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1. Introduction

Our goal is to give a proof of the following result. We remind the reader of the
de�nitions of notions involved in it at the beginning of the next section.

Theorem 1 (Brendle 98). (GCH) Let κ be an uncountable regular cardinal. Then there
exists a ccc poset P which forces b = κ < a = κ+ = c.

We will follow the same strategy as in [3], the main technical ingredient thereof

being simpli�ed. More precisely, P = Pκ+ comes from a �nite support iteration 〈Pα, Q̇α :
α < κ+〉 of ccc posets. The poset Q0 forces b = κ = 2ω (e.g., one can take as Q0 the
poset adding κ-many Hechler reals over V ). Fix a dominating family B = {bξ : ξ < κ} ⊂
ω↑ω ∩ V Q0 such that bξ 6∗ bη for all ξ < η. If α has co�nality < κ, then Q̇α is a name
for a partial Hechler forcing producing a 6∗-bound for certain Xα ⊂ ω↑ω ∩ V Pα of size
|Xα| < κ, supplied by a bookkeeping function �xed in advance. The purpose of these

Q̇α's is to make sure that b = c = κ holds in V Pγ for any γ of co�nality κ. Moreover,
since the partial Hechler posets Q̇α have size < κ, they preserve the unboundedness of B
(it is well-known and easy to check that no poset of size < κ can force B to be bounded),
provided that Pα did so, and the latter will be arranged with the help of Propositions 2
and 1 below. At stage γ of co�nality κ our bookkeeping function gives us a (Pγ-name for

an) almost disjoint family Aγ . The poset Q̇γ forces Aγ to be non-maximal and preserves
the unboundedness of B.
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In order to prove Theorem 1 it is enough to accomplish the natural scenario discussed
above. Propositions 2 and 1 along with a standard bookkeeping allow us to do this.

Proposition 2 is analogous to [3, 3.1. Theorem]. However, unlike in the proof of
the latter result, in our proof of Proposition 2 we use neither auxiliary Cohen reals,
nor tricky arguments involving ranks, which hopefully makes our proof somewhat more
straightforward.

The proof given in [3] has inspired yet another construction of a model of b < a,
see [6]. Their proof is rather di�erent from the one we present in this note: They use
countably closed non-ccc iterands which �forces� them to use countable supports and
hence gives c = ω2, as well as they use some variants of games on �lters considered in
[8, 9].

There have been more attempts to simplify or to modify Brendle's proof from [3],
see, e.g., [4]. Also, O. Guzm�an has informed us in private communication that he knows
how to eliminate Cohen reals. Moreover, Guzm�an and Kalajdzievski have recently proved
in [7] the consistency of ω1 = u < a = ω2. This yields b < a since b 6 u in ZFC and
their posets do not add Cohen reals as these destroy ground model basis of ultra�lters.
Nonetheless we believe that our approach might be still of some interest.

We thank the anonymous referee for careful reading and making very helpful
comments.

2. Proofs

As usually, ω = {0, 1, 2, . . .} denotes the set of natural numbers and ω↑ω stands for
non-decreasing elements of ωω. A family A ⊂ [ω]ω is called almost disjoint if A0 ∩A1 is
�nite for any distinct A0, A1 ∈ A. An in�nite almost disjoint family A is called a mad
family if A∪{X} fails to be almost disjoint for any X ∈ [ω]ω \A. The minimal cardinality
of a mad family is denoted by a.

For x, y ∈ ωω notation x 6∗ y means that the set {n ∈ ω : x(n) > y(n)} is �nite. b
denotes the minimal cardinality of B ⊂ ωω which is unbounded with respect to 6∗. It is
known that ω1 6 b 6 a, see [2, 10] for the information about a, b, and other combinatorial
cardinal characteristics of the reals.

In what follows D denotes an unbounded subset of ω↑ω which is σ-directed, i.e., for
every D0 ∈ [D]ω there exists g ∈ D such that d 6∗ g for all d ∈ D0. For instance, the
dominating set B of Hechler generic reals mentioned above is like this.

The following fact follows from [1, Lemma 6.5.7].

Proposition 1. Let δ be a limit ordinal and 〈Pα, Q̇α : α < δ〉 be a �nite support iteration
of ccc posets such that 
Pα

�D is unbounded� for all α < δ. Then 
Pδ
�D is unbounded�.

