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We present a simplified version of the proof of one of the main results of [3].
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1. INTRODUCTION

Our goal is to give a proof of the following result. We remind the reader of the
definitions of notions involved in it at the beginning of the next section.

Theorem 1 (Brendle 98). (GCH) Let k be an uncountable reqular cardinal. Then there
exists a ccc poset P which forces b=k <a=rT =c.

We will follow the same strategy as in [3], the main technical ingredient thereof
being simplified. More precisely, P = P,.+ comes from a finite support iteration (PP, Qu :
a < kT) of ccc posets. The poset Qg forces b = k = 2% (e.g., one can take as Qg the
poset adding x-many Hechler reals over V). Fix a dominating family B = {bs : { <k} C
w' NV such that be <* by, for all £ < n. If o has cofinality < &, then Q. is a name
for a partial Hechler forcing producing a <*-bound for certain X, C w'™ N VP« of size
|Xa| < &, supplied by a bookkeeping function fixed in advance. The purpose of these
Qu’s is to make sure that b = ¢ = & holds in VF+ for any v of cofinality x. Moreover,
since the partial Hechler posets Q4 have size < Kk, they preserve the unboundedness of B
(it is well-known and easy to check that no poset of size < x can force B to be bounded),
provided that P, did so, and the latter will be arranged with the help of Propositions
and 1| below. At stage «y of cofinality x our bookkeeping function gives us a (P,-name for
an) almost disjoint family A.. The poset QA, forces A, to be non-maximal and preserves
the unboundedness of B.
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In order to prove Theorem[T]it is enough to accomplish the natural scenario discussed
above. Propositions [2| and [1] along with a standard bookkeeping allow us to do this.

Proposition [2] is analogous to [3, 3.1. Theorem|. However, unlike in the proof of
the latter result, in our proof of Proposition [2| we use neither auxiliary Cohen reals,
nor tricky arguments involving ranks, which hopefully makes our proof somewhat more
straightforward.

The proof given in [3] has inspired yet another construction of a model of b < a,
see [6]. Their proof is rather different from the one we present in this note: They use
countably closed non-ccc iterands which “forces” them to use countable supports and
hence gives ¢ = wo, as well as they use some variants of games on filters considered in
[8, @].

There have been more attempts to simplify or to modify Brendle’s proof from [3],
see, e.g., [4]. Also, O. Guzman has informed us in private communication that he knows
how to eliminate Cohen reals. Moreover, Guzmén and Kalajdzievski have recently proved
in [7] the consistency of w1 = u < a = wy. This yields b < a since b < u in ZFC and
their posets do not add Cohen reals as these destroy ground model basis of ultrafilters.
Nonetheless we believe that our approach might be still of some interest.

We thank the anonymous referee for careful reading and making very helpful
comments.

2. PROOFS

As usually, w = {0,1,2,...} denotes the set of natural numbers and w'™ stands for
non-decreasing elements of w*. A family A C [w]“ is called almost disjoint if AgN Ay is
finite for any distinct Ag, A; € A. An infinite almost disjoint family A is called a mad
family if AU{X} fails to be almost disjoint for any X € [w]“\.A. The minimal cardinality
of a mad family is denoted by a.

For z,y € w¥ notation z <* y means that the set {n € w: z(n) > y(n)} is finite. b
denotes the minimal cardinality of B C w® which is unbounded with respect to <*. It is
known that wy; < b < a, see [2,[10] for the information about a, b, and other combinatorial
cardinal characteristics of the reals.

In what follows D denotes an unbounded subset of w™ which is o-directed, i.e., for
every Do € [D]¥ there exists g € D such that d <* g for all d € Dy. For instance, the
dominating set B of Hechler generic reals mentioned above is like this.

The following fact follows from [I, Lemma 6.5.7].

Proposition 1. Let 0 be a limit ordinal and (P, Qu:a< ) be a finite support iteration
of ccc posets such that IFp_“D is unbounded” for all oo < 8. Then IFp; “D is unbounded”.

A subset F of [w]* is called a filter if F contains all co-finite sets, is closed under
finite intersections of its elements, and under taking supersets. Every filter F gives rise
to a natural forcing notion Mx introducing a generic subset X € [w]¥ such that X c* F
for all F € F as follows: Mz consists of pairs (s, F') such that s € [w]<¥, F € F, and
max s < min F. A condition (s, F') is stronger than (¢, G) if F C G, s is an end-extension
of t, and s\t C G. Mx is usually called Mathias forcing associated with F.

Every almost disjoint family .4 generates a filter

]-'(.A):{FCw: IB € [A]<~ (w\UB c* F)}
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It is clear that any forcing producing an infinite pseudointersection of F(A) (or any other
bigger filter) ruins the maximality of A.
The next proposition yields the poset used at stages of iteration with cofinality «.

