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We study the asymptotic behaviour of eigenvalues and eigenfunctions of a
boundary value problem for the Sturm-Liouville operator with general boun-
dary conditions and the weight function perturbed by the so-called §'-like
sequence £ 2h(z/¢). The eigenvalue problem is realized as a family of non-
self-adjoint matrix operators acting on the same Hilbert space and the norm
resolvent convergence of this family is established. We also prove the Hausdorff
convergence of the perturbed spectra.
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1. INTRODUCTION

The vibrating systems with added masses have become the subject of research for
mathematicians and physicists since the time of Poisson and Bessel [, Ch.2], and an
enormous number of studies have been devoted to these problems. Many authors have
investigated properties of one-dimensional continua (strings and rods) with the mass
density perturbed by the finite or infinite sum ZMk5($ — xy), where ¢ is the Dirac

k
function (see for instance [2], B, 4] [5] and the references given there). The mathematical

models involving the §-functions are in general non suitable for 2D and 3D elastic systems,
because the formal partial differential expressions which appear in the models often have
no mathematical meaning. Such models are also not adequate in the one-dimensional
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case, when the added masses M), are large enough. The large adjoint mass can lead to a
strong local reaction which brings about a considerable change in the basic form of the
oscillations. But this reaction cannot be described on the discrete set which is a support
of singular distributions. It is natural that the geometry of a small part of the vibrating
system where the large mass is loaded should also have an effect on eigenfrequencies and
eigenvibrations. Since the works of E. Sdnchez-Palencia [6] [7, 8], more adequate and more
complicated mathematical models of media with the concentrated masses have gained
popularity; the asymptotic analysis began to be applied to the spectral problems with
the perturbed mass density having the form

pee) = pofe) + 3 (”C - “”’f) ,

3

where hy are functions of compact support and my € R. The most interesting cases of
the limit behaviour of eigenvalues and eigenfunctions as € — 0 arise when the powers my
are greater than or equal to the dimension of vibrating system.

These improved models have attracted considerable attention in the mathematical
literature over three past decades (see review [9]). The classic elastic systems such as
strings, rods, membranes, plates and bodies with the perturbed density

pe(x) = po(x) + & "h(z/e)

have been considered in [10} 1], 12} 13} [14], 151 [16} [17], where the convergence of spectra for
each real m and the complete asymptotic expansions of eigenvalues and eigenfunctions for
selected values of m have been obtained. The influence of the concentrated masses on the
spectral characteristics and oscillations of junctions, the objects with very complicated
geometry, has been studied in [I8, 19, 20]. The asymptotic behaviour of eigenvalues
and eigenfunctions of membranes and bodies with many concentrated masses near the
boundary has been investigated in [211 22} 23] 24} 25]. In [26, 27| the asymptotic analysis
has been applied to the spectral problems for membranes and plates with the density
perturbed in a thin neighbourhood of a closed smooth curve. The spectral problems on
metric graphs that describe the eigenvibrations of elastic networks with heavy nodes have
been studied in [28], 29].

A characteristic feature of such problems is the presence of perturbed density p.
at the spectral parameter, which in turn leads to a self-adjoint operator realization of
the problem in a Hilbert space (a weighted Lebesgue space) that also depends on the
small parameter. The study of families of operators acting on varying spaces entails
some mathematical difficulties. First of all, the question arises how to understand the
convergence of such families. Next, if these operators do converge in some sense, does this
convergence implies the convergence of their spectra (see [15} II1.1], [31] 32} B3] for more
details). Most of the above-mentioned publications deal with asymptotic approximations
of eigenvalues and eigenfunctions; justifying such asymptotics, the researchers used the
theory of quasimodes [34], and therefore the question of the operator convergence can be
avoided in the studies.

In this paper we consider the Sturm-Liouville operators and investigate the ei-
genvalue problems with general boundary conditions and the weight function perturbed
by the so-called ¢'-like sequence e~2h(z/¢). By abandoning the self-adjointness, we reali-
ze the perturbed problem as a family of non-self-adjoint matrix operators A, acting on
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a fixed Hilbert space and prove the norm resolvent convergence of A. as ¢ — 0. The
operators A, are certainly similar to self-adjoint ones for each ¢ and their spectra are
real, discrete and simple. Surprisingly enough, the limit operator is essentially non-self-
adjoint, because it possesses multiple eigenvalues with non-trivial Jordan cells. Actually
the singularly perturbed problem gives us an example of some self-adjoint operators 7.
with compact resolvents acting on varying spaces H. that “converge” to a non-self-adjoint
operator Tp in the space Hy. More precisely, the spectra of T. converge to the spectrum
of Ty in the Hausdorff sense, taking account of the algebraic multiplicities of eigenvalues;
moreover the limit position, as ¢ — 0, of the eigensubspaces of T, can be described by
means of the root subspaces of Tj.

Note that a partial case of the problem, namely the Sturm-Liouville operator without
a potential subject to the Dirichlet type boundary condition, was previously studied in
[13]. In Theorem 9, the Hausdorff convergence of the perturbed spectrum to some limit
set was proved. This limit set was treated as a union of spectra of three self-adjoint
operators (cf. Theorem [2| below), but the limit operator was not constructed and the
question of eigenvalue multiplicity was not discussed.

We use the following notation. Let Lo(r, I) be the weighted Lebesgue space with the
norm

1/2

1l aer) = / @)@ |

I

provided 7 is positive. Throughout the paper, W (I) stands for the Sobolev space of the
functions defined on I C R that belong to Lo(I) together with their derivatives up to the
order k. The norm in W¥(I) is given by

1/2
1wz = (1P + 15 10)

where || f||L,(r) is the usual Ly-norm. The spectrum, point spectrum and resolvent set of
a linear operator T' are denoted by o(T), o,(T) and p(T'), respectively, and the Hilbert
space adjoint operator of T is T*. For any complex number z € p(7T), the resolvent
operator R, (T) is defined by R, (T) = (T — z)~!. Also, we will sometimes abuse notation
and write column vectors as row vectors.

