ISSN 2078-3744. Bicnux Jlveis. yn-my. Cepia mex.-mam. 2019. Bunyck 88. C. 32-50
Visnyk of the Lviv Univ. Series Mech. Math. 2019. Issue 88. P. 32-50
http://publications.lnu.edu.ua/bulletins /index.php /mimf
doi: http://dx.doi.org/10.30970/vmm.2019.88.032-050

YIK 512.534.5

THE MONOID OF MONOTONE INJECTIVE PARTIAL
SELFMAPS OF THE POSET (N3, <) WITH COFINITE DOMAINS
AND IMAGES

Oleg GUTIK, Olha KROKHMALNA

Ivan Franko National University of Luiv,
Universitetska Str., 1, 79000, Lviv, Ukraine
e-mails: oleg.gutik@Inu.edu.ua, Olia709@i.ua

Let n be a positive integer > 2 and NZ be the n-th power of positive
integers with the product order of the usual order on N. In the paper we
study the semigroup of injective partial monotone selfmaps of N¢ with cofinite
domains and images. We show that the group of units H(I) of the semigroup
P0s(NY) is isomorphic to the group .7, of permutations of an n-element
set, and describe the subsemigroup of idempotents of 0., (NZ). Also in the
case n = 3 we describe the property of elements of the semigroup P04 (Ni)
as partial bijections of the poset Ni and Green’s relations on the semigroup
P04 (N2). In particular we show that Z = 7 in P20, (N2).

Key words: semigroup of partial bijections, monotone partial map, idem-
potent, Green’s relations.

1. INTRODUCTION AND PRELIMINARIES

We shall follow the terminology of [19] and [44].

In this paper we shall denote the cardinality of the set A by |A|. We shall identify
all sets X with their cardinality | X|. For an arbitrary positive integer n by %, we denote
the group of permutations of an n-elements set. Also, for infinite subsets A and B of an
infinite set X we shall write AC* B if and only if there exists a finite subset Ay of A such

An algebraic semigroup S is called inverse if for any element x € S there exists a
unique 7! € S such that zz~ 'z = 2 and 2 'zz~! = 27!, The element 2! is called
the inverse of x € S.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If
S is an inverse semigroup then F(S5) is closed under multiplication and we shall refer to
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E(S) as a band (or the band of S). If the band E(S) is a non-empty subset of S then the
semigroup operation on S determines the following partial order < on E(S): e < f if and
only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice
is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or
a chain if its natural order is a linear order.

If S is a semigroup, then we shall denote Green’s relations on S by #, £, 7, 2
and S (see [22] or [19, Section 2.1]):

aZb if and only if aS' = bS?;
a.b if and only if Sta = S'b;
a_Zb if and only if StasSt = S'bS1;
D=L oR=H0YL;
H=LNX.

The %-class (resp., Z-, J€-, - or f-class) of the semigroup S which contains an
element a of S will be denoted by R, (resp., Lo, Hq, D, or J,).

If «: X =Y is a partial map, then by dom o and ran o we denote the domain and
the range of «, respectively.

Let .\ denote the set of all partial one-to-one transformations of an infinite set
X of cardinality A together with the following semigroup operation: z(af) = (za)f if
x € dom(af) = {y € doma: ya € dom B}, for a, 8 € #y. The semigroup .#, is called the
symmetric inverse semigroup over the set X (see [19, Section 1.9]). The symmetric inverse
semigroup was introduced by Wagner [48] and it plays a major role in the semigroup
theory. An element « € %), is called cofinite, if the sets A\ dom v and A\ ran « are finite.

If X is a non-empty set and < is a reflexive, antisymmetric, transitive binary relation
on X then < is called a partial order on X and (X, <) is said to be a partially ordered
set or shortly a poset.

Let (X, <) be a partially ordered set. A non-empty subset A of (X, <) is called:

e a chain if the induced partial order from (X, <) onto A is linear, i.e., any two
elements from A are comparable in (X, <);

e an w-chain if A is order isomorphic to the set of negative integers with the usual
order <;

e an anti-chain if any two distinct elements from A are incomparable in (X, <).

For an arbitrary € X and non-empty A C X we denote
tr={yeX:x<y}, le={yeX:y<a}, tA=|Jte and |A=[]lz
€A TEA

We shall say that a partial map a: X — X is monotone if z < y implies (z)a < (y)a for
x,y € dom a.
Let N be the set of positive integers with the usual linear order < and n > 2 be
an arbitrary positive integer. On the Cartesian power N® = N x --- x N we define the
—_——

n-times
product partial order, i.e.,

(B1y- e ytn) < (J1s- -5 7n) if and only if (ixg <jg) forall k=1,...,n.
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Later the set N with this partial order will be denoted by NZ.

For an arbitrary positive integer n > 2 by £0(NZ) we denote the semigroup of
injective partial monotone selfmaps of Ng with cofinite domains and images. Obviously,
PO (NY) is a submonoid of the semigroup %, and 0, (N ) is a countable semigroup.

Furthermore, we shall denote the identity of the semigroup #0(NZ) by I and the
group of units of #0,,(NZ) by H(I).

The bicyclic semigroup (or the bicyclic monoid) € (p,q) is the semigroup with the
identity 1 generated by two elements p and ¢, subject only to the condition pg = 1.
The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every homomorphism h of the bicyclic semigroup is either
an isomorphism or the image of € (p, ¢) under h is a cyclic group (see [19, Corollary 1.32]).
The bicyclic semigroup plays an important role in algebraic theory of semigroups and
in the theory of topological semigroups. For example a well-known Andersen’s result [1]
states that a (0-)simple semigroup with an idempotent is completely (0-)simple if and
only if it does not contain an isomorphic copy of the bicyclic semigroup. Semigroup
topologizations and shift-continuous topologizations of generalizations of the bicyclic
monoid, they embedding into compact-like topological semigroups was studied in [5]-
[9], [11, 14, 18, 20, 21], [24]-[28], [34, 35, 43, 46] and [2, 3, 4, 10, 12, 33, 42], respectively.

