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The Golomb (resp. Kirch) topology on the set Z• of nonzero integers is
generated by the base consisting of arithmetic progressions a+ bZ = {a+ bn :
n ∈ Z} where a ∈ Z• and b is a (square-free) number, coprime with a. In
2019 Dario Spirito proved that the space of nonzero integers endowed with
the Golomb topology admits only two self-homeomorphisms. In this paper we
prove an analogous fact for the space of nonzero integers endowed with the
Kirch topology: it also admits exactly two self-homeomorphisms.

Key words: Kirch topology, superconnected space, superconnecting poset.

In this paper we describe the homeomorphism group of the space Z• of nonzero
integers endowed with the Kirch topology τK , which is generated by the subbase consisting
of the cosets a + pZ where a ∈ Z• and p is a prime number that does not divide a. On
the subspace N of Z• this topology was introduced by Kirch in [6].

Banakh, Stelmakh and Turek [3] proved that the subspace N of (Z•, τK) is topologi-
cally rigid in the sense that each self-homeomorphism of N endowed with the subspace
topology τK�N = {U ∩ N : U ∈ τ} is the identity map of N.

On the other hand, the space (Z•, τK) does admit a non-trivial self-homeomorp�sm,
namely the map

j : Z• → Z•, j : x 7→ −x.
In this paper we prove that this is the unique non-trivial self-homeomorphism of the
topological space (Z•, τK). A similar result for the Golomb topology on Z• was proved
by Dario Spirito [11]. The topological rigidity of the Golomb topology on N was proved
by Banakh, Spirito and Turek in [2].

Theorem 1. The space Z• = Z\{0} of nonzero integers endowed with the Kirch topology
admits only two self-homeomorphisms.
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The proof of this theorem follows the lines of the proof of the topological rigidity
of the space (N, τK�N) from [3]. The proof is divided into 23 lemmas. A crucial role in
the proof belongs to the superconnectedness of the Kirch space and the superconnecting
poset of the Kirch space, which is de�ned in Section 2.

1. Four classical number-theoretic results

By Π we denote the set of prime numbers. For a number x ∈ Z by Πx we denote
the set of all prime divisors of x. Two numbers x, y ∈ Z are coprime i� Πx ∩Πy = ∅.

In the proof of Theorem 1 we shall exploit the following four known results of
Number Theory. The �rst one is the famous Chinese Remainder Theorem (see. e.g. [5,
3.12]).

Theorem 2 (Chinese Remainder Theorem). If b1, . . . , bn ∈ Z are pairwise coprime

numbers, then for any numbers a1, . . . , an ∈ Z, the intersection

n⋂
i=1

(ai + biN) is in�nite.

The second classical result is not elementary and is due to Dirichlet [4, S.VI], see
also [1, Ch.7].

Theorem 3 (Dirichlet). For any coprime numbers a, b ∈ N the arithmetic progression

a+ bN contains a prime number.

The third classical result is a recent theorem of Miha��lescu [8] who solved old
Catalan's Conjecture [7].

Theorem 4 (Mih�ailescu). If a, b ∈ {mn+1 : n,m ∈ N}, then |a− b| = 1 if and only if

{a, b} = {23, 32}.

The fourth classical result we use is due to Karl Zsigmondy [12], see also [10,
Theorem 3].

Theorem 5 (Zsigmondy). For integer numbers a, n ∈ N \ {1} the inclusion

Πan−1 ⊆
⋃

0<k<n

Πak−1

holds if and only if one of the following conditions is satis�ed:

(1) n = 2 and a = 2k − 1 for some k ∈ N; then
a2 − 1 = (a+ 1)(a− 1) = 2k(a− 1);

(2) n = 6 and a = 2; then

an − 1 = 26 − 1 = 63 = 32 × 7 = (a2 − 1)2 × (a3 − 1).

2. Superconnected spaces and their superconnecting posets

In this section we discuss superconnected topological spaces and some order
structures related to such spaces.

First let us introduce some notation and recall some notions.
For a set A and n ∈ ω let [A]n = {E ⊆ A : |A| = n} be the family of n-element

subsets of A, and [A]<ω =
⋃
n∈ω

[A]n be the family of all �nite subsets of A. For a function
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f : X → Y and a subset A ⊆ X by f [A] we denote the image {f(a) : a ∈ A} of the set
A under the function f .

For a subset A of a topological space (X, τ) by A we denote the closure of A in
X. For a point x ∈ X we denote by τx := {U ∈ τ : x ∈ U} the family of all open
neighborhoods of x in (X, τ). A poset is an abbreviation for a partially ordered set.

A family F of subsets of a set X is called a �lter if

• ∅ /∈ F ;
• for any A,B ∈ F their intersection A ∩B ∈ F ;
• for any sets F ⊆ E ⊆ X the inclusion F ∈ F implies E ∈ F .
A topological space (X, τ) is called superconnected if for any n ∈ N and non-empty

open sets U1, . . . , Un the intersection U1 ∩ · · · ∩Un is non-empty. This allows us to de�ne
the �lter

F∞ =
{
B ⊆ X : ∃U1, . . . , Un ∈ τ \ {∅} (U1 ∩ · · · ∩ Un ⊆ B)

}
called the superconnecting �lter of X.

For every �nite subset E of X consider the sub�lter

FE :=
{
B ⊆ X : ∃(Ux)x∈E ∈

∏
x∈E

τx

( ⋂
x∈E

Ux ⊆ B
)}

of F∞. Here we assume that F∅ = {X}. It is clear that for any �nite sets E ⊆ F in X
we have FE ⊆ FF .

The family

F =
{
FE : E ∈ [X]<ω

}
∪ {F∞}

is endowed with the inclusion partial order and is called the superconnecting poset of the
superconnected space X. The �lters F∅ and F∞ are the smallest and largest elements
of the poset F, respectively.

The following obvious lemma shows that the superconnecting poset F is a topological
invariant of the superconnected space.

Proposition 1. For any homeomorphism h of any superconnected topological space X,

the map

h̃ : F→ F, h̃ : F 7→ {h[A] : A ∈ F},
is an order isomorphism of the superconnecting poset F.

In the following sections we shall study the order properties of the poset F for
the Kirch space (Z•, τK) and shall exploit the obtained information in the proof of the
topological rigidity of the Kirch space.

3. Proof of Theorem 1

We divide the proof of Theorem 1 into 23 lemmas.

Lemma 1. For any a, b ∈ Z• the closure a+ bZ of the arithmetic progression a+ bZ in

the Kirch space (Z•, τK) is equal to

Z• ∩
⋂
p∈Πb

(
{0, a}+ pZ

)
.
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Proof. First we prove that a+ bZ ⊆ {0, a} + pZ for every p ∈ Πb. Take any point
x ∈ a+ bZ and assume that x /∈ pZ. Then x + pZ is a neighborhood of x and hence
the intersection (x + pZ) ∩ (a + bZ) is not empty. Then there exist u, v ∈ Z such that
x+ pu = a+ bv. Consequently, x− a = bv − pu ∈ pZ and x ∈ a+ pZ.

