УДК 512.53

EXTENSION OF SEMIGROUPS BY SYMMETRIC INVERSE SEMIGROUPS OF A BOUNDED FINITE RANK

Oleg GUTIK, Oleksandra SOBOL

Ivan Franko National University of Lviv, Universitetska Str., 1, 79000, Lviv, Ukraine e-mail: oleg.gutik@lnu.edu.ua, ovgutik@yahoo.com, o.yu.sobol@gmail.com

We study the semigroup extension $\mathscr{I}^n_{\lambda}(S)$ of a semigroup S by symmetric inverse semigroup of a bounded finite rank n. We describe idempotents and regular elements of the semigroup $\mathscr{I}^n_{\lambda}(S)$ and show that the semigroup $\mathscr{I}^n_{\lambda}(S)$ is regular, orthodox, inverse or stable if and only if so is S. Green's relations are described on the semigroup $\mathscr{I}^n_{\lambda}(S)$ for an arbitrary monoid S. We introduce the conception of a semigroup with strongly tight ideal series, and prove that for any infinite cardinal λ and any positive integer n the semigroup $\mathscr{I}^n_{\lambda}(S)$ has a strongly tight ideal series provided so has S. Finally, we show that for every compact Hausdorff semitopological monoid (S, τ_S) there exists its unique compact topological extension $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ in the class of Hausdorff semitopological semigroups.

Key words: inverse semigroup, symmetric inverse semigroup of finite transformations, Green's relations, semigroup has a tight ideal series, semi-topologica; semigroup, compact semigroup.

1. INTRODUCTION, MOTIVATION AND MAIN DEFINITIONS

In this paper we follow the terminology of [11, 31].

If S is a semigroup, then by E(S) we denote the subset of all idempotents of S. On the set of idempotents E(S) there exists the natural partial order: $e \leq f$ if and only if ef = fe = e.

A semigroup S is called:

- regular, if for every $a \in S$ there exists an element b in S such that a = aba;
- orthodox, if S is regular and E(S) is a subsemigroup of S;

²⁰¹⁰ Mathematics Subject Classification: 20M10, 22A15, 54D40, 54D45, 54H10 © Gutik, O., Sobol, O., 2019

• *inverse* if every a in S possesses a unique inverse, i.e. if there exists a unique element a^{-1} in S such that

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

It is obvious that every inverse semigroup is orthodox and every orthodox semigroup is regular. A map which associates to any element of an inverse semigroup its inverse is called the *inversion*.

Let λ be an arbitrary non-zero cardinal. A map α from a subset D of λ into λ is called a *partial transformation* of X. In this case the set D is called the *domain* of α and is denoted by dom α . Also, the set $\{x \in \lambda : y\alpha = x \text{ for some } y \in \lambda\}$ is called the *range* of α and is denoted by ran α . The cardinality of ran α is called the *rank* of α and denoted by rank α . For convenience we denote by \emptyset the empty transformation, that is a partial mapping with dom $\emptyset = \operatorname{ran} \emptyset = \emptyset$.

Let \mathscr{I}_{λ} denote the set of all partial one-to-one transformations of λ together with the following semigroup operation:

$$x(\alpha\beta) = (x\alpha)\beta \quad \text{if} \quad x \in \operatorname{dom}(\alpha\beta) = \{y \in \operatorname{dom} \alpha \colon y\alpha \in \operatorname{dom} \beta\}, \qquad \text{for} \quad \alpha, \beta \in \mathscr{I}_{\lambda}.$$

The semigroup \mathscr{I}_{λ} is called the *symmetric inverse semigroup* over the cardinal λ (see [11]). The symmetric inverse semigroup was introduced by V. V. Wagner [33] and it plays a major role in the theory of semigroups.

