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ON THE DICHOTOMY OF A LOCALLY COMPACT
SEMITOPOLOGICAL MONOID OF ORDER ISOMORPHISMS
BETWEEN PRINCIPAL FILTERS OF N® WITH ADJOINED ZERO
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Let n be any positive integer and FZF (N") be the semigroup of all order
isomorphisms between principal filters of the n-th power of the set of positive
integers N with the product order. We prove that a Hausdorff locally compact
semitopological semigroup SZ% (N™) with an adjoined zero is either compact
or discrete.
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Further we follow the terminology of [10, 11}, 12} 20]. In this paper we denote the
set of positive integers by N, the set of non-negative integers by Ny, a semigroup S with
the an adjoined zero by S (cf. [11]), the symmetric group of degree n by .7, i.e., .7, is
the group of all permutations of an n-element set. All topological spaces, considered in
this paper, are assumed to be Hausdorff.

A semigroup S is called inverse if for every x € S there exists a unique y € S such
that zyx = z and yay = y. Later such an element y will be denoted by 2! and will be
called the inverse of x. A map inv: S — S which assigns to every s € S its inverse is
called the inversion.

If Y is a subspace of a topological space X and A C Y, then by cly(A) we denote
the topological closure of A in Y.

A semitopological (topological) semigroup is a topological space with separately
continuous (jointly continuous) semigroup operation. An inverse topological semigroup
with continuous inversion is called a topological inverse semigroup.

We recall that a topological space X is locally compact if every point z of X has an
open neighbourhood U (x) with the compact closure clx (U(z)).

2010 Mathematics Subject Classification: 20M10, 22A15, 54D40, 54D45, 54H10
© Mokrytskyi, T., 2019



Taras MOKRYTSKYI
38 ISSN 2078-3744. Bicuux JIpBiB. yH-Ty. Cepis mex.-mar. 2019. Bunyck 87

The bicyclic semigroup (or the bicyclic monoid) € (p,q) is the semigroup with the
identity 1 generated by elements p and ¢ and the relation pg = 1.

The bicyclic semigroup plays an important role in the algebraic theory of semi-
groups and in the theory of topological semigroups. For instance, a well-known Andersen’s
result [1] states that a (0-)simple semigroup with an idempotent is completely (0-)simple
if and only if it does not contain an isomorphic copy of the bicyclic semigroup. The bicyclic
monoid admits only the discrete semigroup topology. Bertman and West in [9] extended
this result for the case of semitopological semigroups. No stable and I'-compact topologi-
cal semigroups contains the bicyclic monoid [2], [I8]. The problem of an embedding of the
bicyclic monoid into compact-like topological semigroups was studied in [3} [4] [8] [17].

For an arbitrary positive integer n by (N™, <) we denote the n-th power of the set
of positive integers N with the product order:

(1, yxn) < Y1y, Yn) if and only if x; <y; forall i=1,...,n.

It is obvious that the set of all order isomorphisms between principal filters of the poset
(N™ ) with the operation of composition of partial maps form a semigroup. This semi-
group will be denoted by .#22% (N™). The semigroup #2% (N") is a generalization of
the bicyclic semigroup €(p,q). Hence it is natural to ask: what algebraic and topologi-
cal properties of the semigroup JP.F(N™) are similar to those of the bicyclic monoid?
The structure of the semigroup #2% (N") is studied in [16]. There was shown that
JPF(N™) is a bisimple, E-unitary, F-inverse monoid, described Green’s relations on
IPZF(N™) and its maximal subgroups. It was proved that #2% (N") is isomorphic
to the semidirect product of the direct n-th power of the bicyclic monoid €™ (p,q) by
the permutation group .#,, every non-identity congruence on 2% (N") is group and
the least group congruence on SZ% (N™) was described. It was shown that every shift-
continuous topology on JZ.% (N") is discrete and embedding of the semigroup 2% (N™)
into compact-like topological semigroups was discussed.

