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In the paper we show that the monoid IN∞ of all partial co�nite isometri-
es of positive integers does not embed isomorphically into the monoid ID∞
of all partial co�nite isometries of integers. Moreover, every non-annihilating
homomorphism h : IN∞ → ID∞ has the following property: the image (IN∞)h
is isomorphic either to the two-element cyclic group Z2 or to the additive group
of integers Z(+). Also we prove that the monoid IN∞ is not �nitely generated,
and, moreover, monoid IN∞ does not contain a minimal generating set.
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1. Introduction and preliminaries

In this paper we shall follow the terminology of [4, 13]. We shall denote the �rst
in�nite cardinal by ω and the cardinality of a set A by |A|. For any positive integer n by
Sn we denote the group of permutations of the set {1, . . . , n}.

We shall say that a non-empty subset A of a semigroup S generates S, or A is a set

of generators of S, or A is a generating set of S, if for any s ∈ S there exist a1, . . . , ak ∈ A
such that s = a1 · · · ak. For any non-empty subset A of a semigroup S by 〈A〉 we denote
a subsemigroup of S which is generated by A. A generating set A of a semigroup S is
called minimal generating, if A does not properly contain any generating set of S. It is
obvious that every �nite generation set of a semigroup has a minimal generating set.

A semigroup S is called inverse if for any element x ∈ S there exists a unique
x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse
of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns to
every element x of S its inverse element x−1 is called the inversion.
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If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order 4 on E(S): e 4 f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order 4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te.
This order is called the natural partial order on S [16].

A congruence C on a semigroup S is called non-trivial if C is distinct from the uni-
versal and identity congruences on S, and a group congruence if the quotient semigroup
S/C is a group. Every inverse semigroup S admits the least (minimum) group congruence
Cmg:

aCmgb if and only if there exists e ∈ E(S) such that ae = be

(see [14, Lemma III.5.2]).
The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two

elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a
group congruence [4].

If α : X ⇀ Y is a partial map, then we shall denote the domain and the range of α
by domα and ranα, respectively. A partial map α : X ⇀ Y is called co�nite if both sets
X \ domα and Y \ ranα are �nite.

Let Iλ denote the set of all partial one-to-one transformations of a non-zero cardinal
λ together with the following semigroup operation:

x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ domα : yα ∈ domβ}, for α, β ∈ Iλ.

The semigroup Iλ is called the symmetric inverse (monoid) semigroup over cardinal
λ (see [4]). The symmetric inverse semigroup was introduced by Wagner [16] and it plays
a major role in the theory of semigroups. By I cf

λ we denote a subsemigroup of injective
partial selfmaps of λ with co�nite domains and ranges in Iλ. Obviously, I cf

λ is an inverse
submonoid of the semigroup Iλ. The semigroup I cf

λ is called the monoid of injective

partial co�nite selfmaps of λ [9].
A partial transformation α : (X, d) ⇀ (X, d) of a metric space (X, d) is called

isometric or a partial isometry, if d(xα, yα) = d(x, y) for all x, y ∈ domα. It is obvi-
ous that the composition of two partial isometries of a metric space (X, d) is a parti-
al isometry, and the converse partial map to a partial isometry is a partial isometry,
too. Hence the set of partial isometries of a metric space (X, d) with the operation of
composition of partial isometries is an inverse submonoid of the symmetric inverse monoid
over the cardinal |X|. Also, it is obvious that the set of partial co�nite isometries of a
metric space (X, d) with the operation of composition of partial isometries is an inverse
submonoid of the monoid of injective partial co�nite selfmaps of the cardinal |X|.
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The semigroup ID∞ of all partial co�nite isometries of the set of integers Z with the
usual metric d(n,m) = |n−m|, n,m ∈ Z, in the Bezushchak papers [1, 2] is considered. In
[1] the generators of the semigroup ID∞ are described and it is proved therein that ID∞
has the exponential growth. We remark that the semigroup ID∞ is an inverse submonoid
of the monoid of all partial co�nite bijections of Z, and elements of ID∞ are restrictions
of isometries of Z onto its co�nite subsets in the Lawson interpretation (see [13, p. 9]).
Green's relations and principal ideals of ID∞ are described in [2]. In [10] it is shown that
the quotient semigroup ID∞/Cmg is isomorphic to the group Iso(Z) of all isometries of
Z, the semigroup ID∞ is F -inverse, and ID∞ is isomorphic to the semidirect product
Iso(Z)nh P∞(Z) of the free semilattice with identity (P∞(Z),∪) by the group Iso(Z).
Also in [10] there are investigated semigroup and shift-continuous topologies on ID∞
and embedding of the discrete semigroup ID∞ into compact-like topological semigroups.