Next, take any point x ∈ Z•∩
⋂
p∈Πb

({0, a}+pZ). Given any neighborhood Ox of x in

(Z•, τK), we should prove that Ox∩(a+bZ) 6= ∅. By the de�nition of the Kirch topology
there exists a square-free number d ∈ Z• such that d, x are coprime and x+ dZ ⊆ Ox.

If Πb ⊆ Πx, then b, d are coprime and by the Chinese Remainder Theorem

∅ 6= (x+ dZ) ∩ (a+ bZ) ⊆ Ox ∩ (a+ bZ).

So, we can assume Πb \Πx 6= ∅. The choice of x ∈
⋂
p∈Πb

({0, a}+ pZ) guarantees that

x ∈
⋂

p∈Πb\Πx

(a+ pZ) = a+ qZ

where q =
∏

p∈Πb\Πx

p. Since the numbers x and d are coprime and d is square-free, the

greatest common divisor of b and d divides the number q. Since x− a ∈ qZ, the Euclides
algorithm yields two numbers u, v ∈ Z such that x − a = bu − dv, which implies that
Ox ∩ (a+ bZ) ⊇ (x+ dZ) ∩ (a+ bZ) 6= ∅. �

Lemma 1 implies that the Kirch space (Z•, τK) is superconnected and hence
possesses the superconnecting �lter

F∞ =
{
F ⊆ Z• : ∃U1, . . . , Un ∈ τK \ {∅}

( n⋂
i=1

Ui ⊆ F
)}

and the superconnecting poset

F =
{
FE : E ∈ [Z•]<ω

}
∪ {F∞}

consisting of the �lters

FE =
{
F ⊆ Z• : ∃(Ux)x∈E ∈

∏
x∈E

τx

( ⋂
x∈E

Ux ⊆ F
)}
.

Here for a point x ∈ Z• by τx := {U ⊆ Z• : x ∈ U} we denote the family of open
neighborhoods of x in the Kirch topology τK .

For a nonempty �nite subset E ⊆ Z•, let ΠE =
⋂
x∈E

Πx be the set of common prime

divisors of numbers in the set E. Also let

AE = {p ∈ Π : ∃k ∈ N (E ⊂ {0, k}+ pZ)} .

Observe that ΠE ⊆ AE and AE 6= ∅ because 2 ∈ AE . If E is a singleton, then AE = Π;
if |E| ≥ 2, then

AE ⊆ Πx ∪Πy ∪Πx−y ⊆ {2, . . . ,maxE}
for any distinct numbers x, y ∈ E. This inclusion follows from

Lemma 2. For any two-element set E = {x, y} ⊂ Z• we have AE = Πx ∪Πy ∪Πx−y.
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Proof. Each number p ∈ Πx (resp. p ∈ Πy) belongs to AE because {x, y} ⊂ {0, y}+ pZ
(resp. {x, y} ⊂ {0, x} + pZ}). Each number p ∈ Πx−y belongs to AE because {x, y} ⊂
x+ pZ ⊆ {0, x}+ pZ. This proves that Πx ∪Πy ∪Πx−y ⊆ AE .

Now take any prime number p ∈ AE and assume that p /∈ Πx ∪ Πy. It follows from
{x, y} = E ⊂ {0, αE(p)} + pZ that {x, y} ⊆ αE(p) + pZ and hence x − y ∈ pZ and
p ∈ Πx−y. �

Let αE : AE → ω be the unique function satisfying the following conditions:

(i) αE(p) < p for all p ∈ AE ;
(ii) E ⊆ {0, αE(p)}+ pZ for all p ∈ AE ;
(iii) αE(2) = 1 and αE(p) = 0 for all p ∈ ΠE \ {2}.

Lemma 3. Let A ⊂ Π be a �nite set containing 2 and α : A → N0 be a function such

that α(2) = 1 and α(p) ∈ {0, . . . , p − 1} for all p ∈ A \ {2}. Let x be the product of odd

prime numbers in the set A and y be any number in the set Z• ∩
⋂
p∈A

(α(p) + pZ). Then

the set E = {y, x, 2x} has AE = A and αE = α.

Proof. For every prime number p ∈ A we have {x, y} ⊂ {0, y}+ pZ, which implies that
p ∈ AE . Assuming that AE \A contains some prime number p, we conclude that x /∈ pZ
and hence the inclusion {y, x, 2x} = E ⊂ {0, αE(p)}+ pZ implies {x, 2x} ⊂ αE(p) + pZ
and x = 2x − x ∈ pZ. This contradiction shows that AE = A. To show that αE = α,
take any prime number p ∈ A = AE . If p = 2, then α(p) = 1 = αE(p). So, we assume
that p 6= 2. If α(p) = 0, then y ∈ α(p) + pZ = pZ and hence p ∈ ΠE . In this case
αE(p) = 0 = α(p). If α(p) 6= 0, then the number y ∈ α(p) + pZ is not divisible by p and
then the inclusions {y, x, 2x} ⊆ {0, α(p)} + pZ and {y, x, 2x} = E ⊂ {0, αE(p)} + pZ
imply that α(p) = αE(p). �

The following lemma yields an arithmetic description of the �lters FE .

Lemma 4. For any �nite subset E ⊆ Z• with |E| ≥ 2 we have

FE =
{
B ⊆ Z• : ∃L ∈ [Π \AE ]<ω

⋂
p∈L

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ) ⊆ B
}
.

Here we assume that
⋂
p∈∅

pZ• = Z•.

Proof. It su�ces to verify two properties:

(1) for any (Ux)x∈E ∈
∏
x∈E

τx there exists a �nite set L ⊆ Π \AE such that

⋂
p∈L

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ) ⊆
⋂
x∈E

Ux;

(2) for any �nite set L ⊆ Π\AE there exists a sequence of neighborhoods (Ux)x∈E ∈∏
x∈E

τx such that

⋂
x∈E

Ux ⊆
⋂
p∈L

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ).
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1. Given a sequence of neighborhoods (Ux)x∈E ∈
∏
x∈E

τx, for every x ∈ E �nd a

square-free number qx > x such that Πqx ∩ Πx = ∅ and x + qxZ ⊆ Ux. We claim that

the �nite set L =
⋃
x∈E

Πqx \AE has the required property. Given any number

z ∈
⋂
p∈L

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ),

we should prove that z ∈ Ux for every x ∈ E. By Lemma 1,

Z• ∩
⋂

p∈Πqx

({0, x}+ pZ) = (x+ qxZ) ⊆ Ux.

So, it su�ces to show that z ∈ {0, x}+ pZ for any p ∈ Πqx . Since the numbers x and qx
are coprime, p /∈ Πx and hence p /∈ ΠE . If p /∈ AE , then p ∈ Πqx \ AE ⊆ L and hence
z ∈ pN ⊆ {0, x}+ pZ. If p ∈ AE , then x ∈ E ⊆ {0, αE(p)}+ pZ and x ∈ αE(p) + pZ (as
p /∈ Πx). Then x+ pZ = αE(p) + pZ and z ∈ {0, αE(p)}+ pZ = {0, x}+ pZ.

2. Fix any �nite set L ⊆ Π \ AE . For every x ∈ E consider the neighborhood

Ux =
⋂

p∈L∪AE\Πx

(x+ pZ) of x in the Kirch topology. By Lemma 1,

Ux = Z• ∩
⋂

p∈L∪AE\Πx

({0, x}+ pZ).