 Put

$$\mathscr{I}_{\lambda}^{\infty} = \{ \alpha \in \mathscr{I}_{\lambda} \colon \operatorname{rank} \alpha \text{ is finite} \} \quad \text{and} \quad \mathscr{I}_{\lambda}^{n} = \{ \alpha \in \mathscr{I}_{\lambda} \colon \operatorname{rank} \alpha \leqslant n \},$$

for $n = 1, 2, 3, \ldots$ Obviously, $\mathscr{I}_{\lambda}^{\infty}$ and $\mathscr{I}_{\lambda}^{n}$ $(n = 1, 2, 3, \ldots)$ are inverse semigroups, $\mathscr{I}_{\lambda}^{\infty}$ is an ideal of \mathscr{I}_{λ} , and $\mathscr{I}_{\lambda}^{n}$ is an ideal of $\mathscr{I}_{\lambda}^{\infty}$, for each $n = 1, 2, 3, \ldots$ Further, we shall call the semigroup $\mathscr{I}_{\lambda}^{\infty}$ the symmetric inverse semigroup of finite transformations and $\mathscr{I}_{\lambda}^{n}$ the symmetric inverse semigroup of finite transformations of the rank $\leq n$. The elements of semigroups $\mathscr{I}_{\lambda}^{\infty}$ and $\mathscr{I}_{\lambda}^{n}$ are called finite one-to-one transformations (partial bijections) of the cardinal λ . By

$$\begin{pmatrix} x_1 \cdots x_n \\ y_1 \cdots y_n \end{pmatrix}$$

we denote a partial one-to-one transformation which maps x_1 onto y_1, \ldots, x_n onto y_n , and by 0 the empty transformation. Obviously, in such case we have $x_i \neq x_j$ and $y_i \neq y_j$ for $i \neq j$ $(i, j = 1, \ldots, n)$. The empty partial map $\emptyset \colon \lambda \to \lambda$ is denoted by 0. It is obvious that 0 is zero of the semigroup \mathscr{I}^n_{λ} . Let λ be a non-zero cardinal. On the set $B_{\lambda} = (\lambda \times \lambda) \cup \{0\}$, where $0 \notin \lambda \times \lambda$, we

Let λ be a non-zero cardinal. On the set $B_{\lambda} = (\lambda \times \lambda) \cup \{0\}$, where $0 \notin \lambda \times \lambda$, we define the semigroup operation " \cdot " as follows

$$(a,b) \cdot (c,d) = \begin{cases} (a,d), & \text{if } b = c; \\ 0, & \text{if } b \neq c, \end{cases}$$

and $(a,b) \cdot 0 = 0 \cdot (a,b) = 0 \cdot 0 = 0$ for $a,b,c,d \in \lambda$. The semigroup B_{λ} is called the *semigroup of* $\lambda \times \lambda$ -matrix units (see [11]). Obviously, for any cardinal $\lambda > 0$, the semigroup of $\lambda \times \lambda$ -matrix units B_{λ} is isomorphic to $\mathscr{I}^{1}_{\lambda}$.

6

Let S be a semigroup with zero and λ be a non-zero cardinal. We define the semigroup operation on the set $B_{\lambda}(S) = (\lambda \times S \times \lambda) \cup \{0\}$ as follows:

$$(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{if } \beta = \gamma; \\ 0, & \text{if } \beta \neq \gamma, \end{cases}$$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$. If $S = S^1$ then the semigroup $B_{\lambda}(S)$ is called the *Brandt* λ -extension of the semigroup S [15, 19]. Obviously, if S has zero then $\mathcal{J} = \{0\} \cup \{(\alpha, 0_S, \beta) \colon 0_S \text{ is the zero of } S\}$ is an ideal of $B_{\lambda}(S)$. We put $B_{\lambda}^0(S) = B_{\lambda}(S)/\mathcal{J}$ and the semigroup $B_{\lambda}^0(S)$ is called the *Brandt* λ^0 -extension of the semigroup S with zero [22].

A *semitopological semigroup* is a Hausdorff topological space together with a separately continuous semigroup operation.

The Brandt λ -extension $B_{\lambda}(S)$ (or the Brandt λ^{0} -extension $B_{\lambda}^{0}(S)$) of a semigroup S can be considered as some semigroup extension of the semigroup S by the semigroup of $\lambda \times \lambda$ -matrix units B_{λ} . An analogue of such extension gives the following construction.

2. The construction of of the semigroup extension $\mathscr{I}^n_\lambda(S)$

In this paper using the semigroup \mathscr{I}^n_λ we propose the following semigroup extension.

