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The Golomb (resp. Kirch) topology on the set Z°® of nonzero integers is
generated by the base consisting of arithmetic progressions a + bZ = {a + bn :
n € Z} where a € Z°® and b is a (square-free) number, coprime with a. In
2019 Dario Spirito proved that the space of nonzero integers endowed with
the Golomb topology admits only two self-homeomorphisms. In this paper we
prove an analogous fact for the space of nonzero integers endowed with the
Kirch topology: it also admits exactly two self-homeomorphisms.

Key words: Kirch topology, superconnected space, superconnecting poset.

In this paper we describe the homeomorphism group of the space Z*® of nonzero
integers endowed with the Kirch topology Tx , which is generated by the subbase consisting
of the cosets a + pZ where a € Z°® and p is a prime number that does not divide a. On
the subspace N of Z* this topology was introduced by Kirch in [6].

Banakh, Stelmakh and Turek [3] proved that the subspace N of (Z*, 7k ) is topologi-
cally rigid in the sense that each self-homeomorphism of N endowed with the subspace
topology 7k [N={UNN:U € 7} is the identity map of N.

Oun the other hand, the space (Z°®, 7x) does admit a non-trivial self-homeomorpfism,
namely the map

j:Z2® —17Z% j:x— —zx.
In this paper we prove that this is the unique non-trivial self-homeomorphism of the
topological space (Z°®, 7). A similar result for the Golomb topology on Z* was proved
by Dario Spirito [II]. The topological rigidity of the Golomb topology on N was proved
by Banakh, Spirito and Turek in [2].

Theorem 1. The space Z* = 7\ {0} of nonzero integers endowed with the Kirch topology

admits only two self-homeomorphisms.
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The proof of this theorem follows the lines of the proof of the topological rigidity
of the space (N, 7x[N) from [3]. The proof is divided into 23 lemmas. A crucial role in
the proof belongs to the superconnectedness of the Kirch space and the superconnecting
poset of the Kirch space, which is defined in Section

1. FOUR CLASSICAL NUMBER-THEORETIC RESULTS

By II we denote the set of prime numbers. For a number = € Z by II, we denote
the set of all prime divisors of z. Two numbers z,y € Z are coprime iff II, N1I, = @.

In the proof of Theorem [I] we shall exploit the following four known results of
Number Theory. The first one is the famous Chinese Remainder Theorem (see. e.g. [5]
3.12)).

Theorem 2 (Chinese Remainder Theorem). If by,...,b, € Z are pairwise coprime
n

numbers, then for any numbers ai,...,a, € Z, the intersection ﬂ(ai + b;N) is infinite.
i=1
The second classical result is not elementary and is due to Dirichlet [4, S.VI], see
also [1, Ch.7].

Theorem 3 (Dirichlet). For any coprime numbers a,b € N the arithmetic progression
a + bN contains a prime number.

The third classical result is a recent theorem of Mihailescu [§] who solved old
Catalan’s Conjecture [7].
Theorem 4 (Mihailescu). If a,b € {m"™! :n,m € N}, then |a — b| = 1 if and only if
{a,b} = {23,3%}.

The fourth classical result we use is due to Karl Zsigmondy [12], see also [10]
Theorem 3].

Theorem 5 (Zsigmondy). For integer numbers a,n € N\ {1} the inclusion

IMyn_y C U 1 P
0<k<n
holds if and only if one of the following conditions is satisfied:
(1) n=2 and a = 2% — 1 for some k € N; then
a>—1=(a+1)(a—1)=2a—1);
(2) n=16 and a = 2; then
a"—1=20-1=63=32x7=(a®—-1)? x (a® - 1).

2. SUPERCONNECTED SPACES AND THEIR SUPERCONNECTING POSETS

In this section we discuss superconnected topological spaces and some order
structures related to such spaces.

First let us introduce some notation and recall some notions.

For a set A and n € w let [A]" = {E C A : |A| = n} be the family of n-element
subsets of A, and [A]<¥ = U [A]™ be the family of all finite subsets of A. For a function

new
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f:X — Y and a subset A C X by f[A] we denote the image {f(a) : a € A} of the set
A under the function f.

For a subset A of a topological space (X,7) by A we denote the closure of A in
X. For a point z € X we denote by 7, := {U € 7 : € U} the family of all open
neighborhoods of = in (X, 7). A poset is an abbreviation for a partially ordered set.

A family F of subsets of a set X is called a filter if

e J¢&F;
o for any A, B € F their intersection AN B € F;
e for any sets ' C E C X the inclusion F' € F implies F € F.

A topological space (X, 7) is called superconnected if for any n € N and non-empty
open sets U1, ..., U, the intersection U; N---NU, is non-empty. This allows us to define
the filter

Foo={BCX:3Uy,...,U, T\ {2} (Uin---nU, C B)}

called the superconnecting filter of X.
For every finite subset E of X consider the subfilter

Fp = {BQX:EI(UI)meE c fo( N ZQB)}

reE el
of Foo. Here we assume that Fp = {X}. It is clear that for any finite sets £ C F in X
we have Fg C Fp.
The family
F={Fe:Ee[X]*}U{Fs}
is endowed with the inclusion partial order and is called the superconnecting poset of the
superconnected space X. The filters Fz and F,, are the smallest and largest elements
of the poset §, respectively.
The following obvious lemma shows that the superconnecting poset § is a topological
invariant of the superconnected space.

Proposition 1. For any homeomorphism h of any superconnected topological space X,
the map

h:§—38 h:Fe{h[A]: Ae F},

is an order isomorphism of the superconnecting poset §.

In the following sections we shall study the order properties of the poset § for
the Kirch space (Z®, 7x) and shall exploit the obtained information in the proof of the
topological rigidity of the Kirch space.

3. PROOF OF THEOREM [1]

We divide the proof of Theorem [1]into 23 lemmas.

Lemma 1. For any a,b € Z°* the closure a + bZ of the arithmetic progression a + bZ in
the Kirch space (2°,7r) is equal to

z*n () ({0,a} +pZ).

pEll,
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Proof. First we prove that a +bZ C {0,a} + pZ for every p € II,. Take any point
x € a+ bZ and assume that z ¢ pZ. Then z + pZ is a neighborhood of = and hence
the intersection (z + pZ) N (a + bZ) is not empty. Then there exist u,v € Z such that
T 4 pu = a + bv. Consequently, x — a = bv — pu € pZ and x € a + pZ.