Given any number z ∈
⋂
x∈E

Ux, we should show that

z ∈
⋂
p∈L

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ).

This will follow as soon as we check that z ∈ pZ• for all p ∈ L and z ∈ {0, αE(p)}+ pZ
for all p ∈ AE \ΠE .

Given any p ∈ AE \ ΠE , we can �nd a point x ∈ E \ pZ and observe that x ∈ E ⊆
{0, αE(p)}+ pZ. Then

z ∈ Ux ⊆ x+ pZ ⊆ {0, x}+ pZ = {0, αE(p)}+ pZ.

Now take any prime number p ∈ L. Since L ∩ AE = ∅, we conclude that E 6⊆ pZ.
So, we can �x a number x ∈ E \ pZ. Taking into account that p /∈ AE , we conclude that
E 6⊆ {0, x}+ pZ and hence there exists a number y ∈ E such that pZ 6= y+ pZ 6= x+ pZ.
Then

z ∈ Ux ∩ Uy ⊆ ({0, x}+ pZ) ∩ ({0, y}+ pZ) = pZ.
�

We shall use Lemma 4 for an arithmetic characterization of the partial order of the
superconnecting poset F of the Kirch space.

Lemma 5. For two �nite subsets E,F ⊆ Π with min{|E|, |F |} ≥ 2 we have FE ⊆ FF if

and only if

AF ⊆ AE , ΠF \ {2} ⊆ ΠE and αE�AF \ΠE = αF �AF \ΠE .
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Proof. To prove the �only if� part, assume that FE ⊆ FF . By Lemma 4, the set⋂
p∈AF \AE

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ)

belongs to the �lter FE ⊆ FF . By Lemma 4, there exists a �nite set L ⊂ Π \ AF such
that⋂
p∈L

pZ• ∩
⋂

p∈AF \ΠF

({0, αF (p)}+ pZ) ⊆
⋂

p∈AF \AE

pZ• ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ). (1)

This inclusion combined with the Chinese Remainder Theorem 2 implies

AF \AE ⊆ L ⊂ Π \AF , AE \ (ΠE ∪ {2}) ⊆ L ∪ (AF \ΠF )

and

αE(p) = αF (p) for any p ∈ (AF \ΠF ) ∩ (AE \ΠE),

and

AF ⊆ AE , ΠF \ {2} ⊆ ΠE and αE�AF \ΠE = αF �AF \ΠE . (2)

To prove the �if� part, assume that condition (2) holds. To prove that FE ⊆ FF , �x
any set Ω ∈ FE and using Lemma 4, �nd a �nite set L ⊆ Π \AE such that⋂

p∈L
pZ• ∩

⋂
p∈AE\ΠE

({0, αE(p)}+ pZ) ⊆ Ω.

Consider the �nite set

Λ = (L ∪AE) \AF = L ∪ (AE \AF ) ⊇ L

and observe that condition (2) implies the inclusion

FF 3
⋂
p∈Λ

pZ•∩
⋂

p∈AF \ΠF

({0, αF (p)}+pZ) ⊆
⋂
p∈L

pZ•∩
⋂

p∈AE\ΠE

({0, αE(p)}+pZ) ⊆ Ω, (3)

yielding Ω ∈ FF . �

Lemma 6. For two nonempty subsets E,F ⊆ N with min{|E|, |F |} = 1 the relation

FE ⊆ FF holds if and only if |E| = 1 and E ⊆ F .

Proof. The �if� part is trivial. To prove the �only if� part, assume that FE ⊆ FF .
First we prove that |E| = 1. Assuming that |E| > 1 and taking into account that
min{|E|, |F |} = 1, we conclude that |F | = 1. Choose a prime number p > max(E ∪ F ).

Since
⋂
y∈E

y + pZ ∈ FE ⊆ FF , for the unique number x in the set F , there exists a

square-free number d such that Πd ∩Πx = ∅ and x+ dpZ ⊆
⋂
y∈E

y + pZ. By Lemma 1,

x+ qpZ• ⊆ x+ dpZ ⊆
⋂
y∈E

y + pZ =
⋂
y∈E

({0, y}+ pZ) = pZ.

The latter equality follows from p > maxE and |E| > 1. Then x + dpZ• ⊆ pZ implies
x ∈ pZ, which contradicts the choice of p > max(E ∪ F ) ≥ x. This contradiction shows
that |E| = 1. Let z be the unique element of the set E.
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It remains to prove that z ∈ F . To derive a contradiction, assume that z /∈ F . Take
any odd prime number p > max(E ∪ F ) and consider the set

{0, z}+ pZ = z + pZ ∈ FE ⊆ FF .

By the de�nition of the �lter FF , for every x ∈ F there exists a square-free number dx
such that Πdx ∩Πx = ∅ and⋂

x∈F
x+ dxZ ⊆ z + pZ = {0, z}+ pZ.

Consider the set P =
⋃
x∈F Πdx . If p ∈ Πdx for some x ∈ F , we can use the Chinese

Remainder Theorem 2 and �nd a number

c ∈ (x+ pZ) ∩
⋂

q∈P\{p}

qZ ⊆
⋂
y∈F

y + dyZ ⊆ {0, z}+ pZ.

Taking into account that x is not divisible by p, we conclude that c ∈ (x+ pZ)∩ (z+ pZ)
and hence x−z ∈ pZ, which contradicts the choice of p > max(E∪F ). This contradiction
shows that p /∈ P . Since p ≥ 3, we can �nd a number z′ /∈ {0, z} + pZ and using the
Chinese Remainder Theorem 2, �nd a number

u ∈ (z′ + pZ) ∩
⋂
q∈P

qZ• ⊆
⋂
y∈F

y + dyZ ⊆ {0, z}+ pZ,

which is a desired contradiction showing that E ⊆ F . �

As we know, the largest element of the superconnecting poset F is the superconnec-
ting �lter F∞. This �lter can be characterized as follows.

Lemma 7. The superconnecting �lter F∞ of the Kirch space is generated by the base

consisting of the sets qN for an odd square-free number q ∈ N, i.e.

F∞ =
{
B ⊆ Z• : ∃q ∈ (2N− 1) \

⋃
p∈Π

p2N (qZ• ⊆ B)
}
.

Proof. Lemma 1 implies that each element F ∈ F∞ contains the set qZ• for some odd
square-free number q. Conversely, let q be an odd square-free number. Then the sets
U1 = 1 + qZ and U2 = 2 + qZ are open in the Kirch topology on Z•. By Lemma 1 we
have

U1 ∩ U2 = Z• ∩
⋂
p∈Πq

({0, 1}+ pZ) ∩ ({0, 2}+ pZ) = Z• ∩
⋂
p∈Πq

pZ = qZ•.

Hence qZ• ∈ F∞. �

Lemma 8. For a nonempty subset E ⊆ Z• the following conditions are equivalent:

(1) FE = F∞;
(2) AE = {2}.