Construction 1. Let S be a semigroup, λ be a non-zero cardinal, n and k be a positive integers such that $k \leq n \leq \lambda$. We identify every element $\alpha \in \mathscr{I}_{\lambda}^{n}$ with its graph $\mathsf{Gr}(\alpha) \subset \lambda \times \lambda$ and put

$$\mathscr{I}^n_{\lambda}(S) = \{ \alpha_S \colon \operatorname{Gr}(\alpha) \to S \colon \alpha \in \mathscr{I}^n_{\lambda} \}$$

and every map from the empty map 0 into S is identified with the empty map $\emptyset : \lambda \times \lambda \rightarrow S$ and denote it by 0. An arbitrary element $0 \neq \operatorname{rank} \alpha \leq n$ is denoted by

$$\begin{pmatrix} x_1 \cdots x_k \\ s_1 \cdots s_k \\ y_1 \cdots y_k \end{pmatrix},\,$$

where $\alpha = \begin{pmatrix} x_1 & \cdots & x_k \\ y_1 & \cdots & y_k \end{pmatrix}$, and $((x_1, y_1)) \alpha = s_1, \ldots, ((x_k, y_k)) \alpha = s_k$. Also for $\alpha_S \in \mathscr{I}^n_{\lambda}(S)$ such that

$$\alpha_S = \begin{pmatrix} x_1 \cdots x_k \\ s_1 \cdots s_k \\ y_1 \cdots y_k \end{pmatrix}$$

we denote $\mathbf{d}(\alpha_S) = \{x_1, \dots, x_k\}$ and $\mathbf{r}(\alpha_S) = \{y_1, \dots, y_k\}.$

Now, we define a binary operation " \cdot " on the set $\mathscr{I}^n_{\lambda}(S)$ in the following way:

(i)
$$\alpha_{S} \cdot 0 = 0 \cdot \alpha_{S} = 0 \cdot 0 = 0$$
 for every $\alpha_{S} \in \mathscr{I}_{\lambda}^{n}(S)$;
(ii) if $\alpha \cdot \beta = 0$ in $\mathscr{I}_{\lambda}^{n}$ then $\alpha_{S} \cdot \beta_{S} = 0$ for any $\alpha_{S}, \beta_{S} \in \mathscr{I}_{\lambda}^{n}(S)$;
(iii) if $\alpha_{S} = \begin{pmatrix} a_{1} \cdots a_{i} \\ b_{1} \cdots b_{i} \end{pmatrix}, \beta_{S} = \begin{pmatrix} c_{1} \cdots c_{j} \\ d_{1} \cdots d_{j} \end{pmatrix}$ and
 $\alpha \cdot \beta = \begin{pmatrix} a_{1} \cdots a_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \begin{pmatrix} c_{1} \cdots c_{j} \\ d_{1} \cdots d_{j} \end{pmatrix} = \begin{pmatrix} a_{i_{1}} \cdots a_{i_{m}} \\ d_{j_{1}} \cdots d_{j_{m}} \end{pmatrix} \neq 0$ in $\mathscr{I}_{\lambda}^{n}$,
then $\alpha_{S} \cdot \beta_{S} = \begin{pmatrix} a_{i_{1}} \cdots a_{i_{m}} \\ s_{i_{1}}t_{j_{1}} \cdots s_{i_{m}}t_{j_{m}} \\ d_{j_{1}} \cdots d_{j_{m}} \end{pmatrix}$.

Simple verifications show that the defined binary operation on $\mathscr{I}^n_{\lambda}(S)$ is associative and hence $\mathscr{I}^n_{\lambda}(S)$ is a semigroup. It is obvious that $\mathscr{I}^1_{\lambda}(S)$ is isomorphic to the Brandt λ -extension $B_{\lambda}(S)$ of the semigroup S. We remark that if the semigroup S contains zero 0_S then

$$\mathcal{J}_0 = \{0\} \cup \left\{ \alpha_S = \begin{pmatrix} a_1 & \cdots & a_i \\ 0_S & \cdots & 0_S \\ b_1 & \cdots & b_i \end{pmatrix} : 0_S \text{ is the zero of } S \right\}$$

is an ideal of $\mathscr{I}^n_{\lambda}(S)$.

