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We prove that if an analytic subset A of a linear metric space X is not
contained in a σZω-subset of X then for every Polish convex set K with dense
a�ne hull in X the sum A+K is non-meager in X and the sets A+A+K and
A − A + K have non-empty interior in the completion X̄ of X. This implies
two results:
• an analytic subgroup A of a linear metric space X is a σZω-space if A is
not Polish and A contains a Polish convex set K with dense a�ne hull in
X;

• a dense convex analytic subset A of a linear metric spaceX is a σZω-space
if A contains no open Polish subspace and A contains a Polish convex set
K with dense a�ne hull in X.

Key words: Z-set, σZ-space, analytic set, topological group, convex set,
linear metric space.

A topological space X is analytic if it is a metrizable continuous image of a Polish
space. A Polish space is a separable topological space homeomorphic to a complete metric
space. It is well-known [11, 14.2] that each Borel subset of a Polish space is analytic. By
Lusin-Sierpinski Theorem [11, 21.6], each analytic subset A of a Polish space X has the
Baire property, i.e., (A \ U) ∪ (U \A) is meager in X for some open set U ⊂ X.

By the classical result of S. Banach [1], each non-complete analytic topological group
is meager, i.e., can be represented as the countable union of nowhere dense subsets. This
result can be easily derived from the following known fact attributed to Piccard [14] and
Pettis [15] (see [11, 9.9]).

Theorem 1 (Piccard-Pettis). If two analytic subsets A,B of a Polish group X are non-
meager in X, then the set AB has non-empty interior and AA−1 is a neighborhood of
unit in G.
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Meager subsets of a topological space X form a σ-idealM(X) = σZ0(X) which is
the largest ideal among σ-ideals σZn(X) generated by Zn-sets in X. A subset A ⊂ X
of a topological space X is called a Zn-set in X if A is closed in X and the complement
X \A is n-dense in X. A subset B ⊂ X is called n-dense in X if the set C(In, B) of maps
In → B is dense in the space C(In, X) of all continuous functions f : In → X de�ned on
the n-dimensional cube In = [0, 1]n. The function space C(In, X) is endowed with the
compact-open topology. Observe that a subset D ⊂ X is dense if and only if D is 0-dense
in X. It is clear that each n-dense set D ⊂ X is k-dense in X for every k ≤ n.

The following properties of Zn-sets follow immediately from the de�nitions:

• a subset A ⊂ X is a Z0-set if and only if A is closed and nowhere dense in X;
• for any numbers 0 ≤ n ≤ m ≤ ω every Zm-set in X is a Zn-set in X;
• a subset A ⊂ X is a Zω-set in X if and only if A is a Zn-set in X for every n ∈ N.

By σZn(X) we shall denote the σ-ideal generated by Zn-sets in X. It consists of subsets
that can be covered by countably many Zn-sets in X. A topological space X is called a
σZn-space if X ∈ σZn(X). It follows that σZm(X) ⊂ σZn(X) for any numbers 0 ≤ n ≤
m ≤ ω. So, the σ-ideal σZω(X) is the smallest ideal among the σ-ideals σZn(X).

Zω-Sets and σZω-spaces play an important role in In�nite-Dimensional Topology,
see [6], [7], [8], [12], [13]. In [9, 4.4] Dobrowolski and Mogilski asked the following problem
related to the mentioned classical result of Banach [1].

Problem 1 (Dobrowolski, Mogilski, 1990). Is each non-complete analytic linear metric
space a σZω-space?

This problem was answered in negative by Banakh [3] (see also [6, 5.5.19]) who
proved that the linear hull lin(E) of the Erd�os set E = `2 ∩Qω in the separable Hilbert
space `2 fails to be a σZω-space.

Yet, the following weaker version of Problem 1 still remains open (see [2], [4, 2.2]).

Problem 2 (Banakh, 1997). Is each non-complete analytic linear metric space a σZn-
space for every n ∈ N?

In this paper we shall give some partial positive answers to Problems 1 and 2,
detecting analytic subsets in metrizable topological groups G that belong to the σ-ideals
σZn(G) for all n ≤ ω. In fact, we shall work with the smaller σ-ideals σŻD(G) and

σŻn(G) de�ned as follows.
By a metrizable group we shall understand a metrizable topological group. It is

known that for any metrizable group G there exists a completely-metrizable group Ḡ
containing G as a dense subgroup. The group Ḡ is unique up to isomorphism and is
called the Raikov completion of G. The Raikov completion of a separable metrizable
group is a Polish group. For two subsets A,B of a group G by A ·B or just AB we denote
their product {ab : a ∈ A, b ∈ B} in G.

Let G be a topological group and Ḡ be its Raikov completion. Let D be a family of
subsets of G. A closed subset A ⊂ G is called a ŻD-set in X if there exists a set D ∈ D
such that the set D · Ā has empty interior in Ḡ, where Ā denotes the closure of A in Ḡ.
By σŻD(G) we denote the σ-ideal generated by ŻD-sets in G.

Proposition 1. Let D be a family of n-dense subsets of a topological group G. Then
each ŻD-set A in G is a Zn-set in G and hence σŻD(G) ⊂ σZn(G).
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Proof. Assume that A is a ŻD-set in X. Given a continuous map f : In → G and a
neighborhood U0 ⊂ G of the unit 1G, we need to �nd a continuous map f ′ : In → G \A
such that f ′(z) ∈ f(z)·U0 for all z ∈ In. Let Ḡ be the Raikov completion of the topological
group G and Ā be the closure of A in Ḡ.

