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Let n be a positive integer > 2 and Nn
6 be the n-th power of positive

integers with the product order of the usual order on N. In the paper we
study the semigroup of injective partial monotone selfmaps of Nn

6 with co�nite
domains and images. We show that the group of units H(I) of the semigroup
PO∞(Nn

6) is isomorphic to the group Sn of permutations of an n-element
set, and describe the subsemigroup of idempotents of PO∞(Nn

6). Also in the
case n = 3 we describe the property of elements of the semigroup PO∞(N3

6)

as partial bijections of the poset N3
6 and Green's relations on the semigroup

PO∞(N3
6). In particular we show that D = J in PO∞(N3

6).

Key words: semigroup of partial bijections, monotone partial map, idem-
potent, Green's relations.

1. Introduction and preliminaries

We shall follow the terminology of [19] and [44].
In this paper we shall denote the cardinality of the set A by |A|. We shall identify

all sets X with their cardinality |X|. For an arbitrary positive integer n by Sn we denote
the group of permutations of an n-elements set. Also, for in�nite subsets A and B of an
in�nite set X we shall write A⊆∗B if and only if there exists a �nite subset A0 of A such
that A \A0 ⊆ B.

An algebraic semigroup S is called inverse if for any element x ∈ S there exists a
unique x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called
the inverse of x ∈ S.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If
S is an inverse semigroup then E(S) is closed under multiplication and we shall refer to
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E(S) as a band (or the band of S). If the band E(S) is a non-empty subset of S then the
semigroup operation on S determines the following partial order 6 on E(S): e 6 f if and
only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice

is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or
a chain if its natural order is a linear order.

If S is a semigroup, then we shall denote Green's relations on S by R, L , J , D
and H (see [22] or [19, Section 2.1]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;

D = L ◦R = R ◦L ;

H = L ∩R.

The R-class (resp., L -, H -, D- or J -class) of the semigroup S which contains an
element a of S will be denoted by Ra (resp., La, Ha, Da or Ja).

If α : X ⇀ Y is a partial map, then by domα and ranα we denote the domain and
the range of α, respectively.

Let Iλ denote the set of all partial one-to-one transformations of an in�nite set
X of cardinality λ together with the following semigroup operation: x(αβ) = (xα)β if
x ∈ dom(αβ) = {y ∈ domα : yα ∈ domβ}, for α, β ∈ Iλ. The semigroup Iλ is called the
symmetric inverse semigroup over the setX (see [19, Section 1.9]). The symmetric inverse
semigroup was introduced by Wagner [48] and it plays a major role in the semigroup
theory. An element α ∈ Iλ is called co�nite, if the sets λ \domα and λ \ ranα are �nite.

IfX is a non-empty set and 6 is a re�exive, antisymmetric, transitive binary relation
on X then 6 is called a partial order on X and (X,6) is said to be a partially ordered

set or shortly a poset.
Let (X,6) be a partially ordered set. A non-empty subset A of (X,6) is called:

• a chain if the induced partial order from (X,6) onto A is linear, i.e., any two
elements from A are comparable in (X,6);

• an ω-chain if A is order isomorphic to the set of negative integers with the usual
order ≤;

• an anti-chain if any two distinct elements from A are incomparable in (X,6).

For an arbitrary x ∈ X and non-empty A ⊆ X we denote

↑x = {y ∈ X : x 6 y} , ↓x = {y ∈ X : y 6 x} , ↑ A =
⋃
x∈A
↑x and ↓ A =

⋃
x∈A
↓x.

We shall say that a partial map α : X ⇀ X is monotone if x 6 y implies (x)α 6 (y)α for
x, y ∈ domα.

Let N be the set of positive integers with the usual linear order ≤ and n > 2 be
an arbitrary positive integer. On the Cartesian power Nn = N× · · · × N︸ ︷︷ ︸

n-times

we de�ne the

product partial order, i.e.,

(i1, . . . , in) 6 (j1, . . . , jn) if and only if (ik 6 jk) for all k = 1, . . . , n.
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Later the set Nn with this partial order will be denoted by Nn6.
For an arbitrary positive integer n > 2 by PO∞(Nn6) we denote the semigroup of

injective partial monotone selfmaps of Nn6 with co�nite domains and images. Obviously,

PO∞(Nn6) is a submonoid of the semigroup Iω and PO∞(Nn6) is a countable semigroup.

Furthermore, we shall denote the identity of the semigroup PO∞(Nn6) by I and the

group of units of PO∞(Nn6) by H(I).
The bicyclic semigroup (or the bicyclic monoid) C (p, q) is the semigroup with the

identity 1 generated by two elements p and q, subject only to the condition pq = 1.
The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every homomorphism h of the bicyclic semigroup is either
an isomorphism or the image of C (p, q) under h is a cyclic group (see [19, Corollary 1.32]).
The bicyclic semigroup plays an important role in algebraic theory of semigroups and
in the theory of topological semigroups. For example a well-known Andersen's result [1]
states that a (0�)simple semigroup with an idempotent is completely (0�)simple if and
only if it does not contain an isomorphic copy of the bicyclic semigroup. Semigroup
topologizations and shift-continuous topologizations of generalizations of the bicyclic
monoid, they embedding into compact-like topological semigroups was studied in [5]�
[9], [11, 14, 18, 20, 21], [24]�[28], [34, 35, 43, 46] and [2, 3, 4, 10, 12, 33, 42], respectively.

The bicyclic monoid is isomorphic to the semigroup of all bijections between upper-
sets of the poset (N,≤) (see: see Exercise IV.1.11(ii) in [47]). So, the semigroup of injecti-
ve isotone partial selfmaps with co�nite domains and images of positive integers is a
generalization of the bicyclic semigroup. Hence, it is a natural problem to describe semi-
groups of injective isotone partial selfmaps with co�nite domains and images of posets
with ω-chain.

The semigroups I↗∞(N) and I↗∞(Z) of injective isotone partial selfmaps with co�nite
domains and images of positive integers and integers, respectively, are studied in [34] and
[35]. It was proved that the semigroups I↗∞(N) and I↗∞(Z) have similar properties to the
bicyclic semigroup: they are bisimple and every non-trivial homomorphic image I↗∞(N)
and I↗∞(Z) is a group, and moreover the semigroup I↗∞(N) has Z(+) as a maximal
group image and I↗∞(Z) has Z(+)× Z(+), respectively.