Also, we define a binary relation \equiv_0 on the semigroup $\mathscr{I}^n_{\lambda}(S)$ in the following way. For $\alpha_S, \beta_S \in \mathscr{I}^n_{\lambda}(S)$ we put $\alpha_S \equiv_0 \beta_S$ if and only if at least one of the following conditions holds:

- (1) $\alpha_S = \beta_S;$
- (2) $\alpha_S, \beta_S \in \mathcal{J}_0;$
- (3) $\alpha_S, \beta_S \notin \mathcal{J}_0$ and each of the conditions
 - (i) $(x, y)\alpha_S$ is determined and $(x, y)\alpha_S \neq 0_S$; and
 - (*ii*) $(x, y)\beta_S$ is determined and $(x, y)\beta_S \neq 0_S$
 - implies the equality $(x, y)\alpha_S = (x, y)\beta_S$.

It is obvious that \equiv_0 is an equivalence relation on the semigroup $\mathscr{I}^n_{\lambda}(S)$. The following proposition can be proved by immediate verifications.

Proposition 1. The relation \equiv_0 is a congruence on the semigroup $\mathscr{I}^n_{\lambda}(S)$.

We define $\overline{\mathscr{I}_{\lambda}^{n}}(S) = \mathscr{I}_{\lambda}^{n}(S)/_{\equiv_{0}}$.

In this paper we study algebraic properties of the semigroups $\mathscr{I}_{\lambda}^{n}(S)$ and $\overline{\mathscr{I}_{\lambda}^{n}}(S)$. We describe idempotents and regular elements of the semigroups $\mathscr{I}_{\lambda}^{n}(S)$ and $\overline{\mathscr{I}_{\lambda}^{n}}(S)$, show that the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ ($\overline{\mathscr{I}_{\lambda}^{n}}(S)$) is regular, orthodox, inverse or stable if and only if so is S. Green's relations are described in the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ for an arbitrary monoid S. We introduce the conception of a semigroup with strongly tight ideal series, and proved that for any infinite cardinal λ and any positive integer n the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ has a strongly tight ideal series provides so has S. Finally, we show that for every compact Hausdorff semitopological monoid (S, τ_{S}) there exists its unique compact topological extension $(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathfrak{c}})$ in the class of Haudorff semitopological semigroups.

3. Algebraic properties of the semigroup extensions $\mathscr{I}_{\lambda}^n(S)$ and $\overline{\mathscr{I}_{\lambda}^n}(S)$

The following proposition describes the subset of idempotents of the semigroup $\mathscr{I}^n_{\lambda}(S).$

Proposition 2. For every positive integer $i \leq n$ a non-zero element $\alpha_S = \begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix}$ of the semigroup $\mathscr{I}^n_{\lambda}(S)$ is an idempotent if and only if $a_1 = b_1, \ldots, a_i = b_i$ and $s_1, \ldots, s_i \in E(S)$.

Proof. The implication (\Leftarrow) is trivial.

 (\Rightarrow) Suppose that $\alpha_S \cdot \alpha_S = \alpha_S$. Then the definition of the semigroup $\mathscr{I}^n_{\lambda}(S)$ implies that the symbols a_1, \ldots, a_i are distinct. Similarly we obtain that the symbols b_1, \ldots, b_i are distinct, too. The above arguments and the equality $\alpha_S \cdot \alpha_S = \alpha_S$ imply that $\{a_1, \ldots, a_i\} = \{b_1, \ldots, b_i\}$. Assume that $a_k \neq b_k = a_l$ for some integers $k, l \in \{1, \ldots, i\}$,

8

 $k \neq l$. Then we have that $a_l \neq b_l \neq b_k$, which contradicts the equality $\alpha_S \cdot \alpha_S = \alpha_S$. The obtained contradiction implies the equalities $a_1 = b_1, \ldots, a_i = b_i$. Now, we get that

$$\alpha_S \cdot \alpha_S = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ a_1 \cdots a_i \end{pmatrix} \cdot \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ a_1 \cdots a_i \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1s_1 \cdots s_is_i \\ a_1 \cdots a_i \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ a_1 \cdots a_i \end{pmatrix} = \alpha_S$$

and hence $s_1s_1 = s_1, \ldots, s_is_i = s_i$. This completes the proof of the proposition.