A dichotomy for the bicyclic monoid with an adjoined zero €° = € (p, q) LU {0} was
proved in [13]: every locally compact semitopological bicyclic monoid €° with an adjoined
zero is either compact or discrete. The above dichotomy was extended by Bardyla in
[5] to locally compact A-polycyclic semitopological monoids, in [6] to locally compact
semitopological graph inverse semigroups in [I5] to locally compact semitopological
interassociates of the bicyclic monoid with an adjoined zero, and were extended in [14] to
locally compact semitopological 0-bisimple inverse w semigroups with compact maximal
subgroups. The lattice of all weak shift-continuous topologies on ¢ is described in [7].

The main purpose of this paper is to obtain counterparts of the above results for
locally compact semitopological monoid JZ2.% (N").

By #2% (N")? we denote the monoid 2% (N") with an adjoined zero.

Lemma 1. Let (2% (N")°, 1) be a locally compact non-discrete semitopological semi-
group. Then:

(1) for every open neighbourhood U(0) of the zero in (JPF(N™)° 1) there ewists

an open compact neighbourhood V(0) of the zero in (SPF(N™)°, 1) such that
V(0) Cc U(0);
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(2) for every open neighbourhood U (0) of the zero in (JPF (N™)°, 1) and every open
compact neighbourhood V (0) of the zero in (JP2F (N™)°, 1) the set V(0) N U(0)
is compact and open, and the set V(0) \ U(0) is finite.

Proof. (1) Let U(0) be an arbitrary open neighbourhood of the zero in (F2% (N™)°, 7).
By Theorem 3.3.1 from [10] the space (#2%(N")° 1) is regular. Since it is locally
compact, there exists an open neighbourhood V' (0) C U(0) of the zero in (A2Z (N")°, 1)
such that ¢l gpg nyo(V(0)) € U(0). Since all non-zero elements of the semigroup
IPF(N™)" are isolated points in (J2F (N")°, 1), Lz mnyo (V(0)) = V(0), and hence
our assertion holds.

(2) Let V(0) be an arbitrary compact open neighbourhood of the zero in
(#27(N")° 7). Then for an arbitrary open neighbourhood U(0) of the zero in
(2% (N")°, 7) the family

% ={U(0)}U{{z}: 2 € V(0)\U(0)}

is an open cover of V(0). Since the family % is disjoint, it is finite. So the set V' (0)\ U(0)
is finite and hence the set V' (0) N U(0) is compact. O

Remark 1. On the bicyclic semigroup % (p, ¢) the semigroup operation is determined in
the following way:

plgd R i > kg

p'e e =4 P, if j = k;
Ptk i j <k,
which is equivalent to the following multiplication:
piqj . pkql — pi+max{j,k}—qu+max{j,k}—k.

The above implies that the bicyclic semigroup % (p, q) is isomorphic to the semigroup
(Ng x Ng, *) which is defined on the square Ny x Ny of the set of non-negative integers
with the following multiplication:

(1) (1,7) * (k,1) = (i + max{j, k} — 7,1 + max{j, k} — k).

We note that the semigroup (Ng x Ny, ) is isomorphic to the semigroup (N x N, %)
which is defined on the square N x N of the set of all positive integers with the same
operation *. It is obvious that the map f: No x Ng = N x N, (i,7) — (i + 1,5+ 1) is an
isomorphism between semigroups (No x Ny, %) and (N x N, %).

In this paper we will use the semigroup (N x N, *) as a representation of the bicyclic
semigroup % (p, q).

For an arbitrary positive integer n by %(p,q)™ we shall denote the n-th direct
power of (N x N, x), i.e.,, €(p,q)" is the n-th power of N x N with the point-wise
semigroup operation defined by . Also, by [x,y] we denote the ordered collection

((‘Ilayl)7 ct (:Ena yn)) Of (f(p’ q)n, Where X = ('rlv e 7xn) and y = (yla R ayn)a and fOI‘
arbitrary permutation o: {1,...,n} — {1,...,n} we put

(X)O’ = (1‘(1)071, ces ,x(n)gq) .
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We recall (cf. [I6]) that the semigroup .#22.% (N™) is isomorphic to the semidirect
product ., X € (p,q)" and hence according the above arguments we can consider the
semigroup S2.% (N") as the set .7, x (N x N)™ with the following semigroup operation

(a, [x,¥]) - (B, [u, v]) = (a0 B, [(%)B, (y) B *[u, v]) =
= (a0 B,[(x)8 + max{(y)8,u} — (v)B,v + max{(y)3, u} — u)

For any permutation ¢ € .¥, of an n-element set and for any ordered tuple

a=(ay,...,a,) € N® we put
L2 ={(o,[a,x]) € IP2F(N"): x e N"}.