2. STATEMENT OF PROBLEM

Let Z = (a,b) be a finite interval in R containing the origin and ¢ be a small positive
parameter. Set Z, = (a,0), Z, = (0,b), Z¢ = (a,—¢), Z; = (¢,b) and J = (—1,1). We
study the limiting behavior as ¢ — 0 of eigenvalues A° and eigenfunctions y. of the
problem

—y! +a(@)ye = Nre(2)ye, €I, (1)
ye(a)cosa+ yL(a)sina = 0, (2)

ye(b) cos B+ yL(b)sin B =0 (3)
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with the singularly perturbed weight function

(), x eI UL,
re(e) = {EQh(elx), T € (—¢,¢).

Assume that a, 8 € R, ¢, € L*°(Z) and h € L*°(J); r and h are uniformly positive.

For any fixed real o, 8 and positive ¢ small enough, problem f admits a self-
adjoint realization in the weighted space Lo(r.,Z). Let us consider the Sturm-Liouville
differential expression 7(¢) = —¢” + q¢. We introduce the operator 7. defined by T.¢ =
r='7(¢) on the functions ¢ € W3 (Z) obeying boundary conditions (2) and (3). Hence
{T.}c>0 is a family of self-adjoint operators in the varying Hilbert spaces Lo(r,Z). Of
course the spectrum of 7} is real, discrete and simple.

Problem 7 can be also associated with a non-self-adjoint matrix operator in
the fixed Hilbert space £ = La(r,Z,) X La(h,J) x Lo(r,Zy) as follows. Subsequently,
we will write boundary conditions (2) and (3] for a function ¢ as £,¢ = 0 and ¢ = 0
respectively. Let us introduce the new variable ¢t = x/e and set w.(t) = y.(et). Then the
eigenvalue problem can be written in the form

— Y+ q@)y. = Xr(@)y., €I, Llay =0, (4)
—w! + 2q(et)w. = N h(Hw., te T, (5)
—yl +a(@)ye = Xr(2)ye, €Iy, by =0 (6)
with the coupling conditions
Ye(—€) = we(=1),  ye(e) = we(1), (7)
eyc(—e) = we(=1), ey(e) = wi(1). (8)
Let A, be the operator in Lg( ) that is defined by Agp =1 Lr () on the functions ¢
belonging to the set D(A {qb EW2E(To): lag = O}. Similarly, let A, be the operator

in Ly(r,Zy) such that Abgb = r17(¢) and D(4,) = {¢ € W3(Z,): lyp = 0}. We also
2
introduce the operator B = gy La(h, J) with domain D(B) = W2(J) and its

dt?
. . t
potential perturbation B, = B + £2 qh((€t))
Let us consider the matrix operator
A, 00
A= 0 B. 0
0 0 A4

in £, acting on the domain

D(A:) = {(¢a, ¥, 68) € D(4a) x D(Be) x D(Ay):
$a(—€) = P(=1), du(e) = ¥(1), ey (—€) =¢'(~1), edj(e) =¥ (1)}
A straightforward calculation shows that A. is non-self-adjoint. Note that the spectral
equation (A. — \)Y. = 0 is slightly different from eigenvalue problem . In fact,

if we display the components of the vector Y; by writing Y. = (y%, we,y then we see
at once that y2 is a solution of (4) on the whole interval Z, (not only in IE), and y°
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is a solution of @ on the whole interval Z,. However, this “extra information”, namely
the extensions of the solutions to the intervals Z, and Z,, does not prevent the operator
A, from adequately describing the spectrum and the eigenfunctions of 7 (or also
(1-(B)), because of the uniqueness of such extensions.

Proposition 1. o(A.) = o(T.).

Proof. Fix a positive e. We will show that p(A.) = p(T%). Suppose first that { € p(7T) and
consider the equation (A.—()Y = F, where F belongs to £. Suppose that F' = (fa, fo, fb)-
Then we can construct the function
fal(x) for z € I¢,
f(x) = q folz/e) forz e (—¢,e),
fo(z) for x € I}

belonging to La(7.,Z). Next, y = (T. — ¢)~'f is a unique solution of the problem

¢ +aqy—Cry=rfs inI;,  Ly=0, 9)
— ey’ +e%qy — Chy = hfo in (—¢¢), (10)
' +qy—Cry=rfy inZy,  Ly=0, (11)

[y]l-e =0, [yle=0, [¥]--=0, [y].=0, (12)

where [y, is a jump of y at the point xy. Denote by y, the extension of y from Z¢ to Z,
as a solution of @D Recall that the right hand side f, is defined on the whole interval Z,.
This extension is uniquely defined. Similarly, we denote by y; the solution of in 7y
such that y,(x) = y(z) for z € Z;. Then the vector Y (z) = (yo(z),y(z/€), yp(x)) belongs
to D(A.) and solves (A. — ()Y = F. The last equation admits a unique solution Y; if we
assume that there are more such solutions, then we immediately obtain a contradiction
with the uniqueness of y. Therefore, p(A.) C p(T%).