Next, take any point x € Z*N(),cpy, ({0, a}+pZ). Given any neighborhood O, of z in
(Z°*, 7K ), we should prove that O, N(a+bZ) # &. By the definition of the Kirch topology
there exists a square-free number d € Z*® such that d, z are coprime and x + dZ C O,..

If 1, C I1,, then b, d are coprime and by the Chinese Remainder Theorem

@#(x+dZ)N(a+bZ) C O, N(a+Z).
So, we can assume II, \ II, # @. The choice of z € m ({0,a} + pZ) guarantees that

pelly
x € m (a+pZ)=a+qZ
pEHb\Hm
where ¢ = H p. Since the numbers x and d are coprime and d is square-free, the

eI \IL,
greatest common divisor of b and d divides the number ¢. Since z — a € ¢Z, the Euclides

algorithm yields two numbers u,v € Z such that © — a = bu — dv, which implies that
O, N(a+bZ) D (x+dZ)N (a+ bZ) # 2. O

Lemma [I| implies that the Kirch space (Z®,7x) is superconnected and hence
possesses the superconnecting filter

}'OO:{FQZ‘:EIUl,...,UneTK\{@} (ﬁﬁgﬂ}
i=1

and the superconnecting poset
F={Fep:Ec[Z]"*} U{Fx}
consisting of the filters
zel zelE

Here for a point « € Z* by 7, := {U C Z* : * € U} we denote the family of open
neighborhoods of x in the Kirch topology 7x.
For a nonempty finite subset £ C Z°, let llp = ﬂ II, be the set of common prime

zeFE
divisors of numbers in the set E. Also let

Ap={pell:3keN (EC{0,k} +pZ)}.

Observe that IIp C Ag and Ag # @ because 2 € Ag. If F is a singleton, then Ag = II;
if |E| > 2, then

Ap CII, U, UTL,_, C {2,..., max E'}
for any distinct numbers x,y € E. This inclusion follows from

Lemma 2. For any two-element set E = {z,y} C Z* we have Ap =11, UIL, UIIL,_,,.
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Proof. Each number p € I, (resp. p € II,) belongs to Ag because {z,y} C {0,y} + pZ
(resp. {z,y} C {0,2} + pZ}). Each number p € II,_, belongs to Ag because {z,y} C
x + pZ C {0,x} 4+ pZ. This proves that I, UII, UII,_, C Ag.

Now take any prime number p € Ag and assume that p ¢ II, UII,. It follows from
{z,y} = E C {0,ar(p)} + pZ that {z,y} C agr(p) + pZ and hence z — y € pZ and
p €1y O

Let ap: Ap — w be the unique function satisfying the following conditions:

(i) ag(p) <pforall p € Ag;

(i) E C{0,ar(p)} +pZ for all p € Ag;

(iii) ap(2) =1 and ag(p) =0for all p € IIg \ {2}.
Lemma 3. Let A C II be a finite set containing 2 and o : A — Ny be a function such
that «(2) =1 and a(p) € {0,...,p — 1} for allp € A\ {2}. Let = be the product of odd

prime numbers in the set A and y be any number in the set Z° N ﬂ (a(p) + pZ). Then

pEA
the set E = {y,xz,2x} has Agp = A and ag = a.

Proof. For every prime number p € A we have {z,y} C {0,y} + pZ, which implies that
p € Ap. Assuming that Ag \ A contains some prime number p, we conclude that = ¢ pZ
and hence the inclusion {y,z,2z} = E C {0, ag(p)} + pZ implies {z,2z} C ag(p) + pZ
and x = 2x — x € pZ. This contradiction shows that Az = A. To show that ap = «,
take any prime number p € A = Ag. If p = 2, then a(p) = 1 = ag(p)- So, we assume
that p # 2. If a(p) = 0, then y € «a(p) + pZ = pZ and hence p € Ilg. In this case
ag(p) =0=a(p). If a(p) # 0, then the number y € a(p) + pZ is not divisible by p and
then the inclusions {y,z,2z} C {0,a(p)} + pZ and {y,z,2z} = E C {0,ar(p)} + pZ
imply that a(p) = ag(p). O

The following lemma yields an arithmetic description of the filters Fg.

Lemma 4. For any finite subset E C Z* with |E| > 2 we have

Fp = {B cz*:30e [M\Ag]< (pZ°n () (0,as(p)}+pZ)C B}.
peL pEAE\HE
Here we assume that ﬂ pZ® =17°.
peEY
Proof. 1t suffices to verify two properties:
(1) for any (Uy)zer € H T, there exists a finite set L C I1'\ Ag such that
z€E
Nrzn () {0.es®@}+pZ)C () U
pEL peAE\Ilg zeFE
(2) for any finite set L C IT\ Ag there exists a sequence of neighborhoods (Uy)cr €

H T, such that
zel

NT.crz*n () (0,ax(p)}+02).

z€E peEL pEAR\Ilg
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1. Given a sequence of neighborhoods (U,).cr € H Ty, for every x € F find a

rzel
square-free number ¢, > x such that II,, NI, = @ and = + ¢,Z C U,. We claim that

the finite set L = U I1,, \ Ag has the required property. Given any number
zeE

ze(rz°n () ({0.asd)}+r2),
peL peEAp\Ilg
we should prove that z € U, for every = € E. By Lemmal[l]
z*n () (0,2} +pZ) = (& + ¢.2) C Us.
pelly,

So, it suffices to show that z € {0,z} + pZ for any p € II,,. Since the numbers z and ¢,
are coprime, p ¢ II, and hence p ¢ Ilg. If p ¢ Apg, then p € II,, \ Ag C L and hence
2€pNC{0,2} +pZ. If p€ Ag, then x € E C {0,ag(p)} + pZ and x € ag(p) + pZ (as
p ¢ I1,). Then © + pZ = ag(p) + pZ and z € {0, ap(p)} + pZ = {0,2} + pZ.