For any integer ¢ € {1,...,n} define an element 2; as an element of N with the
property that only i-th coordinate of 2; is equal to 2 and all other coordinate are equal
tol,ie. 2, =(1,..., 2 ,...,1).

—~
Lemma 2. Let (2% (N")°, 1) be a locally compact non-discrete semitopological semi-

group. Then for any neighborhood U(0) of the zero 0 and for any permutation o € 7,
there exists a € N such that the set L& NU(0) is infinite.

Proof. Suppose to the contrary that there exists neighborhood U(0) of the zero 0 and
permutation ¢ € ., such that for any a € N" the set L2NU (0) is finite. Then LemmalT[1)
and the separate continuity of the semigroup operation in (SZ2F (N”)O,T) imply that
there exists an open compact neighbourhood V (0) of the zero 0 in (.#2% (N")°, 1) such
that V(0) - (1,[1,21]) € U(0).

Since for any fixed element a € N™ the set L2NU(0) is finite, there exists an element

Ma = (Ua [a7 (xla e axn)D eLZN U(O)

with property that

(2) U0) 2 (o, [a, (z1+ 1, zn)]) = ma - (1,[1,24]).
Consider the set M = {m,: a € N"}. Then property (2] implies that M NV (0) = @.
Thus U(0) \ V(0) D> M which contradicts Lemma [1[2) because the set M is infinite. [

Lemma 3. Let n be a positive integer, A and B be infinite subsets of N such that

AU B = N" and AN B = (). Then there exist an infinite subset C C A and a posi-

tive integer k € {1,...,n} such that at least one of the sets (C)g and (C)g;" is

a subset of B, where gy is the map from N" to N" is defined in the following way:

(1, xn)ge = (1, .. xp + 1,00 @),

Proof. If n =1 consider the the set C = {a € A: a+1 € B}, C is infinite and (C)g, C B.
Let n > 2. An ordered tuple p = (p P2, .. ,pr_1 T) (N™)" of elements of N™ is

called a path from point a to point bif p' = a, p = b and for any index i € {2 Lk}
there exists some m; € {1,...,n} such that (p"~')gm, = p’ or (p*"')g,,} = p".

For any X C N" we denote
} X = {a € N": there exists x € X such that a < x}.

~ Put Ao = By = @. For any i > 1 choose elements a’ € A\ | (4;_; UBi,l) and
b’ € B\ | (4;_1 UB;_1) and choose a path p; = (p',...,p") from a’ to b’ with the
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property that all p/ ¢ A; ; U B;_;. By choosing the path p;, there exists point p’ of
this path such that p/ € A and p’*! € B, so define the sets 4; = A;_; U {p’} and
Bi == Bi,1 @] {pj+1}.

Next, we define C' = U A;. We remark that for any a € C there exist k € {1,...,n}
i=1

and s € {1,—1} such that (a)g; € U B; C B, denote these numbers by k, and s,,

i=1
respectively. Since the set C' is infinite there exists an infinite subset C' C C' such that
for any ¢ € C the numbers k. and s, coincide. O

Lemma 4. Let (2% (N")°, 1) be a locally compact non-discrete semitopological semi-
group. Then for any neighborhood U(0) of the zero 0 and for any permutation o € /),
there exists a € N such that the set L%\ U(0) is finite.

Proof. Fix any neighborhood U(0) of the zero 0 and any permutation o € .%,. Lemma
implies that there exists a € N™ such that the set L2 N U(0) is infinite.

The set L2 is a disjoint union: L2 = (L2 N U(0)) U (L2 \ U(0)). The statements of
the lemma would be proved when the set L2\ U(0) is finite, and hence we assume the
opposite, i.e. that the set L&\ U(0) is infinite.