If |E| = 2, then conditions (1), (2) are equivalent to

(3) E ∈
{
{2n, 2n+1}, {−2n,−2n+1}, {−2n, 2n} : n ∈ ω

}
.
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Proof. (1) ⇒ (2): Assume FE = F∞. Consider the set F = {1, 2} and observe that
AF = Π1 ∪ Π2 ∪ Π2−1 = {2} and ΠF = ∅. Thus AF ⊆ AE , ΠF \{2} ⊆ ΠE and
αF �AF \ΠE = αE�AF \ΠE . Lemma 5 implies FE ⊆ FF . Since FE = F∞ is the largest
element of F we get FE = FF . By using again Lemma 5 we get AE ⊆ AF which implies
that AE = {2}.

(2)⇒ (1): If AE = {2}, then by the Lemma 4, the �lter FE is generated by the base
consisting of the sets qZ• for an odd square-free number q ∈ Z•. Therefore FE = F∞ by
the Lemma 7.

(2)⇒ (3): Assume that |E| = 2 and AE = {2}. By Lemma 2, E = {ε2a, δ2b}, where
a, b ∈ ω and ε, δ ∈ {−1, 1}. Without loss of generality we can assume that b 6 a. By
Lemma 2, Πε2a−δ2b = Πε2b(2a−b−δ/ε) ⊆ {2}. The last inclusion implies that a − b = 1

and δ/ε = 1 or a − b = 0 and δ/ε = −1. In the �rst case the set E equals {2b, 2b+1} or
{−2b,−2b+1}, in the second case E = {2b,−2b}.

(3)⇒ (2): The implication (3)⇒ (2) follows from Lemma 2. �

In the following lemmas by F′ we denote the set of maximal elements of the poset
F \ {F∞}.
Lemma 9. For a nonempty �nite subset E ⊆ Z• the �lter FE belongs to the family F′

if and only if there exists an odd prime number p /∈ ΠE such that AE = {2, p}.
Proof. To prove the �if� part, assume that AE = {2, p} and p /∈ ΠE for some odd
prime number p. By Lemma 8, FE 6= F∞. To show that the �lter FE is maximal in
F \ {F∞}, take any �nite set F ⊂ Z• such that FE ⊆ FF 6= F∞. By Lemmas 5 and 8,
{2} 6= AF ⊆ {2, p}, ΠF ⊆ ΠE ∪ {2} = {2}, and αF �AF \ ΠE = αE�AF \ ΠE . It follows
that AF = {2, p} = AE , ΠF ∪ {2} = ΠE ∪ {2} and αF = αE . Applying Lemma 5, we
conclude that FE = FF , which means that the �lter FE is a maximal element of the
poset F \ {F∞}.

To prove the �only if� part, assume that FE ∈ F′. By Lemma 8, AE 6= {2} and
hence there exists an odd prime number p ∈ AE . We claim that p /∈ ΠE . To derive a
contradiction, assume that p ∈ ΠE and consider the sets F = {p, 2p} and G = {1, p, 2p}.
By Lemma 2, AF = AG = {2, p}, ΠF = {p}, and ΠG = ∅. Taking into account that
F ⊂ G, AF = {2, p} ⊆ AE , ΠF \ {2} = {p} ⊆ ΠE and AF \ ΠE ⊆ {2}, we can apply
Lemmas 5, 8 and conclude that FE ⊆ FF ⊆ FG 6= F∞. The maximality of FE implies
FE = FF = FG. By Lemma 5, the equality FG = FF implies p ∈ ΠF \ {2} ⊆ ΠG = ∅,
which is a contradiction showing that p /∈ ΠE .

Now consider the setH = {αE(p), p, 2p} and observe that AH = {2, p}, ΠH = ∅ and
αH(p) = αE(p). Lemmas 5 and 8 guarantee that FE ⊆ FH 6= F∞. By the maximality of
FE , we have FE = FH . Applying Lemma 5 once more, we conclude that AE = AH =
{2, p}. �

Lemma 9 implies the following description of the set F′.

Lemma 10. F′ =
{
F{a,p,2p} : p ∈ Π \ {2}, a ∈ {1, . . . , p− 1}

}
.

Let F′′ be the set of maximal elements of the poset F \ (F′ ∪ {F∞})
Lemma 11. For a �nite set E ⊂ Z•, the �lter FE belongs to the family F′′ if and only

if one of the following conditions holds:
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(1) there exists an odd prime number p such that p ∈ ΠE and AE = {2, p};
(2) there are two distinct odd prime numbers p, q such that AE = {2, p, q} and ΠE ⊆
{2}.

Proof. To prove the �only if� part, assume that FE ∈ F′′. By Lemma 8, there is an odd
prime number p ∈ AE . If AE = {2, p}, then p ∈ ΠE by Lemma 9, and condition (1) is
satis�ed. So, we assume that {2, p} 6= AE and �nd an odd prime number q ∈ AE \{2, p}.
By Lemma 3, there is a number x ∈ N such that for the set F = {x, pq, 2pq} we have
AF = {2, p, q}, ΠF = ∅, αF (p) = αE(p) and αF (q) = αE(q). Then FE ⊆ FF by
Lemma 5, and FF ∈ F \ (F′ ∪ {F∞}) by Lemma 9. Now the maximality of the �lter FE
implies that FE = FF and hence AE = AF = {2, p, q} and ΠE ⊆ ΠF ∪ {2} = {2}, see
Lemma 5.

To prove the �if� part, we consider two cases. First we assume that AE = {2, p} and
p ∈ ΠE for some odd prime number p. By Lemmas 8 and 9, FE ∈ F \ ({F∞} ∪ F′). To
prove that FE is a maximal element of F \ ({F∞} ∪ F′), take any �nite set F ⊆ Z• such
that FE ⊆ FF ∈ F \ ({F∞} ∪ F′). Lemma 6 implies that min{|E|, |F |} ≥ 2 and then by
Lemmas 5 and 9, we have AF = {2, p}, ΠF \{2} ⊆ {p} and αE�AF \{p} = αF �AF \{p}.
Now notice that p ∈ ΠF since otherwise FF ∈ F′ by Lemma 9. By using again Lemma 5
we get FF = FE which means that FE ∈ F′′.

Now assume that there are two distinct odd prime numbers p, q such that AE =
{2, p, q} and ΠE ⊆ {2}. By Lemmas 8 and 9, FE ∈ F \ ({F∞} ∪ F′). To prove that
FE is a maximal element of F \ ({F∞} ∪ F′), take any �nite set F ⊆ Z• such that
FE ⊆ FF ∈ F \ ({F∞} ∪ F′). Lemma 5 implies that AF ⊆ {2, p, q}, ΠF ⊆ {2} and
αE�AF \ ΠE = αF �AF \ ΠE . Taking into account that FF /∈ F′ ∪ {F∞} and ΠF ⊆ {2},
we can apply Lemmas 9, 8 and conclude that AF = {2, p, q}. We therefore know that
AF = AE , ΠE∪{2} = ΠF ∪{2} and αF �AE \ΠF = αE�AE \ΠF . By Lemma 5, FE = FF
and hence FE ∈ F′′. �

Lemma 12. For any homeomorphism h of the Kirch space and any odd prime number

p we have

h̃(F{p,2p}) = F{p,2p}.

Proof. By Proposition 1, the homeomorphism h induces an order isomorphism h̃ of the
superconnecting poset F on the Kirch space. Then h̃[F′] = F′ and h̃[F′′] = F′′.