Later we assume that on N and Z the usual linear order is considered.
Let IN∞ be the set of all partial co�nite isometries of the set of positive integers

N with the usual metric d(n,m) = |n −m|, n,m ∈ N. Then IN∞ with the operation of
composition of partial isometries is an inverse submonoid of Iω. The semigroup IN∞ of
all partial co�nite isometries of positive integers is studied in [11]. There we described
the Green relations on the semigroup IN∞, its band, and proved that IN∞ is a simple
E-unitary F -inverse semigroup. Also in [11], the least group congruence Cmg on IN∞ is
described and it is proved that the quotient-semigroup IN∞/Cmg is isomorphic to the
additive group of integers Z(+). An example of a non-group congruence on the semigroup
IN∞ is presented. Also in [11], we proved that a congruence on the semigroup IN∞ is
a group congruence if and only if its restriction onto an isomorphic copy of the bicyclic
semigroup in IN∞ is a group congruence and it is shown that IN∞ has a non-trivial
homomorphic retract which is isomorphic to the bicyclic semigroup. Another non-trivial
homomorphic retracts of the monoid IN∞ is constructed in [15].

The semigroup of monotone, non-decreasing, injective partial transformations ϕ of
N such that the sets N \ domϕ and N \ ranϕ are �nite was introduced in [7] and was
denoted by I↗∞(N). Obviously, I↗∞(N) is an inverse subsemigroup of the semigroup Iω.
The semigroup I↗∞(N) is called the semigroup of co�nite monotone partial bijections of
N. In [7] Gutik and Repov�s studied properties of the semigroup I↗∞(N). In particular,
they showed that I↗∞(N) is an inverse bisimple semigroup and all of its non-trivial group
homomorphisms are either isomorphisms or group homomorphisms. It is obvious that
IN∞ is an inverse submonoid of I↗∞(N).

Doroshenko in [5, 6] studied the semigroups of endomorphisms of linearly ordered
sets N and Z and their subsemigroups of co�nite endomorphisms Ofin(N) and Ofin(Z).
In [6] he described Green's relations, groups of automorphisms, conjugacy, centralizers of
elements, growth, and free subsemigroups in these semigroups. In particular, in [6] it is
proved that, in Ofin(N) the group of automorphisms consists only of the identity mappi-
ng, whereas the groups of automorphisms of Ofin(Z) is isomorphic to the semigroup of
integers with operation of addition and consist only of inner automorphisms. In [5] it
was shown that both these semigroups do not admit an irreducible system of generators.
In their subsemigroups of co�nite functions all irreducible systems of generators are
described here. Also, here the last semigroups are presented in terms of generators and
relations.
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A partial map α : N ⇀ N is called almost monotone if there exists a �nite subset
A of N such that the restriction α |N\A : N \ A ⇀ N is a monotone partial map. By

I �↗
∞ (N) we denote the semigroup of monotone, almost non-decreasing, injective partial

transformations of N such that the sets N \ domϕ and N \ ranϕ are �nite for all ϕ ∈
I �↗
∞ (N). Obviously, I �↗

∞ (N) is an inverse subsemigroup of the semigroup Iω and the
semigroup I↗∞(N) is an inverse subsemigroup of I �↗

∞ (N) as well. The semigroup I �↗
∞ (N)

is called the semigroup of co�nite almost monotone partial bijections of N. In [3] the
semigroup I �↗

∞ (N) is studied. In particular, it was shown that the semigroup I �↗
∞ (N) is

inverse, bisimple and all of its non-trivial group homomorphisms are either isomorphisms
or group homomorphisms. In [12] we showed that every automorphism of a full inverse
subsemigroup of I↗∞(N) which contains the semigroup CN is the identity map. Also, here

we constructed a submonoid IN[1]
∞ of I �↗

∞ (N) with the following property: if S be an

inverse subsemigroup of I �↗
∞ (N) such that S contains IN[1]

∞ as a submonoid, then every
non-identity congruence C on S is a group congruence. We show that if S is an inverse
submonoid of I �↗

∞ (N) such that S contains CN as a submonoid then S is simple and
the quotient semigroup S/Cmg, where Cmg is the minimum group congruence on S, is
isomorphic to the additive group of integers. Also, topologizations of inverse submonoids
of I �↗

∞ (N) and embeddings of such semigroups into compact-like topological semigroups
are given in [3, 12]. Similar results for semigroups of co�nite almost monotone partial
bijections and co�nite almost monotone partial bijections of Z were obtained in [8].

In the present paper we show that the monoid IN∞ does not embed isomorphically
into the semigroup ID∞. Moreover every non-annihilating homomorphism h : IN∞ →
ID∞ has the following property: the image (IN∞)h is isomorphic either to Z2 or to
Z(+). Also we prove that the monoid IN∞ does not have a �nite set of generators, and
moreover monoid IN∞ does not contain a minimal generating set.

