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In the paper we show that the monoid IN. of all partial cofinite isometri-
es of positive integers does not embed isomorphically into the monoid IDq
of all partial cofinite isometries of integers. Moreover, every non-annihilating
homomorphism §: INo, — ID has the following property: the image (INu )b
is isomorphic either to the two-element cyclic group Z; or to the additive group
of integers Z(+). Also we prove that the monoid IN. is not finitely generated,
and, moreover, monoid IN., does not contain a minimal generating set.
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1. INTRODUCTION AND PRELIMINARIES

In this paper we shall follow the terminology of [4, [13]. We shall denote the first
infinite cardinal by w and the cardinality of a set A by |A|. For any positive integer n by
7, we denote the group of permutations of the set {1,...,n}.

We shall say that a non-empty subset A of a semigroup S generates S, or A is a set
of generators of S, or A is a generating set of S, if for any s € S there exist a1,...,ar € A
such that s = ay - - - ag. For any non-empty subset A of a semigroup S by (A) we denote
a subsemigroup of S which is generated by A. A generating set A of a semigroup S is
called minimal generating, if A does not properly contain any generating set of S. It is
obvious that every finite generation set of a semigroup has a minimal generating set.

A semigroup S is called inverse if for any element x € S there exists a unique
27! € Ssuch that z2~'x = 2z and 7 'zoz~! = 2~ 1. The element 2~ is called the inverse
of x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to
every element x of § its inverse element x~! is called the inversion.
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If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then F(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order < on E(S): e < f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order < on S: s < t if and only if there exists e € E(S) such that s = te.
This order is called the natural partial order on S [16].

A congruence € on a semigroup S is called non-trivial if € is distinct from the uni-
versal and identity congruences on S, and a group congruence if the quotient semigroup
S/€ is a group. Every inverse semigroup S admits the least (minimum) group congruence
Crng:

a€mgb if and only if there exists e € E(S) such that ae = be

(see [14, Lemma II1.5.2]).

The bicyclic monoid €(p, q) is the semigroup with the identity 1 generated by two
elements p and ¢ subjected only to the condition pg = 1. The semigroup operation on
% (p, q) is determined as follows:

qkpl . qmpn _ qk+m7min{l,m}pl+n7min{l,m}.

It is well known that the bicyclic monoid € (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on € (p,q) is a
group congruence [4].

If a: X =Y is a partial map, then we shall denote the domain and the range of «
by dom « and ran «, respectively. A partial map a: X — Y is called cofinite if both sets
X \doma and Y \ ran « are finite.

Let .#, denote the set of all partial one-to-one transformations of a non-zero cardinal
A together with the following semigroup operation:

z(af) = (za)f if z € dom(af) ={y € doma: ya € dom G}, for «,f € 4,

The semigroup .#, is called the symmetric inverse (monoid) semigroup over cardinal
A (see []). The symmetric inverse semigroup was introduced by Wagner [16] and it plays
a major role in the theory of semigroups. By fff we denote a subsemigroup of injective
partial selfmaps of A with cofinite domains and ranges in .#y. Obviously, fff is an inverse
submonoid of the semigroup .#\. The semigroup fff is called the monoid of injective
partial cofinite selfmaps of A [9].

A partial transformation «: (X,d) — (X,d) of a metric space (X,d) is called
isometric or a partial isometry, if d(za,ya) = d(z,y) for all z,y € doma. It is obvi-
ous that the composition of two partial isometries of a metric space (X,d) is a parti-
al isometry, and the converse partial map to a partial isometry is a partial isometry,
too. Hence the set of partial isometries of a metric space (X,d) with the operation of
composition of partial isometries is an inverse submonoid of the symmetric inverse monoid
over the cardinal | X|. Also, it is obvious that the set of partial cofinite isometries of a
metric space (X, d) with the operation of composition of partial isometries is an inverse
submonoid of the monoid of injective partial cofinite selfmaps of the cardinal |X|.