2. Fix any finite set L C II\ Ag. For every « € E consider the neighborhood
U, = ﬂ (x4 pZ) of z in the Kirch topology. By Lemma ,

pELUAER\IIL,

U.=z"n () (0,2} +pZ).
pELUAE\Hx

Given any number z € ﬂ U,., we should show that

zeE
ze(rz*n () (0,0e()}+pZ).
peL pEAE\HE

This will follow as soon as we check that z € pZ® for all p € L and z € {0,ag(p)} + pZ
for all p e Ag \ llg.

Given any p € Ag \ Ilg, we can find a point « € E \ pZ and observe that 2 € E C
{0,ag(p)} + pZ. Then

2 €U, Cx+pZ C{0,2}+pZ ={0,ap(p)} + pZ.

Now take any prime number p € L. Since L N Ag = @, we conclude that E € pZ.
So, we can fix a number x € E'\ pZ. Taking into account that p ¢ Ag, we conclude that
E ¢ {0,2} + pZ and hence there exists a number y € E such that pZ # y + pZ # x + pZ.
Then

2 €U, NU, € ({0,2} +pZ) N ({0, y} + pZ) = pL.
(]

We shall use Lemma [ for an arithmetic characterization of the partial order of the
superconnecting poset § of the Kirch space.

Lemma 5. For two finite subsets E, F C II with min{|E|, |F|} > 2 we have Fg C Fp if
and only if

AFQAE, HF\{Q}QHE and OtEfAF\HE:OzFrAF\HE.
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Proof. To prove the “only if” part, assume that Fg C Fp. By Lemma [4] the set
N »z°n () (0,5} +pZ)
pEAF\AR pEAR\IlE
belongs to the filter Fp C Fr. By Lemma [4] there exists a finite set L C II\ Ap such
that
Nrzen () {ar@}+pz)S () p2°n () ({006} +p2). (1)
pEL pEAp\Ilp PEAF\AE pEAp\IlE
This inclusion combined with the Chinese Remainder Theorem [2] implies
AF\AE QLCH\AF, AE\(HEU{Q}) QLU(AF\HF)
and
ag(p) =ap(p)  forany  pe (Ap\ILr)N(Ap\Eg),
and
AFQAE, HF\{Q}QHE and CVEFAF\HE:O[F[AF\HE (2)

To prove the “if” part, assume that condition holds. To prove that Fg C Fp, fix
any set {2 € Fg and using Lemma find a finite set L C II\ Ag such that

N rzn () ({0.as@)}+pZ)CQ.
peL pEAE\IlE

Consider the finite set
A= (LUAE)\AF :LU(AE\AF) oL

and observe that condition implies the inclusion

Fea(p2n () {0ar®}+pZ) € (\pZ°0 (] ({0,08()}+pZ) CQ, (3)

pEA pEApR\IIp pEL pEAp\Ilp
yielding Q € Fp. O

Lemma 6. For two nonempty subsets E,F C N with min{|E|,|F|} = 1 the relation
Fr C Fr holds if and only if |[E| =1 and E C F.

Proof. The “if” part is trivial. To prove the “only if” part, assume that Fg C Fp.
First we prove that |F| = 1. Assuming that |E| > 1 and taking into account that
min{|E|, |F|} = 1, we conclude that |F| = 1. Choose a prime number p > max(E U F).
Since ﬂ y+pZ € Fgp C Fp, for the unique number x in the set F', there exists a
yek
square-free number d such that II; NI, = @ and x + dpZ C m y + pZ. By Lemma ,
yeE

z+qpl® Cx+dpZ C (\y+pZ= () ({0,y} +pZ) = pZ.
yeEE yeE
The latter equality follows from p > max E and |E| > 1. Then x 4 dpZ*® C pZ implies
x € pZ, which contradicts the choice of p > max(F U F) > x. This contradiction shows
that |E| = 1. Let z be the unique element of the set E.
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It remains to prove that z € F. To derive a contradiction, assume that z ¢ F. Take
any odd prime number p > max(E U F') and consider the set

{0,2} +pZ =2+ pL € Fe C Fr.

By the definition of the filter Fp, for every x € F there exists a square-free number d,
such that II;, NII, = @ and

ﬂ x+d,Z C 2+ pZ = {0, z} + pZ.
zeF

Consider the set P = (J,cpIla,. If p € Iy, for some x € F, we can use the Chinese
Remainder Theorem [2] and find a number

c€(x+pZ)N ﬂ qZ C n y+dyZ C{0,z} + pZ.
q€P\{p} yeFr
Taking into account that z is not divisible by p, we conclude that ¢ € (z + pZ) N (z + pZ)
and hence z—z € pZ, which contradicts the choice of p > max(EUF'). This contradiction

shows that p ¢ P. Since p > 3, we can find a number 2z’ ¢ {0,z} + pZ and using the
Chinese Remainder Theorem [2] find a number

ue€ (2 +pZ)N ﬂ qZ°* C ﬂ y+d,Z C {0, z} + pZ,
qeP yeF

which is a desired contradiction showing that £ C F'. O

As we know, the largest element of the superconnecting poset § is the superconnec-
ting filter . This filter can be characterized as follows.

Lemma 7. The superconnecting filter F of the Kirch space is generated by the base
consisting of the sets qN for an odd square-free number ¢ € N, i.e.

Fo = {B Cz*:3ge (2N-1)\ | N (¢Z° C B)}.
pell
Proof. Lemma [I] implies that each element F' € F,, contains the set ¢Z°® for some odd
square-free number g. Conversely, let ¢ be an odd square-free number. Then the sets
Uy =14 qZ and Uy = 2 4 ¢Z are open in the Kirch topology on Z*®. By Lemma [1| we
have
U N0z =20 () ({0,1} +pZ) N ({0,2} + pZ) =2° N (| pZ = qZ°.
pEHq pEHq

Hence ¢Z° € Fo. O

Lemma 8. For a nonempty subset E C Z° the following conditions are equivalent:
(1) Fr = Foo;
(2) Ap ={2}.