2. On homomorphisms from IN∞ into ID∞

The de�nition of the semigroup ID∞ implies that for any α ∈ ID∞ there exists a
unique element γα of the group of units of ID∞ such that α 4 γα (see [10]). Also we
have that |Z \ domα| = |Z \ ranα| for each α ∈ ID∞. Hence we get the following obvious
lemma:

Lemma 1. If α = βγ for some α, β, γ ∈ ID∞ then

max {|Z \ domβ| , |Z \ dom γ|} 6 |Z \ domα| 6 |Z \ domβ|+ |Z \ dom γ| .

Proposition 1. The semigroup ID∞ does not contain an isomorphic copy of the bicyclic

semigroup.

Proof. Suppose to the contrary that there exists a subsemigroup S of ID∞ which is
isomorphic to the bicyclic semigroup C (p, q). Let h : C (p, q) → S be an embedding
isomorphism. Put (1)h = ε0, (qp)h = ε1, (p)h = α and (q)h = β. Then ε0 and ε1 are
idempotent of ID∞ such that ε1 4 ε0. The de�nition of the semigroup ID∞ implies
that ε0 and ε1 are the identity maps of dom ε0 and dom ε1, respectively, and moreover
dom ε1  dom ε0. Since 1 = p(qp)p, we get that ε0 = βε1α. The latter equality and
Lemma 1 imply that

|Z \ dom ε1| 6 |Z \ dom ε0| .
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The obtained inequality contradicts the inclusion dom ε1  dom ε0, because ε0 6= ε1. �

It is obvious that for every α ∈ IN∞ there exist in�nitely many γ ∈ ID∞ such that
α is the restriction of γ onto N. This motivated Taras Banakh to ask:

Question 1. Does the semigroup ID∞ contain an isomorphic copy of IN∞?

In this section we give a negative answer on this question.

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup CN
which is generated by partial transformations α and β of the set of positive integers N,
de�ned as follows:

domα = N, ranα = N \ {1}, (n)α = n+ 1

and

domβ = N \ {1}, ranβ = N, (n)β = n− 1

(see Exercise IV.1.11(ii) in [14]). It is obvious that CN is a submonoid of IN∞.

Proposition 1 and Remark 1 imply the following statement which gives a negative
answer to Question 1.

Theorem 1. The semigroup ID∞ does not contain an isomorphic copy of the semigroup

IN∞.

Next we shall discuss maximal subgroups (i.e., on H -classes with an idempotent)
in the semigroup ID∞.

The following statement belongs to the folklore of the geometric group theory.

Lemma 2. The group of isometries of the set of integers Z with the usual metric is

isomorphic to the semidirect product Z(+)o Z2.

The following lemma describes cyclic subgroups of the group of isometries of the set
of integers Z with the usual metric.

Lemma 3. Let G be a cyclic subgroup of the group of isometries of the set of integers Z
with the usual metric. Then only one of the following conditions holds:

(i) G is a singleton;

(ii) G is isomorphic to Z2;

(iii) G is isomorphic to Z(+).

Proof. Fix a generator (a, b) of G. Next we consider all possible cases.

1. Suppose that (a, b) =
(
0, 0
)
where 0 and 0 are neutral elements of Z(+) and Z2,

respectively. Then the group operation of Z(+)oZ2 implies that
(
0, 0
)n

=
(
0, 0
)
for any

integer n, and hence G is a singleton.

2. Suppose that (a, b) =
(
0, 1
)
where 1 is a non-neutral element of Z2. Then we have

that
(
0, 1
)2

=
(
0, 0
)
, and hence G is isomorphic to Z2.

3. Suppose that (a, b) =
(
g, 0
)
where g is a non-neutral element of Z(+). Then(

g, 0
)n

=
(
n · g, 0

)
for any integer n, and hence G is isomorphic to Z(+).
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4. Suppose that (a, b) =
(
g, 1
)
where g is a non-neutral element of Z(+). Then we

have that (
g, 1
) (
g, 1
)
=
(
g − g, 1 · 1

)
=
(
0, 0
)
,

and hence G is isomorphic to Z2. �

A subset C ⊆ R is called symmetric in R if there exists a number c ∈ R (the center
of C) such that c+ x ∈ C if and only if c− x ∈ C. A subset C ⊆ Z is called symmetric

in Z if C is symmetric in R.

Remark 2. We observe that a subset C is symmetric in Z if and only if Z\C is symmetric
in Z. Also, if Z endowed with the usual metric, then the partial mapping fC : C → C,
c + x 7→ c − x which is determined by the symmetry of the symmetric set C with the
centre c ∈ R is a partial isometry of Z. In this case we shall say that the partial map fC
determines a symmetry of C.

Lemma 4. Let C be a proper co�nite subset of Z and γ : Z⇀ Z be a partial isometry of

Z such that dom γ = ran γ = C. Then γ is either the identity map of C or γ determines

a symmetry of C.