Proposition 3. For every positive integer $i \leq n$ a non-zero element $\alpha_S = \begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix}$ of the semigroup $\mathscr{I}^n_{\lambda}(S)$ is regular if and only if so are s_1, \ldots, s_i in S.

Proof. The implication (\Leftarrow) is trivial. Indeed, $\alpha_S = \alpha_S \beta_S \alpha_S$ for $\beta_S = \begin{pmatrix} b_1 & \cdots & b_i \\ t_1 & \cdots & t_i \\ a_1 & \cdots & a_i \end{pmatrix}$, where elements t_1, \ldots, t_i of the semigroup S are such that $s_1 = s_1 t_1 s_1, \ldots, s_i = s_i t_i s_i$.

 (\Rightarrow) Suppose that α_S is a regular element of the semigroup $\mathscr{I}^n_{\lambda}(S)$. Then there exists an element $\beta_S = \begin{pmatrix} c_1 & \cdots & c_k \\ t_1 & \cdots & t_k \\ d_1 & \cdots & d_k \end{pmatrix}$ of the semigroup $\mathscr{I}^n_{\lambda}(S)$, $0 < k \leq n$, such that $\alpha_S = \alpha_S \cdot \beta_S \cdot \alpha_S$. Now, this implies that $\{b_1, \ldots, b_i\} \subseteq \{c_1, \ldots, c_k\}$ and hence $k \geq i$. Without loss of generality we may assume that $b_1 = c_1, \ldots, b_i = c_i$. Then the equality $\alpha_S = \alpha_S \cdot \beta_S \cdot \alpha_S$ and the semigroup operation of $\mathscr{I}^n_{\lambda}(S)$ imply that $d_1 = a_1, \ldots, d_i = a_i$ and hence we have that

$$\begin{aligned} \alpha_S &= \alpha_S \cdot \beta_S \cdot \alpha_S = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} \cdot \begin{pmatrix} c_1 \cdots c_k \\ t_1 \cdots t_k \\ d_1 \cdots d_k \end{pmatrix} \cdot \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} = \\ &= \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} \cdot \begin{pmatrix} b_1 \cdots b_i c_{i+1} \cdots c_k \\ t_1 \cdots t_i t_{i+1} \cdots t_k \\ a_1 \cdots a_i d_{i+1} \cdots d_k \end{pmatrix} \cdot \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} = \\ &= \begin{pmatrix} a_1 \cdots a_i \\ s_1 t_1 s_1 \cdots s_i t_i s_i \\ b_1 \cdots b_i \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ s_1 \cdots s_i \end{pmatrix}. \end{aligned}$$

This implies that the equalities $s_1 = s_1 t_1 s_1, \ldots, s_i = s_i t_i s_i$ hold in S, which completes the proof of our proposition.

Two elements a and b of a semigroup S are said to be *inverses* of each other if

$$aba = a$$
 and $bab = b$.

The definition of the semigroup operation in $\mathscr{I}^n_\lambda(S)$ implies the following proposition.

Proposition 4. Let λ be a non-zero cardinal, n and i be any positive integers such that $i \leq n \leq \lambda$. Let S be a semigroup and $a_1, \ldots, a_i, b_1, \ldots, b_i \in \lambda$. If the elements s_1 and t_1 , \ldots, s_i and t_i are pairwise inverses of each other in S then the elements

$$\begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix} \qquad and \qquad \begin{pmatrix} b_1 & \cdots & b_i \\ t_1 & \cdots & t_i \\ a_1 & \cdots & a_i \end{pmatrix}$$

are pairwise inverses of each other in the semigroup $\mathscr{I}^n_{\lambda}(S)$.