If |E| = 2, then conditions (1), (2) are equivalent to
(3) E € {{2n,2n 1} {—2m, —2"+1} {—2" 2"} i n € w}.
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Proof. (1) = (2): Assume Fg = F. Consider the set F' = {1,2} and observe that
Ap = II; Ul UTlp_ = {2} and IIp = &. Thus Ap C Ag, HF\{2} C Ilg and
arlAp\llg = ag|Ap\llg. Lemma [5| implies Fr C Fr. Since Fr = Fo is the largest
element of § we get Fr = Fr. By using again Lemma |5l we get Ag C Ap which implies
that AE = {2}

(2) = (1): If Ag = {2}, then by the Lemmal[d] the filter 7 is generated by the base
consisting of the sets gZ°® for an odd square-free number g € Z°. Therefore Fp = F by
the Lemma [1

(2) = (3): Assume that |E| = 2 and A = {2}. By Lemmal[2] E = {£2%,§2"}, where
a,b € w and ¢, € {—1,1}. Without loss of generality we can assume that b < a. By
Lemma 2} Tl g0 500 = Tlgp(20-4_5/c) € {2}. The last inclusion implies that @ —b = 1
and §/e =1 ora—b=0and §/e = —1. In the first case the set E equals {2°,2°%1} or
{—2b, —2b+11 "in the second case E = {2°, —2°}.

(3) = (2): The implication (3) = (2) follows from Lemma [2] O

In the following lemmas by § we denote the set of maximal elements of the poset
S\ {7}

Lemma 9. For a nonempty finite subset E C 7.° the filter Fg belongs to the family §'
if and only if there exists an odd prime number p ¢ Ilg such that Ag = {2,p}.

Proof. To prove the “if” part, assume that Ap = {2,p} and p ¢ IIg for some odd
prime number p. By Lemma [§ Fr # F.. To show that the filter Fp is maximal in
F\ {Foo}, take any finite set F' C Z* such that Fg C Fr # Foo. By Lemmas |5| and
{2} # Ap C {2,]9}, [Ip CIlg U {2} = {2}, and ap[Ap \ g = aglAr \ IIg. It follows
that Ap = {2,p} = Ap, Ip U{2} =I5 U{2} and ap = ap. Applying Lemma [5] we
conclude that g = Fp, which means that the filter g is a maximal element of the
poset F\ {Fo}-

To prove the “only if” part, assume that Fr € §'. By Lemma |8}, Ap # {2} and
hence there exists an odd prime number p € Ag. We claim that p ¢ IIg. To derive a
contradiction, assume that p € II and consider the sets F' = {p,2p} and G = {1, p, 2p}.
By Lemma 2] Ar = Ag = {2,p}, Ir = {p}, and Iz = @. Taking into account that
F CG, Ar ={2,p} C Ag, Ip \ {2} = {p} C Il and Ap \ IIg C {2}, we can apply
Lemmas and conclude that Fr C Fr C Fg # Foo. The maximality of Fg implies
Fg =Fr = Fg. By Lemma the equality Fo = Fp implies p € IIp \ {2} C g = @,
which is a contradiction showing that p ¢ Ilg.

Now consider the set H = {ag(p), p, 2p} and observe that Ay = {2,p}, Iy = @ and
ag(p) = ag(p). Lemmas [5/ and guarantee that Fg C Fg # Foo- By the maximality of
Fg, we have Fg = Fg. Applying Lemma [5| once more, we conclude that Ap = Ay =

{2,p}. O
Lemma [9] implies the following description of the set §'.

Lemma 10. §' = {Fi, o, :p €I\ {2}, ac{l,...,p—1}}.
Let §” be the set of maximal elements of the poset § \ (§' U {Fu})

Lemma 11. For a finite set E C Z°, the filter Fg belongs to the family ' if and only
if one of the following conditions holds:
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(1) there exists an odd prime number p such that p € Iy and Ag = {2,p};
(2) there are two distinct odd prime numbers p,q such that Ag = {2,p,q} and IIg C
{2}.

Proof. To prove the “only if” part, assume that Fg € §’. By Lemma [8] there is an odd
prime number p € Ag. If Ag = {2,p}, then p € Il by Lemma EL and condition (1) is
satisfied. So, we assume that {2,p} # Ag and find an odd prime number ¢ € Ag \ {2, p}.
By Lemma (3| there is a number x € N such that for the set F' = {x,pq,2pg} we have
Ar = {2,p,q¢}, Ir = &, ap(p) = ag(p) and ar(q) = agr(q). Then Fg C Fr by
Lemma[f] and Fp € §\ (3’ U{Fx}) by Lemma[9] Now the maximality of the filter Fp
implies that Fg = Fr and hence Agp = Ap = {2,p,q} and IIg C IIp U {2} = {2}, see
Lemma Bl

To prove the “if” part, we consider two cases. First we assume that Ap = {2, p} and
p € g for some odd prime number p. By Lemmas [8|and [§} g € §\ ({Fa} UF'). To
prove that Fg is a maximal element of §\ ({Foo} UF’), take any finite set F' C Z*® such
that Fg C Fp € §\ ({Foo} UF'). Lemma [6] implies that min{|E|,|F|} > 2 and then by
Lemmas[5|and [9] we have Ap = {2,p}, IIp \ {2} C {p} and agAp\{p} = arlAr\{p}.
Now notice that p € IIr since otherwise Fr € §’ by Lemma[9] By using again Lemma [f]
we get Fr = Fg which means that Fg € §.