Proof. Suppose that the partial map γ is a nonidentity. Then γ is an element of the
semigroup ID∞. By Corollary 1 of [10], ID∞ is an F -inverse semigroup, and moreover
there exists a unique element σγ of the group of units of ID∞ such that γ 4 σγ . The
latter implies that the partial map γ extends to the unique isometry σγ of Z. It is
obvious that the restriction of σγ onto the set Z \ C is an isometry of Z \ C. We denote
this isometry by γ◦. Since γ is a nonidentity, so is γ◦. Since C is a proper co�nite subset
of Z, (max(Z\C))γ◦ = min(Z\C) and (min(Z\C))γ◦ = max(Z\C). Then the isometry
of Z \ C by γ◦ implies that

c =
min(Z \ C) + max(Z \ C)

2

is the centre of symmetry of Z \ C. It is obvious that c is the centre of symmetry of C.
This implies the statement of the lemma. �

Since any elements α and β are H -equivalent in ID∞ if and only if domα = domβ
and ranα = ranβ, Lemma 4 implies the following proposition.

Proposition 2. Every subgroup of ID∞ distinct from its group of units is either trivial

or isomorphic to Z2.

Theorem 2. Let S be an inverse submonoid of I �↗
∞ (N) which contains CN as a

submonoid. Then for any homomorphism h : S → ID∞ one of the following conditions

holds:

(i) the image (S)h is a singleton, i.e., h is an annihilating homomorphism;

(ii) the image (S)h is isomorphic to Z2;

(iii) the image (S)h is isomorphic to Z(+).

Proof. Suppose that the homomorphism h : S → ID∞ is not annihilating. Since by
Remark 1 the monoid CN is isomorphic to the bicyclic semigroup, Theorem 1 impli-
es that the restriction h|CN : CN → ID∞ is not an injective homomorphism. Then by
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Corollary 1.32 of [4] the image (CN)h is a cyclic subgroup of ID∞ such that {(I)h} =
(E(CN))h.

We shall show that for any idempotent ε ∈ S we have that (ε)h = (I)h. Since
ε ∈ I �↗

∞ (N), there exists a smallest positive integer nε such that n ∈ dom ε for any
n > nε. Put ε0 be the identity map of the set {j ∈ N : j > nε}. Then ε0 is an idempotent
of CN such that ε0 4 ε in S. The above arguments in the previous paragraph imply that

(ε)h = (εI)h = (ε)h(I)h = (ε)h(ε0)h = (εε0)h = (ε0)h.

Hence we have that (E(S))h = (E(CN))h is a singleton in ID∞ and moreover the image
(E(S))h is an idempotent which is the neutral element of the cyclic subgroup (CN)h in
ID∞. This implies that the image (S)h is a subgroup of ID∞, i.e., the homomorphisms
h : S → ID∞ generates a group congruence Ch on the monoid S. By Theorem 4 of [12],
the quotient semigroup S/Cmg, where Cmg is the minimum group congruence on S, is
isomorphic to the additive group of integers Z(+). This implies that the image (S)h is a
cyclic subgroup of ID∞. Next we apply Lemma 3 and Proposition 2. �

Theorem 2 implies the following corollary:

Corollary 1. Let h : IN∞ → ID∞ be an arbitrary homomorphism. Then one of the

following conditions holds:

(i) h is an annihilating homomorphism;

(ii) the image (IN∞)h is isomorphic to Z2;

(iii) the image (IN∞)h is isomorphic to Z(+).

The following example shows that every co�nite (almost) monotone partial bijection
of N extends to a co�nite (almost) monotone partial bijection of Z.

Example 1. Fix an arbitrary α ∈ I �↗
∞ (N) and any non-positive integer n. We de�ne a

partial map αZ : Z⇀ Z in the following way. Put

domαZ =domα ∪ {i ∈ Z : i 6 n},
ranαZ =ranα ∪ {i ∈ Z : i 6 n}

and

(k)αZ =

{
(k)α, if k ∈ domα;
k, if k 6 n.

This determines a map in : I �↗
∞ (N) → I#∞ (Z), where I#∞ (Z) is a monoid of co�nite

almost monotone partial bijection of Z (see [8]). It is obvious that the so de�ned map
in : I �↗

∞ (N) → I#∞ (Z) is a homomorphism, and moreover in the case n = 0 the map i0
is a monoid homomorphism. Also, if α is an element of the semigroup I↗∞(N) of co�nite
monotone partial bijections of N, then the above de�ned extension αZ : Z ⇀ Z of α is
a co�nite monotone partial bijection of Z, and hence αZ ∈ I↗∞(Z), where I↗∞(Z) is a
monoid of co�nite monotone partial bijections of Z (see [8]).

3. On generators of the monoid IN∞
In [1] it is proved that the semigroup ID∞ is �nitely generated and moreover ID∞

has three generators. Taras Banakh posed the following question.