Proposition 2. (b = ¢ = x.) Let A be an almost disjoint family. Then there exists a
filter U D F(A) such that My preserves D unbounded.

We shall need several auxiliary results. First of all, we shall assume in the sequel
that F(.A) is not contained in any filter &/ which is a union of < k many compacts, as
otherwise U is as required: Any union of < b many compacts has all of its continuous
images under maps into w'™ bounded, and My, preserves all ground model unbounded
sets for any filters like that, see [5, Theorem 1.4].

For X C [w]¥ and Z C w we denote by X | Z the family {X N Z : X € X}. Also,
XT standardly stands for {Y Cw:VX € X (| X NY| =w)}.

Lemma 1. ANUT is infinite for every filter U C F(A)T which is a union of < x many
compacts.

Proof. Suppose on the contrary that A" = ANU™T is finite and set F' = w\UA’ € F(A).
Then F(A) | F CU | F. Indeed, F(A) | F is the filter on F' generated by {(w\ A)NF :
Ae A\ A} and w\ A € U for every A € A\ A’. Thus F(A) is contained in a filter on
w which is a union of < k many compacts (namely {X : 3U e U(F NU C* X)}), which
contradicts our assumption on A. O

In what follows the family of filters & on w which are unions of < x many compacts
will be denoted by Cj. Let us denote by £ the family of all subsets £ of FIN := [w]|<“\ {&}
such that for every n € w there exists e € E with mine > n. For any A C FIN we denote
by K(A) the family {X Cw: X Na # @ for all a € A}. It is clear that K(A) is compact
for all A as above, and K(F) C [w]¥ if E € £. We shall call E € £ centered if so is K(F),
where a family X' C [w]“ is called centered if NX’ € [w]“ for all X € [X]<¥.

For a filter 7 on w we denote by F<¢ the filter on FIN generated by {P(F) N FIN :
F € F} as a base. Note that this notation is unusual since F<¢ “should” denote the
family of all finite sequences of elements of F, which is not the object we have defined
in the previous sentence. However, we shall use this notation since it is standard in the
current literature.

Observation 1. Let E € £. Then X € K(E)" iff for every n € w there exists e € E,
mine > n, such that e C X.

In particular, for a filker F on w, {T e : e € E} covers F iff F C K(E)" iff
KE)CF iff E€ (F<*)t. (Heret X ={Y Cw: X CY} for any X Cw.)

Proof. The “if” part is obvious. For the “only if” one, assume to the contrary that X 2 e
for any e € E with mine > n. For every e € E select n, € e as follows: if e N n # &,
pick n. € eNnn, and otherwise pick n, € e\ X. Then Y = {n, : e € E} € K(E) and
Y N X C n thus contradicting our assumption that X € K(E)*. O

Lemma 2. Let R € C,; be such that F(A)UR is centered. Suppose that (E, : n € w) € E¥
is a decreasing sequence such that E, C P(w\n) and K(E,) C (F(A)UR)" for all n.
Then one of the following two options holds:
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(i) There exists n € w and X € K(E,) such that {w\ X} UF(A) UR is centered.
In particular, for any filter U containing the latter union, E, & (U<“)T.

(ii) There exists g € D such that letting H' = |, ., En N P(g9(n)), we have that
F(A)URUK(H') is centered. In particular, for any filter U containing the latter
union, H' € (U=Y)*, i.e., for every U € U there exists e € H' such that e C U.

Proof. Suppose that (i) fails. It follows that
U K(E,)UF(A)UR is centered. (1)

new

Indeed, otherwise there exists n € w such that K(E,)UF(A)UR is not centered because
the sequence (E, : n € w) € &Y is decreasing. Since F(A) U R is centered by our
assumption, there are F' € (F(A)UR) and {Xo,..., Xm} € K(E,) such that [, XiN
F =@. Thus F C U, (w\ Xi), which implies w \ X; € (F(A) UR)* for some i < m,
i.e., (i) takes place, which contradicts our assumption. Thus Equation is true.

Applying now Lemma [1] and Observation [1] to & = {J,,.,, K(E,) UR, we can find
mutually distinct {4; : i € w} C A such that for every n,i € w, X € R, and Y = (Y :
j <mn) € K(E,)" there exists e € E, such that e C X N(._, Y; N A;. Since K(E,)
is compact, there exists k € w such that for every Y € K(E,)™ and i < n there exists
e € E, such that e C XN, Y;NA;Nk. Let kx ,, be the minimal k with this property.

j<n

j<n

Claim 1. Let X € R and n € w. Then for every Z € K(E, NP (kx.n))" and i < n there

exists e € E,, such thate C X N ﬂj<n Z;NANkx .