Conversely, suppose ¢ € p(A.). We prove that (T. — {)y = f is uniquely solvable for
all f € Ly(r.,Z). Given f, construct the vector F = (fu(x), f(et), fp(z)), where f, and
fv are the restrictions of f to Z, and Z, respectively. Then the problem

— @y +aba —Cr¢a =rfoa inZy,  Legy =0,
— " +e%q(e ) — Chp =hf(e:) inJ,
— ¢y +aqpp —Crop =rfy in T, by, =0,
da(—) =9(=1), du(e) =U(1), ed(—e) =4 (~1), egy(e) =¢¥'(1).
admits a unique solution Y = (A, — () "'F. If Y = (¢4, 9, ¢p), then function

¢a(x) for x € I¢,
y(a) = § v(x/e) forz e (-¢,¢),
op(z) forz eIy

is a solution of (9)—(12). Since the spectrum of T is discrete, the solvability of (7. —()y =
f for all f € Lo(re,T) ensures ¢ € p(T:), and hence p(T;) C p(A.). O
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3. NOrRM RESOLVENT CONVERGENCE OF A,

In this section we will prove that the family of operators A, converges in the norm
resolvent sense as € — 0. Let B be the restriction of B to the domain

D(B) = {w e D(B): ¢'(-1) =0, ¥/(1) =0}
We introduce the matrix operator
Aq

0 0
A= 0 B 0
0 0 A4

in the space £ acting on

D(A) = { (60, %, @) € D(Ay) x D(B) x D(Ay): 64(0) = v(=1), 64(0) = (1) } -

This operator is associated with the eigenvalue problem

—u' +qu=2Aru in €Z,, lu=0, (13)
—w" =XMw, in €J, w(-1)=0, w'(1)=0, (14)
—v"+qgu=X v in €Ty, =0, (15)

u(0) = w(=1), v(0) =w(1) (16)

which can be regarded as the limit problem. The following assertion is one of the main
results of this paper.

Theorem 1. The family of operators A. converges to A as € — 0 in the norm resolvent
sense. In addition,

IR¢(As) = Re(A)ll < eve, (17)

the constant c being independent of ¢.

For the convenience of the reader we collect together the definitions of all operators
which will be used in the proof.

o

o Operators T:(C), TE(€), Tu(¢) and Ty(¢). We endow D(B) with the graph norm,
i.e., the norm of the Sobolev space W2(J). Let T=(¢): D(B) — La(r,Z,) be
defined as follows. Given ¢ € C\R and ¢ € D(B), we compute ¥)(—1), find then
a unique solution u, of the problem

—u" +qu—Cru=0 inZ,, lou =10, u(—e)=1(-1) (18)

and finally set 77 (¢)Y = ug. Similarly, we define T3 ((): D(B) — L2(r,Z;) which
solves the problem

—v"+qu—Crv=0 inTy, vie)=vy(1), Lv=0 (19)

for given ¢ € D(B). Next, the operators T,(¢) and T3(¢) stand for T2 (¢) and

T (), provided & = 0. So T,(¢) (resp. Tp(¢)) solves problem (resp. (19)) for
given ¢ € D(B) and € = 0.
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o Operators S5(¢) and S;(¢). Suppose that D(A,) and D(A) are equipped by the
graph norms. These norms are equivalent to the norms of W$(Z,) and W3(Z;)

o

respectively. The operator S(¢): D(A,) — La(h, J) is defined by S2({)¢ = wa,
where w, is a unique solution of

—w" +e%q(e)w=Chw inJ, w'(-1)=¢'(—e), w'(1)=0 (20)
for given ¢ € D(A;) and ¢ € C\ R. Similarly, the operator Se(C): D(4,) —
Lo(h, J) solves

—w" +e%¢(e )w = Chw in J, w'(=1) =0, w'(1)=4¢(e) (21)

o

for some ¢ € D(A,) and ¢ € C\ R.
e Operator B.. This operator is the restriction of B, to the domain

D(B.) = {¢ € D(B.): w/(=1) =0, ¥/(1) =0}.

o Operators A;,, A;, A, and Ap. Let A and Aj be the restrictions of /Qla and flb
respectively to the domains
D(A3) = {¢ € D(A,): ¢(—¢) =0},
D(4;) = {¢ € D(4y): ¢(c) = 0}.
The operators A, and A, stand for A% and Aj, provided € = 0.

We now construct the resolvents of A, and A in the explicit form as follows. Fix ¢ €
C\R. First of all, note that the operators T} (¢), T; (¢), S5(¢) and S; (¢) are well-defined
for such values of ¢. Moreover these operators are compact. Given F' = (fq, fo, f») € L,
solve the equation (A, — ()Y = F. The first component of Y = (¢, %, ¢p) is a solution
of the Dirichlet type problem

—¢" +qp—Cro=rf, inZ, lap =0, @(—¢) =9(-1).

This solution can be represented as the sum of a solution of the non-homogeneous equati-
on subject to the homogeneous boundary conditions and a solution of :

ba = Re (A7) fa + T5 ()1 (22)
The same argument yields
¢p = Re(Ap) fo + Ty (O (23)
The middle element 1 of Y is a solution of the Neumann type problem
"+ e2qle W —Chp=hfo in T, ¢(=1)=cedy(—¢), ¢'(1)=edy(e),
and it can be written as
¥ =Re(Be)fo + €55(C)@a + €55 (C) db- (24)
Then (22)-(24) taken together yield
(ba - T;(C)Q/J = RC(AZ)fa;
_€SZ(C)¢’a +¢— g‘S’lf(C)(bb = RC(BE)f07
—T5 (Y + dp = Re (A7) fo
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It follows that the resolvent of A, has the form

RC(AE) = ’HE(C)ilRE(C)v (25)
where

Re(A2) 0 0

R-(¢) = 0 R¢(B:) 0 ) (26)
0 0 R4

E =13 (¢) 0
H-(Q)= | —esa(Q)  E S50 |, (27)

0 TQ) B

and FE denotes the identity operator in the corresponding spaces. We shall prove below
that H.(¢) is invertible for ¢ small enough.
Now we consider the equation

(A=QY =F
for I € L. In the coordinate representation we have (Ag — O)pg = fa, (B—C) = fo and
(Ap — Q)p = fo, where Y = (¢, 1), dp) and F' = (fa, fo, f). Obviously, ¢ = R¢(B) fo.