The bicyclic monoid is isomorphic to the semigroup of all bijections between upper-
sets of the poset (N, <) (see: see Exercise IV.1.11(ii) in [47]). So, the semigroup of injecti-
ve isotone partial selfmaps with cofinite domains and images of positive integers is a
generalization of the bicyclic semigroup. Hence, it is a natural problem to describe semi-
groups of injective isotone partial selfmaps with cofinite domains and images of posets
with w-chain.

The semigroups .#4 (N) and .#Z (Z) of injective isotone partial selfmaps with cofinite
domains and images of positive integers and integers, respectively, are studied in [34] and
[35]. It was proved that the semigroups .#¢ (N) and .#{ (Z) have similar properties to the
bicyclic semigroup: they are bisimple and every non-trivial homomorphic image ﬂO/O (N)
and ¥4 (Z) is a group, and moreover the semigroup .#4 (N) has Z(+) as a maximal
group image and .#Z (Z) has Z(+) x Z(+), respectively.

In the paper [36] algebraic properties of the semigroup fff of cofinite partial bijecti-
ons of an infinite cardinal X\ are studied. It is shown that f)‘ff is a bisimple inverse semi-
group and that for every non-empty chain L in E(J)‘ff) there exists an inverse subsemi-
group S of ﬂ;\’f such that S is isomorphic to the bicyclic semigroup and L C E(S),
Green’s relations on fff are described and it is proved that every non-trivial congruence
on #{f is a group congruence. Also, the structure of the quotient semigroup ¢/,
where o is the least group congruence on #5t, is described.

In the paper [32] the semigroup #0, (Z},,) of monotone injective partial selfmaps
of the set of L, Xjex Z having cofinite domain and image, where L,, Xjex Z is the lexi-
cographic product of n-elements chain and the set of integers with the usual linear order
is studied. Green’s relations on J0,(Z},,) are described and it is shown that the semi-
group SO0 (Z}, ) is bisimple and its projective congruences are established. Also, in [32]
it is proved that S0, (7!, ) is finitely generated, every automorphism of £0,,(Z) is

lex
inner, and it is shown that in the case n > 2 the semigroup #0,(Z},) has non-inner
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automorphisms. In [32] we proved that for every positive integer n the quotient semi-
group S0 (Z3,.)/o, where o is a least group congruence on Y0 (Zf.), is isomorphic to
the direct power (Z(+))*". The structure of the sublattice of congruences on .#0s, (z3,)
which are contained in the least group congruence is described in [29].

In the paper [30] algebraic properties of the semigroup £20,, (Ni) are studied. The
properties of elements of the semigroup £0,, (Ni) as monotone partial bijection of Ni
are described and showed that the group of units of QZ@X,(N@ is isomorphic to the
cyclic group of order two. Also in [30] the subsemigroup of idempotents of 20, (N%)
and Green’s relations on Z0,, (Né) are described. In particular, it is proved that 2 = #
in P0,,(N%). In [31] the natural partial order < on the semigroup &0, (N%) is described
and it is shown that it coincides with the natural partial order the induced from symmetric
inverse monoid over the set N x N onto the semigroup @ﬁm(Ni). Also, it is proved that
the semigroup F0,,(NZ ) is isomorphic to the semidirect product P05 (NZ) x Zy of the
monoid Z0% (N2 ) of orientation-preserving monotone injective partial selfmaps of N2
with cofinite domains and images by the cyclic group Zs of order two. It is described the
congruence ¢ on the semigroup gzﬁoo(Ni), which is generated by the natural order < on
the semigroup 20, (N ): aof3 if and only if @ and 3 are comparable in (20, (N2), <). Tt
is proved that the quotient semigroup 20+ (Ni) /o is isomorphic to the free commutative
monoid AM,, over an infinite countable set and it is shown that the quotient semigroup
PO (NZ)/o is isomorphic to the semidirect product of the free commutative monoid
2AM,, by the group Z,.

In the paper [38] the semigroup IN,, of all partial co-finite isometries of positive
integers is studied. The semigroup IN, is some generalization of the bicyclic monoid and
it is a submonoid of .#{ (N). Green’s relations on the semigroup IN,, and its band are
described there and it is proved that IN,, is a simple E-unitary F-inverse semigroup.
Also there is described the least group congruence € on IN,, and it is proved that the
quotient semigroup INy, /€pg is isomorphic to the additive group of integers. An example
of a non-group congruence on the semigroup IN,, is presented. Also, it is proved that
a congruence on the semigroup IN is a group congruence if and only if its restriction
onto an isomorphic copy of the bicyclic semigroup in IN, is a group congruence.

In the paper [39] submonoids of the monoid .#7"(N) of almost monotone injective
co-finite partial selfmaps of positive integers N is established. Let %y be the subsemigroup
#7(N) which is generated by the partial shift n +— n + 1 and its inverse partial map. In
[39] it was shown that every automorphism of a full inverse subsemigroup of .#Z (N) which
contains the semigroup %y is the identity map. Also there is constructed a submonoid
INY of #7(N) with the following property: if S is an inverse submonoid of .#7"(N)
such that S contains INL% as a submonoid, then every non-identity congruence € on S is
a group congruence. Also, it is proved that if S is an inverse submonoid of /O';/ (N) such
that S contains %y as a submonoid then S is simple and the quotient semigroup S/€pmg,
where € is minimum group congruence on S, is isomorphic to the additive group of
integers.

We observe that the semigroups of all partial co-finite isometries of integers are
studied in [15, 16, 37].
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The monoid IN?. of cofinite partial isometries of the n-th power of the set of positive
integers N with the usual metric for a positive integer n > 2 is studied in [40]. The
semigroup IN7, is a submonoid of 20, (NZ) for any positive integer n > 2. In [40] it
is proved that for any integer n > 2 the semigroup IN7 is isomorphic to the semidirect
product .7, Xy (P (N™),U) of the free semilattice with the unit (F+(N"),U) by the
symmetric group .%,.