Question 2. Is the monoid IN∞ �nitely generated?
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In this section we give a negative answer on this question.

Lemma 5. If A is a set of generators of the monoid IN∞, then A contains at least two

distinct elements of CN.

Proof. Let α and β be elements of a monoid CN which are de�ned in Remark 1. Then there
exist �nitely many α1, . . . , αk ∈ A such that α = α1 . . . αk and α1 6= I. Since domα = N,
the de�nition of the composition of partial maps implies that domα ⊆ domα1. By
Lemma 1 of [11], every element of IN∞ is a partial shift of N, and hence we get that
domα1 = N. By Lemma 1 of [11] and Remark 1, we have that α1 ∈ CN. If β = β1 . . . βj
for some β1, . . . , βj ∈ A and βj 6= I, then dually we get that βj ∈ CN with ranβj = N.
This implies the statement of the lemma. �

Remark 3. We observe that the set A0 = {α, β} is not a unique set of generators of the
monoid CN. It is obvious that for any positive integer n > 2 any of the following sets
An = {αn, β} and Bn = {α, βn} generates the monoid CN.

Next we need some notions de�ned in [11] and [12]. For an arbitrary positive integer
n0 we denote

[n0) = {n ∈ N : n > n0} .
Since the set of all positive integers is well ordered, the de�nition of the semigroup
I �↗
∞ (N) implies that for every γ ∈ I �↗

∞ (N) there exists the smallest positive integer
ndγ ∈ dom γ such that the restriction γ|[nd

γ)
of the partial map γ : N ⇀ N onto the set[

ndγ
)
is an element of the semigroup CN, i.e., γ|[nd

γ)
is a some shift of

[
ndγ
)
. For every

γ ∈ I �↗
∞ (N) we put −→γ = γ|[nd

γ)
, i.e.

dom−→γ =
[
ndγ
)
, (x)−→γ = (x)γ for all x ∈ dom−→γ and ran−→γ = (dom−→γ ) γ.

Also, we put
ndγ = min dom γ for γ ∈ I �↗

∞ (N),
It is obvious that ndγ = ndγ when γ ∈ CN and ndγ < nd

γ when γ ∈ I �↗
∞ (N) \ CN. Also for

any γ ∈ IN∞ we denote

nrγ = (ndγ )γ and nrγ = (ndγ )γ.

By Lemma 1 of [11] every element of the monoid IN∞ is a partial shift of the set Z.
This implies the following lemma.

Lemma 6. For every element γ of the monoid IN∞ the following equality holds:

nrγ − nrγ = ndγ − ndγ .

Lemma 7. Let be γ ∈ CN and δ ∈ IN∞. Then
ndγδ − ndγδ 6 ndδ − ndδ .

Proof. If δ ∈ CN, then γδ ∈ CN and hence we have that ndγδ = ndγδ which implies that

ndγδ − ndγδ = ndδ − ndδ = 0.

Next we assume that δ, γδ ∈ IN∞ \CN, because in the case when γδ ∈ CN the above
argument implies the require inequality. Since γδ ∈ IN∞ \CN, we get that n

r
γ < ndδ −1. It
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is obvious that if nrγ 6 n
d
δ then n

r
γδ = nrγ and n

r
γδ = nrδ. If n

d
δ < nrγ < ndδ−1 then nrγδ = nrγ

and nrγδ > n
r
δ. By Lemma 6 in the both above cases we have that ndγδ−ndγδ 6 ndδ −ndδ . �

Lemma 8. Let be γ ∈ CN and δ ∈ IN∞. Then

ndδγ − ndδγ 6 ndδ − ndδ .

Proof. By the �rst paragraph of the proof of Lemma 6 without loss of generality we may
assume that δ, δγ ∈ IN∞ \ CN. Since δγ ∈ IN∞ \ CN, we have that ndγ < nrδ − 1. It is

obvious that if ndγ 6 nrδ then n
d
δγ = ndγ and ndδγ = ndδ . If n

r
δ < ndγ < nrδ − 1 then there

exists a positive integer i◦ ∈ dom δ such that (i◦)δ > ndγ and (i◦)δγ = nrδγ . Hence in this

case we have that ndδγ − ndδγ 6 ndδγ − i◦ < ndδ − ndδ . �

Lemma 9. Let k be a positive integer > 2. If γ, δ ∈ IN∞ \CN such that γδ ∈ IN∞ \CN,
ndγ − ndγ 6 k and ndδ − ndδ 6 k, then

ndγδ − ndγδ 6 k.

Proof. We consider all possible cases.
1. If nrγ 6 ndδ and nrγ 6 ndδ , then n

r
δ 6 nrγδ < nrδ − 1 and nrδ = nrγδ. Hence in this

case by Lemma 1 of [11] and Lemma 6 we have that

ndγδ − ndγδ = nrγδ − nrγδ 6 nrδ − nrδ = ndδ − ndδ 6 k.