The functions ¢, and ¢, are solutions of the problems
¢ +qp—Cro=rfa inZ,  Lp=0, $0)=1(-1);
—¢"+qp—Cro=rfy inT, $(0) =v(-1), bp=0
respectively. By reasoning similar to that for and , we find
ba = Re(Aa) fa + Ta(CO)Re(B) fo, op = Re(Ap) fo + Th(OR¢(B) fo
Hence the resolvent of A can be written in the form
R¢(Aa) Ta(QRe(B) 0

R(A) = 0 R(B) 0 |. (28)
0 Ty(OR¢(B)  Re(Ap)

To compare the resolvents of 4. and A, we need some auxiliary assertions.

Proposition 2. The operators A, A; and B. converge as ¢ — 0 to A,, Ay and B
respectively in the norm resolvent sense. Moreover

IR¢(47) —Re(Aa) < Cive,  [Re(4f) — Re(Ap)l < Cav/e, (29)
IR¢(B:) — Re(B)|| < Cse?, (30)
where the constants Cy do not depend on .

Proof. Fix ( € C\ R and let us compare the elements u. = R¢(Aj)f and u = R¢(4p) f
for given f € La(r,Zp). Since u. and u solve the problems

—u! + que — Crue =rf in Iy, us(e) =0, Lyues =0;
—u" +qu—Cru=rf inTy, w(0) =0, Lyu=0,
they are related by the equality

ue(z) = u(z) — B z(x), x € Iy,
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where z is a solution of the problem
— 2"+ qz—Crz=0 inTy, 2(0)=1, £z=0. (31)
Obviously, z(¢) is different from zero for € small enough. Then we have

|u(e)

lue —ullz,rz,) < ()] 2/l Lo (rzy) < cilue)] < c2ve ullw(z,)

because z(¢) — 1 as € — 0 and

€

o) = | [ (@) do| < cavE gz
0
Observe that R¢(Ay) is a bounded operator from Lo (r,Z;) to the domain of Ay equipped
with the graph norm. Since the domain is a subspace of W4 (Z;), there exists a constant
¢4 independent of f such that
lullwa(z,) < call fllLonz,)-
Therefore
[(R¢(A5) = Re(An) £l 1,2y < CoVE I llLarzi):

which establishes the norm resolvent convergence A7 — A, as € — 0 and the correspon-
ding estimate in . The proof for the operators A¢ is similar to that just given.

We now turn to the operators B, and first we establish that |R¢(B.)|| < c for all €
small enough. Given g € Ly(h, J), consider w. = R¢(B.)g which solves

—w! +e*q(e Jwe — Chw. = hg in 7, wl(-1)=0, wl(1)=0.

Recall that g and h are bounded in Z and J respectively, and h is uniformly positive on
Z. Then we have

IR¢(Be)gll Loy = [Re(B) (g — €*ale Y we) |, ) 7y <
< |Re(B)gll o,y + 2l zoe @y 1B I poe () 10| Lo,y <
< collgll Lo,y + 1% Re(Be)gll Lah)

and therefore
Co
[Re¢(Be)gll o n,a) < Fp—— 9l Lo (n o) < €llgllLa(n,a (32)

if € is small enough.
Next, we set w = R¢(B)g. Then the difference s, = w. — w solves the problem

—s! —Chs. = —e%q(e )w. inJ, s.(-1)=0, s.(1)=0.
Hence in view of we deduce
||(R<(B€) - RC(B))9||L2(h,j) = ||Ss||L2(h,.7) <
< 02€2||wa||L2(h,J) =
= 2" |R¢(Be)gl Lang) <
< e3?)\9)l Loy n,)
which finishes the proof. O



ON SPECTRUM OF STRINGS ...
ISSN 2078-3744. Bicuux JIpBiB. yH-Ty. Cepist mex.-mar. 2020. Bumyck 89 69

Proposition 3. (i) For each ¢ € C\ R, we have the bounds
1750 = Ta(Oll < e, T5(0) = To(O] < ce,

the constant ¢ being independent of c.
(73) There exists a constant C such that

1S (Ol + 1S5 (Ol < €
for all € small enough.

Proof. (i) Let us show that T ({) converge to T(¢) in the norm as € — 0. The same
proof remains valid for T (¢). Suppose that u. = T ({)% is a solution of for given
¢ € D(B). It is easily seen that

1
wle) = 3 s@), we T,
where 2 is defined by (31). If u = T;(¢)%, then we have u = t(1)z. Hence
i _ @ -
”(Tb (C) - Tb(C))T’Z)”LQ(T’Ib) o ‘ Z(E) ‘ w(l)z Lo(r,Ty) )
1
< Z(Z;) \ O 12l oz <

< 1€ ||w||D(é)a
because z belongs to C*(Z,) and z(0) = 1. Recall also that D(B) = W2(J) and hence
[¥llcz) < CllYllps) by the Sobolev embedding theorem.

