ E(µ) in the norm, and therefore

dimR(Eε(µ)) = dimR(E(µ)) = m,

where m is the algebraic multiplicity of µ.

Theorem 4. Let yε,n be the eigenfunction of (1)�(3) which corresponds to the eigenvalue
λεn and ‖yε,n‖L2(r,I) = 1.

Suppose that λεn → λn, where λn is a simple eigenvalue of A belonging to σ(Aa).
Then the eigenfunction yε,n converges in L2(I) as ε→ 0 to the function

y(x) =

{
un(x), if x ∈ Ia,
0, if x ∈ Ib

,

where un is an normalized eigenfunction of Aa associated with λn, that is,

−u′′n + qun = λnrun in Ia, `aun = 0, un(0) = 0, ‖un‖L2(r,Ia) = 1.

Similarly if λn belongs to σ(Ab) and λn is simple, then yε,n → y in L2(I) as ε → 0,
where

y(x) =

{
0, if x ∈ Ia,
vn(x), if x ∈ Ib

and vn is an normalized eigenfunction of Ab with eigenvalue λn, i.e.,

−v′′n + qvn = λnrvn in Ib, vn(0) = 0, `bvn = 0, ‖vn‖L2(r,Ib) = 1.

Assume λεn → λn, where λn is a simple eigenvalue of A belonging to σ(B). Then
the eigenfunction yε,n converges in L2(I) to a solution y of the problem

−y′′ + qy = λnry in I \ {0}, `ay = 0, `by = 0,

y(−0) = θwn(−1), y(+0) = θwn(1),
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where wn is the corresponding eigenfunction of B such that ‖wn‖L2(h,J ) = 1. Normalizing
factor θ is given by

θ =
(
‖Ta(λn)wn‖2L2(r,Ia) + ‖Tb(λn)wn‖2L2(r,Ib)

)−1

.

Proof. In the case when K = Rζ(A), Kε = Rζ(Aε), λ is a unique point of σ(A) lyi-
ng inside Γλ, and ε is small enough, we see that Xλ = R(E( 1

λ−ζ )) is a subspace of

generalized eigenfunctions of A corresponding to the eigenvalue λ, and the subspace
Xε
λ = R(Eε(

1
λ−ζ )) is generated by all eigenfunctions of Aε for which λεn → λ as ε → 0.

Then the norm resolvent convergence Aε → A implies that the gap between Xε
λ and Xλ

tends to zero as ε → 0 for each λ ∈ σp(A). In particular, if λn is a simple eigenvalue
of A with eigenvector Yn and Yε,n is an eigenvector of Aε that corresponds to λεn, then
Yε,n → Yn in L as ε→ 0, provided ‖Yε,n‖L = ‖Yn‖L = 1.

Assume λn is a simple eigenvalue of A and λn ∈ σ(Aa). In view of Theorem 2, the
subspace Xλ is generated by vector Yn = (un, 0, 0). Then Yε,n → Yn as ε → 0 in the
norm of L. If we set Yε,n = (yaε , wε, y

b
ε), then the eigenfunction yε,n of (1)�(3) can be

written as

yε,n(x) =


yaε (x), if x ∈ Iεa,
wε(x/ε), if x ∈ (−ε, ε),
ybε(x), if x ∈ Iεb .

So we have

‖yε,n − yn‖2L2(I) =

−ε∫
a

|yaε − un|2 dx+

b∫
ε

|yaε |2 dx

+

0∫
−ε

|wε(xε )− un(x)|2 dx+

ε∫
0

|wε(xε )|2 dx 6 c1‖yaε − un‖2L2(r,Ia)

+ c2‖ybε‖2L2(r,Ib) + c3ε‖wε‖2L2(h,J ) +

0∫
−ε

|un|2 dx 6 c4‖Yε,n − Yn‖2L + c5ε.

The right-hand side tends to zero as ε → 0, since Yε,n → Yn in L and un is bounded
on Ia as an element of W 2

2 (Ia). The same proof works for the cases λn ∈ σ(Ab) and
λn ∈ σ(B). �

Remark 2. Of course, in the case of multiple eigenvalues, we also have some information
about the convergence of eigenfunctions. For instance, if we suppose that λ ∈ σ(Aa) ∩
σ(Ab), but λ is not an eigenvalue of B, and two eigenvalues λεn and λεn+1 tend to λ
as ε → 0, then the gap between the eigensubspace Xλ of A and the subspace Xε