Proof. Suppose that the claim is wrong and pick i < n and Z € K(E, N P(kx.n))"
witnessing its failure. For every e € E,, \ P(kx ) select n. € e\ kx,,, and set Y, =
ZijU{ne :e € E, \ Plkxn)}. It follows that Y; € K(E,) for all j < n and there is no

e € F, such that e C X N ﬂj<n Y;NA;Nkx n, a contradiction to our choice of kx . O

Observe that themap R 3 X — (kx,, : n € w) is continuous, and consequently there

exists f € w* such that for all X and all but finitely many n € w we have kx ,, < f(n),
because R € C,, and k = b.

Claim 2. F(A)URUK(H;) is centered for any I € [w]*, where Hr = J,,c; En,NP(f(n)).
Proof. Let us fix A" € [A][<¥, ncw, ] € [w]¥, X € R, and (Y, : j <n) € K(H;)". It
suffices to prove that (w\UA")NX N, Y;\n # @. Let us fix i € w such that 4; ¢ A’

and let m € I\ max{i,n} be such that A4; N (UA") C m, and kx ., < f(m). Note that all
but finitely many m € I are as above. By Claim [1| there exists e € E,,, such that

eC XN ()Y;NAnNf(m),
j<n
and hence also e C w\ UA’ because w \ UA" D A; \ m by our choice of m and mine > m
forall e € E,,. O

Now let g € D be such that [f < g] := {n € w: f(n) < g(n)} is infinite. It
suffices to note that H' defined in item (77) of the formulation contains Hi., and hence
F(A)URUK(H’) is centered because so is F(A) UR UK(H[s<,4) by Claim O
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We shall also need the following result proved in [6] (it is Proposition 1 there, stated
in a slightly different terminology) which allows us to work in the proof of Proposition
directly with a filter instead of working with the Mathias forcing associated to it.

Teopema 1 (Guzméan-Hrugdk-Martinez, 2014). Let F be a filter and D C w' be
unbounded and o-directed. Then Mz preserves the unboundedness of D iff for every
decreasing sequence (E, : n € w) of elements of (F<*)V there exists g € D such that
Unew(En NP(g(n))) € (F<¥)T. Moreover, in this characterization we may assume that
E, C Pw\n) foralln € w.

We are in a position now to present the

Proof of Proposition[2, Let {(ES :n € w) : a € k} be an enumeration of all decreasing
sequences (E, : n € w) € & such that E, C P(w \ n) for all n. Set R® = {w} and
assume that for some « € k we have already constructed R € C,; such that F(A) UR®
is centered. Now consider the sequence (E% : n € w). Three cases are possible.

1. There exists n, € w such that K(E; ) U F(A) UR® is not centered. Given any
ultrafilter G containing F(A) UR®, we can find X, € K(E} ) such that X, ¢ G, and
therefore {w \ X,} U F(A) U R is centered being a subset of G. Now we set R =
(R*U{w\ Xa}).

2. For R := R® and (E,, : n € w) := (E : n € w), item (i) from Lemma [2] takes
place. This means that there exist n, € w and X, € K(Ey ) such that {w\ X,}UF(A)U
R is centered. As in item 1 we set R = (RYU{w \ Xo}).

3. For R := R and (E, : n € w) := (E% : n € w), item (i) from Lemma [2] takes
place. Then there exists g, € D such that letting H, = U, ¢, By, N P(ga(n)), we have
that F(A) UR*UK(H,) is centered. In this case we set R®T! = (R* UK(H,)).

This completes our inductive construction of the sequence (R* : a < k). Set R* =
Ua<r R and let U be the filter generated by F(A)UR". We claim that U/ is as required.
Indeed, consider any (E2 : n € w). If in the construction of R*™! one of the first two
alternatives took place, we know that E ¢ (U<“)" as witnessed by w\ X, € U. So let us
assume that the third alternative took place. Then H, =, .., E2NP(ga(n)) € (U<¥)T
by the definition of . It remains to use Theorem O

new
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HageneHo cripolieHe JOBEIEHHSI FOJIOBHOTO pesyibrary crarti [3]. Ha Bimmi-
HY BiJ] OPUTIHAJILHOTO IOBEI€HHS, MA He BUKOPHCTOBYEMO PAHTIB 1 JOIOMIXKHIX
ancesr Koena. Takoxk He BUKOPHCTOBYIOTHCS Irpu Ha imeasax, ski dirypyoTsb
y IHIMUX BiOMUX aBTOPY CIPOIMEHHSX JOBEIEHHS BUIE3TIAHOTO Pe3yJIbTaTy
Bpennna.

Karowoet caoea: MakCUMaIbHA Maiiyke nu3’IOHKTHA CiM'st, biabTp, dopcinr
Mariaca.
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