By Lemmas 11 and 3, F′′ = F′′2 ∪ F′′3 where

F′′2 =
{
F{p,2p} : p ∈ Π \ {2}

}
and

F′′3 =
{
F{x,pq,2pq} : p, q ∈ Π \ {3}, x ∈ {0, . . . , pq − 1} \ (pZ ∪ qZ)

}
.

By Lemmas 5 and 9, for every �lter F{p,2p} ∈ F′′2 the set

↑F{p,2p} =
{
F ∈ F′ : F{p,2p} ⊂ FE

}
coincides with the set

{
F{a,p,2p} : a ∈ {1, . . . , p− 1}

}
and hence has cardinality p− 1.

On the other hand, for any �lter F{x,pq,2pq} ∈ F′′3 , the set

↑F{x,pq,2pq} =
{
F ∈ F′ : F{x,pq,2pq} ⊂ F

}
coincides with the doubleton

{
F{x,p,2p},F{x,q,2q}

}
.
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These order properties uniquely determine the �lters F{p,2p} for p ∈ Π \ {3} and
ensure that h̃(F{p,2p}) = F{p,2p} for every p ∈ Π \ {3}.

Next, observe that F{3,6} is a unique element F of F′′ such that

↑F ∩
⋃

p∈Π\{3}

↑F{p,2p} = ∅.

This uniqueness order property of F{3,6} ensures that h̃(F{3,6}) = F{3,6}. �

Lemma 13. Let E ⊆ Z• be a �nite subset such that AE = {2, p} for some odd prime

number p /∈ ΠE. Then Ah[E] = {2, p}.

Proof. By Lemma 9, FE ∈ F′. Consider the doubleton {p, 2p} which has A{p,2p} = {2, p}
and Π{p,2p} = {p}. By Lemma 5, F{p,2p} ⊆ FE and by Lemma 12,

F{p,2p} = h̃(F{p,2p}) = F{h(p),h(2p)} ⊆ Fh[E].

By Lemma 5, Ah[E] ⊆ A{p,2p} = {2, p}. By Lemma 8, Ah[E] = {2, p}. �

De�nition 1. A homeomorphism h of the Kirch space (Z•, τK) is called positive if
h(1) > 0.

Lemma 14. Every positive homeomorphism h of the Kirch space has h(x) = x for any

x ∈ {±2n, n ∈ ω}

Proof. Consider the graph Γ2 = (V2, E) with the set of vertices V2 = {±2n : n ∈ ω} and
the set of edges

E =
{
{2n, 2n+1}, {−2n,−2n+1}, {−2n, 2n} : n ∈ ω

}
.

Observe that 1 and −1 are the unique vertices of Γ2 that have order 2. Any other
vertices have order 3. This ensures that h(1) = ±1. The positivity of h implies that
h(1) = 1. Then h(−1) = −1, h(2) = 2. Hence h(±2n) = ±2n for all n ∈ ω. �

Lemmas 14 and 12 imply

Lemma 15. For any positive homeomorphism h of the Kirch space and any odd prime

number p we have

h̃(F{1,p,2p}) = F{1,p,2p} and h̃(F{2,p,2p}) = F{2,p,2p}.

Lemma 16. For an integer number x ∈ Z• \ {−2,−1, 1, 2} and an odd prime p, the
following conditions are equivalent:

(1) p ∈ Πx;

(2) F{1,x} ⊆ F{1,p,2p} and F{2,x} ⊆ F{2,p,2p}.

Proof. If p ∈ Πx, then A{1,p,2p} = {2, p} ⊆ A{1,x}, Π{1,x} ∪ {2} = {2} = Π{1,p,2p} ∪ {2}
and α{1,x}(p) = 1 = α{1,p,2p}(p). By Lemma 5, F{1,x} ⊆ F{1,p,2p}. By analogy we can
prove that F{2,x} ⊆ F{2,p,2p}.

Conversely, assume F{1,x} ⊆ F{1,p,2p} and F{2,x} ⊆ F{2,p,2p}. By Lemmas 5 and 2,
we have

{2, p}=A{1,p,2p} ⊆ A{1,x}=Πx ∪Πx−1 and {2, p}=A{2,p,2p} ⊆ A{2,x}={2} ∪Πx ∪Πx−2

and hence p ∈ (Πx ∪Πx−1) ∩ (Πx ∪Πx−2) \ {2} ⊆ Πx. �
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Proposition 1 and Lemmas 14, 15, 16 imply

Lemma 17. For every homeomorphism h of the Kirch space and any number x ∈ N we

have

Πx ∪ {2} = Πh(x) ∪ {2}.

For every prime number p consider the set

Vp =
{
±2n−1pm : n,m ∈ N

}
of numbers x ∈ N such that p ∈ Πx ⊆ {2, p}. Lemmas 14 and 17 imply that h[Vp] = Vp
for every homeomorphism h of the Kirch space.

Consider the graph Γp = (Vp, Ep) on the set Vp with the set of edges

Ep :=
{
E ∈ [Vp]

2 : AE = {2, p}
}
.

Lemma 18. For every prime number p and every homeomorphism h of the Kirch space,

the restriction of h to Vp is an isomorphism of the graph Γp.

Proof. Let E ∈ Ep. Since p ∈ ΠE , we can apply Lemma 11 and conclude that FE ∈ F′′.

Using fact that h̃ is isomorphism of F we get Fh[E] = h̃(FE) ∈ F′′. Since h[E] ⊆ h[Vp] =
Vp, we obtain p ∈ Πh[E]. Using Lemma 11 once more, we obtain that Ah[E] = {2, p},
which means that h[E] ∈ Ep. By analogical reasoning we can prove that h−1[E] ∈ Ep for
every E ∈ Ep. This means that h�Vp is an isomorphism of the graph Γp. �

The structure of the graph Γp depends on properties of the prime number p.
A prime number p is called

• Fermat prime if p = 2n + 1 for some n ∈ N;
• Mersenne prime if p = 2n − 1 for some n ∈ N;
• Fermat�Mersenne if p is either Fermat prime or Mersenne prime.

It is known (and easy to see) that for any Fermat prime number p = 2n+ 1 the exponent
n is a power of 2, and for any Mersenne prime number p = 2n − 1 the power n is
a prime number. It is not known whether there are in�nitely many Fermat�Mersenne
prime numbers. All known Fermat prime numbers are the numbers 22n

+ 1 for 0 ≤ n ≤ 4
(see oeis.org/A019434 in [9]). At the moment only 51 Mersenne prime numbers are
known, see the sequence oeis.org/A000043 in [9].

Lemma 19. Let p be an odd prime number, p 6= 3.

(1) If p = 3, then the set Ep of the edges of the graph Γp coincides with the

set of doubletons {ε2a−13b, ε2a−13b+1}, {ε2a−13b, 2εa−13b+2}, {ε2a−13b, ε2a3b},
{ε2a−13b,ε2a+13b}, {ε2a−13b+1,ε2a+13b}, {ε2a+13b,ε2a3b+1}, {ε2a+33b,ε2a3b+2},
{ε2a−13b,−ε2a−13b+1}, {ε2a−13b,−ε2a3b}, {ε2a−13b,−ε2a+23b},
{ε2a−13b,−ε2a−13b} for some a, b ∈ N, ε ∈ {−1, 1}.