In the paper [36] algebraic properties of the semigroup I cf
λ of co�nite partial bijecti-

ons of an in�nite cardinal λ are studied. It is shown that I cf
λ is a bisimple inverse semi-

group and that for every non-empty chain L in E(I cf
λ ) there exists an inverse subsemi-

group S of I cf
λ such that S is isomorphic to the bicyclic semigroup and L ⊆ E(S),

Green's relations on I cf
λ are described and it is proved that every non-trivial congruence

on I cf
λ is a group congruence. Also, the structure of the quotient semigroup I cf

λ /σ,
where σ is the least group congruence on I cf

λ , is described.
In the paper [32] the semigroup IO∞(Znlex) of monotone injective partial selfmaps

of the set of Ln ×lex Z having co�nite domain and image, where Ln ×lex Z is the lexi-
cographic product of n-elements chain and the set of integers with the usual linear order
is studied. Green's relations on IO∞(Znlex) are described and it is shown that the semi-
group IO∞(Znlex) is bisimple and its projective congruences are established. Also, in [32]
it is proved that IO∞(Znlex) is �nitely generated, every automorphism of IO∞(Z) is
inner, and it is shown that in the case n > 2 the semigroup IO∞(Znlex) has non-inner



THE MONOID OF MONOTONE INJECTIVE PARTIAL SELFMAPS
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2019. Âèïóñê 88 35

automorphisms. In [32] we proved that for every positive integer n the quotient semi-
group IO∞(Znlex)/σ, where σ is a least group congruence on IO∞(Znlex), is isomorphic to

the direct power (Z(+))
2n
. The structure of the sublattice of congruences on IO∞(Znlex)

which are contained in the least group congruence is described in [29].
In the paper [30] algebraic properties of the semigroup PO∞(N2

6) are studied. The

properties of elements of the semigroup PO∞(N2
6) as monotone partial bijection of N2

6

are described and showed that the group of units of PO∞(N2
6) is isomorphic to the

cyclic group of order two. Also in [30] the subsemigroup of idempotents of PO∞(N2
6)

and Green's relations on PO∞(N2
6) are described. In particular, it is proved that D = J

in PO∞(N2
6). In [31] the natural partial order 4 on the semigroup PO∞(N2

6) is described
and it is shown that it coincides with the natural partial order the induced from symmetric
inverse monoid over the set N×N onto the semigroup PO∞(N2

6). Also, it is proved that

the semigroup PO∞(N2
6) is isomorphic to the semidirect product PO+

∞(N2
6)oZ2 of the

monoid PO+
∞(N2

6) of orientation-preserving monotone injective partial selfmaps of N2
6

with co�nite domains and images by the cyclic group Z2 of order two. It is described the
congruence σ on the semigroup PO∞(N2

6), which is generated by the natural order 4 on

the semigroup PO∞(N2
6): ασβ if and only if α and β are comparable in

(
PO∞(N2

6),4
)
. It

is proved that the quotient semigroup PO+
∞(N2

6)/σ is isomorphic to the free commutative
monoid AMω over an in�nite countable set and it is shown that the quotient semigroup
PO∞(N2

6)/σ is isomorphic to the semidirect product of the free commutative monoid
AMω by the group Z2.

In the paper [38] the semigroup IN∞ of all partial co-�nite isometries of positive
integers is studied. The semigroup IN∞ is some generalization of the bicyclic monoid and
it is a submonoid of I↗∞(N). Green's relations on the semigroup IN∞ and its band are
described there and it is proved that IN∞ is a simple E-unitary F -inverse semigroup.
Also there is described the least group congruence Cmg on IN∞ and it is proved that the
quotient semigroup IN∞/Cmg is isomorphic to the additive group of integers. An example
of a non-group congruence on the semigroup IN∞ is presented. Also, it is proved that
a congruence on the semigroup IN∞ is a group congruence if and only if its restriction
onto an isomorphic copy of the bicyclic semigroup in IN∞ is a group congruence.

In the paper [39] submonoids of the monoid I �↗
∞ (N) of almost monotone injective

co-�nite partial selfmaps of positive integers N is established. Let CN be the subsemigroup
I �↗
∞ (N) which is generated by the partial shift n 7→ n+1 and its inverse partial map. In

[39] it was shown that every automorphism of a full inverse subsemigroup of I↗∞(N) which
contains the semigroup CN is the identity map. Also there is constructed a submonoid

IN[1]
∞ of I �↗

∞ (N) with the following property: if S is an inverse submonoid of I �↗
∞ (N)

such that S contains IN[1]
∞ as a submonoid, then every non-identity congruence C on S is

a group congruence. Also, it is proved that if S is an inverse submonoid of I �↗
∞ (N) such

that S contains CN as a submonoid then S is simple and the quotient semigroup S/Cmg,
where Cmg is minimum group congruence on S, is isomorphic to the additive group of
integers.

We observe that the semigroups of all partial co-�nite isometries of integers are
studied in [15, 16, 37].



36
Oleg GUTIK, Olha KROKHMALNA

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2019. Âèïóñê 88

The monoid INn∞ of co�nite partial isometries of the n-th power of the set of positive
integers N with the usual metric for a positive integer n > 2 is studied in [40]. The
semigroup INn∞ is a submonoid of PO∞(Nn6) for any positive integer n > 2. In [40] it
is proved that for any integer n > 2 the semigroup INn∞ is isomorphic to the semidirect
product Sn nh (P∞(Nn),∪) of the free semilattice with the unit (P∞(Nn),∪) by the
symmetric group Sn.

Later in this paper we shall assume that n is an arbitrary positive integer > 2.
In this paper we study the semigroup of injective partial monotone selfmaps of

the poset Nn6 with co�nite domains and images. We show that the group of units H(I)
of the monoid PO∞(Nn6) is isomorphic to the group Sn and describe the subgroup of

idempotents of PO∞(Nn6). Also in the case n = 3 we describe the property of elements

of the semigroup PO∞(Nn6) as partial bijections of the poset Nn6 and Green's relations

on the semigroup PO∞(N3
6). In particular we show that D = J in PO∞(N3

6).

2. Properties of elements of the semigroup PO∞(Nn6) as monotone
partial permutations

In this short section we describe properties of elements of the semigroup PO∞(Nn6)
as monotone partial transformations of the poset Nn6.

It is obvious that the group of units H(I) of the semigroup PO∞(Nn6) consists of
exactly all order isomorphisms of the poset Nn6 and hence Theorem 2.8 of [28] implies
the following

Theorem 1. For any positive integer n the group of units H(I) of the semigroup

PO∞(Nn6) is isomorphic to the group Sn of permutations of an n-elements set.

Moreover, every element of H(I) permutates coordinates of elements of Nn, and only

these permutations are elements of H(I).

Since every α ∈PO∞(Nn6) is a co�nite monotone partial transformation of the poset
Nn6 the following statement holds.

Lemma 1. If (1. . . . , 1) ∈ domα for some α ∈PO∞(Nn6) then (1. . . . , 1)α = (1. . . . , 1).