ON THE MONOID OF COFINITE PARTIAL ISOMETRIES OF N WITH ...
ISSN 2078-3744. Bicuuk JIpBiB. yH-Ty. Cepist mex.-mar. 2020. Bumyck 89 19

The semigroup ID, of all partial cofinite isometries of the set of integers Z with the
usual metric d(n, m) = |n—m|, n,m € Z, in the Bezushchak papers [1} [2] is considered. In
[1] the generators of the semigroup ID, are described and it is proved therein that ID
has the exponential growth. We remark that the semigroup ID, is an inverse submonoid
of the monoid of all partial cofinite bijections of Z, and elements of ID, are restrictions
of isometries of Z onto its cofinite subsets in the Lawson interpretation (see [I3} p. 9]).
Green’s relations and principal ideals of ID, are described in [2]. In [10] it is shown that
the quotient semigroup ID.,/€pmg is isomorphic to the group Iso(Z) of all isometries of
Z, the semigroup ID,, is F-inverse, and ID., is isomorphic to the semidirect product
Iso(Z) Xy P (Z) of the free semilattice with identity (% (Z),U) by the group Iso(Z).
Also in [I0] there are investigated semigroup and shift-continuous topologies on ID,,
and embedding of the discrete semigroup ID, into compact-like topological semigroups.

Later we assume that on N and Z the usual linear order is considered.

Let IN,, be the set of all partial cofinite isometries of the set of positive integers
N with the usual metric d(n,m) = |n — m|, n,m € N. Then IN,, with the operation of
composition of partial isometries is an inverse submonoid of .#,. The semigroup IN, of
all partial cofinite isometries of positive integers is studied in [I1]. There we described
the Green relations on the semigroup IN,, its band, and proved that IN,, is a simple
E-unitary F-inverse semigroup. Also in [I1], the least group congruence €pyg on IN,, is
described and it is proved that the quotient-semigroup INu, /€ is isomorphic to the
additive group of integers Z(+). An example of a non-group congruence on the semigroup
IN,, is presented. Also in [ITI], we proved that a congruence on the semigroup IN, is
a group congruence if and only if its restriction onto an isomorphic copy of the bicyclic
semigroup in IN,, is a group congruence and it is shown that IN,, has a non-trivial
homomorphic retract which is isomorphic to the bicyclic semigroup. Another non-trivial
homomorphic retracts of the monoid IN is constructed in [I5].

The semigroup of monotone, non-decreasing, injective partial transformations ¢ of
N such that the sets N\ dom ¢ and N\ ran ¢ are finite was introduced in [7] and was
denoted by .#{ (N). Obviously, .#£ (N) is an inverse subsemigroup of the semigroup .7,.
The semigroup .#4 (N) is called the semigroup of cofinite monotone partial bijections of
N. In [7] Gutik and Repov$ studied properties of the semigroup .#4 (N). In particular,
they showed that .#{ (N) is an inverse bisimple semigroup and all of its non-trivial group
homomorphisms are either isomorphisms or group homomorphisms. It is obvious that
IN,, is an inverse submonoid of .#¢ (N).

Doroshenko in [5l [6] studied the semigroups of endomorphisms of linearly ordered
sets N and Z and their subsemigroups of cofinite endomorphisms O ;, (N) and Oy, (Z).
In [6] he described Green’s relations, groups of automorphisms, conjugacy, centralizers of
elements, growth, and free subsemigroups in these semigroups. In particular, in [6] it is
proved that, in Oy, (N) the group of automorphisms consists only of the identity mappi-
ng, whereas the groups of automorphisms of Oy, (Z) is isomorphic to the semigroup of
integers with operation of addition and consist only of inner automorphisms. In [5] it
was shown that both these semigroups do not admit an irreducible system of generators.
In their subsemigroups of cofinite functions all irreducible systems of generators are
described here. Also, here the last semigroups are presented in terms of generators and
relations.
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A partial map a: N — N is called almost monotone if there exists a finite subset
A of N such that the restriction a [yya: N\ A — N is a monotone partial map. By
fo';/ (N) we denote the semigroup of monotone, almost non-decreasing, injective partial
transformations of N such that the sets N\ dom ¢ and N\ ran¢ are finite for all ¢ €
Z7(N). Obviously, .#.7"(N) is an inverse subsemigroup of the semigroup .7, and the
semigroup .#4 (N) is an inverse subsemigroup of .#.7" (N) as well. The semigroup .77 (N)
is called the semigroup of cofinite almost monotone partial bijections of N. In [3] the
semigroup .#7"(N) is studied. In particular, it was shown that the semigroup .77 (N) is
inverse, bisimple and all of its non-trivial group homomorphisms are either isomorphisms
or group homomorphisms. In [12] we showed that every automorphism of a full inverse
subsemigroup of .#{ (N) which contains the semigroup % is the identity map. Also, here
we constructed a submonoid INE of Z7(N) with the following property: if S be an
inverse subsemigroup of .#.7"(N) such that S contains INY as a submonoid, then every
non-identity congruence € on S is a group congruence. We show that if .S is an inverse
submonoid of .#.7'(N) such that S contains %y as a submonoid then S is simple and
the quotient semigroup S/€pmg, where €pg is the minimum group congruence on S, is
isomorphic to the additive group of integers. Also, topologizations of inverse submonoids
of ﬂg (N) and embeddings of such semigroups into compact-like topological semigroups
are given in [3, 12]. Similar results for semigroups of cofinite almost monotone partial
bijections and cofinite almost monotone partial bijections of Z were obtained in [§].