λ =
span{yε,n, yε,n+1} vanishes as ε → 0. Therefore, the eigenfunctions yε,n and yε,n+1

converge in L2(I) to some linear combinations c1uλ + c2vλ, where uλ and vλ are ei-
genfunctions of Aa and Ab respectively that correspond to λ. However, without a deeper
analysis of the problem, we will not know what the linear combinations are limit positions
of vectors yε,n and yε,n+1 in the plane Xλ.
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Êîëèâíi ñèñòåìè ç ïðè¹äíàíèìè ìàñàìè ïî÷àëè äîñëiäæóâàòè ùå Ïóàñ-
ñîí òà Áåññåëü, i ñüîãîäíi ìà¹ìî òèñÿ÷i íàóêîâèõ ïðàöü, â ÿêèõ âèâ÷àþòü
êîëèâíi ïðîöåñè ó ñåðåäîâèùàõ ç íåîäíîðiäíî ðîçïîäiëåíèìè ìàñàìè. Òåî-
ðiÿ ñèëüíî íåîäíîðiäíèõ ñåðåäîâèù ïî÷àëà îñîáëèâî àêòèâíî ðîçâèâàòèñÿ
ç ïîÿâîþ êîìïîçèòíèõ ìàòåðiàëiâ, ÿêi âîëîäiþòü ðiçíîìàíiòíèìè êîðèñíè-
ìè âëàñòèâîñòÿìè i øèðîêî çàñòîñîâóþòüñÿ â ñó÷àñíèõ òåõíîëîãiÿõ. Âà-
æëèâîþ ÷àñòèíîþ öi¹¨ òåîði¨ ¹ äîñëiäæåííÿ äèíàìi÷íèõ òà ñïåêòðàëüíèõ
çàäà÷ äëÿ äèôåðåíöiàëüíèõ îïåðàòîðiâ iç êîåôiöi¹íòàìè, ùî ìiñòÿòü ñèëüíi
ëîêàëüíi çáóðåííÿ. Òàêi çàäà÷i âèìàãàþòü íîâèõ ïiäõîäiâ â òåîði¨ êðàéî-
âèõ çàäà÷ äëÿ äèôåðåíöiàëüíèõ ðiâíÿíü, ñòâîðåííÿ íîâèõ àñèìïòîòè÷íèõ
ìåòîäiâ i íîâèõ îá÷èñëþâàëüíèõ ñõåì.
Ìè âèâ÷à¹ìî ñïåêòðàëüíi âëàñòèâîñòi îïåðàòîðiâ Øòóðìà-Ëióâiëëÿ ç ñèí-
ãóëÿðíèì çáóðåííÿì âàãîâî¨ ôóíêöi¨ ó âèïàäêó çàãàëüíèõ êðàéîâèõ óìîâ.



ON SPECTRUM OF STRINGS ...
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2020. Âèïóñê 89 79