Find an open neighborhood Ũ0 ⊂ Ḡ of the unit 1G such that Ũ0 ∩ G = U0 and
choose a neighborhood Ũ1 ⊂ X̄ of 1G such that Ũ1Ũ1Ũ1 ⊂ Ũ0. Since A is a ŻD-set in G,
there exists a set D ∈ D such that the set D · Ā has empty interior in Ḡ. The n-density
of the set D in G implies the n-density of its inverse D−1 = {x−1 : x ∈ D}. Then there

exists a continuous map f1 : In → D−1 such that f1(z) ∈ f(z) · Ũ1 for all z ∈ In.
Since the set D · Ā has empty interior in Ḡ, there is a point u ∈ Ũ1 \D · Ā. For this

point we get (D−1 · u) ∩ Ā = ∅. Consider the map f2 : In → Ḡ, f2 : z 7→ f1(z)u, and
observe that f2(In)∩ Ān ⊂ (D−1 ·u)∩ Ān = ∅. Since the set f2(In) is compact, there is a

neighborhood Ũ2 ⊂ Ũ1 of the unit 1G such that (f2(In) · Ũ2) ∩ Ā = ∅. Using the density

of G in Ḡ, choose a point w ∈ G ∩ (Ũ2 · u). Then the map f3 : In → Ḡ de�ned by

f3(z) = f2(z) · u−1w = f1(z) · uu−1w = f1(z) · w ∈ G

for z ∈ In has the properties: f3(In) ⊂ G \ Ā = G \A and for every z ∈ In

f3(z) = f1(z)uu−1w ∈ f1(z)Ũ1Ũ2 ⊂ f(z)Ũ1Ũ1Ũ2 ⊂ f(z)Ũ0,

which implies f(z)−1f3(z) ∈ G∩ Ũ0 = U0 and �nally f3(z) ∈ f(z)U0. The map f3 : In →
G \A witnesses that A is a Zn-set in G. �

For a topological group G by Dn(G) we shall denote the family of all n-dense subsets

in G. To simplify notation, ŻDn(G)-sets will be called Żn-sets in G. Also we shall denote

the σ-ideal σŻDn(G)(G) by σŻn(G). This σ-ideal is generated by all Żn-sets in G. It

consists of subsets that can be covered by countably many Żn-sets in G. Proposition 1
implies that

σŻn(G) ⊂ σZn(G)

for any topological group G. Żn-Sets in separable metrizable groups admit the following
convenient characterization.

Proposition 2. A closed subset A of a separable metrizable group G is a Żn-set in G
for some n ≤ ω if and only if there exists a σ-compact n-dense subset D ⊂ G such that
for every compact set K ⊂ D the set K ·D is nowhere dense in G.

Proof. Since G is separable and metrizable, the Raikov completion Ḡ of G is a Polish
group. To prove the �if� part, assume that there exists a σ-compact n-dense subsetD ⊂ G
such that for every compact set K ⊂ D the set K · A is nowhere dense in G. Then the
set K · Ā ⊂ K ·A is nowhere dense in Ḡ and the set D · Ā is meager in Ḡ. Since Ḡ is
Polish, the set D · Ā has empty interior in Ḡ and hence A is a Żn-set in G.

To prove the �only if� part, assume that A is a Żn-set and �nd an n-dense subset
D′ ⊂ G such that the set D′ ·Ā has empty interior in Ḡ. The the function space C(In, D′)
is dense in C(In, G). Since the function space C(In, D′) is metrizable and separable, we
can �nd a countable dense subset {fk}k∈ω in C(In, D′). Then D =

⋃
k∈ω fk(In) is a

σ-compact n-dense subset in G. It remains to show that for each compact set K ⊂ D
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the set K · Ā is nowhere dense in Ḡ. Consider the multiplication map µ : K × Ā → Ḡ,
µ : (x, y) 7→ xy, and observe that for any compact subset C ⊂ Ḡ the preimage

µ−1(C) = {(x, y) ∈ K × Ā : xy ∈ C} ⊂ K × (K−1C)

is compact. By [10, 3.7.18], the map µ is closed, which implies that the setKĀ = µ(K×Ā)
is closed in Ḡ. Since the set D× Ā has empty interior in Ḡ, the closed subset KĀ ⊂ DĀ
is nowhere dense in Ḡ. Then its subset KA is nowhere dense in G. �

Let D be a family of subsets of a topological group G. A subset T ⊂ G is called
D-thick if for every non-empty open set U ⊂ T there exist a set D ∈ D and a countable
set C ⊂ G such that D ⊂ C · Ū . A set T ⊂ G is called n-thick in G if it is Dn(G)-thick.
The latter means that for every non-empty open set U ⊂ T there is a countable set
C ⊂ G such that the set CŪ in n-dense in G.

Theorem 2. Let D be a family of subsets in a separable metrizable group G. If an analytic
subset A of G does not belong to the σ-ideal σŻD(X), then for any D-thick subset T ⊂ G
and any dense Polish subspace P ⊂ T the set PA is not meager in G, the set PAPA
has non-empty interior in the Raikov completion Ḡ of G, and the set PAA−1P−1 is a
neighborhood of unit in Ḡ.