(2) If p = 2m + 1 > 3 is Fermat prime, then

Ep =
{
{ε2a−1pb, ε2a−1pb+1}, {ε2a−1pb, ε2apb}, {ε2a−1pb,−ε2a+m−1pb},

{ε2a−1pb,−ε2a−1pb}, {ε2m+a−1pb, ε2a−1pb+1} : a, b ∈ N, ε ∈ {−1, 1}
}
.
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(3) If p = 2m − 1 > 3 is a Mersenne prime, then

Ep =
{
{ε2apb, ε2a−1pb}, {ε2a−1pb, ε2m+a−1pb}, {ε2a−1pb+1, ε2m+a−1pb},

{ε2a−1pb,−ε2a−1pb}, {ε2a−1pb,−ε2a−1pb+1} : a, b ∈ N, ε ∈ {−1, 1}
}
.

(4) If p is not Fermat�Mersenne, then

Ep =
{
{ε2a−1pb,−ε2a−1pb}, {ε2a−1pb, ε2apb} : a, b ∈ N, ε ∈ {−1, 1}

}
.

Proof. Proof of Lemma 19 in each of cases (1)�(4) will be similar. The edges of graph Γp
are 2-element subsets of set Vp such that AE = {2, p}. Since the vertices of graph Γp are
numbers of the form ±2n−1pm, where n,m ∈ N, we can apply Lemma 2 and conclude
that a doubleton {x, y} ⊂ Vp belongs to Ep if and only if {2, p} = Πx ∪ Πy ∪ Πx−y. In
subsequent proofs, we will intensively use the Mih�ailescu Theorem 4 saying that 23, 32 is
a unique pair of consecutive powers.

1. First we consider the case of p = 3. It is easy to see that the doubletons {x, y}
written in statement (1) have Πx∪Πy ∪Πx−y ⊆ {2, 3}, which implies that {x, y} ∈ E3. It
remains to show that every doubleton {x, y} ∈ E3 is of the form indicated in statement
(1). Write {x, y} as {ε2a−13b, δ2c−13d} for some a, b, c, d ∈ N, ε, δ ∈ {−1, 1} such that
2a−13b ≤ 2c−13d.

If a = c and b = d, then ε 6= δ and {x, y} = {ε2a−13b,−ε2a−13b}.
If a = c, then b ≤ d and the inclusion Πx−y ⊆ {2, 3} implies that Π3d−b−ε/δ ⊆ {2, 3}

and hence 3d−b−ε/δ is a power of 2. If ε/δ = 1 then by the Mih�ailescu Theorem 4, d−b ∈
{1, 2}, which means that {x, y} is equal to {ε2a−13b, ε2a−13b+1} or {ε2a−13b, ε2a−13b+2}.
If ε/δ = −1 then by the Mih�ailescu Theorem 4, d− b ∈ {0, 1}, which means that {x, y}
is equal to {ε2a−13b,−ε2a−13b} or {ε2a−13b,−ε2a−13b+1}.

If b = d, then a ≤ c and the inclusion Πx−y ⊆ {2, 3} implies that Π2c−a−ε/δ ⊆ {2, 3}
and hence 2c−a − ε/δ is either 2 or a power of 3. If ε/δ = 1 then by the Mih�ailescu
Theorem 4, c − a ∈ {1, 2}, which means that {x, y} is equal to {ε2a−13b, ε2a3b}
or {ε2a−13b, ε2a+13b}. If ε/δ = −1 then by the Mih�ailescu Theorem 4, c − a ∈
{0, 1, 3}, which means that {x, y} is equal to {ε2a−13b,−ε2a−13b}, {ε2a−13b,−ε2a3b} or
{ε2a−13b,−ε2a+23b}.

So, we assume that a 6= c and b 6= d. In this case we should consider four subcases.
If a < c and b < d, then Πx−y ⊆ {2, 3} implies that each prime divisor of 2c−a3d−b−

ε/δ is equal to 2 or 3, which is not possible.
If a < c and b > d, then Πx−y ⊆ {2, 3} and 2a−13b ≤ 2c−13d imply that 2c−a −

(ε/δ)3b−d = 1 which implies that ε = δ. Hence c− a = 2 and b− d = 1 by the Mih�ailescu
Theorem 4. In this case {x, y} = {ε2a−13d+1, ε2a+13d}.

If a > c and b < d, then Πx−y ⊆ {2, 3} and 2a−13b ≤ 2c−13d imply that 3d−b −
(ε/δ)2a−c = 1. This implies that ε/δ = 1 and hence 〈d− b, a− c〉 ∈ {〈1, 1〉, 〈2, 3〉} by the
Mih�ailescu Theorem 4. In this case {x, y} is equal to {2c+13b, 2c3b+1} or {2c+33b, 2c3b+2}.

The subcase a > c and b > d is forbidden by the inequality 2a−13b ≤ 2c−13d.
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Figure 1. The graph Γ3

2. Assume that p = 2m + 1 > 3 is a Fermat prime. In this case m > 1. Since p > 3,
p is not Mersenne prime. It is easy to check that every doubleton

{x, y} ∈
{
{ε2a−1pb, ε2a−1pb+1}, {ε2a−1pb, ε2apb}, {ε2a−1pb,−ε2a+m−1pb},

{ε2a−1pb,−ε2a−1pb}, {ε2m+a−1pb, ε2a−1pb+1} : a, b ∈ N, ε ∈ {−1, 1}
}

has A{x,y} = Πx ∪Πy ∪Πx−y = {2, p} and hence {x, y} ∈ Ep.
Now assume that {x, y} ∈ Ep is an edge of the graph Γp. Then

Πx ∪Πy ∪Πx−y = A{x,y} = {2, p}
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and {x, y} can be written as {ε2a−1pb, δ2c−1pd} for some a, b, c, d ∈ N, ε, δ ∈ {−1, 1}
with 2a−1pb ≤ 2c−1pd.

If a = c, b = d and ε = −δ then Πε2a−1pb−δ2a−1pb = Πε2apb ⊂ {2, p}. In this case

{x, y} = {ε2a−1pb,−ε2a−1pb}.
If a = c, then b ≤ d and the inclusion Πx−y ⊆ {2, p} implies that Πpd−b−ε/δ ⊆ {2, p}

and hence pd−b − ε/δ is a power of 2. By the Mih�ailescu Theorem 4, d − b ∈ {0, 1}. If
d− b = 0, then ε = −δ and {x, y} = {ε2a−1pb,−ε2a−1pb} by the preceding case. So, we
assume that d− b = 1. Since p is not Mersenne prime, we conclude that ε = δ, and hence
{x, y} is equal to {ε2a−1pb, ε2a−1pb+1}.

If b = d, then a ≤ c and the inclusion Πx−y ⊆ {2, p} implies that Π2c−a−ε/δ ⊆ {2, p}
and hence 2c−a−ε/δ is a power of p. By the Mih�ailescu Theorem 4, 2c−a−ε/δ ∈ {1, p} =
{1, 2m+1}. If ε = δ then c−a = 1, which means that {x, y} is equal to {ε2a−1pb, ε2apb}.
If ε = −δ then c− a = m and {x, y} = {ε2a−1pb,−ε2a+m−1pb}.