For an arbitrary i = 1, . . . , n de�ne

Ki =
{
(1, . . . , m︸︷︷︸

ith

, . . . , 1) ∈ Nn : m ∈ N
}

and by pri : Nn → Nn denote the projection onto the i-th coordinate, i.e., for every
(m1, . . . ,mi, . . . ,mn) ∈ Nn put

(m1, . . . , mi︸︷︷︸
ith

, . . . ,mn)pri = (1, . . . , mi︸︷︷︸
ith

, . . . , 1).

Lemma 2. Let {x1, . . . , xk} be a set of points in Nn \ {(1, . . . , 1)}, k ∈ N. Then the set

Nn \ (↑x1 ∪ . . . ∪ ↑xk) is �nite if and only if k > n and for every Ki, i = 1, . . . , n, there
exists xj ∈ {x1, . . . , xk} such that xj ∈ Ki.

Proof. (⇐) Without loss of generality we may assume that xj ∈ Kj for every positive
integer j 6 n. Then simple veri�cations imply that the set Nn \(↑x1 ∪ . . . ∪ ↑xn) is �nite,
and hence so is the set Nn \ (↑x1 ∪ . . . ∪ ↑xk).
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(⇒) Suppose to the contrary that there exist a subset {x1, . . . , xk} ⊆ Nn\{(1, . . . , 1)}
and an integer i ∈ {1, . . . , n} such that Nn \ (↑x1 ∪ . . . ∪ ↑xk) is �nite and xj /∈ Ki for
any j ∈ {1, . . . , k}.

The de�nition of Ki (i = 1, . . . , n) implies that Ki with the induced partial order
from Nn6 is an ω-chain such that ↓Ki = Ki. Hence, for any x ∈ Nn we have that

either Ki \ ↑x is �nite or Ki ∩ ↑x = ∅. Then by our assumption we get that the set
Nn \ (↑x1 ∪ . . . ∪ ↑xn) is in�nite, a contradiction. The inequality k > n follows from the
above arguments. �

Later for an arbitrary non-empty subset A of Nn by εA we shall denote the identity
map of the set Nn \A. It is obvious that the following lemma holds.

Lemma 3. For an arbitrary non-empty subset A of Nn, εA is an element of the semigroup

PO∞(Nn6), and hence so are εAα, αεA, and εAαεA for any α ∈PO∞(Nn6).

Proposition 1. For an arbitrary element α of the semigroup PO∞(Nn6) there exists a

unique permutation s : {1, . . . , n} → {1, . . . , n} such that (Ki ∩ domα)α ⊆ K(i)s for any

i = 1, . . . , n.

Proof. Lemma 3 implies that without loss of generality we may assume that (1, . . . , 1) /∈
domα and (1, . . . , 1) /∈ ranα.

Since for any i = 1, . . . , n the set Ki with the induced order from the poset Nn6
is an ω-chain, the set Ki ∩ domα contains the least element l

α

i . By Lemma 2 the set

Nn \
(
↑lα1 ∪· · ·∪↑l

α

n

)
is �nite and hence so is domα\

(
↑lα1 ∪· · ·∪↑l

α

n

)
. Since α is a co�nite

partial bijection of Nn, we have that(
↑lα1 ∪ · · · ∪ ↑l

α

n

)
α =

(
↑lα1
)
α ∪ · · · ∪

(
↑lαn
)
α

and the set Nn \
((
↑lα1
)
α ∪ · · · ∪

(
↑lαn
)
α
)
is �nite. Also, since α is a monotone partial

bijection of the poset Nn6 we obtain that
(
↑lαi
)
α ⊆ ↑

(
l
α

i

)
α for all i = 1, . . . , n. Then by

Lemma 2 there exists a permutation s : {1, . . . , n} → {1, . . . , n} such that (l
α

i )α ∈ K(i)s

for any i = 1, . . . , n, because

Nn \
(
↑
(
l
α

1

)
α ∪ · · · ∪

(
↑lαn
)
α
)
⊆ Nn \

((
↑lα1
)
α ∪ · · · ∪

(
↑lαn
)
α
)

and the set Nn \
(
↑
(
l
α

1

)
α ∪ · · · ∪

(
↑lαn
)
α
)
is �nite. This implies that (x)α ∈ K(i)s for all

x ∈ Ki ∩ domα and any i = 1, . . . , n.
The proof of uniqueness of the permutation s for α ∈ PO∞(Nn6) is trivial. This

completes the proof of the proposition. �

Theorem 1 and Proposition 1 imply the following corollary.

Corollary 1. For every element α of the semigroup PO∞(Nn6) there exists a unique

element σ of the group of units H(I) of PO∞(Nn6) such that (Ki ∩ domα)ασ ⊆ Ki and

(Ki ∩ domα)σ−1α ⊆ Ki for all i = 1, . . . , n.

Lemma 4. There is no a �nite family {L1, . . . , Lk} of chains in the poset N2
6 such that

N2 = L1 ∪ · · · ∪ Lk. Moreover, every co-�nite subset in N2
6 has this property.
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Proof. Suppose to the contrary that there exists a positive integer k such that N2 =
L1 ∪ · · · ∪ Lk and Li is a chain for each i = 1, . . . , k. Then

{(1, k + 1), (2, k), . . . , (k, 2), (k + 1, 1)}
is an anti-chain in the poset N2

6 which contains exactly k + 1 elements. Without loss of

generality we may assume that Li ∩ Lj = ∅ for i 6= j. Since N2 = L1 t · · · t Lk, by
the pigeonhole principle (or by the Dirichlet drawer principle, see [13, Section 7.3]) there
exists a chain Li, i = 1, . . . , k, which contains at least two distinct elements of the set
{(1, k + 1), (2, k), . . . , (k, 2), (k + 1, 1)}, a contradiction.

Assume that A is a co-�nite subset of N2
6 such that A = N2 \ {x1, . . . , xp} for some

positive integer p. For every i = 1, . . . , p we put Lk+i = {xi}. Then for every �nite
partition {L1, . . . , Lk} of A such that Li is a chain for each i = 1, . . . , k the family
{L1, . . . , Lk, Lk+1 . . . , Lk+p} is a �nite partition of the poset N2

6 such that Li is a chain
for each i = 1, . . . , k + p. This contradicts the above part of the proof, and hence the
second statement of the lemma holds. �

For any distinct i, j ∈ {1, . . . , n} we denote
Ki,j = {(x1, . . . , xn) ∈ Nn : xk = 1 for all k ∈ {1, . . . , n} \ {i, j}}

and

K ◦
i,j = Ki,j \ (Ki ∪Kj)

Lemma 5. Let n be a positive integer > 3. Let xi be an arbitrary element of Ki\{1, . . . , 1}
for i = 3, . . . , n and y1,2 be an arbitrary element of K ◦

1,2. Then there exists a �nite family

{L1, . . . , Lk} of chains in the poset Nn6 such that

L1 ∪ · · · ∪ Lk = Nn \
(
↑y1,2 ∪ ↑x3 ∪ · · · ∪ ↑xn

)
.