Now assume that there are two distinct odd prime numbers p, ¢ such that Ag =
{2,p,q} and Iy C {2}. By Lemmas [§| and [0} Fr € §\ ({Fx} UF’). To prove that
Fg is a maximal element of § \ ({Foo} UF), take any finite set F C Z* such that
Fg € Frp € §\ ({Fx} UF). Lemma [5] implies that Ar C {2,p,q}, I C {2} and
aplArp \lIg = ap|Ar \ lIg. Taking into account that Fr ¢ §' U {Fu} and IIp C {2},
we can apply Lemmas E[, and conclude that Ar = {2,p,¢q}. We therefore know that
Ap = Ag, HEU{Q} = HFU{2} and ap fAE\HF = aE[AE\HF By Lemma Fg=Fr
and hence Fg € §”. O

Lemma 12. For any homeomorphism h of the Kirch space and any odd prime number
p we have

h(]:{p,Zp}) = Fip2p}-

Proof. By Proposition [1} the homeomorphism 5 induces an order isomorphism h of the
superconnecting poset § on the Kirch space. Then h[§'] = § and h[F"] = F".
By Lemmas |11 and |3} " = &4 U §% where

N = {F{pyzp} cpell\ {2}} and
Sg = {}—{r,pqﬂpq} 'p,qE H\{?)}, T € {0a~~~7pq_ 1} \ (pZUqZ)} .
By Lemmas [5| and EI, for every filter Fy, opy € &5 the set
TFip2pt = {]: €y Fipap} C ‘FE}

coincides with the set {Fy, 2,1 :a € {1,...,p— 1}} and hence has cardinality p — 1.
On the other hand, for any filter F, ,,q.2pq) € 3, the set

TF 2 ,pa,2pa} = {Fed: Flapa2pq) C 7}
coincides with the doubleton {.7-"{%17721,}, f{:v7q72q}}'
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These order properties uniquely determine the filters Fy, o,y for p € II'\ {3} and

ensure that 7(F,ap)) = Fpap) for every p € 1\ {3}.
Next, observe that F{3¢) is a unique element F of §” such that

170 U e =2
pel\{3}

This uniqueness order property of (36, ensures that il(]:{g’ﬁ}) = Fi3,6}- O
Lemma 13. Let E C Z° be a finite subset such that A = {2,p} for some odd prime
number p ¢ Ilp. Then App = {2,p}.

Proof. By Lemma@7 Fg € §'. Consider the doubleton {p,2p} which has Ay, oy = {2, p}
and Iy, 2,1 = {p}. By Lemma Fip2py € Fr and by Lemma

Fip2y = MFp.2p}) = Fln).hep)y © Faip)-
By Lemma Anig) € Agpopy = {2,p}. By Lemma 8, Ay g = {2,p}. O

Definition 1. A homeomorphism h of the Kirch space (Z*,7x) is called positive if
h(1) > 0.

Lemma 14. Every positive homeomorphism h of the Kirch space has h(x) = x for any
x € {£2", n € w}

Proof. Consider the graph I'y = (2, &) with the set of vertices Vo = {£2™ : n € w} and
the set of edges
E={{2", 2"}, {—2", —2"t1} {-2",2"} i n e w}.

Observe that 1 and —1 are the unique vertices of I's that have order 2. Any other
vertices have order 3. This ensures that h(1) = 1. The positivity of h implies that
h(1) = 1. Then h(—1) = —1, h(2) = 2. Hence h(£2") = £2" for all n € w. O

Lemmas [14] and [T12] imply

Lemma 15. For any positive homeomorphism h of the Kirch space and any odd prime
number p we have

E(-F{17p72p}) =Fpapy ond E(]:{Zp,?p}) = Fl2p2p)-

Lemma 16. For an integer number x € Z°* \ {-2,—1,1,2} and an odd prime p, the
following conditions are equivalent:

(1) p € 1l;;

(2) Faey © Frupopy ond Fioey © Frapop)-
Proof. If p € 11, then A{l,p,2p} = {Z,p} CcCA 1,z} H{l,z} U {2} = {2} = H{l,p,Zp} U {2}
and agy 41(p) = 1 = aqip2py(p). By Lemma 5} Fry o3 € Fy1p.2p3- By analogy we can
prove that -7:{2@} - ‘/—"{271,,21)}.

Conversely, assume F(1 ;3 € Fy1 p2p) and Fo ) € Frap2p)- By Lemmas [5] and
we have

{27p}:A{1,p,2p} c A{l,m}:Ha: UII;—; and {27p}:A{2,p,2p} C A{2,z}:{2} UIl, Ull;—o

and hence p € (II, UIL,_1) N (IT, UIL,_5) \ {2} C IL,. O
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Proposition [1] and Lemmas imply

Lemma 17. For every homeomorphism h of the Kirch space and any number x € N we
have

I, U {2} = Hh(z) @] {2}
For every prime number p consider the set
V, = {£2"'p"™ :n,m € N}

of numbers z € N such that p € II, C {2, p}. Lemmas |14 and (17| imply that A[V,] =V,
for every homeomorphism h of the Kirch space.
Consider the graph I'y = (V,,,&,) on the set V,, with the set of edges

&y = {E € [Vp]2 cAp = {2ap}}-

Lemma 18. For every prime number p and every homeomorphism h of the Kirch space,
the restriction of h to V}, is an isomorphism of the graph I'y.

Proof. Let E € &,. Since p € Ilg, we can apply Lemma [11| and conclude that Fg € §”.
Using fact that & is isomorphism of § we get Fuip) = h(Fg) € . Since h[E] C h[V,] =
Vp, we obtain p € II;g). Using Lemma [11] once more, we obtain that Az = {2, p},
which means that h[E] € &,. By analogical reasoning we can prove that h=1[E] € &, for
every E' € £,. This means that h[V, is an isomorphism of the graph I',,. O

The structure of the graph I', depends on properties of the prime number p.
A prime number p is called

e Fermat prime if p = 2™ + 1 for some n € N;
o Mersenne prime if p = 2" — 1 for some n € N;
e Fermat—Mersenne if p is either Fermat prime or Mersenne prime.

It is known (and easy to see) that for any Fermat prime number p = 2" + 1 the exponent
n is a power of 2, and for any Mersenne prime number p = 2" — 1 the power n is
a prime number. It is not known whether there are infinitely many Fermat—Mersenne
prime numbers. All known Fermat prime numbers are the numbers 22" 4 1for0<n <4
(see oeis.org/A019434 in [9]). At the moment only 51 Mersenne prime numbers are
known, see the sequence oeis.org/A000043 in [9].

Lemma 19. Let p be an odd prime number, p # 3.

(1) If p = 3, then the set £, of the edges of the graph T', coincides with the
set of doubletons {20713 207130411 [a—13b 9oa—13b+21 " [o9a—13b c9a3bl
{62a713b,62a+13b}’ {52a713b+1782a+13b}’ {52a+13b,€2a3b+1}’ {62a+33b’52a3b+2}’
{€2a—13b’ _€2a—13b+1}’ {52a—13b7 _€2a3b}’ {E2a—13b’ _62a+236}’

{e20713 —£29713%) for some a,b €N, ¢ € {—1,1}.