Proof. Assume that A /∈ σŻD(G) and T is an D-thick set in G. On the Polish group Ḡ

consider the σ-ideal I generated by the family {Ā : A ∈ σŻD(G)} of closed subsets of

the Polish group Ḡ. It follows from A /∈ σŻD(G) that A /∈ I. By the Solecki dichotomy
[16], the analytic set A /∈ I contains a Polish subspace B /∈ I. Replacing B by a smaller
closed subset of B, we can assume that each non-empty open subspace U ⊂ B does not
belong to the ideal I.

Given a dense Polish subspace P ⊂ T , we shall show that the set PB is not meager
in G. To derive a contradiction, assume that PB is meager in G and �nd closed nowhere
dense subsets Nk ⊂ Ḡ, k ∈ ω, such that PB ⊂

⋃
k∈ω Nk. By the continuity of the

multiplication in G, for every k ∈ ω the set

Mk = {(x, y) ∈ P ×B : xy ∈ Nk}

is closed in the Polish space P × B. Since P × B ⊂
⋃
k∈ωMk, we can apply the Baire

Theorem and �nd two non-empty open sets V ⊂ P and U ⊂ B such that V × U ⊂ Mk

for some k ∈ ω. It follows that the set V̄ × Ū ⊂ Nk is nowhere dense in Ḡ. Here V̄ is the
closure of V in G and Ū is the closures of U in Ḡ.

Since the set T is D-thick in G, and the set V̄ ∩ T has non-empty interior in T , for
some countable set S ⊂ G the set S · V̄ contains a set D ∈ D.

By the choice of P , the non-empty open set U ⊂ P does not belong to the ideal
I and hence Ū ∩ G is not a ŻD-set in G. Then for the set D ∈ D the set DŪ has
non-empty interior in Ḡ and hence is not meager in Ḡ. On the other hand, the set
DŪ ⊂ SV̄ Ū ⊂ S ·Nk is meager in Ḡ being the union of countably many translations of
the nowhere dense set Nk. This contradiction shows that the set PB is not meager in G
and consequently the analytic set PA ⊃ PB is not meager in the Polish group Ḡ. By
the Piccard-Pettis Theorem 1, the set PAPA has non-empty interior in Ḡ and the set
PA(PA)−1 is a neighborhood of the unit in Ḡ. �
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A topological space X is called densely-Polish if A contains a dense Polish subspace.
It is known that an analytic space A is densely-Polish if and only if A is Baire.

Corollary 1. Let D be a family of subsets of a separable metrizable group G. If analytic
subsets A,B of G do not belong to the ideal σŻD(G), then for any densely-Polish D-
thick sets E,F in X the sets EA, FB are not meager in G and the sets EAFB and
EAB−1F−1 have non-empty interior in the Raikov completion Ḡ of G.

Proof. Let E∗ ⊂ E and F∗ ⊂ F be dense Polish subspaces of the densely-Polish spaces
E and F , respectively. By Theorem 2, the analytic sets E∗A and F∗B are not meager in
the Polish space Ḡ. By the Piccard-Pettis Theorem 1, the sets E∗AF∗B ⊂ EAFB and
E∗AB

−1F−1∗ ⊂ EAB−1F−1 have non-empty interior in the Polish group Ḡ. �

Corollary 1 implies the next three corollaries.

Corollary 2. Let D be a family of subsets in a separable metrizable group G and A be
an analytic subgroup in G. If A /∈ σŻD(X), then for any densely-Polish D-thick subsets
E,F ⊂ G the set EAF−1 have non-empty interior in the completion Ḡ of G.

Corollary 3. Let D be a family of subsets of a separable metrizable group G. If G is not
Polish and G contains a densely-Polish D-thick subset P , then each analytic subset A of
X belongs to the σ-ideal σŻD(X).

Proof. By Corollary 1, for every analytic set A /∈ σŻD(G) of G the set PAPA ⊂ G has
non-empty interior in the Raikov completion Ḡ of G. Then G also has non-empty interior
in Ḡ and hence coincides with the Polish group Ḡ, which is a desired contradiction. �

A subset A of an abelian group G is called additive if A+A ⊂ A. In particular, each
subgroup of G is an additive set. Corollary 1 implies:

Corollary 4. Let D be a family of subsets in an abelian separable metrizable group G
and A be an additive set in G. If A /∈ σŻD(X), then for any densely-Polish D-thick
subsets E,F ⊂ X the set A+E +F has non-empty interior in the Raikov completion Ḡ
of G.

A similar result holds for convex subsets in linear metric spaces.

Corollary 5. Let D be a family of subsets of a separable linear metric space X, and let
A be a convex subset of X. If A /∈ σŻD(X), then for any densely-Polish D-thick subsets
E,F ⊂ X the set A+ E + F has non-empty interior in the completion X̄ of X.