(ii) For each ¢ € D(A), the function w. = S5 (¢)¢ is a solution of and satisfies
the estimate ||we||p,n,7) < c2]¢'(e)] with a constant cy independent of e, since the
resolvents R.(B;) are uniformly bounded on & by Proposition The trace operator
Je: D(fib) — C, jep = &' (¢), is also uniformly bounded on e. Therefore

155 (O ¢l La(n.g) = llwell Lo,y < Cllollwz(z,)-
The same proof works for S5(¢). O

We are now in a position to prove Theorem [I} In view of Proposition [3| we conclude
that the family of matrix operators H.((), given by (27), converges as ¢ — 0 towards

D) _Ta(c) 0
H()= 1|0 E 0
0 -1, E
in the norm. Moreover ||H({) — H({)|| < cie. Observe that 7(() is invertible and
E T,(¢) 0
HCOP =0 E 0
0 T,(¢) E

Therefore H.(¢) is also invertible for € small enough, and

[H(O)™H = H(O T < cee (33)
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Recalling and applying Proposition [2, we deduce
RC(AE) = Ha(g)_lRa(g)

E —T5(C) 0 ~ [Re(42) 0 0
=[-eS(Q) E =550 0 R¢(B:) 0
0 —T; (<) E 0 0 R¢ (A7)
E T,(¢) 0Y\ [Re(4a) 0 0
Slo E 0 0 ReB) 0
0 Tp() E 0 0 Re(4Ap)
RC (Aa) Ta(C)RC (B) 0 )
= 0 R¢(B) 0 =R¢(A) ase—0,
0 Ty(OR¢(B)  Re(As)

by . Estimate follows from the equality
R¢(A:) = Re(A) = He(O)THR(C) = R(Q) = (H=(O) 7" = H(OTHR(Q)
and bounds (29), and (33). Here R(¢) = diag {R¢(44), Re(B), Re(4p) }

4. SPECTRUM OF A

The limit operator

Ao 00\ D(A) = {(da ¥, &) € D(Ad) x D(B) x D(4y):
A=|(0 B 0],
0 0 A ¢a(0) = ¥(=1), $(0) = H(1)}.

constructed above is non-self-adjoint. Direct computations show that the adjoint operator
A* in £ has the form

Aa 0 0N DIAY) = {(das, ) € D(Aq) x D(B) x D(4y):
A =0 B 0],
0 0 A G,(0) = ¥/(=1), 64(0) = v'(1)}.
In what follows we will denote by w), vy and wy the eigenfunctions of A,, A, and

B respectively which correspond to an eigenvalue A. So w)y, vy and w) are non-trivial
solutions of the problems

—u" 4+ qu=MXru inZ,, lou =0, u(0)=0; (34)
—v" +qu=XMv inTZ, v(0) =0, Ly =0; (35)
—w’ =X hw in J, w'(=1)=0, w(1)=0 (36)

respectively. Let us normalize these eigenfunctions by setting
lurllzorza) = vl Loz = lwallLyhg) = 1. (37)
Denote also by X, the root subspace of A for A\, that is
X = span {ker(A — \)*: k € N}.
The eigenvectors and root vectors of a non-self-adjoint operator are also called generali-

zed eigenvectors. So X, is a subspace of the generalized eigenfunctions corresponding to
the eigenvalue .
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Theorem 2. (1) The spectrum of A is real and discrete, and
o(A) =0(As) Ua(B)Uoa(Ap). (38)

(i2) If X belongs to only one of the sets o(A,), o(B) or o(Ap), then X\ is a simple
eigenvalue of A.

(#it1) If A € o(Ag)No(Ap), but X is not an eigenvalue of B, then X is a double eigenvalue
and X = ker(A — \E).

(iv) Suppose that \ belongs to 0(A,) No(B) (resp. o(Apy) No(B)), but X is not an
eigenvalue of A, (resp. A,), then X\ is a double eigenvalue of A. Finally, if \ €
0(Ay) No(Ap) No(B), then A is an eigenvalue of A with multiplicity 3. In both
the cases we have X = ker(A — \)?, but X # ker(A — \).

Proof. (i) Equality follows directly from the explicit representation of Re¢(A).
Indeed, each of spectra o(A4,), 0(Ap) and o(B) is contained in the spectrum of A. If ¢
does not belongs to set 0(A,)Uo(Ay) Uo(B), then not only R¢(Aq), Re(Ap), Re(B), but
also T, (¢) and Ty(¢) are bounded, because in this case problems and fore =0
are uniquely solvable for all 1 € WZ(J). Therefore operator R¢(A) is also bounded.
The operators A,, A, and B associated with eigenvalue problems (34)), and are
self-adjoint and have compact resolvents. Consequently o(A) is real and discrete.

(#4) Observe that the spectra of A,, A, and B are simple. A trivial verification
shows that if A belongs to only one of the sets o0(A,), 0(4) or o(B), then A is a simple
eigenvalue of A with eigenvector (uy,0,0) if A € 0(A,), and (0,0,v,) if A € o(Ap), and
(Ta()\)w,\7 wy, Tb()\)w)\) if A e O’(B)

(#4i) In the case A € 0(A,)No(Ap) and A & o(B), there are two linearly independent
eigenvectors U = (uy,0,0) and V = (0,0,v,). Moreover, equation

(A=XN)Y = U+ cV

is unsolvable for any ¢; and ¢y such that ¢ + ¢3 # 0. If for instance c; is different from
zero, then the problem

—u” + qu— Mru=ciruy  in I, lou=0, u(0)=0 (39)
has no solutions. Suppose, contrary to our claim, that such solution exists. Then multi-
plying equation by u) and integrating by parts yield cl|\u/\||%2(,}za) = 0. Therefore
X =ker(A — X) and dim X = 2.