Later in this paper we shall assume that n is an arbitrary positive integer > 2.

In this paper we study the semigroup of injective partial monotone selfmaps of
the poset N with cofinite domains and images. We show that the group of units H(I)
of the monoid £0,, (NZ) is isomorphic to the group %, and describe the subgroup of
idempotents of Z0.,(NZ). Also in the case n = 3 we describe the property of elements
of the semigroup gzﬁoo(Nz) as partial bijections of the poset N2 and Green’s relations
on the semigroup P04 (Ni) In particular we show that ¥ = ¢ in 0 (N‘i)

2. PROPERTIES OF ELEMENTS OF THE SEMIGROUP ,@ﬁw(Ng) AS MONOTONE
PARTIAL PERMUTATIONS

In this short section we describe properties of elements of the semigroup &0, (NZ)
as monotone partial transformations of the poset Ng. h

It is obvious that the group of units H(I) of the semigroup 0 (NZ) consists of
exactly all order isomorphisms of the poset N2 and hence Theorem 2.8 of [28] implies
the following

Theorem 1. For any positive integer n the group of units H(I) of the semigroup
gzﬁoo(Nz) is isomorphic to the group .7, of permutations of an n-elements set.
Moreover, every element of H(I) permutates coordinates of elements of N, and only
these permutations are elements of H(I).

Since every a € P0,,(NZ) is a cofinite monotone partial transformation of the poset
NZ the following statement holds.

Lemma 1. If (1....,1) € doma for some a € PO (NZ) then (1....,a = (1....,1).

For an arbitrary i = 1,...,n define
;={1,...,om ,...,1) e N": m € N}
ith

and by pr;: N — N” denote the projection onto the i-th coordinate, i.e., for every
(my,...,myi,...,my) € N* put

(my,y.ooy mi,ooo,mp)pr; = (1,000, my ..., 1).
~— ~—
ith ith

Lemma 2. Let {T1,...,Tr} be a set of points in N\ {(1,...,1)}, k € N. Then the set
N\ (1Z1 U... U1Ty) is finite if and only if k > n and for every J#;, i =1,...,n, there
exists T; € {T1,...,Tr} such that T; € ;.

Proof. (<) Without loss of generality we may assume that z; € %} for every positive

integer j < n. Then simple verifications imply that the set N*\ (171 U ... U1Z,,) is finite,
and hence so is the set N*\ (17, U ... U1Zy).
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(=) Suppose to the contrary that there exist a subset {Z1,...,Zr} C N"\{(1,...,1)}
and an integer i € {1,...,n} such that N* \ (1Z; U...U1Z}) is finite and z; ¢ % for
any j € {1,...,k}.

The definition of J%; (i = 1,...,n) implies that % with the induced partial order
from NT is an w-chain such that |.#; = 7. Hence, for any z € N" we have that
either % \ 1Z is finite or % N1Z = @. Then by our assumption we get that the set
N™\ (1Z; U...U1Z,) is infinite, a contradiction. The inequality k& > n follows from the
above arguments. O

Later for an arbitrary non-empty subset A of N by € 4 we shall denote the identity
map of the set N* \ A. It is obvious that the following lemma holds.

Lemma 3. For an arbitrary non-empty subset A of N, € 4 is an element of the semigroup
f@ﬁoo(NZ), and hence so are e aa, aep, and € q4ae 4 for any o € @@,O(N’%).

Proposition 1. For an arbitrary element o of the semigroup «@ﬁoo(NZ) there exists a
unique permutation s: {1,...,n} — {1,...,n} such that (J; N doma)a C ;) for any
1=1,...,n.

Proof. Lemma 3 implies that without loss of generality we may assume that (1,...,1) ¢
doma and (1,...,1) ¢ rana.

Since for any ¢ = 1,...,n the set J with the induced order from the poset NZ
is an w-chain, the set JZ; N dom « contains the least element Z?. By Lemma 2 the set
N™\ (11 U---UAT,) is finite and hence so is dom o\ (177 U- - - U1, ). Since « is a cofinite
partial bijection of N", we have that

(U Ut )a = (1] )aU--- U (11,)a

and the set N™\ ((Trf)a U---u (TZZ)O&) is finite. Also, since « is a monotone partial

bijection of the poset NZ we obtain that (TZ?)OL - T(L )a for all i = 1,...,n. Then by

Lemma 2 there exists a permutation s: {1,...,n} — {1,...,n} such that (I;)o € Hiys
for any i = 1,...,n, because

N (HE U+ U (15)a) € NP\ (1) acU -+ U (115)a)

and the set N™ \ (1(I{)aU--- U (17, )a) is finite. This implies that (T)a € #{;, for all
T € #Ndoma and any i = 1,...,n.

The proof of uniqueness of the permutation s for o € @ﬁm(NE) is trivial. This
completes the proof of the proposition. O

Theorem 1 and Proposition 1 imply the following corollary.

Corollary 1. For every element o of the semigroup ,@ﬁm(NZ) there exists a unique
element o of the group of units H(I) of P00 (N¢) such that (J; Ndoma)ao C %; and
(A Ndoma)o ta C % foralli=1,...,n.

Lemma 4. There is no a finite family {L1,..., Ly} of chains in the poset Ni such that
N2 = L, U---U Ly. Moreover, every co-finite subset in Ni has this property.
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Proof. Suppose to the contrary that there exists a positive integer k such that N? =
LiU---ULy and L; is a chain for each i = 1,..., k. Then
{(1,k+1),(2,k),...,(k,2),(k+1,1)}

is an anti-chain in the poset Ni which contains exactly k + 1 elements. Without loss of
generality we may assume that L; N L; = @ for i # j. Since N> = L; U--- U Ly, by
the pigeonhole principle (or by the Dirichlet drawer principle, see [13, Section 7.3]) there
exists a chain L;, i = 1,...,k, which contains at least two distinct elements of the set
{(1,k+1),(2,k),...,(k,2),(k+1,1)}, a contradiction.