Proof. It follows that the homothetic copy 1
2A =

{
1
2a : a ∈ A

}
of A does not belong to

the ideal σŻD(X). By Corollary 1, the set 1
2A+ 1

2A+ E + F has non-empty interior in

X̄. The convexity of A guarantees that 1
2A+ 1

2A ⊂ A and hence the set

A+ E + F ⊃ 1

2
A+

1

2
A+ E + F

has non-empty interior in X̄, too. �
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Applying the above results to the family Dn(G) of n-dense subsets in a topological
groupG, we get the following corollaries. In these corollaries we use the obvious fact that a
topological groupG containing an n-thick separable subset is separable. By Proposition 1,

σŻn(G) := σŻDn(G)(G) ⊂ σZn(G).

By Proposition 2, a closed subset A of a separable metrizable group G is a Żn-set in X
if and only if there exists a σ-compact n-dense set D ⊂ G such that for every compact
set K ⊂ D the set K ·A is nowhere dense in G.

We recall that a subset T of a topological group G is n-thick if and only if for any
non-empty open set U ⊂ T there is a countable subset A ⊂ G such that the set A · U
is n-dense in G. Observe that each non-empty subset of a separable metrizable group
is 0-thick. Because of that the following corollary of Theorem 2 can be considered as a
generalization of the Piccard-Pettis Theorem 1.

Corollary 6. If for some n ≤ ω an analytic subset A of a metrizable group G does not
belong to the σ-ideal σŻn(X), then for any n-thick subset T ⊂ G and any dense Polish
subspace P ⊂ T the set PA is not meager in G, the set PAPA has non-empty interior
in Ḡ, and the set PAA−1P−1 is a neighborhood of unit in Ḡ.

Corollary 7. If for some n ≤ ω analytic subsets A,B of a metrizable group G do not
belong to the ideal σŻn(G), then for any densely-Polish n-thick sets E,F in X the sets
EA, FB are not meager in G and the sets EAFB and EAB−1F−1 have non-empty
interior in the Raikov completion Ḡ of G.

Corollary 8. Let A be an analytic subgroup of a separable metrizable group G. If A /∈
σŻn(X) for some n ∈ ω, then for any densely-Polish n-thick subsets E,F ⊂ G the set
EAF−1 has non-empty interior in the completion Ḡ of G.

Corollary 9. If for some n ≤ ω a non-complete metrizable topological group G contains
a densely-Polish n-thick subset, then each analytic subset of X belongs to the σ-ideal
σŻn(X) ⊂ σZn(X).

Corollary 10. Let A be an additive subset of an abelian metrizable topological group G.
If A /∈ σŻn(X) for some n ≤ ω, then for any densely-Polish n-thick subsets E,F ⊂ X
the set A+ E + F has non-empty interior in the completion Ḡ of G.

Corollary 11. Let A be an convex analytic subset of a linear metric space X. If A /∈
σŻn(X) for some n ≤ ω, then for any densely-Polish n-thick subsets E,F ⊂ X the set
A+ E + F has non-empty interior in the completion X̄ of X.

In light of the above results, it is important to recognize n-thick sets in topological
groups and linear metric spaces. A characterization of n-thick convex sets is quite simple.

Proposition 3. For a convex subset C in a separable linear metric space X the following
conditions are equivalent:

(1) C is n-thick in X for every n ≤ ω;
(2) C is n-thick in X for some n ≥ 1;
(3) the linear space R · (C − C) is dense in X;
(4) the a�ne hull of C is dense in X;
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(5) C is {L}-thick in X for some dense linear subspace L of X.

Proof. We shall prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). The �rst impli-
cations (1)⇒ (2) is trivial.

(2)⇒ (3) Assuming that the convex set C is n-thick in X for some n ≥ 1, we shall
prove that the linear space L = R · (C −C) is dense in X. Since C is n-thick in X, there
is a countable set S ⊂ X such that the set S + C is n-dense in X. Then the set S + L̄
also is n-dense in X. Consider the quotient space X/L̄ and the quotient linear operator
q : X → X/L̄. Since the set q(S + L̄) = q(S) is countable, for each connected subspace
A of S + L̄ the image q(A) is a singleton, which means that contained in a single coset
x+ L̄. Now the density of the C(In, S + L̄) in C(In, L̄) implies that L̄ = X.

(3) ⇒ (4) Assume that the linear space L = R · (C − C) is dense in X. Since for
any point c ∈ C the shift c + L coincides with the a�ne hull aff(C) of C, the set aff(C)
is dense in X, too.

(4) ⇒ (5) Assume that the a�ne hull aff(C) of C is dense in X. Replacing C by
a suitable shift, we can assume that zero belongs to C and hence the a�ne hull of C
coincides with the linear hull of C. We shall prove that the convex set C is {L}-thick
for any dense linear subspace L ⊂ R · (C − C) of countable algebraic dimension. In this
case we can �nd a countable subset {xk}k∈ω in C such that x0 = 0 and the linear hull of
the set {xn}n∈ω contains the linear space L. For every n ∈ ω by ∆n and Ln denote the
convex and liner hulls of the �nite set Fn = {x0, . . . , xn} ⊂ C. It is clear L ⊂

⋃
n∈ω Ln

and Ln = Sn + ∆n ⊂ Sn + C for some countable set Sn ⊂ Ln. Given a non-empty open
subset U ⊂ C, we should �nd a countable set S ⊂ X such that L ⊂ S+U . Fix any point
u ∈ U and �nd a neighborhood Ũ ⊂ X of zero such that (u + Ũ) ∩ C ⊂ U . For every

n ∈ N �nd a neighborhood Ṽ ⊂ X of zero such that for any points v1, . . . , vn ∈ Ṽ and
real numbers t1, . . . , tn ∈ [0, 1] we get