We consider the bijection f¢: L% — N” defined by the formula

(0;[a, x]) f5 = x.

Lemmaimplies that in the set L2 NU(0) there exist an infinite subset C' and an integer
number k € {1,...,n} such that at least one of two sets (C)(f% o gx) and (C)(f2¢og; ")
is a subset of (L2 \ U(0))f2.

We remark that the composition f¢ o g o (f¢)~! coincides with the restriction of
right translation p(; jo,1,]) to the set L7, i.e.,
flogro(fH = P(1,[1,2k])\L3

and similarly
a —1 a\—1
fa' 09, © (fo') = P(1,[2k,1]) |Lg\{(o,[a,x]): xEN™, 3, =2}

Lemmaand the separate continuity of the semigroup operation in (2% (N")?, 1)
imply that there exists an open compact neighbourhood V(0) of the zero 0 in
(727 (N™)°,7) such that V - (1,[1,2%]) € U(0) and V - (1,[24,1]) < U(0).

In any case we have that the set C is a subset of U(0) \ V(0). Indeed:

(1) if (C)(f2 o gx) is a subset of (L2 \ U(0))f¢ then we have that

C - (1’ [1’ 2k]) = (C)p(l,[1,2k]) =
= (Oranzhle =
=(O)(fgogro(f)™h) C
C L3\ U(0);
(i) if (C)(f¢og, ") is a subset of (L2 \ U(0))f then we have that
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C - (1,(2x,1]) = (C)pa,i20.1) =
= (C)P(L[%l})|Lg\{(a,[a,x]) | xEN™, zp=2}

=(O)fgog, o (fH)™) C
C Lz \ U(0);

and since C' is an infinite set, this contradicts Lemma (2) O

Lemma 5. Let (2% (N")°,7) be a locally compact non-discrete semitopological semi-
group. Then for any neighborhood U(0) of the zero 0, any permutation o € %, and any
element a € N" the set L2\ U(0) is finite.

Proof. Consider any neighborhood U(0) of the zero 0 and any permutation o € .7,.
Lemma [4] implies that there exists b € N" such that the set L2\ U(0) is finite. Fix any
a € N\ {b}. Define elements q,p € N in the following way: for any i € {1,.,n} put

g =1, pi="b;—a,; if b > ay;

pi=1 g¢g=a—0b, if b <a.

We remark that ¢ — p = a — b and max{p,b} = b. Then, the restriction of the left
translation A(1 [(q)o-1,(p)o—1]) On the set LP is a bijection between L? and L2: for any
(0,[b,x]) € L? we have that

(@, [b.xDAq @o-1.p)e-1) = (L (@™, (P)o ™)) - (0, [b,x]) =
= (0, [a, pl*[b,x]) =
= (0, [max{p,b} — p + q, max{p,b} — b +x]) =
= (o, [b P+q,X D (o ,[a,x]).
Lemmaand the separate continuity of the semigroup operation in (2% (N")°, 7) imply
that there exists an open compact neighbourhood V(0) of the zero 0 in (S2Z(N")?, 1)
such that (1,[(q)e~, (p)e~?]) - V(0) C U(0). Since
LE\U(0) € L3\ (L [(@o™ !, (p)o']) - V(0) =
= L\ (VO)A@ [ @e 1. @)1 =
= (LZ\VO)Aw (o (p)o 1)

L2\ U(0) is finite, as the set LP \ V/(0) is finite. O

Lemma 6. Let (2% (N")°, 1) be a locally compact non-discrete semitopological semi-
group. Then for any neighborhood U(0) of the zero 0 and for any permutation o € /),
there exist only finite number of elements a € N™ such that the set L2\ U(0) is non
empty, i.e. the set {a € N": L&\ U(0) # @} is finite.

Proof. Suppose to the contrary that there exist neighborhood U(0) of the zero 0 and
a permutation ¢ € ., such that the set M = {b e N": L2\ U(0) # &} is infinite.
Since for any b € M, by Lemma [5 the set L2\ U(0) is finite, there exist an element
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xp € N" and a positive integer k, € {1,...,n} such that (o, [b,xp]) ¢ LP\ U(0) and
(o,[by,xp —(0,..., 1 ,...,0)]) € LP\ U(0). This defines the maps:
kb

v: M — N" b+~ xp,

¢: M —{1,...,n}, b k.