(2) If p=2" 41> 3 is Fermat prime, then

gp :{{€2a—1pb’ E2(1—1pb-§—1}7 {€2a—1pb, E2apb}’ {620,—12,)177 _€2a+m—1pb}’
{e2071pb, —e207 1 pb} {e2mterlpb 20 Ipb T L g b e N, e € {-1,1}}.
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(3) If p=2"—1 > 3 is a Mersenne prime, then

gp Z{{€2apb,f€2a_1pb}, {E?a_lpb,€2m+a_1pb}7 {Eza—lpb+1’€2m+a—1pb}7
{e207pb —g2071pbY (207 lpb a1t t g h e N, £ € {1, 1}}

(4) If p is not Fermat—Mersenne, then
Ep = {{e2°7p, —e2071p"}, {297 1p", 227"} 1@, b EN, e € {—1,1}}.

Proof. Proof of Lemmain each of cases (1)—(4) will be similar. The edges of graph I,
are 2-element subsets of set V), such that Ag = {2, p}. Since the vertices of graph Iy, are
numbers of the form +£2"~'p™, where n,m € N, we can apply Lemma [2| and conclude
that a doubleton {z,y} C V}, belongs to &, if and only if {2,p} = II, UII, UII,_,. In
subsequent proofs, we will intensively use the Mihailescu Theorem [4] saying that 23,32 is
a unique pair of consecutive powers.

1. First we consider the case of p = 3. It is easy to see that the doubletons {z,y}
written in statement (1) have II, UII, UIL,_, C {2,3}, which implies that {x,y} € &. It
remains to show that every doubleton {z,y} € & is of the form indicated in statement
(1). Write {x,y} as {£29713°,62¢7134} for some a,b,c,d € N, ,6 € {—1,1} such that
2a—13b < 2c—l3d.

If a = cand b =d, then ¢ # § and {z,y} = {20713%, —£20-13b}.

If a = ¢, then b < d and the inclusion II,_,, C {2, 3} implies that Tlge—v_. /5 C {2,3}
and hence 39" —¢ /4 is a power of 2. If £ /5 = 1 then by the Mihailescu Theorem[d] d—b €
{1,2}, which means that {z,y} is equal to {£22713% £207135%1} or {e20713b £2a-130+2},
If €/§ = —1 then by the Mihiilescu Theorem |4 d — b € {0, 1}, which means that {z,y}
is equal to {27130, —£20713b} or {20130 20130411,

If b = d, then a < c and the inclusion I1,_,, C {2,3} implies that Tlyc-a_./5 C {2, 3}
and hence 2°7% — ¢/0 is either 2 or a power of 3. If ¢/§ = 1 then by the Mihiilescu
Theorem {4l ¢ — a € {1,2}, which means that {z,y} is equal to {e29~'3% £273"}
or {€207130 2011301 If ¢/§ = —1 then by the Mihailescu Theorem c—a €
{0,1, 3}, which means that {z,y} is equal to {e2¢713% —¢29-13%} {29713 2243t} or
{e20713b, —g20+2301.

So, we assume that a # ¢ and b # d. In this case we should consider four subcases.

Ifa < cand b < d, then II,_,, C {2, 3} implies that each prime divisor of 2¢-23¢~% —
£/0 is equal to 2 or 3, which is not possible.

If a < cand b > d, then II,_, C {2,3} and 24713 < 2¢713¢ imply that 2°7¢ —
(¢/6)3"=% = 1 which implies that e = §. Hence ¢ —a = 2 and b—d = 1 by the Mihailescu
Theorem Wl In this case {z,y} = {20713+ g20+13d}

If a > cand b < d, then II,_, C {2,3} and 29713> < 2713 jmply that 39-° —
(€/9)2%~¢ = 1. This implies that €/§ = 1 and hence (d — b,a — ¢) € {(1,1),(2,3)} by the
Mihiilescu Theorem In this case {z,y} is equal to {2613t 2¢3b+1} or {2¢F33b 2¢3b+2},

The subcase a > ¢ and b > d is forbidden by the inequality 2713 < 267134,



Yaryna STELMAKH
52 ISSN 2078-3744. Bicuux JIpBiB. yH-Ty. Cepist mex.-mar. 2020. Bumyck 89

N / \
32 X W:SS X
7

2.
2, 2
3.3 3.3

FiGURE 1. The graph I's

2. Assume that p = 2™ + 1 > 3 is a Fermat prime. In this case m > 1. Since p > 3,
p is not Mersenne prime. It is easy to check that every doubleton

{m,y} E{{&_2(1—1pb’52(1—1pb+1}7 {52a_1pb,52apb}7 {82a_1pb, _82a+m—1pb}’
{e207pb| —g2071pbY feomazlyb coa=lpbtln . he N, e € {—1, 1}}

has Ay, y = I, UIL, UIL,_, = {2,p} and hence {z,y} € &,.
Now assume that {x,y} € £, is an edge of the graph I'y. Then

I, Ull, UIL,_y = A{$7y} ={2,p}
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and {x,y} can be written as {297 1p® 62°~1p?} for some a,b,c,d € N, ¢,§ € {—1,1}
with 20~ 1pb < 2¢=1pd,

Ifa=c b=dand e = —0 then Il.ga—1,p_s30-1, = Ho0e,p C {2,p}. In this case
{a,y} = {e2071pb, —e207 1P}

If a = ¢, then b < d and the inclusion I1, _,, C {2, p} implies that IT,,e—v_.,5 € {2, p}
and hence p?~? — ¢/§ is a power of 2. By the Mihiilescu Theorem |4, d — b € {0,1}. If
d—b=0, then ¢ = —§ and {x,y} = {€2%"1p?, —£2971p*} by the preceding case. So, we
assume that d —b = 1. Since p is not Mersenne prime, we conclude that € = §, and hence
{x,y} is equal to {207 1pb e20-1pb+1}

If b = d, then a < c and the inclusion II,_, C {2, p} implies that Igc—a_. /5 € {2, p}
and hence 2°7*—¢/4 is a power of p. By the Mihailescu Theorem {} 2% —¢/§ € {1,p} =
{1,2m +1}. If ¢ = § then ¢ —a = 1, which means that {x,y} is equal to {e2¢~1p® £29p}.
If ¢ = —§ then ¢ —a = m and {z,y} = {207 1pb, —e20+tm—1pb},

So, we assume that a # ¢ and b # d. In this case we should consider four subcases.