Proof. Let xi = (1, 1, . . . , xi︸︷︷︸
ith

, . . . , 1) for i = 3, . . . , n and y1,2 = (y1, y2, 1 . . . , 1). Then

for any element a = (a1, . . . , an) of the set Nn \
(
↑y1,2 ∪ ↑x3 ∪ · · · ∪ ↑xn

)
the following

conditions hold:

(i) ai < xi for any i = 3, . . . , n;
(ii) if a1 > y1 then a2 < y2;
(iii) if a2 > y2 then a1 < y1.

These conditions imply that

Nn \
(
↑y1,2 ∪ ↑x3 ∪ · · · ∪ ↑xn

)
=
⋃
{S(k3, . . . , kn) : k3 < x3, . . . , kn < xn} ,

where

S(k3, . . . , kn) =
⋃
{Li(k3, . . . , kn) : i = 1, . . . y1 − 1}∪

∪
⋃
{Rj(k3, . . . , kn) : j = 1, . . . y2 − 1} ,

with

Li(k3, . . . , kn) = {(i, p, k3, . . . , kn) ∈ Nn : p ∈ N}
and

Rj(k3, . . . , kn) = {(p, j, k3, . . . , kn) ∈ Nn : p ∈ N} .
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We observe that for arbitrary positive integers i,j, k3, . . . , kn the sets Li(k3, . . . , kn) and
Rj(k3, . . . , kn) are chains in the poset Nn6. Since the set Nn \

(
↑y1,2 ∪ ↑x3 ∪ · · · ∪ ↑xn

)
is

the union of �nitely many sets of the form S(k3, . . . , kn) the above arguments imply the
required statement of the lemma. �

Proposition 2. Let α be an element of PO∞(Nn6) such that (Ki ∩ domα)α ⊆ Ki for

all i = 1, . . . , n. Then (Ki1,i2 ∩ domα)α ⊆ Ki1,i2 for all distinct i1, i2 = 1, . . . , n.

Proof. Suppose to the contrary that there exists x ∈ Ki1,i2 ∩ domα such that (x)α /∈
Ki1,i2 . By Theorem 1 without loss of generality we may assume that i1 = 1 and i2 = 2,
i.e., x ∈ K1,2 and (x)α /∈ K1,2. By Lemma 1, x 6= (1, . . . , 1).

For every i = 3, . . . , n we let xαi = (1, 1, . . . , xαi︸︷︷︸
ith

, . . . , 1) ∈ domα be the smallest

element of Ki such that (xαi )α 6= (1, . . . , 1). There exists xα1,2 = (xα1 , x
α
2 , 1, . . . , 1) ∈

domα ∩K ◦
1,2 such that x 6 xα1,2. Since α ∈PO∞(Nn6), (x)α 6 (xα1,2)α /∈ K1,2.

Now, the monotonicity of α implies that
(
↑xα1,2

)
α ⊆ ↑

(
xα1,2

)
α and (↑xαi )α ⊆

↑ (xαi )α for any i = 3, . . . , n. By our assumption we have that

K1,2 ∩ ranα ⊆
(
Nn6 \

(
↑xα1,2 ∪ ↑xα3 ∪ · · · ∪ ↑xαn

))
α.

Since the partial transformation α preserves chains in the poset Nn6, Lemma 5 implies
that the set K1,2 ∩ ranα is a union of �nitely many chains, which contradicts Lemma 4.
The obtained contradiction implies the assertion of the proposition. �

Theorem 2. Let α be an element of the semigroup PO∞(N3
6) such that (Ki∩domα)α ⊆

Ki for all i = 1, 2, 3. Then the following assertions hold:

(i) if (x1, x2, x3) ∈ domα and (x1, x2, x3)α = (xα1 , x
α
2 , x

α
3 ) then xα1 ≤ x1, x

α
2 ≤ x2

and xα3 ≤ x3 and hence (x)α 6 x for any x ∈ domα;
(ii) there exists a smallest positive integer nα such that (x1, x2, x3)α = (x1, x2, x3)

for all (x1, x2, x3) ∈ domα ∩ ↑(nα, nα, nα).

Proof. (i)We shall prove the inequality xα1 ≤ x1 by induction. The proofs of the inequali-
ties xα2 ≤ x2 and xα3 ≤ x3 are similar.

By Proposition 2 we have that if x1 = 1 then xα1 = 1, as well.

Next we shall show that the following statement holds:

if for some positive integer p > 1 the inequality x1 < p implies xα1 ≤ x1 then the

equality x1 = p implies xα1 ≤ x1, too.
Suppose to the contrary that there exists (x1, x2, x3) ∈ domα such that

x1 = p = (x1, x2, x3)pr1, (x1, x2, x3)α = (xα1 , x
α
2 , x

α
3 ) and x1 + 1 6 xα1 .

We de�ne a partial map $ : N3 ⇀ N3 with dom$ = N3 \ ({1} × L(x2)× L(x2)) and
ran$ = N3 by the formula

(i1, i2, i3)$ =

{
(i1 − 1, i2, i3), if i2 ∈ L(x2) and i3 ∈ L(x2);
(i1, i2, i3), otherwise,

where L(x2) = {1, . . . , x2} and L(x3) = {1, . . . , x3}. It is obvious that $ ∈ PO∞(N3
6),

and hence γ$k ∈ PO∞(N3
6) for any positive integer k and any γ ∈ PO∞(N3

6). This
observation implies that without loss of generality we may assume that xα1 = x1+1. Then
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the assumption of the theorem implies that there exists the smallest element (im, 1, 1) of
K1 such that iαm > xα1 +1, where (iαm, 1, 1) = (im, 1, 1)α. Since (↑(im, 1, 1))α ⊆ ↑(iαm, 1, 1),
(↑(x1, x2, x3))α ⊆ ↑(xα1 , xα2 , xα3 ) and the set N3 \ ranα is �nite, our assumption implies
that the set

Sx1(α) = {(x1, p2, p3) ∈ domα : p2, p3 ∈ N}
is a union of �nitely many subchains of the poset (N3,6). This contradicts Lemma 4
because the set Sx1(α) with the induced partial order from N3

6 is order isomorphic

to a co�nite subset of the poset N2
6. The obtained contradiction implies the requested

inequality xα1 ≤ x1 and hence we have that statement (i) holds.
The last assertion of (i) follows from the de�nition of the poset N3

6.