In the present paper we show that the monoid IN,, does not embed isomorphically
into the semigroup ID.,. Moreover every non-annihilating homomorphism §: IN,, —
ID, has the following property: the image (IN. )b is isomorphic either to Zs or to
Z(+). Also we prove that the monoid IN,, does not have a finite set of generators, and
moreover monoid IN,, does not contain a minimal generating set.

2. ON HOMOMORPHISMS FROM IN,, INTO ID_

The definition of the semigroup ID., implies that for any a € ID, there exists a
unique element v, of the group of units of ID., such that o < 7, (see [10]). Also we
have that |Z \ dom «| = |Z \ ran o for each a € ID,. Hence we get the following obvious
lemma:

Lemma 1. If a = 87 for some o, 3,7 € ID, then
max {|Z \ dom j3|,|Z \ dom~|} < |Z\ doma| < |Z\ dom 8| + |Z \ dom | .

Proposition 1. The semigroup ID., does not contain an isomorphic copy of the bicyclic
semigroup.

Proof. Suppose to the contrary that there exists a subsemigroup S of ID., which is
isomorphic to the bicyclic semigroup %(p,q). Let h: €(p,q) — S be an embedding
isomorphism. Put (1)h = &g, (¢p)b = €1, (p)h = « and (q)h = 5. Then ¢y and ¢, are
idempotent of ID., such that €; < €p. The definition of the semigroup ID., implies
that €y and e; are the identity maps of domey and dom ey, respectively, and moreover
dome; & domeg. Since 1 = p(gp)p, we get that 9 = Beja. The latter equality and
Lemma [I] imply that
|Z\ domeq| < |Z\ domeg|.
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The obtained inequality contradicts the inclusion dome; & domeg, because g # ;. O

It is obvious that for every a € IN, there exist infinitely many v € ID, such that
« is the restriction of v onto N. This motivated Taras Banakh to ask:

Question 1. Does the semigroup ID,, contain an isomorphic copy of INy, ?
In this section we give a negative answer on this question.

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup %y
which is generated by partial transformations o and 8 of the set of positive integers N,
defined as follows:

doma =N, rana = N\ {1}, (na=n+1
and
dom 8 =N\ {1}, ran3 = N, (n)f=n-1
(see Exercise IV.1.11(47) in [I4]). It is obvious that %y is a submonoid of IN.

Proposition [If and Remark [1| imply the following statement which gives a negative
answer to Question [T}

Theorem 1. The semigroup ID, does not contain an isomorphic copy of the semigroup
IN,.

Next we shall discuss maximal subgroups (i.e., on J#-classes with an idempotent)
in the semigroup ID.
The following statement belongs to the folklore of the geometric group theory.

Lemma 2. The group of isometries of the set of integers 7 with the usual metric is
isomorphic to the semidirect product Z(+) X Za.

The following lemma describes cyclic subgroups of the group of isometries of the set
of integers Z with the usual metric.

Lemma 3. Let G be a cyclic subgroup of the group of isometries of the set of integers Z,
with the usual metric. Then only one of the following conditions holds:

(1) G is a singleton;
(i) G is isomorphic to Zs;
(#91) G is isomorphic to Z(+).
Proof. Fix a generator (a,b) of G. Next we consider all possible cases.

1. Suppose that (a,b) = (0,0) where 0 and 0 are neutral elements of Z(+) and Z,,
respectively. Then the group operation of Z(+) x Zy implies that (0,6)” = (0,6) for any
integer n, and hence G is a singleton.