2. If nrγ > nd
δ and nrγ 6 ndδ , then nrδ = nrγδ and there exists a positive integer

i◦ ∈ dom γ such that (i◦)γ > ndδ and (i◦)γδ = nrγδ. In this case by Lemma 1 of [11] and
Lemma 6 we have that

ndγδ − ndγδ = nrγδ − nrγδ = nrδ − (i◦)γδ < nrδ − nrδ = ndδ − ndδ 6 k.

3. If nrγ 6 ndδ and nrγ > ndδ , then nrγδ = (nrγ)δ and there exists a positive integer

j◦ ∈ ran γ ∩ dom δ such that j◦ > ndδ and (j◦)δ = nrγδ. In this case by Lemma 1 of [11]
and Lemma 6 we have that

ndγδ − ndγδ = nrγδ − nrγδ = (nrγ)δ − (j◦)δ = nrγ − j◦ 6 nrγ − nrγ = ndγ − ndγ 6 k.

4. If nrγ > ndδ and nrγ > ndδ , then nrγδ = (nrγ)δ and there exists a positive integer

l◦ ∈ ran γ ∩ dom δ such that l◦ > nrγ and (l◦)δ = nrγγ . Hence in this case by Lemma 1 of
[11] and Lemma 6 we have that

ndγδ − ndγδ = nrγδ − nrγδ = (nrγ)δ − (l◦)δ = nrγ − l◦ 6 nrγ − nrγ = ndγ − ndγ 6 k.

This completes the proof of the lemma. �

Theorem 3. The monoid IN∞ is not �nitely generated.

Proof. Suppose to the contrary that there exists a �nite set A = {γ1, . . . , γp} of
generators of IN∞. Lemma 5 implies that p > 3 and without loss of generali-
ty we may assume that γ1, γ2 ∈ CN and γ3, . . . , γp ∈ IN∞ \ CN. Since the set
A \ {γ1, γ2} = {γ3, . . . , γp} is �nite and γ3, . . . , γp ∈ IN∞ \ CN, there exists a posi-
tive integer k > 2 such that ndγj − n

d
γj
6 k for any j = 3, . . . , p.
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Since A generates the monoid IN∞, Lemmas 6, 7, 8, and 9 imply that ndγ − ndγ 6 k
for any γ ∈ IN∞. Let ε∗ be the identity map of the set {1} ∪ {s ∈ N : s > k + 2}. It is
obvious that

ndε∗ − ndε∗ = k + 2− 1 = k + 1,

which contradicts the above part of the proof. The obtained contradiction implies the
statement of the theorem. �

In the following example we construct a set of generators of the monoid IN∞.

Example 2. Let α and β be elements of the submonoid CN of IN∞ which are described
in Remark 1. For every positive integer k > 2 we put ε[k] to be the identity map of the
set N \ {k}. It is obvious that ε[k] is an idempotent of IN∞ and ε[k] /∈ CN for all positive
integers k > 2. We claim that the set

A = {α, β} ∪
{
ε[k] : k ∈ N \ {1}

}
generates the monoid IN∞. Indeed, �x an arbitrary γ ∈ IN∞. By Lemma 1 from [11], γ is
a partial shift of the set of integers Z and hence by Remark 1 there exist a non-negative
integers i and j such that (x)βiαj = (x)γ for any x ∈ dom γ and ndγ is the smallest

element of dom(βiαj). If γ = βiαj then the proof is complete. In the other case we have
that dom(βiαj) \ dom γ 6= ∅ and put

{i1, . . . , ip} = dom(βiαj) \ dom γ.

Then Lemma 1 from [11] implies that γ = ε[i1] · · · ε[ip]βiαj , which implies that the set A
generates the monoid IN∞.

Remark 4. We observe that for any positive integers k and l such that k > l > 2 we have
that

ε[l] = αk−lε[k]βk−l.

This implies that the set A from Example 2 has not a minimal set of generators of the
monoid IN∞.

Example 2 and Remark 4 imply the following corollary.

Corollary 2. Every �nitely generated subsemigroup of IN∞ is a subsemigroup of an

inverse subsemigroup of IN∞ generated by three elements.

Lemma 10. Let A be any generating set of the monoid IN∞. Then there exists a minimal

�nite subset A◦C of A such that CN ⊆ 〈A◦C 〉.