(ii) Fix an arbitrary α ∈PO∞(N3
6) such that (Ki∩domα)α ⊆ Ki for all i = 1, 2, 3.

Suppose to the contrary that for any positive integer n there exists

(x1, x2, x3) ∈ domα ∩ ↑(n, n, n)

such that (x1, x2, x3)α 6= (x1, x2, x3). We put Ndomα =
∣∣N3 \ domα

∣∣+ 1 and

Mdomα = max
{
{x1 : (x1, x2, x3) /∈ domα} , {x2 : (x1, x2, x3) /∈ domα} ,

{x3 : (x1, x2, x3) /∈ domα}
}
+ 1.

The de�nition of the semigroup PO∞(N3
6) implies that the positive integers Ndomα and

Mdomα are well de�ned. Put n0 = max {Ndomα,Mdomα}. Then our assumption implies
that there exists (x1, x2, x3) ∈ domα ∩ ↑(n0, n0, n0) such that

(x1, x2, x3)α = (xα1 , x
α
2 , x

α
3 ) 6= (x1, x2, x3).

By statement (i) we have that (xα1 , x
α
2 , x

α
3 ) < (x1, x2, x3). We consider the case when

xα1 < x1. In the cases when xα2 < x2 or xα3 < x3 the proofs are similar. We assume
that x1 6 x2 and x1 6 x3. By statement (i) the partial bijection α maps the set
S =

{
(x, y, z) ∈ N3 : x, y, z 6 x1 − 1

}
into itself. Also, by the de�nition of the semigroup

PO∞(N3
6) the partial bijection α maps the set

{(x1, 1, 1), . . . , (x1, 1, x1), (x1, 2, 1), . . . , (x1, 2, x1), . . . , (x1, x1, 1), . . . , (x1, x1, x1)}

into S, too. Then our construction implies that

|S \ domα| =
∣∣N3 \ domα

∣∣ = Ndomα − 1

and

|{(x1,1,1), . . . ,(x1,1,x1),(x1,2,1), . . . ,(x1,2,x1), . . . ,(x1,x1,1), . . . ,(x1,x1,x1)}| > Ndomα,

a contradiction. In the case when x2 6 x1 and x2 6 x3 or x3 6 x1 and x3 6 x2 we get
contradictions in similar ways. This completes the proof of existence of such a positive
integer nα for any α ∈ PO∞(N3

6). The existence of such minimal positive integer nα
follows from the fact that the set of all positive integers with the usual order 6 is well-
ordered. �

Theorem 2(iii) and Proposition 1 imply the following corollary.
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Corollary 2. For an arbitrary element α of the semigroup PO∞(N3
6) there exist

elements σ1, σ2 of the group of units H(I) of PO∞(N3
6) and a smallest positive integer

nα such that

(x1, x2, x3)σ1α = (x1, x2, x3)ασ2 = (x1, x2, x3)

for each (x1, x2, x3) ∈ domα ∩ ↑(nα, nα, nα).

Corollary 2 implies

Corollary 3.
∣∣N3 \ ranα

∣∣ 6 ∣∣N3 \ domα
∣∣ for an arbitrary α ∈PO∞(N3

6).

3. Algebraic properties of the semigroup PO∞(N3
6)

Proposition 3. Let X be a non-empty set and let PB(X) be a semigroup of partial

bijections of X with the usual composition of partial self-maps. Then an element α of

PB(X) is an idempotent if and only if α is an identity partial self-map of X.

Proof. The implication (⇐) is trivial.

(⇒) Let an element α be an idempotent of the semigroup PB(X). Then for every
x ∈ domα we have that (x)αα = (x)α and hence we get that domα2 = domα and
ranα2 = ranα. Also since α is a partial bijective self-map of X we conclude that the
previous equalities imply that domα = ranα. Fix an arbitrary x ∈ domα and suppose
that (x)α = y. Then (x)α = (x)αα = (y)α = y. Since α is a partial bijective self-map of
the set X, we have that the equality (y)α = y implies that the full preimage of y under
the partial map α is equal to y. Similarly the equality (x)α = y implies that the full
preimage of y under the partial map α is equal to x. Thus we get that x = y and our
implication holds. �

Proposition 3 implies the following corollary.

Corollary 4. An element α of PO∞(Nn6) is an idempotent if and only if α is an identity

partial self-map of Nn6 with the co�nite domain.

Corollary 4 implies the following proposition.

Proposition 4. Let n be a positive integer > 2. The subset of idempotents E(PO∞(Nn6))
of the semigroup PO∞(Nn6) is a commutative submonoid of PO∞(Nn6) and moreover

E(PO∞(Nn6)) is isomorphic to the free semilattice with unit (P∗(Nn),∪) over the set

Nn under the map (ε)h = Nn \ dom ε.

Later we shall need the following technical lemma.

Lemma 6. Let X be a non-empty set, PB(X) be the semigroup of partial bejections of

X with the usual composition of partial self-maps and α ∈ PB(X). Then the following

assertions hold:

(i) α = γα for some γ ∈PB(X) if and only if the restriction γ|domα : domα→ X
is an identity partial map;

(ii) α = αγ for some γ ∈ PB(X) if and only if the restriction γ|ranα : ranα → X
is an identity partial map.
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Proof. (i) The implication (⇐) is trivial.
(⇒) Suppose that α = γα for some γ ∈PB(X). Then domα ⊆ dom γ and domα ⊆

ran γ. Since γ : X ⇀ X is a partial bijection, the above arguments imply that (x)γ = x
for each x ∈ domα. Indeed, if (x)γ = y 6= x for some y ∈ domα then since α : X ⇀ X is
a partial bijection we have that either

(x)α = (x)γα = (y)α 6= (x)α, if y ∈ domα,

or (y)α is unde�ned. This completes the proof of the implication.
The proof of (ii) is similar to that of (i). �

Lemma 6 implies the following corollary.

Corollary 5. Let n be a positive integer > 2 and α be an element of the semigroup

PO∞(Nn6). Then the following assertions hold:

(i) α = γα for some γ ∈PO∞(Nn6) if and only if the restriction γ|domα : domα→
Nn is an identity partial map;

(ii) α = αγ for some γ ∈PO∞(Nn6) if and only if the restriction γ|ranα : ranα→ Nn
is an identity partial map.

The following theorem describes Green's relations L , R, H and D on the semigroup
PO∞(N3

6).

Theorem 3. Let α and β be elements of the semigroup PO∞(N3
6). Then the following

assertions hold:

(i) αL β if and only if α = µβ for some µ ∈ H(I);
(ii) αRβ if and only if α = βν for some ν ∈ H(I);
(iii) αH β if and only if α = µβ = βν for some µ, ν ∈ H(I);
(iv) αDβ if and only if α = µβν for some µ, ν ∈ H(I).