2. Suppose that (a,b) = (0,1) where T is a non-neutral element of Z,. Then we have
that (O,T)2 = (0,6), and hence G is isomorphic to Z.

3. Suppose that (a,b) = (g,ﬁ) where g is a non-neutral element of Z(+). Then
(g,ﬁ)n = (n-g,0) for any integer n, and hence G is isomorphic to Z(+).
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4. Suppose that (a,b) = (g,T) where ¢ is a non-neutral element of Z(+). Then we
have that
(9.1) (9.1) = (9—9,1-1) = (0,0),
and hence G is isomorphic to Zs,. O

A subset C' C R is called symmetric in R if there exists a number ¢ € R (the center
of C) such that ¢+ 2z € C if and only if ¢ —z € C. A subset C' C Z is called symmetric
in Z if C is symmetric in R.

Remark 2. We observe that a subset C is symmetric in Z if and only if Z\ C is symmetric
in Z. Also, if Z endowed with the usual metric, then the partial mapping fo: C — C,
¢+ x +— ¢ — z which is determined by the symmetry of the symmetric set C' with the
centre ¢ € R is a partial isometry of Z. In this case we shall say that the partial map fo
determines a symmetry of C.

Lemma 4. Let C be a proper cofinite subset of Z and v: Z — Z be a partial isometry of
Z such that dom~ =ran~y = C. Then +y is either the identity map of C or -y determines
a symmetry of C.

Proof. Suppose that the partial map ~ is a nonidentity. Then ~ is an element of the
semigroup ID.. By Corollary 1 of [I0], ID is an F-inverse semigroup, and moreover
there exists a unique element o, of the group of units of ID, such that v < o.,. The
latter implies that the partial map v extends to the unique isometry o, of Z. It is
obvious that the restriction of o, onto the set Z \ C' is an isometry of Z \ C. We denote
this isometry by ~°. Since v is a nonidentity, so is v°. Since C'is a proper cofinite subset
of Z, (max(Z\ C))y° = min(Z\ C) and (min(Z\ C))y° = max(Z\ C). Then the isometry
of Z\ C by ~° implies that
_ min(Z\ C) +max(Z\ O)
2

is the centre of symmetry of Z \ C. It is obvious that ¢ is the centre of symmetry of C.
This implies the statement of the lemma. O

Since any elements a and § are J#-equivalent in ID, if and only if dom o = dom
and ran o = ran 3, Lemma [4] implies the following proposition.

Proposition 2. Every subgroup of ID, distinct from its group of units is either trivial
or isomorphic to Zo.

Theorem 2. Let S be an inverse submonoid of %7 (N) which contains %y as a
submonoid. Then for any homomorphism h: S — ID, one of the following conditions
holds:

(i) the image (S)b is a singleton, i.e., b is an annihilating homomorphism;
(i1) the image (S)b is isomorphic to Zs;
(#it) the image (S)bh is isomorphic to Z(+).
Proof. Suppose that the homomorphism h: S — ID,, is not annihilating. Since by

Remark [1] the monoid %y is isomorphic to the bicyclic semigroup, Theorem [I| impli-
es that the restriction bl : Gy — IDs is not an injective homomorphism. Then by
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Corollary 1.32 of [4] the image (én)b is a cyclic subgroup of ID, such that {(I)h} =
(E(%))b.

We shall show that for any idempotent ¢ € S we have that (e)h = (I)h. Since
e € S7(N), there exists a smallest positive integer n. such that n € dome for any
n = n.. Put ¢ be the identity map of the set {j € N: j > n.}. Then ¢ is an idempotent
of @ such that g < € in S. The above arguments in the previous paragraph imply that

(€)= (Db = (£)b(Mb = (£)h(c0)b = (e€0)b = (€0)b-
Hence we have that (E(S))h = (E(%n))b is a singleton in ID,, and moreover the image
(E(5))h is an idempotent which is the neutral element of the cyclic subgroup (én)b in
ID.. This implies that the image (S)h is a subgroup of ID, i.e., the homomorphisms
h: S — ID, generates a group congruence ¢y on the monoid S. By Theorem 4 of [12],
the quotient semigroup S/€mg, where €pg is the minimum group congruence on S, is
isomorphic to the additive group of integers Z(+). This implies that the image (5)b is a
cyclic subgroup of ID. Next we apply Lemma [3] and Proposition O

Theorem [2] implies the following corollary:

Corollary 1. Let h: IN, — ID. be an arbitrary homomorphism. Then one of the
following conditions holds:
(1) b is an annihilating homomorphism;
(7) the image (IN )b is isomorphic to Za;
(#i7) the image (INy,)b is isomorphic to Z(+).