(iv) Suppose that A\ € 0(A,) No(B) and A € o(Ap). In this case there exists the
eigenvector U = (uy,0,0). Furthermore, we will show that the equation

(A-NU,=U
is solvable. We are thus looking for a solution U, = (u,w,v) of
—u” +qu—Aru=ruy in7Z,, lou =0, u(0)=w(-1); (40)
—w” —Xhw=0 inJ, w'(=1) =0, w'(1)=0; (41)
—v" 4+ qu—Arv =0 inTy, v(0) =w(l), £v=0. (42)

Obviously, w = cow) for some constant ¢y, where w) is a normalized eigenfunction of B.
Then admits a unique solution v, = co Tp(A\)wy for each cg, since A € o(4;). Next,
is in general unsolvable, since A is a point of (A,). But we have the free parameter
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¢o in the boundary condition; with the condition «(0) = cowx(—1) is solvable if and
only if

1
wx(=1u} (0)
This equality can be easily obtained by multiplying the equation in (40) by w) and
integrating by parts. Remark that both of the values wy(—1) and «}(0) are different
from zero. If ug is a solution of , then the operator A has a root vector

Cop = (43)

U* = (UO, Co Wy, Co Tb(A)w)\) )

where ¢( is given by . Hence, the subspace X is a linear span of the eigenvector U
and the root vector U,. In addition, there are no other root vectors, because the equation

(A=Y =U.,
leads to the problem
—w"” — Mhw = chwy in J, w'(=1) =0, w'(1)=0, (44)
which is unsolvable for ¢ # 0. The case A € o(4y) No(B) and X & o(A,) is treated

similarly.
Now we suppose that

A€ o(A,) No(Ap) No(B).

Then the operator A has two linearly independent eigenvectors U = (uy,0,0) and V =
(0,0,vy). Note also that A has no eigenvectors Y = (u,w,v), where w is different from
zero. In this case, the values w(—1) and w(1) are always different from zero and hence
the problems for u and v are unsolvable. We will prove that X, = ker(A — \)? and
dim X, = 3. Let us consider the equation

(.A — /\)Y =c1U + ¢V

with arbitrary constants ¢; and co, that is to say,

—u" 4+ qu—Aru=ciruy in Z,, lou =0, u(0)=w(-1); (45)
—w" = Xhw=0 inJ, w'(=1) =0, w'(1)=0; (46)
— 0"+ qu— Arv = corvy  in Ty, v(0) = w(l), L =0. (47)

Reasoning as above, we establish that w = cywy and problems and admit
solutions simultaneously if and only if the following equalities

c1 = cowx(—1)u4 (0), c2 = —cowy (1)v4(0)
hold. Then the conditions ¢y # 0 and
NG IAG
wx(1)v4(0)

ensure the existence of a root vector Y, of A. Furthermore there are no other root
vectors, by reasoning similar to that in the previous case. Hence the subspace X, for a
triple eigenvalue A is generated by the eigenvectors U, V and the root vector Y. O

C2
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5. CONVERGENCE OF SPECTRA

Let us denote by
Af <A <o A <

the eigenvalues of problem 7, i.e., the eigenvalues of A.. Note that each eigenvalue
A;, is simple. Let

MK A< KA <

be the eigenvalues of limit problem (L3)-(16) (or also the operator A), counted with
algebraic multiplicities.

Theorem 3. For each n € N, the eigenvalue A5, of problem 7 converges as € — 0
to the eigenvalue X\, of 7 with the same number. That is, if A is an eigenvalue
of 7 with algebraic multiplicity m, then there exists a neighbourhood of A which
contains exactly m eigenvalues of 7 for € small enough.

Proof. The theorem follows from the norm resolvent convergence of 4. proved in
Theorem [I] and some general results on the approximation of eigenvalues of compact
operators. Let K be a compact operator in a separable Hilbert space H. Suppose that
{K_:}e>0 is a sequence of compact operators in H such that K. — K as ¢ — 0 in the
uniform norm. Let pq,pe,... be the nonzero eigenvalues of K ordered by decreasing
magnitude taking account of algebraic multiplicities. Then for each € > 0 there is an
ordering of the eigenvalues uq(e), pa(e),... of K. such that lim._,qp,(e) = pn, for
each natural number n. Suppose that p is a nonzero eigenvalue of K with algebraic
multiplicity m and T',, is a circle centered at p which lies in p(K) and contains no other
points of o(K). Then, there is an ¢ such that, for 0 < ¢ < &g, there are exactly m
eigenvalues (counting algebraic multiplicities) of K. lying inside I', and all points of
o(K.) are bounded away from I', [35, Ch.1], [36, Ch.XI-9], [37].
We apply these results to K = R¢(A) and K. = R¢(A.). Then we have

e N}, o, (Re(AL) = {Al—q ne N};

both eigenvalue sequences are ordered by decreasing magnitude. Since A. — A in the
norm resolvent sense as € — 0, that is, |[R¢(A:) — R¢(A)|] — 0 as € — 0, we have the
“number-by-number” convergence of the eigenvalues

1 N 1
¢ -G

n

Re(4) = {

as € — 0,

from which the desired conclusion follows. O

Remark 1. We expect that the estimate
I — M| < Cnv/e

to be correct for each n € N and some constants C,,. However, it does not follow directly
from bound (17), because the resolvents R¢(A) and R¢(A.) are not in general normal
operators.
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6. SOME REMARKS ON EIGENFUNCTION CONVERGENCE

Since the multiplicity of eigenvalues of the limit operator is up to 3, the bifurcation
pictures for multiple eigenvalues of 7 are quite complicated. The bifurcations of
eigenvalues as well the eigensubspaces can be described by a more accurate asymptotic
analysis. We omit the details here, because we will consider these questions in a forth-
coming publication. However we can obtain some results on the limit behaviour of ei-
genfunctions that follow directly from the norm resolvent convergence A. — A.