Proof. (i) The implication (⇐) is trivial.
(⇒) Suppose that αL β in the semigroup PO∞(N3

6). Then there exist γ, δ ∈
PO∞(N3

6) such that α = γβ and β = δα. The last equalities imply that ranα = ranβ.
Next, we consider the following cases:

(i1) (Ki ∩ domα)α ⊆ Ki and (Kj ∩ domβ)β ⊆ Kj for all i, j = 1, 2, 3;
(i2) (Ki ∩ domα)α ⊆ Ki for all i = 1, 2, 3 and (Kj ∩ domβ)β * Kj for some

j = 1, 2, 3;
(i3) (Ki ∩ domα)α * Ki for some i = 1, 2, 3 and (Kj ∩ domβ)β ⊆ Kj for all

j = 1, 2, 3;
(i4) (Ki ∩ domα)α * Ki and (Kj ∩ domβ)β * Kj for some i, j = 1, 2, 3.

Suppose that case (i1) holds. Then Proposition 1 and the equalities α = γβ and
β = δα imply that

(1) (Ki ∩ dom γ)γ ⊆ Ki and (Kj ∩ dom δ)δ ⊆ Kj , for all i, j = 1, 2, 3,

and moreover we have that α = γδα and β = δγβ. Hence by Lemma 6 we have that the
restrictions (γδ)|domα : domα ⇀ N3 and (δγ)|dom β : domβ ⇀ N3 are identity partial
maps. Then by condition (1) we obtain that the restrictions γ|domα : domα ⇀ N3 and
δ|dom β : domβ ⇀ N3 are identity partial maps, as well. Indeed, otherwise there exists
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x ∈ domα such that either (x)γ 
 x or (x)δ 
 x, which contradicts Theorem 2(ii). Thus,
the above arguments imply that in case (i1) we have the equality α = β.

Suppose that case (i2) holds. By Corollary 1 there exists an element µ of the group of
units H(I) of the semigroup PO∞(N3

6) such that (Kj∩domβ)µβ ⊆ Kj for all j = 1, 2, 3,
and, since αL β, we have that

α = γβ = γIβ = γ(µ−1µ)β = (γµ−1)(µβ)

and µβ = (µδ)α. Hence we get that αL (µβ), (Ki∩domα)α ⊆ Ki and (Kj∩domβ)µβ ⊆
Kj for all i, j = 1, 2, 3. Then we apply case (i1) for the elements α and µβ and obtain the
equality α = µβ, where µ is the above determined element of the group of units H(I).

In case (i3) the proof of the equality α = µβ is similar to case (i2).

Suppose that case (i4) holds. By Corollary 1 there exist elements µα and µβ of the
group of units H(I) of the semigroup PO∞(N3

6) such that (Kj ∩ domα)µαα ⊆ Kj and

(Kj ∩ domβ)µββ ⊆ Kj for all i, j = 1, 2, 3, and, since αL β, we have that

α = γβ = γIβ = γ(µ−1β µβ)β = (γµ−1β )(µββ)

and

β = δα = δIα = δ(µ−1α µα)α = (δµ−1α )(µαα).

Hence we get that

µαα = (µαγµ
−1
β )(µββ) and µββ = (µβδµ

−1
α )(µαα).

The last two equalities imply that (µββ)L (µαα) and by above part of the proof we have
that (Kj ∩ domα)µαα ⊆ Kj and (Kj ∩ domβ)µββ ⊆ Kj for all i, j = 1, 2, 3. Then we
apply case (i1) for the elements µαα and µββ and obtain the equality µαα = µββ. Hence
α = µ−1α µαα = µ−1α µββ. Since µα, µα ∈ H(I), µ = µ−1α µβ ∈ H(I) as well.

The proof of assertion (ii) is dual to that of (i).

Assertion (iii) follows from (i) and (ii).

(iv) Suppose that αDβ in PO∞(N3
6). Then there exists γ ∈ PO∞(N3

6) such that

αL γ and γRβ. By statements (i) and (ii) there exist µ, ν ∈ H(I) such that α = µγ and
γ = βν and hence α = µβν. Converse, suppose that α = µβν for some µ, ν ∈ H(I). Then
by (i), (ii), we have that αL (βν) and (βν)Rβ, and hence αDβ in PO∞(N3

6). �

Theorem 3 implies Corollary 6 which gives the inner characterization of Green's
relations L , R, and H on the semigroup PO∞(N3

6) as partial permutations of the

poset N3
6.

Corollary 6. (i) Every L -class of PO∞(N3
6) contains exactly 6 distinct elements.

(ii) Every R-class of PO∞(N3
6) contains exactly 6 distinct elements.

(iii) Every H -class of PO∞(N3
6) contains at most 6 distinct elements.

Proof. Statements (i), (ii) and (iii) are trivial and they follow from the corresponding
statements of Theorem 3. �

Lemma 7. Let α, β and γ be elements of the semigroup PO∞(N3
6) such that α = βαγ.

Then the following statements hold:
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(i) if (Ki∩domβ)β ⊆ Ki for any i = 1, 2, 3, then the restrictions β|domα : domα ⇀
N3 and γ|ranα : ranα ⇀ N3 are identity partial maps;

(ii) if (Ki∩dom γ)γ ⊆ Ki for any i = 1, 2, 3, then the restrictions β|domα : domα ⇀
N3 and γ|ranα : ranα ⇀ N3 are identity partial maps;

(iii) there exist elements σβ and σγ of the group of units H(I) of PO∞(N3
6) such that

α = σβασγ .

Proof. (i) Assume that the inclusion (Ki ∩ domβ)β ⊆ Ki holds for any i = 1, 2, 3. Then
one of the following cases holds:

(1) (Ki ∩ domα)α ⊆ Ki for any i = 1, 2, 3;
(2) there exists i ∈ {1, 2, 3} such that (Ki ∩ domα)α * Ki.

If case (1) holds then the equality α = βαγ and Proposition 1 imply that (Ki ∩
dom γ)γ ⊆ Ki for any i = 1, 2, 3. Suppose that (x)β < x for some x ∈ domα. Then by
Theorem 2(i) we have that

(x)α = (x)βαγ < (x)αγ 6 (x)α,

which contradicts the equality α = βαγ. The obtained contradiction implies that the
restriction β|domα : domα ⇀ N3 is an identity partial map. This and the equality α =
βαγ imply that the restriction γ|ranα : ranα ⇀ N3 is an identity partial map too.

Suppose that case (2) holds. Then by Corollary 1 there exists an element σ of the
group of units H(I) of the semigroup PO∞(N3

6) such that (Ki ∩domα)ασ ⊆ Ki for any
i = 1, 2, 3. Now, the equality α = βαγ implies that

ασ = βαγσ = βαIγσ = βα(σσ−1)γσ = β(ασ)(σ−1γσ).