A subset F of [ω]ω is called a �lter if F contains all co-�nite sets, is closed under
�nite intersections of its elements, and under taking supersets. Every �lter F gives rise
to a natural forcing notion MF introducing a generic subset X ∈ [ω]ω such that X ⊂∗ F
for all F ∈ F as follows: MF consists of pairs 〈s, F 〉 such that s ∈ [ω]<ω, F ∈ F , and
max s < minF . A condition 〈s, F 〉 is stronger than 〈t, G〉 if F ⊂ G, s is an end-extension
of t, and s \ t ⊂ G. MF is usually called Mathias forcing associated with F .

Every almost disjoint family A generates a �lter

F(A) =
{
F ⊂ ω : ∃B ∈ [A]<ω

(
ω \

⋃
B ⊂∗ F

)}
.
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It is clear that any forcing producing an in�nite pseudointersection of F(A) (or any other
bigger �lter) ruins the maximality of A.

The next proposition yields the poset used at stages of iteration with co�nality κ.

Proposition 2. (b = c = κ.) Let A be an almost disjoint family. Then there exists a
�lter U ⊃ F(A) such that MU preserves D unbounded.

We shall need several auxiliary results. First of all, we shall assume in the sequel
that F(A) is not contained in any �lter U which is a union of < κ many compacts, as
otherwise U is as required: Any union of < b many compacts has all of its continuous
images under maps into ω↑ω bounded, and MU preserves all ground model unbounded
sets for any �lters like that, see [5, Theorem 1.4].

For X ⊂ [ω]ω and Z ⊂ ω we denote by X � Z the family {X ∩ Z : X ∈ X}. Also,
X+ standardly stands for {Y ⊂ ω : ∀X ∈ X (|X ∩ Y | = ω)}.

Lemma 1. A∩U+ is in�nite for every �lter U ⊂ F(A)+ which is a union of < κ many
compacts.

Proof. Suppose on the contrary that A′ = A∩U+ is �nite and set F = ω \∪A′ ∈ F(A).
Then F(A) � F ⊂ U � F . Indeed, F(A) � F is the �lter on F generated by {(ω \A)∩F :
A ∈ A \ A′} and ω \ A ∈ U for every A ∈ A \ A′. Thus F(A) is contained in a �lter on
ω which is a union of < κ many compacts (namely {X : ∃U ∈ U(F ∩ U ⊂∗ X)}), which
contradicts our assumption on A. �

In what follows the family of �lters U on ω which are unions of < κ many compacts
will be denoted by Cκ. Let us denote by E the family of all subsets E of fin := [ω]<ω \{∅}
such that for every n ∈ ω there exists e ∈ E with min e > n. For any A ⊂ fin we denote
by K(A) the family {X ⊂ ω : X ∩ a 6= ∅ for all a ∈ A}. It is clear that K(A) is compact
for all A as above, and K(E) ⊂ [ω]ω if E ∈ E . We shall call E ∈ E centered if so is K(E),
where a family X ⊂ [ω]ω is called centered if ∩X ′ ∈ [ω]ω for all X ′ ∈ [X ]<ω.

For a �lter F on ω we denote by F<ω the �lter on fin generated by {P(F ) ∩ fin :
F ∈ F} as a base. Note that this notation is unusual since F<ω �should� denote the
family of all �nite sequences of elements of F , which is not the object we have de�ned
in the previous sentence. However, we shall use this notation since it is standard in the
current literature.

Observation 1. Let E ∈ E. Then X ∈ K(E)+ i� for every n ∈ ω there exists e ∈ E,
min e > n, such that e ⊂ X.

In particular, for a �lter F on ω, {↑ e : e ∈ E} covers F i� F ⊂ K(E)+ i�
K(E) ⊂ F+ i� E ∈ (F<ω)+. (Here ↑ X = {Y ⊂ ω : X ⊂ Y } for any X ⊂ ω.)

Proof. The �if� part is obvious. For the �only if� one, assume to the contrary that X 6⊃ e
for any e ∈ E with min e > n. For every e ∈ E select ne ∈ e as follows: if e ∩ n 6= ∅,
pick ne ∈ e ∩ n, and otherwise pick ne ∈ e \ X. Then Y = {ne : e ∈ E} ∈ K(E) and
Y ∩X ⊂ n thus contradicting our assumption that X ∈ K(E)+. �

Lemma 2. Let R ∈ Cκ be such that F(A)∪R is centered. Suppose that 〈En : n ∈ ω〉 ∈ Eω
is a decreasing sequence such that En ⊂ P(ω \ n) and K(En) ⊂ 〈F(A) ∪ R〉+ for all n.
Then one of the following two options holds:
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(i) There exists n ∈ ω and X ∈ K(En) such that {ω \X} ∪ F(A) ∪ R is centered.
In particular, for any �lter U containing the latter union, En 6∈ (U<ω)+.