Assume that A is a co-finite subset of N2 such that A = N?\ {zy,...,z,} for some
positive integer p. For every ¢ = 1,...,p we put Lii; = {x;}. Then for every finite
partition {Li,..., L} of A such that L; is a chain for each ¢ = 1,...,k the family
{L1,..., L, Ly+1 ..., Lg+p} is a finite partition of the poset Ni such that L; is a chain
for each ¢ = 1,...,k + p. This contradicts the above part of the proof, and hence the
second statement of the lemma holds. O

For any distinct ¢,5 € {1,...,n} we denote
Hii={(z1,...,zn) Nz, =1 forall ke{l,...,n}\{ij}}
and
Ky = Hig \ (AU A)

Lemma 5. Letn be a positive integer > 3. Let T; be an arbitrary element of J\{1,...,1}
fori=3,...,n andy, 5 be an arbitrary element of #,°%. Then there exists a finite family
{L1,..., Li} of chains in the poset N such that

LyU--- ULy =N"\ (17, , UTT3 U - U1T,) .
Proof. Let z; = (1,1,..., =; ,...,1) fori =3,...,n and §; 5 = (y1,¥2,1...,1). Then
ith
for any element @ = (aq,...,a,) of the set N\ (T@LQ UtzsU---U Tfn) the following
conditions hold:
(1) a; < z; for any ¢ = 3,...,n;

(#) if a1 > y; then as < ys;

(#i7) if as > yo then a1 < y;.
These conditions imply that

Nn\(Tyl,QUTf3U"'UT§n) :U{S(k37"'7k7t): k3 <-733a-~-7kn<37n}7

where
S(ks, .. kn) = J{Lilks, ... kn)si=1,...9n — 1} U
U J{Rj(ks, .. kn): i =1,...y2 =1},
with
Li(ks,....k,) ={(,p, ks,...,k,) e N*: p e N}
and

Rj(k37"'7kn):{(p7jak37"'7kn) EaneN}
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We observe that for arbitrary positive integers i,j, ks, ..., k, the sets L;(ks,...,k,) and
Rj(ks, ..., ky) are chains in the poset NZ. Since the set N™ \ (17, , U1Ts U --- U 1Z,,) is
the union of finitely many sets of the form S(ks, ..., k,) the above arguments imply the
required statement of the lemma. O

Proposition 2. Let a be an element of P05 (NL) such that (/; N doma)a C % for
alli=1,...,n. Then (4, ;, Ndoma)a C 4, 4, for all distinct i1,i2 =1,...,n

Proof. Suppose to the contrary that there exists T € %, ;, N doma such that (Z)a ¢
i, ip- By Theorem 1 without loss of generality we may assume that i1 = 1 and iy = 2,

ie,T e Ao and (T)a ¢ A 2. By Lemma 1, T # (1,...,1).

For every i = 3,...,n we let Z0 = (1,1,..., 2 ,...,1) € doma«a be the smallest
ith
element of .#; such that (Z9)a # (1,...,1). There exists xl = (z,2%,1,...,1) €

2
dom o N 7% such that T < 77 5. Since « E P05 (NY), (T)a < (TTo)a ¢ 2.
Now, the monotonicity of a implies that (Tml ) C T( o) and (1Z¢)a C

1 () a for any 7 = 3,...,n. By our assumption we have that
HpNrana C (N2 \ (127, UTZE U - U1T))) o

Since the partial transformation « preserves chains in the poset N%, Lemma 5 implies
that the set %] o Nran a is a union of finitely many chains, which contradicts Lemma 4.
The obtained contradiction implies the assertion of the proposition. O

Theorem 2. Let a be an element of the semigroup PO, (N%) such that (J£;Ndom a)or C
J; for all i =1,2,3. Then the following assertions hold:
(i) if ($1,$2,$3) € doma and (1,2, 2z3)a = (x5, 25, 23) then ¢ < 1, 2§ < x9
and z§ < x3 and hence (T)a < T for any T € dom «;
(ii) there exists a smallest positive integer n, such that (x1,xe,x3)a = (21, T2, 23)
for all (z1,22,23) € doma NN (Na, Na, Na)-
Proof. (i) We shall prove the inequality z§ < z;7 by induction. The proofs of the inequali-
ties z§ < x5 and z§ < x3 are similar.
By Proposition 2 we have that if 1 = 1 then z{ = 1, as well.
Next we shall show that the following statement holds:
if for some positive integer p > 1 the inequality x1 < p implies ¢ < x1 then the
equality x1 = p implies z§ < 1, too.
Suppose to the contrary that there exists (z1,z2,x3) € dom « such that
x1 =p= (21,22, z3)pty, (T1,22,23)a = (zf,25,25) and x1+ 1<z}
We define a partial map w: N3 — N3 with domw = N?\ ({1} x L(x2) x L(z2)) and
ranw = N3 by the formula
(i ioi ) i (il — 1,i2,i3), if i € L(mg) and i3 € L(l‘g);
LRI (i, 49, 43), otherwise,
where L(xg) = {1,...,22} and L(xs) = {1,...,x3}. It is obvious that w € P20, (N%),

and hence yw" € PO, (N2 ) for any positive integer k and any v € P20, (N2 ). This
observation implies that without loss of generality we may assume that 2§ = x;+1. Then
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the assumption of the theorem implies that there exists the smallest element (i, 1,1) of
J# such that 4% > ¢ +1, where (4%, 1,1) = (im, 1, 1)c. Since (1(im, 1, 1)) € 1(¢%, 1, 1),
(M(21, w2, m3)) C N, 25, x$) and the set N3 \ ran « is finite, our assumption implies
that the set

o1 (@) = {(21,p2,p3) € doma: pa,p3 € N}

is a union of finitely many subchains of the poset (N®,<). This contradicts Lemma 4
because the set .7, (o) with the induced partial order from NZ is order isomorphic
to a cofinite subset of the poset Ni. The obtained contradiction implies the requested
inequality = < 7 and hence we have that statement (7) holds.