Ifa < cand b < d, then I, C {2, p} implies that each prime divisor of 2¢~2p?=t —
/4 is equal to 2 or p, which is not possible.

If a < cand b > d, then I,_, C {2,p} implies that 2= — (¢/8)p*~¢ = 1 and
hence ¢ = 6. In this case the Mihiilescu Theorem [] ensures that b — d = 1 and hence
2¢7% = p+ 1 = 2™ + 2 which is not possible (as m > 1).

If a > c and b < d, then II,_, C {2,p} implies that p?~% — (¢/6)2%~¢ = 1, which
implies that ¢ = §. The Mihailescu Theorem || implies that d — b = 1 and hence 2°7¢ =
p—1=2" and a — ¢ = m. In this case {z,y} = {2¢tm~12b g2e-1pb+1],

The subcase a > ¢ and b > d is forbidden by the inequality 2%~ 1p? < 2¢71pd.

3. Assume that p = 2™ — 1 > 3 is Mersenne prime. In this case m > 2 and p is not
Fermat. It is easy to check that every doubleton

{x7y} E{{EQapb7E2a_1pb}, {(€2<1—1pb7E27n-i—a—1pb}7 {(€2<1—1pb—i-17E2'rn+a—1pb}7
{e2071pb, —e2071pPY {e20 7 pb, —e2* IpP T} b €N, e € {-1,1}}

has Ay, ) = I, UIT, UTL,_, = {2,p} and hence {z,y} € &,.

Now assume that {z,y} € &, is an edge of the graph I',. Then II, UII, UIL,_, =
Az = {2,p} and {z,y} can be written as {e2°7!p, §2¢71p?} for some a,b,c,d € N,
£,6 € {—1,1} with 207 1pb < 2¢=1pd.

If a=c,b=d, then e = —§ and {z,y} = {29 1p¥, —e29 7 1pt}.

If a = ¢, then b < d and the inclusion I, C {2, p} implies that Il,4—v_. /5 C {2, p}
and hence p?=* — £/ is a power of 2. By the Mihailescu Theorem |4} d — b € {0,1}. If
d—b=0, then {z,y} = {297 1p®, —£29~1p"} by the preceding case. So, we assume that
d—b=1.Tf ¢ =6, then p9=% —¢/6§ =p—1=2™ — 2 is a power of 2, which is not true
as m > 2. Therefore ¢ = —¢ and {z,y} is equal to {£2¢71p? —e201pt+11

If b = d, then a < c and the inclusion II,_, C {2, p} implies that IIyc-a_./5 C {2, p}
and hence 2¢7* —¢/¢ is a power of p. By the Mihiilescu Theorem 270 —¢g/d e {1,p} =
{1,2™ — 1}, which implies that ¢ = ¢ and ¢ — a € {1,m}. Therefore {z,y} is equal to
{EZa_lpb, Ezapb} or {EQa_lpb,52m+a_1pb}.

So, we assume that a # ¢ and b # d. By analogy with the case of Fermat primes,
we can show that the subcases (¢ < ¢ and b < d) and (a > ¢ and b > d) are impossible.
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FiGURE 2. The graph I'5

If a < cand b > d, then II,_, C {2,p} implies that 2= — (¢/8)p*~¢ = 1, and
hence ¢/§ = 1. Then the Mihiilescu Theorem [4| ensures that b — d = 1 and hence
2¢7% =p+1=2" and ¢ — a = m. In this case {x,y} = {29 Ipdtl g2atm-1pd1

If a > cand b < d, then II,,_, C {2, p} implies that p¢=% — (¢/5)2¢7¢ = 1 and hence
£/0 = 1. Then Mihiilescu Theorem 4| implies that d — b = 1 and hence 2°7 ¢ =p— 1 =
2™ — 2. which is not possible as m > 2.

4. Assume that p is not Fermat—Mersenne. It is easy to check that every doubleton
{z,y} € {{e277 1", —e2071p"} {277 1p", 2%’} ta,b €N, e € {~1,1}}
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FI1GURE 3. The graph I'y

has A,y = [, UL, UTL,_, = {2, p} and hence {z,y} € &,.

Now assume that {z,y} € &, is an edge of the graph I',. Then II, UII, UII,_, =
Ay = {2,p} and {z,y} can be written as {e2*~'p®, 62°71p?} for some a,b,c,d € N,
£,6 € {—1,1} with 207 1pb < 2¢=1pd.

If a =cand b=d, then ¢ # § and {z,y} = {29 1p’, —291p°}.

If a = ¢, then b < d and the inclusion I, C {2, p} implies that Il,a—v_. /5 C {2, p}
and hence p?=* —£/§ is a power of 2. By the Mihailescu Theorem [4) d —b = 1 and hence
p is either Fermat prime or Mersenne prime which is not true.

If b = d, then a < c and the inclusion II,_, C {2, p} implies that Iyc-a_. /5 € {2, p}
and hence 2¢7* — ¢/ is a power of p. By the Mihailescu Theorem [4f 2¢7¢ —¢/§ € {1, p}.
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F1GURE 4. The graph '

Taking into account that p is neither Fermat nor Mersenne prime, we conclude that if
£=06,2°"%—1=1and hence ¢c — a = 1. Then {z,y} = {297 1p®, £29p°}.

So, we assume that a # ¢ and b # d. By analogy with the case of Fermate primes,
we can show that the subcases (a < ¢ and b < d) and (a > ¢ and b > d) are impossible.

If a < c and b > d, then II,_, C {2,p} implies that 2¢7% — (¢/§)p’~? = 1. By the
Mihailescu Theorem 4| b — d = 1 and hence p = 2°7% — 1 is a Mersenne prime, which is
not true.