∑n
i=1 tixi ∈ Ũ . Next, �nd εn ∈ (0, 1] such that

εn · (Fn − u) ⊂ Ṽ . The choice of Ṽ guarantees that εn(∆n − u) ⊂ Ũ and hence

Ln = (1− εn)u+ εn · Ln = (1− εn)u+ εn(Sn + ∆n) = εnSn + (1− εn)u+ εn∆n =

= εnSn + u+ εn(∆n − u) ⊂ εnSn + (C ∩ (u+ Ũ)) ⊂ εnSn + U.

Then the countable set S =
⋃∞
n=1 εnSn has the required property:

L ⊂
∞⋃
n=1

Ln ⊂ S + U.

(5) ⇒ (1) Assume that C is {L}-thick for some dense linear subspace L ⊂ X. By
Lemma 1, L is ω-dense in X, so C is ω-thick and hence n-thick for every n ≤ ω. �

Lemma 1. Let A ⊂ B be convex sets in a linear metric space X. If A is dense in B,
then A is ω-dense in B.

Proof. It su�ces to check that A is n-dense in B for every n ∈ N (see [7, V.2.1]). Given
a continuous map f : In → B and a neighborhood U0 ⊂ X of zero, we need to �nd
a continuous map g : In → A such that g(z) ∈ f(z) + U0 for all z ∈ In. Choose an
open neighborhood W ⊂ X of zero such that for any points w0, . . . , wn ∈ W + W −W
and numbers λ0, . . . , λn ∈ I = [0, 1] we get

∑n
i=0 λiwi ∈ U0. Consider the open cover

W = {f−1(x + W ) : x ∈ X} of In. Since In is an n-dimensional (para)compact space,
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there exists an �nite open cover V of In such that for every z ∈ In the family Vz = {V ∈
V : z ∈ V} contains at most n+ 1 sets and its union

⋃
Vz is contained in some set of the

coverW. By the paracompactness of In, there is a partition of unity {λV : In → [0, 1]}V ∈V
subordinated to the cover V. The latter means that λ−1V

(
(0, 1]

)
⊂ V for all V ∈ V, and∑

V ∈V λV ≡ 1. For every set V ∈ V �x a point zV ∈ V and by the density of A in B
�nd a point yV ∈ A∩ (f(zV ) +W ). Consider the map g : In → L de�ned by the formula
g(z) =

∑
V ∈V λV (z)yV for z ∈ In. It is clear that g(In) is contained in the convex hull

∆ of the �nite set {yV }V ∈V ⊂ A. We claim that g(z) − f(z) ∈ U0 for all z ∈ Z. By the
choice of the cover V, the set

⋃
Vz is contained in some set f−1(W + x), x ∈ X. Then

for every V ∈ Vz we get f(zV )− f(z) ∈W −W and hence

yV − f(z) ∈W + f(zV )− f(z) ⊂W +W −W.

Then

g(z)− f(z) =
∑
V ∈Vz

λV (z)(yV − f(z)) ∈ U0

by the choice of the neighborhood W . The map g witnesses that A is n-dense in B. �

A convex subset C of a linear topological space X is called aff-dense in X if the
a�ne hull of C is dense in X. By Proposition 3, a convex subset of a separable linear
metric space is aff-dense if and only if it is ω-thick in X.

Theorem 3. If a non-complete linear metric space X contains a densely-Polish aff-dense
convex set C, then every analytic subset of X belongs to the σ-ideal Ż{L}(X) for some
dense linear subspace L of X.

Proof. Being densely-Polish, the convex set C is separable and so is its a�ne hull aff(C).
Since aff(C) is dense in X, the space X is separable and its completion X̄ is a Polish
linear metric space. By Proposition 3, the Polish convex set C ⊂ X is {L}-thick for
some dense linear subspace L ⊂ X. To �nish the proof apply Corollary 3 to the family
D = {L}. �

For a separable linear metric space X by L∞(X) we denote the family of dense

linear subspaces in X. To simplify notation, denote the union
⋃
L∈L∞(X) σŻ{L}(X) by

σŻ∞(X). Observe that a set A ⊂ X belongs to the family σŻ∞(X) if and only if there
exists a dense linear subspace L ⊂ X (of countable algebraic dimension) in X and a
sequence (An)n∈ω of closed subsets of X such that A ⊂

⋃
n∈ω An and for every compact

subset K ⊂ L the sets K + Ān, n ∈ ω, are nowhere dense in X.
It follows that

σŻ∞(X) ⊂ σŻω(X) ⊂ σZω(X)

for every separable linear metric space X.