The last assertion of (i) follows from the definition of the poset NZ.

(#4) Fix an arbitrary o € Z20,, (Ni) such that (JNdoma)a C %7 forall i = 1,2, 3.
Suppose to the contrary that for any positive integer n there exists

(z1, 22, 23) € domar N 1(n, n,n)
such that (21, z2,23)a # (21, 22, 3). We put Ngoma = ‘N:} \ doma’ 41 and
Mdoma = max{ {z1: (x1,22,23) ¢ doma},{zs: (x1,22,23) ¢ doma},
{z3: (z1,22,23) ¢ doma} } + 1.

The definition of the semigroup £0,, (Ni) implies that the positive integers Ngom o and
Mdom o are well defined. Put ng = max {Ngom o, Mdom « }- Then our assumption implies
that there exists (1,22, 23) € doma N 1T(ng, ng,np) such that

(.’E17£L'2,$3)Oé = (‘rtll7x37$§) 7é (£C171'2,$3).

By statement (i) we have that (x¢,2%,2$) < (x1,z2,23). We consider the case when
z¢ < x1. In the cases when z§ < x5y or z§ < 3 the proofs are similar. We assume
that 21 < x2 and x; < 3. By statement (i) the partial bijection « maps the set
S = {(x, y,2) EN3: oy, 2 <y — 1} into itself. Also, by the definition of the semigroup
PO, (N2 ) the partial bijection o maps the set

{(x1,1,1),..., (21,1, 21), (21,2, 1), ..., (21,2, 21), .. ., (21,21, 1), ..., (21,21, 21)}
into S, too. Then our construction implies that
1S\ doma| = |[N*\ dom | = Ngoma — 1
and
{(x1,1,1),...,(x1,1,21),(21,2,1), ... ,(x1,2,21), ... ,(z1,21,1), ... ,(z1,21,21) }| = Ndom as

a contradiction. In the case when o < 1 and x2 < z3 or z3 < z1 and z3 < 22 we get
contradictions in similar ways. This completes the proof of existence of such a positive
integer n, for any o € ﬂﬁ’oo(Ni). The existence of such minimal positive integer n,
follows from the fact that the set of all positive integers with the usual order < is well-
ordered. O

Theorem 2(iii) and Proposition 1 imply the following corollary.
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Corollary 2. For an arbitrary element o of the semigroup @ﬁm(Ni) there exist
elements 01,09 of the group of units H(I) of @ﬁm(N‘i) and a smallest positive integer
ne such that

(z1, 72, x3)0100 = (21, T2, ¥3) 02 = (1,72, 73)

for each (x1,z2,x3) € doma N (ng, Na, Na) -
Corollary 2 implies

Corollary 3. ’N?’ \ rana| < ‘N?’ \ dom | for an arbitrary o € POy (NL).

3. ALGEBRAIC PROPERTIES OF THE SEMIGROUP 0, (N%)

Proposition 3. Let X be a non-empty set and let PPB(X) be a semigroup of partial
bijections of X with the usual composition of partial self-maps. Then an element o of
PB(X) is an idempotent if and only if « is an identity partial self-map of X.

Proof. The implication (<) is trivial.

(=) Let an element « be an idempotent of the semigroup 2% (X). Then for every
r € doma we have that (r)aa = (z)a and hence we get that doma? = dom« and
rana? = rana. Also since « is a partial bijective self-map of X we conclude that the
previous equalities imply that dom o = ran o. Fix an arbitrary € dom « and suppose
that (z)a = y. Then (z)a = (r)aa = (y)a = y. Since « is a partial bijective self-map of
the set X, we have that the equality (y)o = y implies that the full preimage of y under
the partial map « is equal to y. Similarly the equality (v)a = y implies that the full
preimage of y under the partial map « is equal to x. Thus we get that © = y and our

implication holds. O

Proposition 3 implies the following corollary.

Corollary 4. An element o of ?ﬁw(NZ) is an idempotent if and only if a is an identity
partial self-map of NZ with the cofinite domain.

Corollary 4 implies the following proposition.

Proposition 4. Letn be a positive integer > 2. The subset of idempotents E( P05 (NY))
of the semigroup PO (NY) is a commutative submonoid of Y0 (NL) and moreover
E(P0(NY)) is isomorphic to the free semilattice with unit (2*(N"),U) over the set
N™ under the map (¢)h = N\ dome.

Later we shall need the following technical lemma.

Lemma 6. Let X be a non-empty set, PB(X) be the semigroup of partial bejections of
X with the usual composition of partial self-maps and o« € PAB(X). Then the following
assertions hold:
(i) a =~a for some v € PB(X) if and only if the restriction v|doma: doma — X
is an identity partial map;
(13) o = ary for some v € PB(X) if and only if the restriction ¥|jana: rana — X
is an identity partial map.
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Proof. (i) The implication (<) is trivial.

(=) Suppose that a = ya for some v € Z%(X). Then dom o C dom~y and dom « C
ran+y. Since v: X — X is a partial bijection, the above arguments imply that (z)y = «
for each = € dom . Indeed, if (x)y = y # « for some y € dom « then since a: X — X is
a partial bijection we have that either

(¥)a = (2)ya = (y)a # (2)a, if yedoma,

or (y)a is undefined. This completes the proof of the implication.
The proof of (i%) is similar to that of (¢). O

Lemma 6 implies the following corollary.