Çáóðåííÿì ¹ òàê çâàíà δ′-ïîäiáíà ïîñëiäîâíiñòü âèãëÿäó ε−2h(x/ε). Õàðà-
êòåðíîþ îñîáëèâiñòþ òàêèõ çàäà÷ ¹ ïðèñóòíiñòü çàëåæíî¨ âiä ìàëîãî ïà-
ðàìåòðà ε ãóñòèíè ρε ïðè ñïåêòðàëüíîìó ïàðàìåòði, âíàñëiäîê ÷îãî ñàìî-
ñïðÿæåíà îïåðàòîðíà ðåàëiçàöiÿ çàäà÷i ìîæëèâà ëèøå ó âàãîâèõ ïðîñòîðàõ
Ëåáåãà, ÿêi òåæ çàëåæàòü âiä ïàðàìåòðà ε. Äîñëiäæåííÿ ñiìåé îïåðàòîðiâ,
ÿêi äiþòü ó ðiçíèõ ïðîñòîðàõ, ïîâ'ÿçàíå ç áàãàòüìà òðóäíîùàìè ìàòåìàòè-
÷íî¨ ïðèðîäè. Ïî-ïåðøå, ÿê òðàêòóâàòè çáiæíiñòü òàêèõ ñiìåé. Ïî-äðóãå,
ÿêùî îïåðàòîðè i çáiãàþòüñÿ â ïåâíîìó ñåíñi, òî ÷è òàêà çáiæíiñòü ãàðàí-
òó¹ çáiæíiñòü ñïåêòðiâ òà âëàñíèõ ïiäïðîñòîðiâ, ïîçàÿê â öüîìó âèïàäêó
íå âäà¹òüñÿ çàñòîñóâàòè êëàñè÷íi òåîðåìè òåîði¨ îïåðàòîðiâ. Áàãàòî äî-
ñëiäíèêiâ óíèêàëè ïèòàííÿ îïåðàòîðíî¨ çáiæíîñòi ó òàêèõ çàäà÷, áóäóþ÷è
ôîðìàëüíi àñèìïòîòèêè âëàñíèõ çíà÷åíü i âëàñíèõ ôóíêöié òà çàñòîñîâóþ-
÷è òåîðiþ êâàçiìîä. Òàêèé ïiäõiä íå çàâæäè äà¹ öiëêîâèòèé îïèñ ãðàíè÷íî¨
ïîâåäiíêè ñïåêòðó, éîãî ãðàíè÷íî¨ êðàòíîñòi òà ñòðóêòóðè ãðàíè÷íèõ âëà-
ñíèõ ïiäïðîñòîðiâ.
Ó öié ñòàòòi çàñòîñîâàíî iíøèé ïiäõiä äî çàäà÷ ç êîíöåíòðîâàíèìè ìàñà-
ìè. Âiäìîâèâøèñü âiä ïåðåâàã ñàìîñïðÿæåíèõ îïåðàòîðiâ, ìè ðåàëiçóâàëè
ñèíãóëÿðíî çáóðåíó çàäà÷ó ÿê ñiì'þ äåÿêèõ íåñàìîñïðÿæåíèõ ìàòðè÷íèõ
îïåðàòîðiâ Aε, ùî äiþòü â òîìó ñàìîìó ãiëüáåðòîâîìó ïðîñòîði. Ìè äîâåëè
ðiâíîìiðíó ðåçîëüâåíòíó çáiæíiñòü Aε ïðè as ε→ 0 i, ÿê íàñëiäîê, äîâåëè,
ùî ¨õíi ñïåêòðè çáiãàþòüñÿ â ñåíñi Ãàóñäîðôà äî ñïåêòðà äåÿêîãî îïåðàòî-
ðà A. Öiêàâî, ùî õî÷à îïåðàòîðè Aε áóëè ïîäiáíèìè äî ñàìîñïðÿæåíèõ i
âîëîäiëè äiéñíèì äèñêðåòíèì i ïðîñòèì ñïåêòðîì, ãðàíè÷íèé îïåðàòîð A
âèÿâèâñÿ ñóòò¹âî íåñàìîñïðÿæåíèì ç êðàòíèì ñïåêòðîì i êîðåíåâèìè ïiä-
ïðîñòîðàìè, ùî ìiñòèëè ïðè¹äíàíi âåêòîðè. Íà ìîâi ñàìîñïðÿæåíî¨ îïå-
ðàòîðíî¨ ðåàëiçàöi¨, ìè îòðèìàëè ïðèêëàä ñiì'¨ ñàìîñïðÿæåíèõ îïåðàòîðiâ
Tε ç êîìïàêòíîþ ðåçîëüâåíòîþ, ùî äiþòü ó äåÿêèõ ïðîñòîðàõ Hε i ÿêi
�çáiãàþòüñÿ� äî íåñàìîñïðÿæåíîãî îïåðàòîðà T0 â ïðîñòîði H0. Òîáòî, ñïå-
êòðè îïåðàòîðiâ Tε çáiãàþòüñÿ â ñåíñi Ãàóñäîðôà äî ñïåêòðó îïåðàòîðà T0

iç âðàõóâàííÿì àëãåáðè÷íî¨ êðàòíîñòi, à ãðàíè÷íå ðîçòàøóâàííÿ âëàñíèõ
ïiäïðîñòîðiâ îïåðàòîðiâ Tε ìîæíà îïèñàòè ëèøå çà äîïîìîãîþ êîðåíåâèõ
ïiäïðîñòîðiâ îïåðàòîðà T0.

Êëþ÷îâi ñëîâà: îïåðàòîð Øòóðìà-Ëióâiëëÿ, ïðè¹äíàíà ìàñà, ñèíãó-
ëÿðíi çáóðåííÿ, ñïåêòðàëüíà çàäà÷à, ðiâíîìiðíà ðåçîëüâåíòíà çáiæíiñòü,
çáiæíiñòü çà Ãàóñäîðôîì, íåñàìîñïðÿæåíèé îïåðàòîð.


	1. Introduction
	2. Statement of Problem
	3. Norm Resolvent Convergence of A
	4. Spectrum of A
	5. Convergence of Spectra
	6. Some Remarks On Eigenfunction Convergence