Proof. Let α and β be elements of the submonoid CN of IN∞ which are described in
Remark 1. Then there exist �nitely many γ1, . . . , γk, δ1, . . . , δl ∈ A such that α = γ1 · · · γk
and β = δ1 · · · δl. Since α and β generate CN, we obtain that 〈γ1, . . . , γk, δ1, . . . , δl〉 ⊇ CN.
Since the set {γ1, . . . , γk, δ1, . . . , δl} is �nite, it contains a minimal subset A◦C such that
CN ⊆ 〈A◦C 〉. �

For any integer j > 0 we de�ne

INg[j]
∞ =

{
γ ∈ IN∞ : ndγ − ndγ 6 j

}
.
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Therefore, by Lemmas 7, 8, and 9 we obtain an in�nite inverse semigroup series in the
monoid IN∞:

CN = INg[0]
∞ = INg[1]

∞ $ INg[2]
∞ $ INg[1]

∞ $ · · · $ INg[k]
∞ $ · · · ⊂ IN∞.

Theorems 1, 4, and 5 from [12] imply the following proposition.

Proposition 3. For any integer k > 0 the following assertions hold:

(i) every automorphism of INg[k]
∞ is the identity map;

(ii) the quotient semigroup INg[k]
∞ /Cmg is isomorphic to the additive group of integers

Z(+);

(iii) INg[k]
∞ is an inverse simple semigroup.

In the sequel, for any positive integer j > 2 by ε[j] we shall denote the idempotent
which is de�ned in Example 2.

Lemma 11. Let k be any integer > 2. If A is a subset of IN∞ such that CN is a

subsemigroup of 〈A〉 and ε[k] ∈ 〈A〉, then INg[k]
∞ is a subsemigroup of 〈A〉.

Proof. By Remark 4 any idempotent ε[l] of IN∞ such that l < k is generated by the
idempotent ε[k] and the elements α and β of CN. Since ε = ε[i1] · · · ε[ip], where i1, . . . , lp 6
k, for any idempotent ε ∈ IN∞ with ε 4 βkαk, we conclude that every idempotent
ε 4 βkαk of IN∞ is generated by the set A.

Fix any element γ of the semigroup INg[k]
∞ . Then the arguments presented in

Example 2 show that the partial map γ is a partial shift of the set dom γ such that γ is

the restriction of βn
d
γαn

r
γ onto the set dom γ. Since αn

d
γβn

d
γαn

r
γβn

r
γ is the identity map

of N, the previous arguments imply that ε0 = αn
d
γγβn

r
γ is an idempotent of the monoid

IN∞. By Lemmas 7, 8, 9 and Lemma 1 of [11], ε0 belongs to the semigroup INg[k]
∞ . By

the previous part of the proof there exist γ1, . . . , γn ∈ A such that ε0 = γ1 · · · γn. Again,
since γ is the restriction of βn

d
γαn

r
γ onto the set dom γ, we obtain that

βn
d
γαn

d
γγβn

r
γαn

r
γ = γ.

This implies that

βn
d
γ ε0α

nr
γ = βn

d
γαn

d
γγβn

r
γαn

r
γ = γ,

and hence the statement of our lemma holds. �

Lemma 12. Let A be a generating set of the monoid IN∞ and A◦C be a minimal �nite

subset of A such that CN is a subsemigroup of 〈A〉. Then for any integer k > 2 and

any representation ε[k] = γ1 · · · γs, γ1, . . . , γs ∈ A, there exist �nitely many γ∗1 , . . . , γ
∗
s ∈

A ∪ CN such that

ε[k] = γ∗1 · · · γ∗s and either γ∗j = γj ∈ A\INg[k−1]
∞ or γ∗j ∈ CN, for j = 1, . . . , s. (1)

Moreover, if γ∗j ∈ CN, then there exist δj,1, . . . , δj,pj ∈ A◦C such that γ∗j = δj,1 · · · δj,pj for
some positive integer pj.

Proof. Fix any integer k > 2 and suppose that ε[k] = γ1 · · · γs for some γ1, . . . , γs ∈ A.
The de�nitions of the idempotent ε[k] and composition of partial maps (see [13,

Section 1.1]) imply that either dom γ1 = N or dom γ1 = dom ε[k], because the set N \
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dom ε[k] is a singleton. If dom γ1 = N, then by Lemma 1 of [11], γ1 is the partial shift of
integers, and hence γ1 ∈ CN. If dom γ1 = dom ε[k], then similar arguments imply that γ1
is the partial shift of the set N \ {k}. In both cases we put γ∗1 = γ1.

Next we consider the element γ2. The de�nition of the monoid IN∞ and Lemma 1
of [11] imply that (dom ε[k])γ1 ⊆ dom γ2.

Suppose that ndγ2 − n
d
γ2
> k. Then one of the following cases holds:

ndγ2 = (k + 1)γ1 or ndγ2 6 (1)γ1.

In the �rst case we have that {(i)γ1 : i = 1, . . . , k − 1} ⊆ dom γ2 and hence we put γ∗2 =
γ2. In the second case by Lemma 1 of [11], γ2 is the partial shift of integers, and we put
γ∗2 = β(1)γ1α(1)γ1γ2 . It it obvious that in both cases we have that γ1γ2 = γ∗1γ

∗
2 .