Corollary 5. Let n be a positive integer > 2 and o be an element of the semigroup
PO (N ). Then the following assertions hold:

(1) a=ya for some v € PO (NL) if and only if the restriction v|doma: doma —
N™ is an identity partial map;

(1) o= ay for somey € PO (NL) if and only if the restriction |rano: rana — N"
is an identity partial map.

The following theorem describes Green’s relations %, Z, 7¢ and & on the semigroup
P05 (N2).

Theorem 3. Let « and B be elements of the semigroup @ﬁm(Ni). Then the following
assertions hold:
(1) aZB if and only if « = pB for some p € H(I);
(i) aZpB if and only if « = v for some v € H(I);
(ii7) adB if and only if o = uP = Pv for some u,v € H(I);
(iv) a2p if and only if o« = pPv for some p,v € H(L).

Proof. (i) The implication (<) is trivial.
(=) Suppose that a.Zf in the semigroup gzﬁoo(Ni). Then there exist v,0 €
gzﬁoo(N?é) such that & = v and 8 = da. The last equalities imply that ran o = ran .
Next, we consider the following cases:
(11) (G Ndoma)a € % and (; Ndom )3 C J; for all i, j = 1,2, 3;
(i2) (A Ndoma)a C J for all ¢« = 1,2,3 and (% NdomB)3 ¢ ¥; for some

J=123;
(i3) (4 Ndoma)a ¢ J# for some i = 1,2,3 and (¢ NdompB)3 C %; for all
J=123;

(ia) (A Ndoma)a € 4 and (; Ndom B)3 € %; for some i,j =1,2,3.
Suppose that case (i) holds. Then Proposition 1 and the equalities a = v and
8 = da imply that
(1) (A ndom~y)y C % and (A#;Ndomd)d C 75, forall i,57=1,2,3,
and moreover we have that a = vda and 5 = 5. Hence by Lemma 6 we have that the
restrictions (76)|doma: doma — N? and (§7)|doms: dom 3 — N? are identity partial

maps. Then by condition (1) we obtain that the restrictions v|qoma: doma — N® and
Slaoms: dom 3 — N3 are identity partial maps, as well. Indeed, otherwise there exists
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7 € dom « such that either (Z)y £ T or (Z)d £ 7, which contradicts Theorem 2(ii). Thus,
the above arguments imply that in case (i1) we have the equality oo = .

Suppose that case (i3) holds. By Corollary 1 there exists an element p of the group of
units H (I) of the semigroup Y04 (Ni) such that (J;Ndom B)up C J; forall j =1,2,3,
and, since a.Z 3, we have that

a=78=918=~(u""n)B = (vu"")(1p)

and pf = (ud)a. Hence we get that a.Z(ufB), (#Ndom a)aw C ¢ and (Z;Ndom B)uf C
; for all 4,5 = 1,2, 3. Then we apply case (i1) for the elements o and p5 and obtain the
equality o = puf3, where p is the above determined element of the group of units H (I).

In case (i3) the proof of the equality o = pf is similar to case (i2).

Suppose that case (i4) holds. By Corollary 1 there exist elements 1, and pg of the
group of units H(I) of the semigroup PO, (N%) such that (J¢; N dom a)ua € #; and
(o Ndom B)ugp C #; for all 4,5 = 1,2,3, and, since a.Z3, we have that

a=78=18=~(uz'np)B = (vpz") (1s)
and

B =da=bla=b(u;" ) = (5p5") (pac).
Hence we get that

oo = (pavpg ) (upB)  and  pgB = (upduy")(Hac).

The last two equalities imply that (1g5)-Z () and by above part of the proof we have
that (J; Ndoma)pea € %5 and (; N dom B)ugf C J; for all i,j = 1,2,3. Then we
apply case (i1) for the elements uqa and pgf and obtain the equality poo = pgf. Hence
a = pg o = pytpugB. Since g, po € H(L), p= pytus € H(IL) as well.

The proof of assertion (i7) is dual to that of (7).

Assertion (i4i) follows from (i) and (i%).

(iv) Suppose that a2 in 20, (N2). Then there exists v € P20, (N2) such that
o~ and 7% (. By statements (i) and (z\z) there exist u,v € H(I) such that o = wy and

~v = Br and hence o = pufv. Converse, suppose that « = pfv for some p, v € H(I). Then
by (), (i7), we have that o.(fv) and (Sv)Zf3, and hence aZf in @ﬁm(Ni). O

Theorem 3 implies Corollary 6 which gives the inner characterization of Green’s
relations ., %, and . on the semigroup @ﬁw(Ni) as partial permutations of the
poset NZ.

Corollary 6. (1) Every £-class of Bzﬁoo(Ni) contains exactly 6 distinct elements.
(i3) Every %Z-class of @ﬁw(Ni) contains ezactly 6 distinct elements.
(i11) BEvery #-class of P0s(N%) contains at most 6 distinct elements.

Proof. Statements (¢), (i¢) and (i4i) are trivial and they follow from the corresponding
statements of Theorem 3. d

Lemma 7. Let o, 3 and v be elements of the semigroup (@ﬁoo(N‘i) such that o = Bary.
Then the following statements hold:
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(1) if (ZiNdom B)B C J; for any i = 1,2,3, then the restrictions Blaoma: doma —
N? and Y|rano: rana — N3 are identity partial maps;
(i) if (HiNdom~)y C % for anyi = 1,2,3, then the restrictions S|doma: doma —
N3 and Y|rana: rana — N? are identity partial maps;
(#11) there ewist elements o3 and o, of the group of units H(T) of PO, (N ) such that
= 0pQ0.

Proof. (i) Assume that the inclusion (% Ndom 5)5 C % holds for any ¢ = 1,2, 3. Then
one of the following cases holds:

(1) (#Nndoma)o C % for any i = 1,2, 3;

(2) there exists ¢ € {1,2,3} such that (2% Ndoma)a € J.