The following example shows that every cofinite (almost) monotone partial bijection
of N extends to a cofinite (almost) monotone partial bijection of Z.

Example 1. Fix an arbitrary o € 27" (N) and any non-positive integer n. We define a
partial map az: Z — Z in the following way. Put

domayz =doma U {i € Z: i < n},

ranay =ranaU{i € Z: i < n}
and )

k)a, if k € doma;

(k)az = { ko ifk<n.
This determines a map i,: 7 (N) — 3 (Z), where .#>(Z) is a monoid of cofinite
almost monotone partial bijection of Z (see []]). It is obvious that the so defined map
i,: 7 (N) = £ (Z) is a homomorphism, and moreover in the case n = 0 the map ig
is a monoid homomorphism. Also, if a is an element of the semigroup .#{ (N) of cofinite
monotone partial bijections of N, then the above defined extension az: Z — Z of « is
a cofinite monotone partial bijection of Z, and hence oz € .#{ (Z), where 9L (Z) is a
monoid of cofinite monotone partial bijections of Z (see [g]).

3. ON GENERATORS OF THE MONOID IN,

In [d] it is proved that the semigroup ID is finitely generated and moreover ID,
has three generators. Taras Banakh posed the following question.

Question 2. Is the monoid INy, finitely generated?
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In this section we give a negative answer on this question.

Lemma 5. If A is a set of generators of the monoid IN,,, then A contains at least two
distinct elements of 6.

Proof. Let a and 3 be elements of a monoid %y which are defined in Remark[I] Then there
exist finitely many «g, ..., € A such that « = a3 ... o and ag # [. Since doma = N,
the definition of the composition of partial maps implies that doma C doma;. By
Lemma 1 of [I1], every element of IN,, is a partial shift of N, and hence we get that
doma; = N. By Lemma 1 of [II] and Remark we have that oy € €. If 5= 51...5;
for some B4,...,5; € A and B; # I, then dually we get that 3; € €y with ran5; = N.
This implies the statement of the lemma. O

Remark 3. We observe that the set Ag = {«, 8} is not a unique set of generators of the
monoid %Y. It is obvious that for any positive integer n > 2 any of the following sets
A, = {a", B} and B,, = {«, 5"} generates the monoid %y.

Next we need some notions defined in [I1] and [I2]. For an arbitrary positive integer
ng we denote
[no) ={neN:n>np}.
Since the set of all positive integers is well ordered, the definition of the semigroup
#7(N) implies that for every v € #7'(N) there exists the smallest positive integer
ng € dom~y such that the restriction 'y|[ ) of the partial map v: N — N onto the set

ng
) is an element of the semigroup %y, i.e., fy|[n3) is a some shift of [ng). For every
vy € SL(N) we put 7 =7]p,q
dom 7 = [ng) , (:r)7 = (z)y forall ze€ dom 7 and ran 7 = (dom 7) 5.

Also, we put

[n

), i.e.

Qg = min dom ~y for ~e 77 (N),
It is obvious that nd = nd when v € 4y and n¢ < nd when vy € £ 7 (N) \ 4. Also for
any v € IN,, we denote
_ (pd _(d
n, = (n5)y  and - ng = (n5)y.

By Lemma 1 of [11] every element of the monoid IN, is a partial shift of the set Z.
This implies the following lemma.
Lemma 6. For every element v of the monoid IN,, the following equality holds:
_ ,nd d
ny -y =y - ng
Lemma 7. Let be v € 6y and § € IN,,. Then
ity — ny < nd .
Proof. If § € ¢y, then 70 € 6y and hence we have that n$; = nds which implies that
ngs —ns =ng —n§ =0.