By case (1) we have that the restrictions β|domα : domα ⇀ N3 is an identity partial map,
which implies that βα = α. Then we have that α = βαγ = αγ and hence by Corollary 5
the restriction γ|ranα : ranα ⇀ N3 is an identity partial map, which completes the proof
of statement (i).

(ii) The proof of this statement is dual to (i). Indeed, assume that the inclusion
(Ki ∩ dom γ)γ ⊆ Ki holds for any i = 1, 2, 3. Then one of the following cases holds:

(1) (Ki ∩ domα)α ⊆ Ki for any i = 1, 2, 3;
(2) there exists i ∈ {1, 2, 3} such that (Ki ∩ domα)α * Ki.

If case (1) holds then the equality α = βαγ and Proposition 1 imply that (Ki ∩
domβ)β ⊆ Ki for any i = 1, 2, 3. Similarly as in the proof of statement (i) Theorem 2(i)
implies that the restrictions β|domα : domα ⇀ N3 and γ|ranα : ranα ⇀ N3 are identity
partial maps.

Suppose that case (2) holds. Then by Corollary 1 there exists an element σ of the
group of units H(I) of the semigroup PO∞(N3

6) such that (Ki ∩domα)σα ⊆ Ki for any
i = 1, 2, 3. Now, the equality α = βαγ implies that

σα = σβαγ = σβIαγ = σβ(σ−1σ)αγ = (σβσ−1)(σα)γ.

By case (1) we have that the restriction γ|ranα : ranα ⇀ N3 is an identity partial map,
which implies that α = αγ. Then we have that α = βαγ = βα and hence by Corollary 5
the restriction β|domα : domα ⇀ N3 is an identity partial map as well, which completes
the proof of statement (ii).
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(iii) Assume that α = βαγ. By the Lagrange Theorem (see: [41, Section 1.5]) for
every element σ of the group of permutations Sn the order of σ divides the order of Sn.
This, Proposition 1 and the equality α = βαγ imply that

(2) (Ki ∩ domβ6)β6 ⊆ Ki and (Ki ∩ dom γ6)γ6 ⊆ Ki, for any i = 1, 2, 3.

Also, the equality α = βαγ implies that

α = βαγ = β(βαγ)γ = β2αγ2 = . . . = β6αγ6.

Then statements (i), (ii) and conditions (2) imply that the restrictions β6|domα : domα ⇀
N3 and γ6|ranα : ranα ⇀ N3 are identity partial maps. By Corollary 1 there exist unique
elements σβ , σγ ∈ H(I) such that (Ki ∩ domβ)βσ−1β ⊆ Ki, (Ki ∩ domβ)σββ ⊆ Ki,

(Ki∩domα)γσ−1γ ⊆ Ki and (Ki∩dom γ)σγγ ⊆ Ki for all i = 1, 2, 3. Then we have that

β6 = (βIβ)(βIβ)(βIβ)

= (βσ−1β σββ)(βσ
−1
β σββ)(βσ

−1
β σββ)

= (βσ−1β )(σββ)(βσ
−1
β )(σββ)(βσ

−1
β )(σββ)

(3)

and

γ6 = (γIγ)(γIγ)(γIγ)
= (γσ−1γ σγγ)(γσ

−1
γ σγγ)(γσ

−1
γ σγγ)

= (γσ−1γ )(σγγ)(γσ
−1
γ )(σγγ)(γσ

−1
γ )(σγγ).

(4)

We claim that (x)(βσ−1β ) = x for any x ∈ domα. Assume that (x)(βσ−1β ) 6= x for

some x ∈ domα. Then the choice of the element σβ ∈ H(I), Theorem 2(i) and (3) imply
that

(x)β6 = (x)(βσ−1β )(σββ)(βσ
−1
β )(σββ)(βσ

−1
β )(σββ)

< (x)(σββ)(βσ
−1
β )(σββ)(βσ

−1
β )(σββ)

6 (x)(βσ−1β )(σββ)(βσ
−1
β )(σββ)

< (x)(σββ)(βσ
−1
β )(σββ)

6 (x)(βσ−1β )(σββ)

< (x)(σββ)

6 x,

which contradicts the fact that the restriction β6|domα : domα ⇀ N3 is an identity
partial map. Hence we have that (x)(βσ−1β ) = x for any x ∈ domα, which implies that

the equality (x)β = (x)σβ holds for any x ∈ domα.
Using (4) as in the above we prove the equality (x)γ = (x)σγ holds for any x ∈ ranα.
The obtained equalities and the de�nition of the composition of partial maps imply

statement (iii). �

Lemma 8. Let α and β be elements of the semigroup PO∞(N3
6) and A be a co�nite

subset of N3. If the restriction (αβ)|A : A ⇀ N3 is an identity partial map then there

exists an element σ of the group of units H(I) of PO∞(N3
6) such that (x)α = (x)σ and

(y)β = (y)σ−1 for all x ∈ A and y ∈ (A)α.
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Proof. We observe that one of the following cases holds:

(1) (Ki ∩A)α ⊆ Ki for any i = 1, 2, 3;
(2) there exists i ∈ {1, 2, 3} such that (Ki ∩A)α * Ki.

If case (1) holds then the assumption of the lemma and Proposition 1 imply that
(Ki ∩ (A)α)β ⊆ Ki for any i = 1, 2, 3. Suppose that (x)α < x for some x ∈ A. Then by
Theorem 2(i) we have that

(x)αβ < (x)β 6 x,

which contradicts the assumption of the lemma. Similarly we show that the case (y)β < y
for some y ∈ (A)α does not hold. The obtained contradiction implies that (x)α = x and
(x)β = x for all x ∈ A.

Suppose that case (2) holds. Then by Corollary 1 there exists an element σ of the
group of units H(I) of the semigroup PO∞(N3

6) such that (Ki ∩domα)ασ ⊆ Ki for any
i = 1, 2, 3. Now, the assumption of the lemma implies that

(x)αβ = (x)αIβ = (x)ασσ−1β = x,

and hence by the above part of the proof we get that (x)ασ = x and (y)σ−1β = x for all
y ∈ (A)α. The obtained equalities and the de�nition of the composition of partial maps
imply the statement of the lemma. �

Lemma 9. Let α, β, γ and δ be elements of the semigroup PO∞(N3
6) such that α = γβδ.

Then there exist γ∗, δ∗ ∈ PO∞(N3
6) such that α = γ∗βδ∗, dom γ∗ = domα, ran γ∗ =

domβ, dom δ∗ = ranβ and ran δ∗ = ranα.