So, we assume that a 6= c and b 6= d. In this case we should consider four subcases.
If a < c and b < d, then Πx−y ⊆ {2, p} implies that each prime divisor of 2c−apd−b−

ε/δ is equal to 2 or p, which is not possible.
If a < c and b > d, then Πx−y ⊆ {2, p} implies that 2c−a − (ε/δ)pb−d = 1 and

hence ε = δ. In this case the Mih�ailescu Theorem 4 ensures that b − d = 1 and hence
2c−a = p+ 1 = 2m + 2 which is not possible (as m > 1).

If a > c and b < d, then Πx−y ⊆ {2, p} implies that pd−b − (ε/δ)2a−c = 1, which
implies that ε = δ. The Mih�ailescu Theorem 4 implies that d− b = 1 and hence 2a−c =
p− 1 = 2m and a− c = m. In this case {x, y} = {ε2c+m−12b, ε2c−1pb+1}.

The subcase a > c and b > d is forbidden by the inequality 2a−1pb ≤ 2c−1pd.

3. Assume that p = 2m − 1 > 3 is Mersenne prime. In this case m > 2 and p is not
Fermat. It is easy to check that every doubleton

{x, y} ∈
{
{ε2apb, ε2a−1pb}, {ε2a−1pb, ε2m+a−1pb}, {ε2a−1pb+1, ε2m+a−1pb},

{ε2a−1pb,−ε2a−1pb}, {ε2a−1pb,−ε2a−1pb+1} : a, b ∈ N, ε ∈ {−1, 1}
}

has A{x,y} = Πx ∪Πy ∪Πx−y = {2, p} and hence {x, y} ∈ Ep.
Now assume that {x, y} ∈ Ep is an edge of the graph Γp. Then Πx ∪ Πy ∪ Πx−y =

A{x,y} = {2, p} and {x, y} can be written as {ε2a−1pb, δ2c−1pd} for some a, b, c, d ∈ N,
ε, δ ∈ {−1, 1} with 2a−1pb ≤ 2c−1pd.

If a = c, b = d, then ε = −δ and {x, y} = {ε2a−1pb,−ε2a−1pb}.
If a = c, then b ≤ d and the inclusion Πx−y ⊆ {2, p} implies that Πpd−b−ε/δ ⊆ {2, p}

and hence pd−b − ε/δ is a power of 2. By the Mih�ailescu Theorem 4, d − b ∈ {0, 1}. If
d− b = 0, then {x, y} = {ε2a−1pb,−ε2a−1pb} by the preceding case. So, we assume that
d− b = 1. If ε = δ, then pd−b − ε/δ = p− 1 = 2m − 2 is a power of 2, which is not true
as m > 2. Therefore ε = −δ and {x, y} is equal to {ε2a−1pb,−ε2a−1pb+1}

If b = d, then a ≤ c and the inclusion Πx−y ⊆ {2, p} implies that Π2c−a−ε/δ ⊆ {2, p}
and hence 2c−a−ε/δ is a power of p. By the Mih�ailescu Theorem 4, 2c−a−ε/δ ∈ {1, p} =
{1, 2m − 1}, which implies that ε = δ and c − a ∈ {1,m}. Therefore {x, y} is equal to
{ε2a−1pb, ε2apb} or {ε2a−1pb, ε2m+a−1pb}.

So, we assume that a 6= c and b 6= d. By analogy with the case of Fermat primes,
we can show that the subcases (a < c and b < d) and (a > c and b > d) are impossible.
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...

23·5 23·52 23·53 23·54 . . .

22·5 22·52 22·53 22·54 . . .

2·5 2·52 2·53 2·54 . . .

5 52 53 54 . . .

−5 −52 −53 −54 . . .

−2·5 −2·52 −2·53 −2·54 . . .

−22·5 −22·52 −22·53 −22·54 . . .

−23·5 −23·52 −23·53 −23·54 . . .

...
...

...
...

Figure 2. The graph Γ5

If a < c and b > d, then Πx−y ⊆ {2, p} implies that 2c−a − (ε/δ)pb−d = 1, and
hence ε/δ = 1. Then the Mih�ailescu Theorem 4 ensures that b − d = 1 and hence
2c−a = p+ 1 = 2m and c− a = m. In this case {x, y} = {ε2a−1pd+1, ε2a+m−1pd}.

If a > c and b < d, then Πx−y ⊆ {2, p} implies that pd−b− (ε/δ)2a−c = 1 and hence
ε/δ = 1. Then Mih�ailescu Theorem 4 implies that d − b = 1 and hence 2a−c = p − 1 =
2m − 2, which is not possible as m > 2.

4. Assume that p is not Fermat�Mersenne. It is easy to check that every doubleton

{x, y} ∈
{
{ε2a−1pb,−ε2a−1pb}, {ε2a−1pb, ε2apb} : a, b ∈ N, ε ∈ {−1, 1}

}
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23·7 23·72 23·73 23·74 . . .

22·7 22·72 22·73 22·74 . . .

2·7 2·72 2·73 2·74 . . .

7 72 73 74 . . .

−7 −72 −73 −74 . . .

−2·7 −2·72 −2·73 −2·74 . . .

−22·7 −22·72 −22·73 −22·74 . . .

−23·7 −23·72 −23·73 −23·74 . . .

...
...

...
...

Figure 3. The graph Γ7

has A{x,y} = Πx ∪Πy ∪Πx−y = {2, p} and hence {x, y} ∈ Ep.
Now assume that {x, y} ∈ Ep is an edge of the graph Γp. Then Πx ∪ Πy ∪ Πx−y =

A{x,y} = {2, p} and {x, y} can be written as {ε2a−1pb, δ2c−1pd} for some a, b, c, d ∈ N,
ε, δ ∈ {−1, 1} with 2a−1pb ≤ 2c−1pd.

If a = c and b = d, then ε 6= δ and {x, y} = {2a−1pb,−2a−1pb}.
If a = c, then b ≤ d and the inclusion Πx−y ⊆ {2, p} implies that Πpd−b−ε/δ ⊆ {2, p}

and hence pd−b− ε/δ is a power of 2. By the Mih�ailescu Theorem 4, d− b = 1 and hence
p is either Fermat prime or Mersenne prime which is not true.

If b = d, then a ≤ c and the inclusion Πx−y ⊆ {2, p} implies that Π2c−a−ε/δ ⊆ {2, p}
and hence 2c−a− ε/δ is a power of p. By the Mih�ailescu Theorem 4, 2c−a− ε/δ ∈ {1, p}.
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23·11 22·113 23·113 23·114 · · ·

22·11 22·112 22·113 22·114 · · ·

2·11 2·112 2·113 2·114 · · ·

11 112 113 114 · · ·

−11 −112 −113 −114 · · ·

−2·11 −2·112 −2·113 −2·114 · · ·

−22·11 −22·112 −22·113 −22·114 · · ·

−23·11 −23·112 −23·113 −23·114 · · ·

...
...

...
...