Theorem 4. For any analytic subsets A,B /∈ σŻ∞(X) of a linear metric space X and
any densely-Polish aff-dense convex set C in X the sumset A + B + C has non-empty
interior in the completion X̄ of X. Moreover, if A is additive or convex, then the sum
A+ C has non-empty interior in X̄.
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Proof. By Proposition 3, the aff-dense convex sets C is {L}-thick for some dense linear
subspace L of X. Then its homothetic copy 1

2C also is {L}-thick. The convexity of C

implies that 1
2C + 1

2C ⊂ C. Applying Corollary 1 to the family D = {L} and observi-

ng that the σ-ideal σŻ{L}(G) ⊂ σŻ∞(G) does not contain the analytic sets A,B, we

conclude that the sets A + 1
2C + B + 1

2C ⊂ A + B + C have non-empty interior in the

completion X̄ of X. By the same reason, the sets

A+A+
1

2
C +

1

2
C ⊂ A+A+ C

and A+A+ C + C have non-empty interior in X̄.
If A is additive, then A+A ⊂ A and hence the set A+C ⊃ A+A+C has non-empty

interior in X̄. If A is convex in X, then 1
2 (A+A) ⊂ A and hence the set

A+ C ⊃ 1

2
(A+A+ C + C)

has non-empty interior in X̄. �

The following two theorems detect analytic groups and analytic convex sets which
are σZω-spaces, thus giving partial positive answers to Problems 1 and 2.

Theorem 5. An analytic subgroup A of a linear metric space X is a σZω-space provided
that A is not Polish and A contains a densely-Polish aff-dense convex subset C of X.

Proof. Since A is a group, the set N · (C−C) is contained in the group A. The convexity
of C implies that L = N · (C−C) = R · (C−C) is a linear subspace in X. The aff-density
of C implies that the linear space L ⊂ A is dense in X. By Lemma 1, the dense linear
subspace L is ω-dense in X and so is the subgroup A ⊃ L. Since the sum A+C = A has
empty interior in X̄, the set A belongs to the σ-ideal σŻ∞(X) ⊂ σZω(X) by Theorem 4.
Since A is ω-dense in X, the inclusion A ∈ σZω(X) implies A ∈ σZω(A), which means
that A is a σZω-space. �

A similar result holds for convex sets.

Theorem 6. A dense convex subset A of a linear metric space X is a σZω-space provided
that A is analytic, A contains an aff-dense densely-Polish convex subset C of X and A
has empty interior in the completion X̄ of X.

Proof. Since the sets 1
2 (A+C) ⊂ A has empty interior in X̄, we can apply Corollary 11

and conclude that A ∈ σŻ∞(X) ⊂ σZω(X). By Lemma 1, the dense convex subset A of
X is ω-dense in X, which implies that A ∈ σZω(A). �

Finally, we study properties of analytic linear metric spaces containing aff-dense
Polish convex sets.

A linear subspace L of a linear metric space X is called an operator image if L =
T (B) for some linear continuous operator T : B → X de�ned on a Banach space B. The
topology of operator images was studied in [5]. We shall prove that each aff-dense Polish
convex set in a linear metric space is {L}-thick for some dense operator image L ⊂ X.
For this we need the following known folklore fact.
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Proposition 4. Each Polish convex set A in a linear metric space contains a shift of
a compact convex subset K = −K such that the linear space L = R ·K is dense in the
linear hull of A−A.

Proof. Replacing the convex set A by a suitable shift of A, we can assume that A contains
zero.

Fix an invariant metric d generating the topology of the linear metric space X and
let X̄ be the completion of the linear metric space (X, d). For a point x ∈ X and a real
number ε > 0 by B(x, ε) = {y ∈ X : d(x, y) < ε} and B̄(x, ε) = {y ∈ X : d(y, x) ≤ ε} we
denote the open and closed ε-balls centered at x, respectively. The space A, being Polish,
is a Gδ-set in X̄. So, we can write it as A =

⋂
n∈ω Un for a descreasing family (Un)n∈ω

of open sets in X̄. Fix a countable dense set {an}n∈ω in A.
Construct inductively two sequences of positive real numbers (εn)n∈ω and (λn)n∈ω

such that for every n ∈ ω the following conditions are satis�ed:

(1) max{λn, εn} < 1
2n+2 ;

(2) for every point x in the compact set

∆n = {
n∑
k=0

tkλkak : t0, . . . , tn ∈ [0, 2]}} ⊂ A

we get B̄(x, εn) ⊂ Un and x+ [0, 2λn]an ⊂ B(x, εn).

The conditions (1), (2) imply that for every sequence (tn)n∈ω ∈ [0, 2]ω the series∑
n∈ω tnλnan converges in X̄ to some point of the convex set A =

⋂
n∈ω Un. Put

c =
∑
n∈ω λnan and observe that for every sequence (tn)n∈ω ∈ [−1, 1]ω the series

c+
∑
n∈ω

tnλnan =
∑
n∈ω

(1 + tn)λnan

converges to a point of A. It follows that the set

K =

{∑
n∈ω

tnλnan : (tn)n∈ω ∈ [−1, 1]ω

}
is compact, convex, symmetric, and c+K ⊂ A. It is clear that R ·K ⊃ {an}n∈ω is dense
in the linear hull R · (A−A) of the set A−A. �

Lemma 2. If a linear metric space X contains an aff-dense Polish convex set P , then
X contains an aff-dense compact convex set K = −K, which is {L}-thick for some dense
operator image L ⊂ X.