Next we assume that d,v0 € IN, \ €k, because in the case when 7§ € %y the above
argument implies the require inequality. Since vJ € IN \ 6f, we get that nf < ng—1.1I¢
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: : : r d r __ ,r r __ ,r d r d r __ ., r
is obvious that 1fn,y < n§ then nhs =nj and nls = ng. Ifn§ < nz, < ng—1then nhs =ny

and @25 > ns. By Lemma@in the both above cases we have that n% —Q’% < ng —@g. O

Lemma 8. Let be v € 6y and 6 € IN,,. Then
n5d'y _le'y < n(éi - Qg

Proof. By the first paragraph of the proof of Lemma [ without loss of generality we may
assume that 6,6y € INy \ . Since 6y € INy \ %, we have that ng < nj — 1. It is
obvious that if nii/ < nj then nédy = nii/ and ng,y = Qg. If n§ < ngi < n§ — 1 then there
exists a positive integer i® € domd such that (i°)6 > ng and (i°)dy = nj.,. Hence in this
case we have that n§, —nf <nf —i° <nf —ng. a

Lemma 9. Let k be a positive integer > 2. If 4,6 € INy, \ én such that v6 € IN, \ Gy,

n;‘—@;‘gkandng—@g‘gk, then

Proof. We consider all possible cases.
1. If nf < nd and nf < nf, then nf < nts < ny— 1 and nj = nZ;. Hence in this
case by Lemma 1 of [II] and Lemma [6] we have that

d d _ . r r r r . d d
nSs = Nys = Moy — oy < Ny — Ny =y — g <K

2. If n7 > @5‘1 and n; < ng, then ny = nl; and there exists a positive integer
i° € dom such that (i°)y > ng and (i°)yd = nls. In this case by Lemma 1 of [I1] and
Lemma [6] we have that

d d _ r r _ .r -0 r r _ .d d
nis — ngs =nis —nis =mns — (i°)y0 <ny —ns =n5 —ng <k.

3. If n < n§ and n% > nf, then nX; = (n5)d and there exists a positive integer
j° € rany Ndom d such that j° > nd and (j°)6 = nts. In this case by Lemma 1 of [11]
and Lemma [6] we have that

ngs —ns = nSs —nbs = (n5)6 — (j°)8 = nk — j° < nb —nf =nJ —nJ <k

4. If nr > ng and n% > ng, then nfs = (n%)§ and there exists a positive integer
[° € rany N dom ¢ such that [° > nf and (1°)6 = n’. . Hence in this case by Lemma 1 of
[11] and Lemma [6] we have that

d d o o d d
nis —nSs =nns —nhs = (n1)d — (I°)d =n5, —1° <ni —ns =nj —nJ <k
This completes the proof of the lemma. O

Theorem 3. The monoid INy, is not finitely generated.

Proof. Suppose to the contrary that there exists a finite set A = {m,...,7,} of
generators of IN,,. Lemma implies that p > 3 and without loss of generali-
ty we may assume that vi,72 € %y and 7vs,...,7, € INg \ . Since the set
AN\ {72} = {v3,...,7p} is finite and ~v3,...,7, € INy \ %, there exists a posi-
tive integer k > 2 such that ng, —n§ <k forany j=3,...,p.

vi
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Since A generates the monoid IN,,, Lemmas |§|, and @imply that ng — Q,‘j <k
for any v € IN. Let £* be the identity map of the set {1} U{s € N: s > k +2}. Tt is
obvious that

—nd =k+2-1=k+1,

which contradicts the above part of the proof. The obtained contradiction implies the
statement of the theorem. O

d
T

In the following example we construct a set of generators of the monoid IN.

Example 2. Let « and 5 be elements of the submonoid %y of IN,, which are described
in Remark [1] For every positive integer k > 2 we put ¢!*! to be the identity map of the
set N\ {k}. Tt is obvious that £[*! is an idempotent of IN,, and £l ¢ % for all positive
integers k > 2. We claim that the set

A:{a,ﬁ}u{s[k}:keN\{l}}

generates the monoid IN,. Indeed, fix an arbitrary v € IN,,. By Lemma 1 from [IT],  is
a partial shift of the set of integers Z and hence by Remark [If there exist a non-negative
integers i and j such that (z)B‘e’ = (z)y for any 2 € dom~ and ng is the smallest
element of dom(B3%a?). If v = B'a’ then the proof is complete. In the other case we have
that dom(S‘a?) \ dom~ # @ and put

{i1,...,ip} = dom(B'a?) \ dom~.

Then Lemma 1 from [IT] implies that v = glt] ... li?] 3aJ | which implies that the set A
generates the monoid IN.

Remark 4. We observe that for any positive integers k and [ such that & > [ > 2 we have
that
el = oF—tglkl gkt

This implies that the set A from Example [2] has not a minimal set of generators of the
monoid INg.