If case (1) holds then the equality @ = Say and Proposition 1 imply that (£ N
dom~)y C %; for any i = 1,2, 3. Suppose that ()8 < T for some T € dom . Then by
Theorem 2(i) we have that

(@)= (T)fay < (T)ay < (T)a,

which contradicts the equality o = Bary. The obtained contradiction implies that the
restriction B|goma: doma — N3 is an identity partial map. This and the equality o =
Bary imply that the restriction ¥|;ano: rana — N3 is an identity partial map too.

Suppose that case (2) holds. Then by Corollary 1 there exists an element o of the
group of units H (I) of the semigroup P05 (Ni) such that (7 Ndom a)aoc C % for any
i =1,2,3. Now, the equality a = Bary implies that

Qo = 50(’}/0' = 50411’)/0' = 605(0'0'_1)")/0' = B(O&O’)(U_l’yo')_

By case (1) we have that the restrictions 3|qom«: dom a — N3 is an identity partial map,
which implies that Sa = a. Then we have that & = Bay = ary and hence by Corollary 5
the restriction 7|;an: rana — N? is an identity partial map, which completes the proof
of statement (7).

(7i) The proof of this statement is dual to (7). Indeed, assume that the inclusion

(€ Ndomy)y C J# holds for any i = 1,2, 3. Then one of the following cases holds:
(1) (V4 Nndoma)a C % for any i = 1,2, 3;
(2) there exists ¢ € {1,2,3} such that (2% Ndoma)a € J.

If case (1) holds then the equality @ = Say and Proposition 1 imply that (£ N
dom 8)5 C #; for any i = 1,2, 3. Similarly as in the proof of statement (i) Theorem 2(7)
implies that the restrictions $|qoma: doma — N* and 7|rana: rana — N3 are identity
partial maps.

Suppose that case (2) holds. Then by Corollary 1 there exists an element o of the
group of units H (T) of the semigroup 20, (N2 ) such that (£ Ndom a)oa C % for any
i=1,2,3. Now, the equality a = Bary implies that

oo = oBay = oflay = oB(c o)y = (6B ) (oa)y.
By case (1) we have that the restriction 7y|;ana: rana — N3 is an identity partial map,
which implies that @ = a-y. Then we have that « = fay = Ba and hence by Corollary 5
the restriction B|goma: doma — N2 is an identity partial map as well, which completes
the proof of statement (7).
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(731) Assume that o = Say. By the Lagrange Theorem (see: [41, Section 1.5]) for
every element o of the group of permutations .#,, the order of ¢ divides the order of .7,.
This, Proposition 1 and the equality o = Sa-y imply that

(2) (A Ndom B%)3° C .7 and (A Ndom~®)y® C 7, for any i=1,2,3.
Also, the equality o = SBary implies that

a = fay = B(Bay)y = fPar® = ... = By’
Then statements (i), (74) and conditions (2) imply that the restrictions 3%|qom «: dom o —
N? and 7%|;an o Tana — N? are identity partial maps. By Corollary 1 there exist unique
elements 03,0, € H(I) such that (o4 N domﬂ)ﬁaﬁ_l C %, (Jndom B)ogh C i,
(AiNndoma)yo; ! € #; and (#; Ndomy)o,y C % for all i = 1,2,3. Then we have that

5% = (BIA)(B1B)(BIA)
(3) = (Bog'opB)(Boy opB)(Bog asp)

= (Bo5")(058)(Bog ") (058)(Boz ") (058)

7% = (YI) (4Iy) (1)
(4) = (yo3'oy7)(v05 oy ) (ot o)
= (yo; (o) (vo ) (o4) (vo ) (047)-

We claim that (E)(ﬁagl) = T for any T € dom a. Assume that (T)(ﬁagl) # T for
some T € dom . Then the choice of the element og € H(I), Theorem 2(i) and (3) imply
that

(T)B° = (T)(Bog ) (osB) (Bog ) opB) (Boz ) (0sh)
< (®)(0pB)(Bog ) (opB)(Boz ") (0ph)
< (@) (Bog 1)(0ﬂﬁ)(ﬁ051)(0 B)
< (x)(0pB)(Bog ") (opB)
< () (Bog ) (o)
< (@)(0sB)
<7

which contradicts the fact that the restriction 3%|goma: doma — N3 is an identity
partial map. Hence we have that (Z )(606 ) = T for any T € dom «, which implies that
the equality ()8 = (Z)og holds for any T € dom .
Using (4) as in the above we prove the equality (Z)y = (Z)o, holds for any T € ran a.
The obtained equalities and the definition of the composition of partial maps imply
statement (7i7). O

Lemma 8. Let a and B be elements of the semigroup :@ﬁoo(N‘i) and A be a cofinite
subset of N3. If the restriction (af)|a: A — N3 is an identity partial map then there
exists an element o of the group of units H(I) of 20 (N%) such that (T)a = (T)o and
@B = @)o~" forallT € A and j € (A)a.
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Proof. We observe that one of the following cases holds:
(1) (A NAa C % for any i = 1,2,3,;
(2) there exists ¢ € {1,2,3} such that (J N A)a € .

If case (1) holds then the assumption of the lemma and Proposition 1 imply that
(AN (A)a)B C % for any i = 1,2, 3. Suppose that (T)a < T for some T € A. Then by
Theorem 2(i) we have that

(T)aB < (@)B <7,
which contradicts the assumption of the lemma. Similarly we show that the case ()5 <7
for some § € (A)a does not hold. The obtained contradiction implies that (Z)a = T and
(Z)p =7 for all T € A.

Suppose that case (2) holds. Then by Corollary 1 there exists an element o of the
group of units H (I) of the semigroup ﬁﬁw(Ni) such that (7 Ndom a)aoc C J for any
i =1,2,3. Now, the assumption of the lemma implies that

(T)aB = (T)alB = (T)aco ' =T,
and hence by the above part of the proof we get that (Z)aoc =7 and (7)o 13 = T for all

7 € (A)a. The obtained equalities and the definition of the composition of partial maps
imply the statement of the lemma. O

Lemma 9. Let «, 3, v and § be elements of the semigroup POy, (N‘i) such that o = 4.
Then there exist v*,0* € @ﬁm(Ni) such that oo = v*6*, dom~y* = doma, rany* =
dom 3, dom §* = ran 8 and ran§* = ran a.