Suppose that ndγ2 − n
d
γ2
< k. Then the equality ε[k] = γ1γ2 · · · γs implies that ndγ2 6

(1)γ1, and hence the above presented arguments imply that γ1γ2 = γ∗1γ
∗
2 , where γ

∗
2 =

β(1)γ1α(1)γ1γ2 .
Using induction up to s in the similar way we obtain the requested representation

of the idempotent ε[k] = γ∗1 · · · γ∗s in form (1). Also, since k /∈ dom ε[k], there exists a
smallest positive integer j 6 s such that (1)γ1 · · · γj−1 /∈ dom γj . This completes the �rst
statement of the lemma. The second statement is obvious and follows from Lemma 10. �

Theorem 4. Let A be any in�nite subset of IN∞ generating the monoid IN∞. Then
there exists no a minimal subset B ⊆ A generating IN∞.

Proof. By Lemma 10 there exists a minimal �nite subset A◦C of A such that CN ⊆ 〈A◦C 〉.
Put j1 = 2. Since ε[j1] = γ1 · · · γs1 for some γ1, . . . , γs1 ∈ A, there exists the smallest
positive integer k1 such that ndγi − n

d
γi
6 k1 for any i = 1, . . . , s1 and ndγ − ndγ 6 k1 for

any γ ∈ A◦C . By Lemma 11, INg[k1]
∞ is a subsemigroup of 〈A◦C ∪ {γ1, . . . , γs1}〉.

Put j2 = k1 + 1. Then by Lemmas 7, 8, 9 we have that

ε[j2] /∈ 〈A◦C ∪ {γ1, . . . , γs1}〉 .

Suppose that ε[j2] = γs1+1 · · · γs2 for some γs1+1, . . . , γs2 ∈ A, where s1 + 1 6 s2.
By Lemma 12 there exist �nitely many γ∗s1+1, . . . , γ

∗
s2 ∈ A ∪ CN such that

ε[k] = γ∗s1+1 · · · γ∗s2 and either γ∗j = γj ∈ A \ INg [k−1]
∞ or γ∗j ∈ CN, for j = s1 + 1, . . . , s2.

The second statement of Lemma 12 and Lemma 11 imply that

INg[j2]
∞ ⊆ 〈A◦C ∪ {γs1+1, . . . , γs2}〉 ⊆

〈
A \ INg[j2]

∞ ∪A◦C
〉
.

Next, if we repeat the above presented construction in�nitely many times, then we
obtain an increasing sequence of positive integers {jp}p∈N such that

INg[jp]
∞ ⊆

〈
A \ INg[jp]

∞ ∪A◦C
〉

for any jp.

Since

INg[0]
∞ = INg[1]

∞ $ INg[2]
∞ $ INg[1]

∞ $ · · · $ INg[k]
∞ $ · · · ⊂ IN∞

and IN∞ =

∞⋃
i=1

INg[i]
∞ , Lemma 11 implies that the set A does not contain a minimal

subset B ⊆ A which generates the monoid IN∞. �
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Theorem 4 implies the following corollary.

Corollary 3. The monoid IN∞ does not contains a minimal generating set.
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Äîâîäèìî, ùî ìîíî¨ä IN∞ óñiõ ÷àñòêîâèõ êîñêií÷åííèõ içîìåòðié íàòó-
ðàëüíèõ ÷èñåë íå çàíóðþ¹òüñÿ içîìîðôíî â ìîíî¨ä ID∞ óñiõ ÷àñòêîâèõ êî-
ñêií÷åííèõ içîìåòðié öiëèõ ÷èñåë. Áiëüøå òîãî, äëÿ êîæíîãî íåàíóëþþ÷îãî
ãîìîìîðôiçìó h : IN∞ → ID∞ âèêîíó¹òüñÿ îäíà ç óìîâ: îáðàç (IN∞)h àáî
içîìîðôíèé äâîåëåìåíòíié öèêëi÷íié ãðóïi Z2, àáî àäèòèâíié ãðóïi öiëèõ
÷èñåë Z(+). Òàêîæ äîâîäèìî, ùî ìîíî¨ä IN∞ íå ¹ ñêií÷åííî ïîðîäæåíèì, i,
áiëüøå òîãî, íàïiâãðóïà IN∞ íå ìiñòèòü ìiíiìàëüíó ïîðîäæóþ÷ó ìíîæèíó.

Êëþ÷îâi ñëîâà: ÷àñòêîâà içîìåòðiÿ, iíâåðñíà íàïiâãðóïà, ÷àñòêîâà ái¹-
êöiÿ, áiöèêëi÷íèé ìîíî¨ä, âêëàäåííÿ, ãðóïîâà êîíãðóåíöiÿ, ïîðîäæóþ÷èé
åëåìåíò.
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