Figure 4. The graph Γ11

Taking into account that p is neither Fermat nor Mersenne prime, we conclude that if
ε = δ, 2c−a − 1 = 1 and hence c− a = 1. Then {x, y} = {ε2a−1pb, ε2apb}.

So, we assume that a 6= c and b 6= d. By analogy with the case of Fermate primes,
we can show that the subcases (a < c and b < d) and (a > c and b > d) are impossible.

If a < c and b > d, then Πx−y ⊆ {2, p} implies that 2c−a − (ε/δ)pb−d = 1. By the
Mih�ailescu Theorem 4 b − d = 1 and hence p = 2c−a − 1 is a Mersenne prime, which is
not true.

If a > c and b < d, then Πx−y ⊆ {2, p} implies that pd−b − (ε/δ)2a−c = 1. By the
Mih�ailescu Theorem 4 d− b = 1 and hence p = 1 + 2a−c is a Fermat prime, which is not
true. �
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In Figures 1, 2, 3, 4 we draw the graphs Γp for p equal to 3, 5, 7, 11. Observe that 3
is both Fermat and Mersenne prime, 5 is Fermat prime, 7 is Mersenne prime and 11 is
not Fermat�Mersenne.

Lemma 20. Let p be an odd prime number and h be a positive homeomorphism of the

Kirch space.

(1) If p is Fermat-Mersenne, then h(p) = p;
(2) If p is not Fermat-Mersenne, then h(p) = pn for some n ∈ N.

Proof. 1. Lemma 19(1) implies that the degree of ±3 in the graph Γ3 is equal to 8 but
the other vertices have degree at least 9. Hence h(3) = ±3. Assume that h(3) = −3.
Then by Lemma 14 and by Lemma 13

{2, 3} = A{2,3} = Ah({2,3}) = A{2,−3} = {2, 3, 5}
but this is not true and hence h(3) = 3.

Assume that p > 3 is either Fermat or Mersenne prime. Lemma 19(2,3) implies that
the degree of ±p in the graph Γp is 4 but the other vertices have degree at least 5. Hence
h(p) = ±p. Assume that h(p) = −p. By Lemma 14, A{1,p} = A{1,h(p)} = A{1,−p}, so
{p} ∪Πp−1 = {p} ∪Πp+1, according to Lemma 2. This implies that Πp−1 = Πp+1 = {2}.
Hence p is both Fermate and Mersenne which is possible i� p = 3 and this contradicts
our assumption. Therefore h(p) = p.

2. Let p be an odd prime number, which is not Fermat�Mersenne. Lemma 19(4)
implies that the set ±pN = {εpn : n ∈ N, ε ∈ {−1, 1}} coincides with the set of vertices
of order 2 in the graph Γp. Taking into account that h�Vp is an isomorphism of the
graph Γp, we conclude that h(p) = ±pn for some n ∈ N. Assume that h(p) = −pn.
Then h({−1, p}) = {−1,−pn}. By Lemma 13, A{−1,p} = A{−1,−pn}, so {p} ∪ Πp+1 =
{p} ∪ Πpn−1, according to Lemma 2. Since {p} does not intersect Πp+1 and Πpn−1 we
conclude that Πp+1 = Πpn−1. Hence we get the inclusion Πp−1 ⊆ Πpn−1 = Πp+1. If some
prime number d divides p − 1 then the inclusion Πp−1 ⊆ Πp+1 implies that d divides
p+ 1, consequently d divides the di�erence (p + 1) − (p − 1) = 2 and hence d = 2. As
a consequence, Πp−1 = {2} and p − 1 = 2m for some m ∈ N which contradicts the
assumption that p is not Fermat prime. Hence h(p) = pn. �

Lemma 21. For any positive homeomorphism h of the Kirch space and any prime

number p we have h(p) = p.

Proof. If p = 2, then h(p) = p by Lemma 14. If p is Fermat�Mersenne, then h(p) = p by
Lemma 20. So, we assume p is not Fermat�Mersenne. By Lemma 20, h(p) = pn for some
n ∈ N. By Lemmas 2, 14 and 13,

{p} ∪Πp−1 = A{1,p} = A{1,h(p)} = A{1,pn} = {p} ∪Πpn−1

and hence Πpn−1 = Πp−1. Since p is not Mersenne prime, Zsigmondy Theorem 5
guarantees that n = 1 and hence h(p) = p1 = p. �

Lemma 22. The positive homeomorphism group of the Kirch space is trivial.

Proof. To derive a contradiction, assume that the Kirch space admits a homeomorphism
h such that h(x) 6= x for some number x. By the Hausdor� property of the Kirch space
and the continuity of h, there exists a neighborhood Ox of x in the Kirch topology such
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that h[Ox] ∩ Ox = ∅. By the de�nition of the Kirch topology, there exists a square-free
number b such that Πb ∩ Πx = ∅ and x + bZ ⊆ Ox. By the Dirichlet Theorem 3, the
arithmetic progression x+bN ⊆ x+bZ contains some prime number p. Then h[Ox]∩Ox =
∅ implies h(p) 6= p, which contradicts Lemma 21. �

Our �nal lemma completes the proof of Theorem 1.

Lemma 23. Any homeomorphism h of the Kirch space Z• is equal to i : Z• → Z•,
i : x 7→ x or to j : Z• → Z•, j : x 7→ −x.

Proof. If h is positive, then h = i by previous Lemma. If h is not positive then h(1) < 0
and j ◦h(1) > 0. Then the homeomorphism j ◦h is positive and equals i by the preceding
case. This implies that

h = i ◦ h = (j ◦ j) ◦ h = j ◦ (j ◦ h) = j ◦ i = j.

�
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Òîïîëîãiÿ Ãîëîìáà (âiäïîâiäíî Êiðõà) íà ìíîæèíi Z• íåíóëüîâèõ öi-
ëèõ ÷èñåë ïîðîäæó¹òüñÿ áàçîþ, ùî ñêëàäà¹òüñÿ ç àðèôìåòè÷íèõ ïðîãðåñié
a+ bZ = {a+ bn : n ∈ Z}, äå a ∈ Z• i b � âçà¹ìíî ïðîñòå ç a ÷èñëî, (ùî íå
äiëèòüñÿ íà êâàäðàò æîäíîãî ïðîñòîãî ÷èñëà). Ó 2019 ðîöi Äàðiî Ñïiðiòî
äîâiâ, ùî ïðîñòið íåíóëüîâèõ öiëèõ ÷èñåë ç òîïîëîãi¹þ Ãîëîìáà äîïóñêà¹
ëèøå äâà àâòîãîìåîìîðôiçìè. Ìè äîâîäèìî àíàëîãi÷íèé ôàêò äëÿ ïðîñ-
òîðó íåíóëüîâèõ öiëèõ, íàäiëåíîãî òîïîëîãi¹þ Êiðõà: âií òàêîæ ìà¹ ðiâíî
äâà àâòîãîìåîìîðôiçìè.

Êëþ÷îâi ñëîâà: òîïîëîãiÿ Êiðõà, ñóïåðçâ'ÿçíèé ïðîñòið, ñóïåðçâ'ÿçóþ-
÷à ÷àñòêîâî âïîðÿäêîâàíà ìíîæèíà.
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