If a > c and b < d, then II,_, C {2,p} implies that p¢=% — (¢/§)2%~¢ = 1. By the
Mihailescu Theorem 4{d — b = 1 and hence p = 1 + 2%7¢ is a Fermat prime, which is not
true. O
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In Figures we draw the graphs I, for p equal to 3,5,7,11. Observe that 3
is both Fermat and Mersenne prime, 5 is Fermat prime, 7 is Mersenne prime and 11 is
not Fermat—Mersenne.

Lemma 20. Let p be an odd prime number and h be a positive homeomorphism of the
Kirch space.

(1) If p is Fermat-Mersenne, then h(p) = p;
(2) If p is not Fermat-Mersenne, then h(p) = p™ for some n € N.

Proof. 1. Lemma [19(1) implies that the degree of +3 in the graph I's is equal to 8 but
the other vertices have degree at least 9. Hence h(3) = £3. Assume that h(3) = —3.
Then by Lemma [14] and by Lemma

{2,3} = Ao 3y = Ap(qa,3p) = Aq2,—3y = {2,3,5}
but this is not true and hence h(3) = 3.

Assume that p > 3 is either Fermat or Mersenne prime. Lemma [19(2,3) implies that
the degree of £+p in the graph I', is 4 but the other vertices have degree at least 5. Hence
h(p) = £p. Assume that h(p) = —p. By Lemma Apnipy = Apiae)y = Af,—p)» 5O
{p}UIL,_1 = {p} UMl 41, according to Lemma [2| This implies that II,_; = IL,;1 = {2}.
Hence p is both Fermate and Mersenne which is possible iff p = 3 and this contradicts
our assumption. Therefore h(p) = p.

2. Let p be an odd prime number, which is not Fermat—Mersenne. Lemma 4)
implies that the set £p = {ep" : n € N,e € {~1,1}} coincides with the set of vertices
of order 2 in the graph I',. Taking into account that h[V) is an isomorphism of the
graph I',, we conclude that h(p) = £p™ for some n € N. Assume that h(p) = —p™.
Then h({-1,p}) = {-1,—p"}. By Lemma Af1py = Ap_q—pry, 80 {pyUTl4 1 =
{p} UIlm_1, according to Lemma [2| Since {p} does not intersect II,;; and II,n_; we
conclude that II,,; = II,»_;. Hence we get the inclusion II,_; C II,n_1 = 1I,,4;. If some
prime number d divides p — 1 then the inclusion II,_; C II,;; implies that d divides
p + 1, consequently d divides the difference (p + 1) — (p — 1) = 2 and hence d = 2. As
a consequence, II,_; = {2} and p — 1 = 2™ for some m € N which contradicts the
assumption that p is not Fermat prime. Hence h(p) = p™. O

Lemma 21. For any positive homeomorphism h of the Kirch space and any prime
number p we have h(p) = p.

Proof. If p = 2, then h(p) = p by Lemma If p is Fermat—Mersenne, then h(p) = p by
Lemma So, we assume p is not Fermat—Mersenne. By Lemma h(p) = p™ for some

n € N. By Lemmas and

P} Ullp1 = Ay = Aoy = Appry = {0} Ul
and hence IIpn_; = II,_;. Since p is not Mersenne prime, Zsigmondy Theorem
guarantees that n = 1 and hence h(p) = p! = p. O

Lemma 22. The positive homeomorphism group of the Kirch space is trivial.

Proof. To derive a contradiction, assume that the Kirch space admits a homeomorphism
h such that h(z) # x for some number z. By the Hausdorff property of the Kirch space
and the continuity of A, there exists a neighborhood O, of x in the Kirch topology such
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that h[O,] N O, = @. By the definition of the Kirch topology, there exists a square-free
number b such that II, N II, = @ and = + bZ C O,. By the Dirichlet Theorem (3] the
arithmetic progression x4 bN C 2:+bZ contains some prime number p. Then h[0,]NO, =
@ implies h(p) # p, which contradicts Lemma O

Our final lemma completes the proof of Theorem

Lemma 23. Any homeomorphism h of the Kirch space Z° is equal to i : Z° — 7.°,
i:x—xortof: L —7Z%j:x+— —x.

Proof. If h is positive, then h = i by previous Lemma. If h is not positive then h(1) < 0
and joh(1) > 0. Then the homeomorphism joh is positive and equals i by the preceding
case. This implies that

h=ioh=(joj)oh=jo(joh)=joi=]}.
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IFOMEOMOP®IZMU ITPOCTOPY HEHVYJ/IBOBUX IIJINX
YUCEJI 3 TOIIOJIOI'IEIO KIPXA

Apuna CTEJIbMAX

JIveiecvrull naytonasvrul yrieepcumenm iment leana Pparka,
sys. Ynisepcumemcovka, 1, 79000, JIveis
e-mails: yarynziyaQukr.net

Tomosorist Tonomba (Bimmosimmo Kipxa) ma mMuOkuHI Z° HEHYIHOBAX IIi-
JIX 9HCeJI IIOPO/IZKYETHC 0a3010, 110 CKIATAETHCA 3 APU(PMETUIHUX IIPOTPECiit
a+bZ={a+bn:n€Z} nea€cZ®ib— B3aeMHO TpOCTE 3 @ YUCIIO, (IO HE
JLTATHCA HA KBaJPAT KOTHOTO mpoctoro wmcaa). ¥ 2019 poni Hapio CmipiTo
JOBiB, IO HPOCTIp HEHYJIBOBUX HMX [uces 3 Tomosorieo ['omomba momyckae
Jmire aBa aBroromeoMopdizmu. Mu moBogmmo aHasoOTidHUN (BHAKT ISt TIPOC-
TOPY HEHYJIbOBUX IILIMX, HasimeHoro Tomosorieio Kipxa: BiH TakoXk Ma€ PiBHO
JBa aBTOroMeoMopdizmu.

Karowosi caosa: Tomosoria Kipxa, cynep3s’s3uuil mpocTip, cymep3s’a3yio-
Y3, YaCTKOBO BITOPSITKOBAHA MHOYKUHA.
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