Example 2] and Remark [d] imply the following corollary.

Corollary 2. Every finitely generated subsemigroup of IN. is a subsemigroup of an
inverse subsemigroup of INy, generated by three elements.

Lemma 10. Let A be any generating set of the monoid INy,. Then there exists a minimal
finite subset AS, of A such that €y C (AS).

Proof. Let o and 8 be elements of the submonoid %y of IN,, which are described in
Remark[]} Then there exist finitely many ~1,...,7k,01,...,0; € Asuch that @ =1 -+ -
and 8 = 61 - -+ d;. Since o and ( generate 6y, we obtain that (v1,..., vk, d1,...,0;) 2 En-
Since the set {y1,...,7%,01,...,0;} is finite, it contains a minimal subset A, such that
en C (Ag). O

For any integer j7 > 0 we define

INg([)j] :{’YEINOO5 ng—ﬂ?, g]}
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Therefore, by Lemmas and [9] we obtain an infinite inverse semigroup series in the
monoid INg:

= TN = gl € g S TG € SN € - € T,
Theorems 1, 4, and 5 from [12] imply the following proposition.

Proposition 3. For any integer k > 0 the following assertions hold:

(i) every automorphism of IN&E’“]

1s the identity map;
(i1) the quotient semigroup IN‘gék]/(’:mg is isomorphic to the additive group of integers
Z(+);

(4i7) INZY s an inverse simple semigroup.

In the sequel, for any positive integer j > 2 by €Ul we shall denote the idempotent
which is defined in Example

Lemma 11. Let k be any integer > 2. If A is a subset of INy such that %y is a
subsemigroup of (A) and ] € (A), then INgo[k] is a subsemigroup of (A).

Proof. By Remark 4| any idempotent el of IN,, such that | < k is generated by the
idempotent e*! and the elements a and 3 of %y. Since £ = elit] ... ¢lr] where iy, ..., 1, <
k, for any idempotent ¢ € IN, with ¢ < B*a¥, we conclude that every idempotent
e < BFaF of IN, is generated by the set A.

Fix any element v of the semigroup IN‘&[,k]. Then the arguments presented in
Example 2| show that the partial map ~ is a partial shift of the set dom~ such that ~ is
the restriction of Bﬂgaﬁ; onto the set dom~y. Since oy ﬂﬂs o™ % is the identity map
of N, the previous arguments imply that ¢y = aﬂgyﬁﬂz is an idempotent of the monoid
IN,. By Lemmas |§| and Lemma 1 of [I1], g¢ belongs to the semigroup INgCLk]. By
the previous part of the proof there exist v1,...,7, € A such that eg =1 - - - y,,. Again,

since «y is the restriction of Bﬂs o™ onto the set dom ~, we obtain that
ﬂﬁgaﬁjfyﬁﬂfr a%y = .
This implies that
ﬂﬂggoaﬂ:r = ﬂﬂgaﬂgyﬂﬂ; aﬂg =7,
and hence the statement of our lemma holds. O
Lemma 12. Let A be a generating set of the monoid IN,, and A, be a minimal finite
subset of A such that én is a subsemigroup of (A). Then for any integer k > 2 and

any representation Fl =~y -~ v1,... v, € A, there exist finitely many Yisooo, s €
AU %N such that

el = 7k ...y and either v = € A\INZF=1 o v € 6N, for j=1,...,s (1)

Moreover, if v; € €, then there exist ;1,...,0;,;, € Ag such that 77 =651+ 6;p, for
some positive integer p;.

Proof. Fix any integer k > 2 and suppose that ¥l =~ ... ~, for some 71,...,7s € A.
The definitions of the idempotent e*! and composition of partial maps (see |13}
Section 1.1]) imply that either dom~; = N or dom~y; = domel* because the set N\
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domel*! is a singleton. If dom~; = N, then by Lemma 1 of [I1], 7, is the partial shift of
integers, and hence v, € €. If dom~; = domel¥), then similar arguments imply that ~;
is the partial shift of the set N\ {k}. In both cases we put 77 = 1.

Next we consider the element ~5. The definition of the monoid IN,, and Lemma 1
of [I1] imply that (domel*l)y; C dom ~,.