Let us return to the compact operators K and K. which appeared in the previous
section. We consider the Riesz spectral projections

B = 5 [Re()ds B = 5 [ R(A s

The range R(E(u)) of E(u) is the space of generalized eigenfunctions of K corresponding
to p and R(E.(u)) is the direct sum of the subspaces of generalized eigenfunctions of K.
associated with the eigenvalues of K. inside I',,. If K. — K as € — 0 in the norm, then
E.(1) — E(p) in the norm, and therefore

dim R(E. (1)) = dim R(E()) = m,
where m is the algebraic multiplicity of .

Theorem 4. Let y. ,, be the eigenfunction of 7 which corresponds to the eigenvalue

An and |[yenllorz) = 1.
Suppose that X5, — X, where A, is a simple eigenvalue of A belonging to o(A,).
Then the eigenfunction y. ,, converges in Lo(Z) as € — 0 to the function

un(x)a if.TEIa,
0, ifrel, ’

y(z)
where u, is an normalized eigenfunction of A, associated with X\, , that is,

—ul + qup, = Aty in Ly, Loun, =0, u,(0) =0, ltunllLy@rz.) =1
Similarly if A, belongs to o(Ap) and A, is simple, then y.,, — y in Lo(Z) as e — 0,
where

0, if v € T,
y(z) = .
vn(x), ifx ey
and v, is an normalized eigenfunction of A, with eigenvalue X\, i.e.,
—u +quy, = Aoy, in Ty, v,(0) =0, fpv, =0, vnll Lo (rzy) = 1-

Assume X5, — A\, where X\, is a simple eigenvalue of A belonging to o(B). Then
the eigenfunction y. ,, converges in Lo(T) to a solution y of the problem

-y +qy=X oy mI\{0}, Llyy=0, Ly=0,
y(—0) = 0w, (—1),  y(40) = Ow, (1),
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where w,, is the corresponding eigenfunction of B such that |[wy ||, 7) = 1. Normalizing
factor 0 is given by

-1
0= (ITeC)wnld sz, + 1T ) 0nlE 2y ) -

Proof. In the case when K = R¢(A), K. = R¢(A:), X is a unique point of o(A) lyi-
ng inside Ty, and ¢ is small enough, we see that X, = R(E(%{)) is a subspace of
generalized eigenfunctions of A corresponding to the eigenvalue X, and the subspace
X5 = R(Eg(%_c)) is generated by all eigenfunctions of A, for which A\ — X as ¢ — 0.
Then the norm resolvent convergence A. — A implies that the gap between X5 and X
tends to zero as ¢ — 0 for each A € ¢,(A). In particular, if A, is a simple eigenvalue
of A with eigenvector Y,, and Yz, is an eigenvector of A, that corresponds to AS, then
Yen, = Y, in L ase — 0, provided [|Y ]|z = [Yallz =1
Assume ), is a simple eigenvalue of A and \,, € 0(4,). In view of Theorem [2] the
subspace X is generated by vector Y,, = (up,0,0). Then Y;,, — Y,, as ¢ — 0 in the
norm of L. If we set Y, = (y2,we,y?), then the eigenfunction y. , of (I)—(3) can be
written as
yg('r)’ if v € Ig,
Yen (@) = S we(x/e), ifz € (—¢,¢),
yl(x), if x € Z;.

So we have

I8 = 20 = /m—mﬁm+/MFm
Lﬂ%f—% |M+ﬂwfﬁm<ﬂw—wﬁmm

+eally2lli, oz, + esellwelli, gy + / Jun]? da < callYen — YallZ + cse.

—€

The right-hand side tends to zero as ¢ — 0, since Y, ,, — Y, in £ and u, is bounded
on 7, as an element of W3(Z,). The same proof works for the cases A\, € o(4,) and
An € 0(B). O

Remark 2. Of course, in the case of multiple eigenvalues, we also have some information
about the convergence of eigenfunctions. For instance, if we suppose that A € o(A,) N
o(Ap), but X is not an eigenvalue of B, and two eigenvalues A;, and A7 ; tend to A
as € — 0, then the gap between the eigensubspace X, of A and the subspace X§ =
span{ye n,Yent+1} vanishes as € — 0. Therefore, the eigenfunctions y., and yen4+1
converge in Lo(Z) to some linear combinations cijuy + covy, where uy and vy are ei-
genfunctions of A, and A, respectively that correspond to A. However, without a deeper
analysis of the problem, we will not know what the linear combinations are limit positions
of vectors y. , and ¥y, 41 in the plane X, .
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KonusHi cucrtemn 3 mpueHaHUMY MacaMu OYa/u JocaikyBaTu e ILyac-
con Ta Beccemnb, i choromii MaEMo THCSYlI HAYKOBHUX IPAIlb, B AKUX BUBYAIOTDH
KOJIUBHI TTPOIIECH Y CEPEJIOBUIIAX 3 HEOTHOPITHO PO3MOIiIeHUMH MacaMu. Teo-
Ppisi CHJIBHO HEOMHOPITHUX CEepeIOBHUII IT0Yajia OCOOIMBO AKTUBHO PO3BUBATHCS
3 IOSIBOIO0 KOMIIO3UTHHUX MaTepiasiB, fKi BOJIOMIIOTh PI3HOMAHITHUMYU KOPUCHHU-
MU BJIQCTUBOCTSMH 1 IMHUPOKO 3aCTOCOBYIOTHCSA B CYUIACHUX TEXHOJIOTigAX. Ba-
KJIMBOIO YACTHUHOIO ITi€l TEOPil € JOC/IKEeHHS JIUHAMIYHUX Ta CIEKTPAJIbHUX
3a1a4 A1 qudepeHIiiaJbHIX OIepaTopiB i3 KoedilieHTaMu, 0 MiCTATh CAJIbHI
sokasapHI 30ypenus. Taki 3a1adi BUMAraloTh HOBHX MiJXOAIB B Teopil kKpaiio-
BUX 33719 JyTsi AU epeHIfiajbHuX PIBHIHb, CTBOPEHHS HOBUX aCHMITTOTHIHUX
MEeTOAIB 1 HOBUX 00YMCJ/IIOBAJIBHUX CXEM.