Proof. By Proposition 4, there is a compact convex set S = −S in X such that p+S ⊂ P
for some p ∈ P and the linear space R · S is dense in R · (P − P ) and hence is dense
in X. Choose a countable dense set {xn}n∈ω in S and �nd a sequence of real numbers
(λn)n∈ω ∈ (0, 1]ω such that the linear operator

T : `1 → X, T : (tn)n∈ω 7→
∞∑
n=1

tnλnxn,

is well-de�ned and continuous. Here `1 is the Banach space of real sequences t = (tn)n∈ω
with the norm ‖t‖ =

∑
n∈ω |tn| <∞. It is clear that the operator image T (`1) is dense in



80
Taras BANAKH

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2019. Âèïóñê 88

X. Denote by B = {t ∈ `1 : ‖t‖ ≤ 1} the closed unit ball of the Banach space `1 and let
K be the closure of the set T (B) in S. It is clear that K is a compact convex symmetric
subset of S and the a�ne hull R ·K ⊃ T (`1) is dense in X. We claim that the convex
set K is {T (`1)}-thick. Given a non-empty open set U ⊂ K we need to �nd a countable
set A ⊂ X such that T (`1) ⊂ A+ U . Since the set T (B) is dense in K, the intersection
U ∩ T (B) is not empty and hence the preimage V = T−1(U) contains some non-empty
open subset of the ball B. The separability of the Banach space `1 yields a countable set
A1 ⊂ `1 such that `1 = A1 + V . Then the countable set A = T (A1) has the required
property: T (`1) = T (A1) + T (V ) ⊂ A+ U . �

For a linear metric space X denote by ~L∞(X) the family of dense operator images

in X. To simplify notations, denote the family
⋃
L∈ ~L∞(X) σŻ{L}(X) by σ ~Z∞(X). Since

~L∞(X) ⊂ L∞(X), we get the inclusions

σ ~Z∞(X) ⊂ σŻ∞(X) ⊂ σŻω(X) ⊂ σZω(X).

Proposition 5. A subset A of a separable metric linear space X belongs to the family

σ ~Z∞(X) if and only if there exists a σ-compact dense operator image L in X and a
sequence (An)n∈ω of closed subsets of X such that A ⊂

⋃
n∈ω An for every n ∈ ω and

compact subset K ⊂ L the set K ·An is nowhere dense in X.

Proof. The �if� part of this proposition can be proved by analogy with Proposition 2. To

prove the �only� if part, assume that A ∈ σ ~Z∞(X). Then A ∈ σŻ{L}(X) for some dense
operator image L in X. Write L = T (B) for some linear continuous operator T : B → X
de�ned on a Banach space B. Since the space L is separable, we can �nd a separable
Banach subspace B′ ⊂ B such that the operator image L′ = T (B′) is dense in T (B).
Choose a bounded sequence (xn)n∈ω in B′ whose linear hull is dense in B′. It is standard
to show that the operator

T ′ : `2 → B′, T ′ : (tn)n∈ω 7→
∑
n∈ω

tn
2n
xn,

is well-de�ned, compact, and has dense image T ′(`2) in B′. Then the operator T ′ ◦ T :
`2 → X is compact and has dense image L′ = T ′ ◦ T (`2) in X. It follows from L′ ⊂ L

that A ∈ σŻL(X) ⊂ σŻL′(X). So, we lose no generality assuming that B = `2 and the
operator T is compact. By the compactness of the operator T and the re�exivity of `2,
the image T (B1) of the closed unit ball in B1 of the Hilbert space `2 is compact. This

implies that the operator image L = T (`2) is σ-compact. Since A ∈ σŻ{L}(X), there is

a sequence (An)n∈ω of closed subsets An of X such that L + Ān has empty interior in
X. Then for every compact subset K ⊂ L the closed set K + Ān has empty interior and
hence is nowhere dense in X. Then the set K +An is nowhere dense in X. �

Applying Corollary 1 and Lemma 2 to the family ~L∞(X), we can prove the following
corollary (by analogy with Theorem 4).

Theorem 7. For any analytic subsets A,B /∈ σ ~Z∞(X) of a linear metric space X and
any aff-dense convex Polish set C in X, the sumset A + B + C has non-empty interior
in the completion X̄ of X. Moreover, if A is additive or convex, then the sumset A+ C
has non-empty interior in X̄.
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This theorem has

Corollary 12. If a non-complete linear metric space X contains a Polish aff-dense
convex set C, then every analytic subset of X belongs to the σ-ideal Ż{L}(X) for some
dense operator image L in X.
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ÏÐÎ σZn-ÌÍÎÆÈÍÈ Â ÒÎÏÎËÎÃI×ÍÈÕ ÃÐÓÏÀÕ I
ËIÍIÉÍÈÕ ÌÅÒÐÈ×ÍÈÕ ÏÐÎÑÒÎÐÀÕ