Since M is infinite and (M )¢ finite, there exist an infinite subset M’ C M and positive
integer kyp € {1,...,n} such that for any two elements u,v € M’ the equality

(w)¢ = (V)¢ =kn
holds.

Lemmaand the separate continuity of the semigroup operation in (J@?(N”)O, T)
imply that there exists an open compact neighbourhood V(0) of the zero 0 in
(927 (N™)°, 1) such that V(0) - (1,[2y,,,,1]) € U(0).

Put P = {(o,[b,(b)y]): b € M’}. Then the choice of M’ implies P C U(0) \ V(0),
which contradicts Lemma [I[2), because the set M’ is infinite. O

Corollary 1. Let (2% (N")°, 7) be a locally compact non-discrete semitopological semi-
group. Then for any neighborhood U(0) of the zero O the set JP2.F (N")°\ U(0) is finite.

Proof. Since
27N = || {or < (| ] I2),
oS aeN”
Lemma [f] implies that the set

2 NNUO) = || {oh = || 12\00) = || {o}x || L3\U(0)

oES acNn» cES n acNn»
is finite. O

Example 1. We define a topology T4 on the semigroup 2% (N")? in the followinh
way:
(i) every element of the semigroup SZ% (N") is an isolated point in the space
(IPF (N")° Tac);
(i4) the family Ba.(0) = {U c 92F(N")° .U 3 0 and IPF(N") \ U is ﬁnite} de-
termines a base of the topology 4. at zero 0 € JP2F (N")"
i.e., T4c is the topology of the Alexandroff one-point compactification of the discrete
space JPF(N") with the remainder 0. The semigroup operation in (SF2Z(N")° 1)
is separately continuous, because all elements of the semigroup 2% (N™) are isolated

points in the space (2% (N")°, 7) and any first order equation in .F2% (N™ has finitely
many solutions (see Proposition 2.26 in [16]).

Remark 2. In [16] it was showed that the discrete topology 74 is a unique shift continuous
Hausdorff topology on the semigroup #22% (N™). Therefore, T4, is the unique compact
topology on this semigroup such that (SP2F (N")O,TAC) is a compact semitopological
semigroup.
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Lemma [I] and Remark [2] imply the following dichotomy for a locally compact semi-
topological semigroup Z2% (N")°.

Theorem 1. If ﬂ@f(N”)o is a Hausdorff locally compact semitopological semi-
group, then either I2F(N™)° is discrete or IPF(N™)° is topologically isomorphic to
(J2F (N")°, Tac).

By Corollary 3.3 of [16] the semigroup #Z.% (N™) does not embed into a compact
Hausdorff topological semigroup. Hence Theorem [1]implies the following corollary:

Corollary 2. If ﬂ@?(N”)O is a Hausdorff locally compact topological semigroup then
the space IPF(N™)" is discrete.
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Hexait n — noslibHe narypasbhe ducio i mexait JPF (N") — nauisrpy-
ma BCiX MOPSAKOBUX i30MOpMI3MiB MiK TOJIOBHMMU (DiTBTPAME 7N-TO CTEITEHS
HaTypaJabHuX umcesn N 3 mopsakoMm m100yTKy. Josemero, mo raycaopdosa Jio-
KaJIbHO KOMIIAKTHA HalisBromnosoriyna Hauisrpyuna S2.% (N™) 3 upuennanum
HyJIeM € 00 KOMIIAKTHOIO ab0 JMNCKPETHOIO.

Katowo06i cao6a: HamBrpyrma, iHBepCHa HAMIBrpymna, OIMUKJIIYHAN MOHOI,
HAIIIBTOIIOJIOTIYHA HAMIBIPyIMa, TOIOJIOTiYHA HANIIBrpyma, JOKAJILHO KOMIIAKT-
HUI, KOMOAKTHAMN, JUCKPETHHIN.
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