(ii) There exists g ∈ D such that letting H ′ =
⋃
n∈ω En ∩ P(g(n)), we have that

F(A)∪R∪K(H ′) is centered. In particular, for any �lter U containing the latter
union, H ′ ∈ (U<ω)+, i.e., for every U ∈ U there exists e ∈ H ′ such that e ⊂ U .

Proof. Suppose that (i) fails. It follows that⋃
n∈ω
K(En) ∪ F(A) ∪R is centered. (1)

Indeed, otherwise there exists n ∈ ω such that K(En)∪F(A)∪R is not centered because
the sequence 〈En : n ∈ ω〉 ∈ Eω is decreasing. Since F(A) ∪ R is centered by our
assumption, there are F ∈ 〈F(A)∪R〉 and {X0, . . . , Xm} ∈ K(En) such that

⋂
i6mXi ∩

F = ∅. Thus F ⊂
⋃
i6m(ω \Xi), which implies ω \Xi ∈ 〈F(A) ∪ R〉+ for some i 6 m,

i.e., (i) takes place, which contradicts our assumption. Thus Equation (1) is true.
Applying now Lemma 1 and Observation 1 to U =

⋃
n∈ω K(En) ∪ R, we can �nd

mutually distinct {Ai : i ∈ ω} ⊂ A such that for every n, i ∈ ω, X ∈ R, and ~Y = 〈Yj :
j < n〉 ∈ K(En)n there exists e ∈ En such that e ⊂ X ∩

⋂
j<n Yj ∩ Ai. Since K(En)

is compact, there exists k ∈ ω such that for every ~Y ∈ K(En)n and i 6 n there exists
e ∈ En such that e ⊂ X∩

⋂
j<n Yj ∩Ai∩k. Let kX,n be the minimal k with this property.

Claim 1. Let X ∈ R and n ∈ ω. Then for every ~Z ∈ K(En ∩P(kX,n))n and i 6 n there
exists e ∈ En such that e ⊂ X ∩

⋂
j<n Zj ∩Ai ∩ kX,n.

Proof. Suppose that the claim is wrong and pick i < n and ~Z ∈ K(En ∩ P(kX,n))n
witnessing its failure. For every e ∈ En \ P(kX,n) select ne ∈ e \ kX,n and set Yj =
Zj ∪ {ne : e ∈ En \ P(kX,n)}. It follows that Yj ∈ K(En) for all j < n and there is no
e ∈ En such that e ⊂ X ∩

⋂
j<n Yj ∩Ai ∩ kX,n, a contradiction to our choice of kX,n. �

Observe that the mapR 3 X 7→ 〈kX,n : n ∈ ω〉 is continuous, and consequently there
exists f ∈ ωω such that for all X and all but �nitely many n ∈ ω we have kX,n < f(n),
because R ∈ Cκ and κ = b.

Claim 2. F(A)∪R∪K(HI) is centered for any I ∈ [ω]ω, where HI =
⋃
n∈I En∩P(f(n)).

Proof. Let us �x A′ ∈ [A]<ω, n ∈ ω, I ∈ [ω]ω, X ∈ R, and 〈Yj : j < n〉 ∈ K(HI)
n. It

su�ces to prove that (ω \∪A′)∩X ∩
⋂
j<n Yj \n 6= ∅. Let us �x i ∈ ω such that Ai 6∈ A′

and let m ∈ I \max{i, n} be such that Ai ∩ (∪A′) ⊂ m, and kX,m < f(m). Note that all
but �nitely many m ∈ I are as above. By Claim 1 there exists e ∈ Em such that

e ⊂ X ∩
⋂
j<n

Yj ∩Ai ∩ f(m),

and hence also e ⊂ ω \ ∪A′ because ω \ ∪A′ ⊃ Ai \m by our choice of m and min e > m
for all e ∈ Em. �

Now let g ∈ D be such that [f < g] := {n ∈ ω : f(n) < g(n)} is in�nite. It
su�ces to note that H ′ de�ned in item (ii) of the formulation contains H[f<g] and hence
F(A) ∪R ∪ K(H ′) is centered because so is F(A) ∪R ∪ K(H[f<g]) by Claim 2. �
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We shall also need the following result proved in [6] (it is Proposition 1 there, stated
in a slightly di�erent terminology) which allows us to work in the proof of Proposition 2
directly with a �lter instead of working with the Mathias forcing associated to it.