My BUBYAEMO CIEKTPAJIbHI BJacTuBOCTI oreparopis Illtypma-JliyBinng 3 cun-
Ty/ISpHUM 30ypeHHSIM BaroBol MYHKIII y BUMIAIKY 3arajibHAX KPANHOBUX YMOB.
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36ypennsiM € Tak 3sama §'-mofibma mocmigosHicTs BUTIAMY £ 2h(x/c). Xapa-
KTEPHOIO OCOOJIMBICTIO TaKWX 337aY € MPUCYTHICTH 3aJI€¥KHOI BijJ MaJjoro Ta-
paMeTpa € TyCTHHH p. IIPU CIEKTPAIBLHOMY IIapaMeTpi, BHACILAOK ©Or0 camo-
CIIPsI?KEHA OTIePATOPHA PeaJIi3aliisa 3a/1a9l MOXKJINBA JIMIIe Y BATOBUX IPOCTOPAX
JleGera, ski Tek 3aJsie’kaTh Big mapamerpa €. JlociiKeHHs ciMeil oTiepaTopis,
sKi JII0TH y PI3HUX IIPOCTOpAX, OB’ sA3aHe 3 HaraTbMa TPYIHOIIAMY MAaTeMaTH-
g0l npupoau. Ilo-mepine, gk TpakTyBaTu 30ixkHiCTH Takux cimeil. [lo-apyre,
SIKIIIO OMT€PATOPH 1 36IraloThCsT B IEBHOMY CEHCI, TO UM Taka 301KHICTH rapaH-
Ty€ 301KHICTD CIEKTDIB Ta BJIACHUX MiANPOCTOPIB, M03asK B I[bOMY BHIIAIKY
He BJAE€THCA 3aCTOCYBAaTH KJACH4YHI TeopeMmmu Teopil omeparopis. Bararo mo-
CJITHUKIB YHUKAJIN MUTAHHS OTIEPATOPHOI 301KHOCTI y TaKUX 3a/1ad, OyIyiotn
dopMabHI ACHMITOTUKY BJIACHUX 3HAYEHD 1 BJIACHUX (DYHKIIIH Ta 3aCTOCOBYIO-
9y TeOPiro KBa3iMo 1. Takwmil mijixis He 3aBXK /1M JA€ ILIKOBUTUN OIIKUC I'PAHUIHOT
TOBEIHKY CIIEKTPY, I0r0 rpaHUIHOI KPATHOCTI Ta CTPYKTYPU I'PAHUTHIX BJIa-
CHUX IAIPOCTOPIB.

Y wiit crarTi 3aCTOCOBAHO IHIMUN MAXiT A0 33129 3 KOHIEHTPOBAHUMH Maca-
Mu. BiIMOBUBIINCH BiJ ITepeBar CaMOCTIPSIYKEHUX OTIepaTOPiB, MU peai3yBajin
CHHTYJISIPHO 30ypeHy 33Jady fK CIM'I0 JeSIKHX HEeCAMOCIPSKEHUX MATPUTHUX
onepaTopis A., 110 JiI0Th B TOMY camMOMy riyibbeproBoMy npocropi. Mu mosesu
piBHOMIpHY pe30IhBEeHTHY 301KHICTH A, mipu as € — 0 i, aK HACJIIO0K, JOBEH,
o IxHi ciekTpu 36iraforscs B cenci ['aycnopda 1o cexTpa Ieskoro omeparo-
pa A. Likaso, mo xo4a oneparopu A, Oyiau noaibHUMU 10 CAMOCHPIXKEHUX 1
BOJIOALIN MiHCHUM JUCKPETHUM 1 TPOCTUM CIIEKTPOM, IPaHUIHUiN omneparop A
BHUSIBUBCSI CYTTEBO HECAMOCIPSI)KEHNM 3 KPATHAM CIIEKTPOM 1 KOpEHEBUMU ITiJI-
mpocTopamMu, mo MicTwIu IpueaHaHi BeKkTopu. Ha MOBiI caMocipsizKeHOI ore-
paTopHOI peasii3ariii, MU OTPUMAJIN TIPUKJIA]T CiM'T CAMOCIIPSIJKEHUX OTePaTOPIB
T. 3 KOMIIAKTHOIO DE30JIbBEHTOIO, IO HiI0Th y mesakux mpocropax H. i ski
“30irafoThCsa” 10 HECAMOCIIPs2KeHOro oneparopa 1o B upocropi Hy. Tobro, cie-
KTpu orneparopiB T, 36iraroThbes B cenci [aycmopda mo criekTpy omeparopa 1o
i3 BpaxyBaHHAM aare0pPUIHO] KPATHOCTI, & TPAHUYHE PO3TANTYBAHHS BJIACHUX
HiAIpOCTOPiB omeparopiB T MOXKHA OIKCATH JIMAIIE 33 JTOIIOMOI0OI0 KOPEHEBHX
miampocTopis oneparopa 1p.

Karwost crosa: omeparop llltypma-JliyBinasa, mpmemHana Maca, CHHTY-
JIspHi 30ypeHHs, CIeKTpaJIbHa 33/a9a, PIBHOMIDHA PE30IbBEHTHA 301XKHICTH,
30ixkmicTh 33 [aycmopdom, HecamocupsikeHuil omepaTop.
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