For arbitrary semigroup S, every positive integer $i \leq n$, any collection non-empty subsets A_1, \ldots, A_i of S, and any two collections of distinct elements $\{a_1, \ldots, a_i\}$ and $\{b_1, \ldots, b_i\}$ of the cardinal λ we define a subset

$$[A_1, \dots, A_i]_{(b_1, \dots, b_i)}^{(a_1, \dots, a_i)} = \left\{ \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} : s_1 \in A_1, \dots, s_i \in A_i \right\}$$

of $\mathscr{I}_{\lambda}^{n}(S)$. I the case when $A_{1} = \ldots = A_{i} = A$ in S we put

$$[A]^{(a_1,\ldots,a_i)}_{(b_1,\ldots,b_i)} = [A_1,\ldots,A_i]^{(a_1,\ldots,a_i)}_{(b_1,\ldots,b_i)}.$$

It is obvious that for every subset A of the semigroup S and any permutation $\sigma: \{1, \ldots, i\} \to \{1, \ldots, i\}$ we have that

$$[A]^{(a_{(1)\sigma},\dots,a_{(i)\sigma})}_{(b_{(1)\sigma},\dots,b_{(i)\sigma})} = [A]^{(a_1,\dots,a_i)}_{(b_1,\dots,b_i)}.$$

Proposition 5. Let λ be a non-zero cardinal and n be any positive integer $\leq \lambda$. Then for arbitrary semigroup S, every positive integer $i \leq n$ and any collection of distinct elements $\{a_1, \ldots, a_i\}$ of λ the direct power S^i is isomorphic to a subsemigroup $S^{(a_1, \ldots, a_i)}_{(a_1, \ldots, a_i)}$ of $\mathscr{I}^n_{\lambda}(S)$.

Proof. The semigroup operation of $\mathscr{I}^n_{\lambda}(S)$ implies that $S^{a_1,\ldots,a_i}_{a_1,\ldots,a_i}$ is a subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$ for any collection of distinct elements $\{a_{1}, \ldots, a_{i}\}$ of λ . We define an isomorphism $\mathfrak{h}: S^i \to S^{(a_1,\dots,a_i)}_{(a_1,\dots,a_i)} \text{ by the formula } (s_1,\dots,s_i)\mathfrak{h} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ a_1 \cdots a_i \end{pmatrix}.$ \square

Proposition 6. For every semigroup S, any non-zero cardinal λ and any positive integer $n \leq \lambda$ the following statements hold:

- (i) $\mathscr{I}^n_{\lambda}(S)$ is regular if and only if so is S;
- (ii) $\mathscr{I}^{n}_{\lambda}(S)$ is orthodox if and only if so is S; (iii) $\mathscr{I}^{n}_{\lambda}(S)$ is inverse if and only if so is S.

Proof. Statement (i) follows from Proposition 3.

(ii) (\Leftarrow) Suppose that S is an orthodox semigroup. Then statement (i) implies that the semigroup $\mathscr{I}^n_{\lambda}(S)$ is regular. By Proposition 2 every non-zero idempotent of the semigroup $\mathscr{I}^n_{\lambda}(S)$ has the form $\begin{pmatrix} a_1 & \cdots & a_i \\ e_1 & \cdots & e_i \end{pmatrix}$, where $0 < i \leq n$ and e_1, \ldots, e_i are idempotents of S. This implies that the product of two idempotents of $\mathscr{I}^n_{\lambda}(S)$ is again an idempotent, and hence the semigroup $\mathscr{I}^n_{\lambda}(S)$ is orthodox.

 (\Rightarrow) Suppose that $\mathscr{I}^n_{\lambda}(S)$ is an orthodox semigroup. By Proposition 5, $S^{(a)}_{(a)}$ is a subsemigroup of $\mathscr{I}^n_{\lambda}(S)$ for every $a \in \lambda$ and hence $S^{(a)}_{(a)}$ is orthodox. Then Proposition 5 implies the semigroup S is orthodox, too.

(iii) (\Leftarrow) Suppose that S is an inverse semigroup. By statement (i) the semigroup $\mathscr{I}^n_{\lambda}(S)$ is regular. Then using Proposition 2 we get that idempotents commute in $\mathscr{I}^n_{\lambda}(S)$ and hence by Theorem 1.17 of [11], $\mathscr{I}^n_\lambda(S)$ is an inverse semigroup.