Proof. For a co�nite subset A of N3 by ιA we denote the identity map of A. It is obvious
that ιA ∈PO∞(N3

6) for any co�nite subset A of N3. This implies that α = ιdomααιranα
and β = ιdom ββιran β , and hence we have that

α = ιdomααιranα = ιdomαγβδιranα = ιdomαγιdom ββιran βδιranα.

We put γ∗ = ιdomαγιdom β and δ∗ = ιran βδιranα. The above two equalities and the
de�nition of the semigroup operation of PO∞(N3

6) imply that dom γ∗ ⊆ domα, ran γ∗ ⊆
domβ, dom δ∗ ⊆ ranβ and ran δ∗ ⊆ ranα. Similar arguments and the equality α = γ∗βδ∗

imply the converse inclusions which implies the statement of the lemma. �

Theorem 4. D = J in PO∞(N3
6).

Proof. The inclusion D ⊆J is trivial.
Fix any α, β ∈ PO∞(N3

6) such that αJ β. Then there exist γα, δα, γβ , δβ ∈
PO∞(N3

6) such that α = γαβδα and β = γβαδβ (see [22] or [23, Section II.1]). By
Lemma 9 without loss of generality we may assume that

dom γα = domα, ran γα = domβ, dom δα = ranβ, ran δα = ranα

and

dom γβ = domβ, ran γβ = domα, dom δβ = ranα, ran δβ = ranβ.

Hence we have that α = γαγβαδβδα and β = γβγαβδαδβ . Then only one of the following
cases holds:

(1) (Ki ∩ dom(γαγβ))γαγβ ⊆ Ki for any i = 1, 2, 3;
(2) there exists i ∈ {1, 2, 3} such that (Ki ∩ dom(γαγβ))γαγβ * Ki.
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If case (1) holds then Lemma 7(i) implies that (γαγβ) : domα ⇀ N3 and
(δβδα) : ranα ⇀ N3 are identity partial maps. Now by Lemma 8 there exist elements σα
and σβ of the group of units H(I) of the semigroup PO∞(N3

6) such that (x)γα = (x)σα,

(y)γβ = (y)σ−1α , (u)δβ = (u)σβ and (v)δα = (v)σ−1β , for all x ∈ domα, y ∈ (domα)γα =

ran γα = domβ, u ∈ ranα and v ∈ (ranα)δβ = ran δβ = ranβ. Then the above

arguments imply that α = σαβσ
−1
β and hence by Theorem 3(iv) we get that αDβ in

PO∞(N3
6).

If case (2) holds then we have that

α = γαγβαδβδα = (γαγβ)
2α(δβδα)

2 = . . . = (γαγβ)
6α(δβδα)

6

and

β = γβγαβδαδβ = (γβγα)
2β(δαδβ)

2 = . . . = (γβγα)
6β(δαδβ)

6.

We put

γ◦β = γβ(γαγβ)
5 and δ◦β = δβ(δαδβ)

5.

Lemma 7(i) implies that (γαγ
◦
β) : domα ⇀ N3 and (δ◦βδα) : ranα ⇀ N3 are identity

partial maps. Now by Lemma 8 there exist elements σα and σβ of the group of units H(I)
of the semigroup PO∞(N3

6) such that (x)γα = (x)σα, (y)γ
◦
β = (y)σ−1α , (u)δ◦β = (u)σβ

and (v)δα = (v)σ−1β , for all x ∈ domα, y ∈ (domα)γα = ran γα = domβ, u ∈ ranα and

v ∈ (ranα)δ◦β = ran δ◦β = ranβ. Then the above arguments imply that α = σαβσ
−1
β and

hence by Theorem 3(iv) we get that αDβ in PO∞(N3
6). �
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ÌÎÍÎ�Ä ÌÎÍÎÒÎÍÍÈÕ IÍ'�ÊÒÈÂÍÈÕ ×ÀÑÒÊÎÂÈÕ
ÏÅÐÅÒÂÎÐÅÍÜ ×ÀÑÒÊÎÂÎ ÂÏÎÐßÄÊÎÂÀÍÎ� ÌÍÎÆÈÍÈ
(N3,6) Ç ÊÎÑÊIÍ×ÅÍÍÈÌÈ ÎÁËÀÑÒßÌÈ ÂÈÇÍÀ×ÅÍÍß ÒÀ
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Íåõàé n � íàòóðàëüíå ÷èñëî > 2 i Nn
6 � n-èé ñòåïiíü ìíîæèíè íàòóðàëü-

íèõ ÷èñåë N ç ÷àñòêîâèì ïîðÿäêîì äîáóòêó çâè÷àéíîãî ëiíiéíîãî ïîðÿäêó
íà N.
×àñòêîâå ïåðåòâîðåííÿ α : X6 ⇀ X6 ÷àñòêîâî âïîðÿäêîâàíî¨ ìíîæèíè X6
íàçèâà¹òüñÿ ìîíîòîííèì, ÿêùî ç x 6 y âèïëèâà¹ íåðiâíiñòü xα 6 yα, äëÿ
x, y ∈ X6.
Äîñëiäæåíî ñòðóêòóðíi âëàñòèâîñòi ìîíî¨äà PO∞(Nn

6) ÷àñòêîâèõ ìîíîòîí-
íèõ ïåðåòâîðåíü ÷àñòêîâî âïîðÿäêîâàíî¨ ìíîæèíè Nn

6 ç êîñêií÷åííèìè
îáëàñòÿìè âèçíà÷åííÿ òà çíà÷åíü. Äîâåäåíî, ùî ãðóïà îäèíèöü H(I) íàïiâ-
ãðóïè PO∞(Nn

6) içîìîðôíà ãðóïi Sn ïiäñòàíîâîê n-åëåìåíòíî¨ ìíîæèíè
òà îïèñàíî ïiäíàïiâãðóïó iäåìïîòåíòiâ íàïiâãðóïè PO∞(Nn

6). Òàêîæ, ó âè-
ïàäêó n = 3 îïèñàíî âëàñòèâîñòi åëåìåíòiâ íàïiâãðóïè PO∞(N3

6) ÿê ÷àñò-
êîâèõ ái¹êöié ÷àñòêîâî âïîðÿäêîâàíî¨ ìíîæèíè N3

6, i âiäíîøåííÿ �ðiíà íà
íàïiâãðóïi PO∞(N3

6). Çîêðåìà äîâåäåíî, øî âiäíîøåííÿ �ðiíà D i J íà
ìîíî¨äi PO∞(N3

6) çáiãàþòüñÿ.

Êëþ÷îâi ñëîâà: íàïiâãðóïà ÷àñòêîâèõ ái¹êöié, ìîíîòîííå ÷àñòêîâå âiä-
îáðàæåííÿ, iäåìïîòåíò, âiäíîøåííÿ �ðiíà.