Òàðàñ ÁÀÍÀÕ

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåòñüêà, 1, 79000, Ëüâiâ

e-mail: t.o.banakh@gmail.com

Òîïîëîãi÷íèé ïðîñòið X íàçèâà¹òüñÿ àíàëiòè÷íèì, ÿêùî âií ¹ ìåòðè-
çîâíèì íåïåðåðâíèì îáðàçîì ïîëüñüêîãî (òîáòî ïîâíî-ìåòðèçîâíîãî ñåïà-
ðàáåëüíîãî) ïðîñòîðó. Äîáðå âiäîìî, ùî êîæíà áîðåëiâñüêà ïiäìíîæèíà
ïîëüñüêîãî ïðîñòîðó ¹ àíàëiòè÷íèì ïðîñòîðîì. Çãiäíî ç êëàñè÷íîþ òåîðå-
ìîþ Ñòåôàíà Áàíàõà âiä 1931 ðîêó, êîæíà íåïîâíà àíàëiòè÷íà òîïîëîãi-
÷íà ãðóïà ¹ õóäîþ, òîáòî ¹ îá'¹äíàííÿì çëi÷åííî¨ êiëüêîñòi íiäå íå ùiëü-
íèõ ïiäìíîæèí. Õóäi ïiäìíîæèíè òîïîëîãi÷íîãî ïðîñòîðó X óòâîðþþòü
σ-iäåàë σZ0(X), ùî ¹ íàéáiëüøèì ñåðåä σ-iäåàëiâ σZn(X), ùî ïîðîäæó-
þòüñÿ Zn-ìíîæèíàìè â X. Çàìêíåíà ïiäìíîæèíà A ⊂ X òîïîëîãi÷íîãî
ïðîñòîðó X íàçèâà¹òüñÿ Zn-ìíîæèíîþ â X, ìíîæèíà C([0, 1]n, X \ A)
âiäîáðàæåíü [0, 1]n → B âñþäè ùiëüíà ó ïðîñòîði íåïåðåðâíèõ ôóíêöié
C([0, 1]n, X), íàäiëåíîìó êîìïàêòíî-âiäêðèòîþ òîïîëîãi¹þ. Òîïîëîãi÷íèé
ïðîñòið X íàçèâà¹òüñÿ σZn-ïðîñòîðîì, ÿêùî X ∈ σZn(X). Ëåãêî áà÷è-
òè, ùî σZm(X) ⊂ σZn(X) äëÿ äîâiëüíèõ ÷èñåë 0 ≤ n ≤ m ≤ ω, çâiä-
êè âèïëèâà¹, ùî σ-iäåàë σZω(X) ¹ íàéìåíøèì ñåðåä σ-iäåàëiâ σZn(X).
Âiäïîâiäàþ÷è íà çàïèòàííÿ Ò.Äîáðîâîëüñüêîãî òà �.Ìîãiëüñüêîãî (1990),
àâòîð öi¹¨ ñòàòòi äîâiâ ó 1999 ðîöi, ùî ëiíiéíà îáîëîíêà lin(E) ïðîñòîðó
Åðäåøà E = `2 ∩ Qω â ñåïàðàáåëüíîìó ãiëüáåðòîâîìó ïðîñòîði `2 íå ¹
σZω-ïðîñòîðîì. Òèì íå ìåíøå, äîñi íåâiäîìî ÷è êîæåí íåïîâíèé àíàëi-
òè÷íèé ëiíiéíèé ìåòðè÷íèé ïðîñòið ¹ σZn-ïðîñòîðîì äëÿ êîæíîãî n ∈ N.
Ó öié ñòàòòi ïîäàíî ÷àñòêîâèé ðîçâ'ÿçîê öi¹¨ ïðîáëåìè. À ñàìå, äîâåäåíî,
ùî ÿêùî àíàëiòè÷íà ïiäìíîæèíà A ëiíiéíîãî ìåòðè÷íîãî ïðîñòîðó X íå
ìiñòèòüñÿ ó σZω-ïiäìíîæèíi ïðîñòîðó X, òîäi äëÿ êîæíî¨ ïîëüñüêî¨ îïó-
êëî¨ ïiäìíîæèíè K ⊂ X ç âñþäè ùiëüíîþ àôiííîþ îáîëîíêîþ â X, ñóìà
A+K íåõóäà â X i ìíîæèíè A+A+K òà A−A+K ìàþòü íåïîðîæíþ
âíóòðiøíiñòü â ïîïîâíåííi X̄ ïðîñòîðó X. Çâiäñè âèïëèâà¹, ùî
• àíàëiòè÷íà ïiäãðóïà A ëiíiéíîãî ìåòðè÷íîãî ïðîñòîðó X ¹ σZω-
ïðîñòîðîì, ÿêùî A íå ¹ ïîëüñüêîþ i A ìiñòèòü ïîëüñüêó îïóêëó
ïiäìíîæèíó K ç âñþäè ùiëüíîþ àôiííîþ îáîëîíêîþ â X;

• âñþäè ùiëüíà îïóêëà àíàëiòè÷íà ïiäìíîæèíà A ó ëiíiéíîìó ìåòðè-
÷íîìó ïðîñòîði X ¹ σZω-ïðîñòîðîì, ÿêùî A íå ìiñòèòü âiäêðèòîãî
ïîëüñüêîãî ïiäïðîñòîðó i A ìiñòèòü ïîëüñüêó îïóêëó ïiäìíîæèíó K
ç âñþäè ùiëüíîþ àôiííîþ îáîëîíêîþ â X.

Êëþ÷îâi ñëîâà: Z-ìíîæèíà, σZ-ïðîñòið, àíàëiòè÷íà ìíîæèíà, òîïîëî-
ãi÷íà ãðóïà, îïóêëà ìíîæèíà, ëiíiéíèé ìåòðè÷íèé ïðîñòið.