Suppose that ng, —nd, > k. Then one of the following cases holds:

nfyi2 =(k+1)m or ngg < (D).
In the first case we have that {(i)y1:i=1,...,k — 1} C dom~s and hence we put v5 =
2. In the second case by Lemma 1 of [I1], 72 is the partial shift of integers, and we put
74 = BM M7z Tt it obvious that in both cases we have that v1y2 = 73,

Suppose that ng, —nd < k. Then the equality el¥] = 41745 -+ -, implies that nd, <
(1)1, and hence the above presented arguments imply that v1v2 = 7§~4, where 75 =
BN (W72,

Using induction up to s in the similar way we obtain the requested representation
of the idempotent el¥l = 4% ...4* in form . Also, since k ¢ domel*], there exists a
smallest positive integer j < s such that (1)vy; ---7;-1 ¢ dom~y;. This completes the first
statement of the lemma. The second statement is obvious and follows from Lemmall0l O

Theorem 4. Let A be any infinite subset of IN, generating the monoid IN.,. Then
there exists no a minimal subset B C A generating IN.

Proof. By Lemmathere exists a minimal finite subset A2, of A such that ¢y C (AS).

Put j; = 2. Since el = ~; .. -7, for some v1,...,7s, € A, there exists the smallest
d d

positive integer ki such that ng —nS < ki for any ¢ = 1,...,s; and ng - QS < kp for

any v € A%. By Lemma INgF ig o subsemigroup of (A%, U {y1,...,7s })-
Put jo = k; + 1. Then by Lemmas[7} [§] [0] we have that

elel ¢ (AL U{m,... .75, })

Suppose that eli2] = Ysy41 Vs, fOr some Vg, 41,...,7s, € A, where s; +1 < so.
By Lemma [I2] there exist finitely many v} ,;,...,7i, € AU %y such that

elkl = Vo141 Vs, and either 7 =; € A\ INgo[k_l] orv; € G, forj=s1+1,...,50.
The second statement of Lemma [I2] and Lemma [I1] imply that
INED) € (A% U {0141, }) € (ANINE U A ).

Next, if we repeat the above presented construction infinitely many times, then we
obtain an increasing sequence of positive integers { jp}pEN such that

INg([)jp] C <A \ INgy"] U A%> for any Jp-

Since
0] _ 1 2 1 k
InNgy INQ[]CINQ[]CINQHC~-~CIN9HC-~-CIN::

and IN, = U INgc[f], Lemma (11| implies that the set A does not contain a minimal

i=1
subset B C A which generates the monoid IN. O
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Theorem [4] implies the following corollary.

Corollary 3. The monoid INy, does not contains a minimal generating set.
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ITPO MOHOIJ KOCKIHYEHHINX YACTKOBUX I3OMETPIN
MHOYKHNHH N 31 3BBUMANHOIO METPUKOIO

Ouger I'VTIK, Anarouaiiit CABUYK

JIveiecvrutl Haytonasvrul yrwieepcumem iment leana Pparnka,
8ys. Yuisepcumemcovka, 1, 79000, JIveis
e-mails: oleg.gutikQ@Inu.edu.ua, asavchuk3333Qgmail.com

HoBoaumo, mo mouoin IN., ycix 9acTKOBUX KOCKIHYEHHUX 130MeTpiit HATY-
PaTbHUX YHCeS He 3aHyPIeThCs i3oMopduO B Monoix ID o, ycix vacTkOBUX KO-
CKIHYeHHUX i30MeTpiil nimx guces. Bisbire Toro, i KOXKHOr0 HEAHYJIIOI0Y0r0
romomopdizmy h: INo, — ID BukOHYy€ETHCa OmHa 3 yMOB: 00pa3 (INo)h abo
i3oMopdHMIT qBOETEMEHTHIM MUKIIYHIA Tpym Zz, a00 aauTUBHIN IPyI MiIHX
ancen Z(+). Takox goBommmo, mo MoHOIx IN., He € CKIHUeHHO MOPOIKEHNM, i,
6imbire Toro, HamiBrpyna IN, He MicTUTH MiHIMAJIBHY IOPOIKYIOMY MHOKUHY.

Karowo6t croea: GacTKOBA i30MeTpis, iHBEpCHA HAIMIBIpyIa, 9acTKOBA bie-
KIMis, OIMUK/TIIHIN MOHOII, BKJIaeHHs, TPYTIOBa KOHTPYEHIIisI, TIOPO/IK YIOUHil
€JIEMEHT.
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