Proof. For a cofinite subset A of N3 by 14 we denote the identity map of A. It is obvious
that 14 € P0(NL) for any cofinite subset A of N?. This implies that o = tqom a®rana
and B = tdom gBtran 8, and hence we have that

& = ldom a®lran o = ldom aVﬁéLran a = ldom aYldom ,Bﬁbran BéLran -

We put v* = tdomaYldomps and 0" = lran30lranq. Lhe above two equalities and the
definition of the semigroup operation of ﬂﬁm(Ni) imply that dom~v* C dom ¢, ran~* C
dom 3, dom §* C ran 8 and ran §* C ran «. Similar arguments and the equality a = y*36*
imply the converse inclusions which implies the statement of the lemma. O

Theorem 4. 7 = ¢ in 0, (NL).

Proof. The inclusion 2 C _# is trivial.

Fix any o,p € gzﬁoo(Ni) such that «_# 3. Then there exist 7va,0a,v8,08 €
ﬂﬁm(Ni) such that a = 7,80, and 8 = ygadg (see [22] or [23, Section II.1]). By
Lemma 9 without loss of generality we may assume that

dom vy, = dom «, rany, = dom 3, dom d, = ran j3, rand, = ran o
and

dom~yg = dom f3, ranys = doma, domdg = rana, randg = ran /3.
Hence we have that o = v,v8a630 and 8 = v37486405. Then only one of the following
cases holds:

(1) (V4 Ndom(Yays))Yavs € A for any i = 1,2, 3;
(2) there exists ¢ € {1,2,3} such that (2% N dom(vav8))Vavs € -
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If case (1) holds then Lemma 7(i) implies that (y,7s): doma — N? and
(8504): rana — N3 are identity partial maps. Now by Lemma 8 there exist elements o,
and o of the group of units H () of the semigroup P04 (N2 ) such that (Z)ye = (T)oa,

@W)vs = (Mo, (W)ds = (W)ops and (T)d, = (E)Ugl, for all Z € doma, 7 € (dom )y, =

rany, = domp, & € rana and v € (rana)dg = randg = ranf. Then the above
arguments imply that o = aaﬁagl and hence by Theorem 3(iv) we get that a2 in
@ﬁw(Ni).
If case (2) holds then we have that
a = Yavpadpda = (Ya78)?a(0500)* = ... = (va75)°(950a)°
and
B =87B8ads = (187a)?B(8adp)” = ... = (757a)°B(6a5)°.
We put

75 =18(ys)®  and 65 = 0p(0ads)’.
Lemma 7(i) implies that (v,7§): doma — N* and (050a): rana — N° are identity
partial maps. Now by Lemma 8 there exist elements o, and o of the group of units H(I)
of the semigroup Qﬁm(Ni) such that (Z)ya = (T)oa, @)75 = @)oo, ", (@5 = (W)os
and (0)d, = (6)051, for all T € doma, ¥ € (dom )7y, = ran~y, = dom 3, @ € ran o and
T € (ran ) 5 = randg = ran 8. Then the above arguments imply that o = aoﬁagl and
hence by Theorem 3(iv) we get that a % in gzﬁoo(Ni). O
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MOHOII MOHOTOHHUX IH’€EKTUBHUX YACTKOBUX
IMEPETBOPEHBb YACTKOBO BIIOPAJIKOBAHOI MHOXKIHNA
(N3, <) 3 KOCKIHYEHHUMMW OBJIACTAMU BU3HAYEHHS TA

3HAYEHD
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Hexaii n — marypaspae uucio > 2 i Ng — n-uil cTenins MHOXKWHY HATYPa/ib-
aux gucen N 3 9aCTKOBAM HOPSAIKOM HOOYTKY 3BHYAMHOIO JIHIHHOIO HOPAIKY
Ha N.

YHactkoBe mreperBopenHs o : X< — X< 9aCTKOBO BIOPSIKOBAHOI MHOXKHUHA X
HA3UBAETHCH MOHOMOHHUM, SKIIO 3 T < Y BUILJIMBAE HEPIBHICTD Ta < Yo, JJist
z,y € X<.

Hocrimxeno crpykTypHi BaacTuBocTi MonoOIma FP0s (NE ) qacTkoBEX MOHOTOH-
HMX lIePeTBOPeHb 4aCIKOBO BLOP#AAKOBaHOI MuOxuHM NZ 3 KOCKiHYeHHHMH
00/TaCTAMYU BU3HAYEHHS Ta 3HAYEHb. [loBemeno, mo rpyma oguauns H (1) marmis-
rpymu Y0 (N¢) isomopdma rpym 7, HiACTAHOBOK N-eeMeHTHO! MHOXKWIHI
Ta OIMCAHO IIHAMIBIPyIy iZemmoTrentis Hamisrpynu F0s (Ng). Taxkox, y Bu-
HNaJKy 1 = 3 OIUCAHO BJIACTHBOCTI €JIeMEeHTIB HAIiBIpyIH Wﬁm(Ni) AK JacT-
KOBHX OI€KIIIiI YACTKOBO BIIOPSIKOBAHOI MHOXKWHI N‘i, i Bimmomenus I pima ma
HamBrpym Y0 (Ni) 3okpema mOBeIeHO, Mo BimHomenHs [ pina 2 i J mHa
MoHOi P00 (N2) 36iratorses.

Kar040861 cro6a: HAmBrpyra 4acTKOBUX OI€KIIii, MOHOTOHHE 9aCTKOBE BijI-
o6 paxkeHHs, ineMoTenT, Biagpomenus I pina.