Òåîðåìà 1 (Guzm�an�Hru�s�ak�Mart��nez, 2014). Let F be a �lter and D ⊂ ω↑ω be
unbounded and σ-directed. Then MF preserves the unboundedness of D i� for every
decreasing sequence 〈En : n ∈ ω〉 of elements of (F<ω)+ there exists g ∈ D such that⋃
n∈ω(En ∩ P(g(n))) ∈ (F<ω)+. Moreover, in this characterization we may assume that

En ⊂ P(ω \ n) for all n ∈ ω.

We are in a position now to present the

Proof of Proposition 2. Let {〈Eαn : n ∈ ω〉 : α ∈ κ} be an enumeration of all decreasing
sequences 〈En : n ∈ ω〉 ∈ Eω such that En ⊂ P(ω \ n) for all n. Set R0 = {ω} and
assume that for some α ∈ κ we have already constructed Rα ∈ Cκ such that F(A) ∪Rα
is centered. Now consider the sequence 〈Eαn : n ∈ ω〉. Three cases are possible.

1. There exists nα ∈ ω such that K(Eαnα
) ∪ F(A) ∪ Rα is not centered. Given any

ultra�lter G containing F(A) ∪ Rα, we can �nd Xα ∈ K(Eαnα
) such that Xα 6∈ G, and

therefore {ω \ Xα} ∪ F(A) ∪ Rα is centered being a subset of G. Now we set Rα+1 =
〈Rα ∪ {ω \Xα}〉.

2. For R := Rα and 〈En : n ∈ ω〉 := 〈Eαn : n ∈ ω〉, item (i) from Lemma 2 takes
place. This means that there exist nα ∈ ω and Xα ∈ K(Eαnα

) such that {ω\Xα}∪F(A)∪
Rα is centered. As in item 1 we set Rα+1 = 〈Rα ∪ {ω \Xα}〉.

3. For R := Rα and 〈En : n ∈ ω〉 := 〈Eαn : n ∈ ω〉, item (ii) from Lemma 2 takes
place. Then there exists gα ∈ D such that letting Hα =

⋃
n∈ω E

α
n ∩ P(gα(n)), we have

that F(A) ∪Rα ∪ K(Hα) is centered. In this case we set Rα+1 = 〈Rα ∪ K(Hα)〉.
This completes our inductive construction of the sequence 〈Rα : α < κ〉. Set Rκ =⋃

α<κRα and let U be the �lter generated by F(A)∪Rκ. We claim that U is as required.

Indeed, consider any 〈Eαn : n ∈ ω〉. If in the construction of Rα+1 one of the �rst two
alternatives took place, we know that Eαnα

6∈ (U<ω)+ as witnessed by ω\Xα ∈ U . So let us
assume that the third alternative took place. Then Hα =

⋃
n∈ω E

α
n ∩P(gα(n)) ∈ (U<ω)+

by the de�nition of U . It remains to use Theorem 1. �
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Íàâåäåíî ñïðîùåíå äîâåäåííÿ ãîëîâíîãî ðåçóëüòàòó ñòàòòi [3]. Íà âiäìi-
íó âiä îðèãiíàëüíîãî äîâåäåííÿ, ìè íå âèêîðèñòîâó¹ìî ðàíãiâ i äîïîìiæíèõ
÷èñåë Êîåíà. Òàêîæ íå âèêîðèñòîâóþòüñÿ iãðè íà iäåàëàõ, ÿêi ôiãóðóþòü
ó iíøèõ âiäîìèõ àâòîðó ñïðîùåííÿõ äîâåäåííÿ âèùåçãàäàíîãî ðåçóëüòàòó
Áðåíäëà.

Êëþ÷îâi ñëîâà: ìàêñèìàëüíà ìàéæå äèç'þíêòíà ñiì'ÿ, ôiëüòð, ôîðñiíã
Ìàòiàñà.
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