 (\Rightarrow) Suppose that $\mathscr{I}^n_{\lambda}(S)$ is an inverse semigroup. By Proposition 5, $S^{(a)}_{(a)}$ is a subsemigroup of $\mathscr{I}^n_{\lambda}(S)$ for every $a \in \lambda$, and by Proposition 4 it is an inverse subsemigroup. Hence by Proposition 5, S is an inverse semigroup. \square

Since any homomorphic image of a regular (resp., orthodox, inverse) semigroup is a regular (resp., orthodox, inverse) semigroup (see [11, Section 7.4] and [29, Lemma 2.2]), Proposition 6 implies the following corollary.

Corollary 1. For every semigroup S, any non-zero cardinal λ and any positive integer $n \leq \lambda$ the following statements hold:

(i) $\overline{\mathscr{I}_{\lambda}^{n}}(S)$ is regular if and only if so is S;

10

- (ii) $\overline{\mathscr{I}_{\lambda}^{n}}(S)$ is orthodox if and only if so is S; (iii) $\overline{\mathscr{I}_{\lambda}^{n}}(S)$ is inverse if and only if so is S.

If S is a semigroup, then we shall denote by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} the Green relations on S (see [13] or [11, Section 2.1]):

$$\begin{split} aS^1 &= bS^1;\\ S^1a &= S^1b;\\ S^1aS^1 &= S^1bS^1; \end{split}$$
 $a\mathcal{R}b$ if and only if $a\mathscr{L}b$ if and only if $a \mathscr{J} b$ if and only if $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L};$ $\mathcal{H} = \mathcal{L} \cap \mathcal{R}.$

Remark 1. It is obvious that for non-zero elements $\alpha_S = \begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix}$ and $\beta_S = \begin{pmatrix} c_1 & \cdots & c_k \\ t_1 & \cdots & t_k \\ d_1 & \cdots & d_k \end{pmatrix}$ of the semigroup $\mathscr{I}^n_{\lambda}(S)$ any of conditions $\alpha_S \mathscr{R} \beta_S$, $\alpha_S \mathscr{L} \beta_S$, $\alpha_S \mathscr{D} \beta_S$, $\alpha_S \mathscr{J} \beta_S$, or $\alpha_S \mathscr{H} \beta_S$ implies the equality i = k.

The following proposition describes the Green relations on the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.

Proposition 7. Let S be a monoid, λ be any non-zero cardinal and $n \leq \lambda$. Let $\alpha_S =$ $\begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix} and \beta_S = \begin{pmatrix} c_1 & \cdots & c_i \\ t_1 & \cdots & t_i \\ d_1 & \cdots & d_i \end{pmatrix} be non-zero elements of the semigroup <math>\mathscr{I}^n_{\lambda}(S)$. Then the following conditions hold:

- (i) $\alpha_S \mathscr{R} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$ if and only if there exists a permutation $\sigma \colon \{1, \ldots, i\} \to \{1, \ldots, i\}$ such that $a_1 = c_{(1)\sigma}, \ldots, a_i = c_{(i)\sigma}$ and $s_1 \mathscr{R} t_{(1)\sigma}, \ldots, s_i \mathscr{R} t_{(i)\sigma}$ in S;
- (ii) $\alpha_S \mathscr{L} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$ if and only if there exists a permutation $\sigma: \{1, \ldots, i\} \to \mathcal{I}$ $\{1,\ldots,i\}$ such that $b_1 = d_{(1)\sigma}, \ldots, b_i = d_{(i)\sigma}$ and $s_1 \mathscr{L}t_{(1)\sigma}, \ldots, s_i \mathscr{L}t_{(i)\sigma}$ in
- (iii) $\alpha_S \mathscr{D}\beta_S$ in $\mathscr{I}^n_{\lambda}(S)$ if and only if there exists a permutation $\sigma: \{1, \ldots, i\} \to \mathcal{I}^n_{\lambda}(S)$ $\{1,\ldots,i\}$ such that $s_1 \mathscr{D} t_{(1)\sigma}, \ldots, s_i \mathscr{D} t_{(i)\sigma}$ in S;
- (iv) $\alpha_S \mathscr{H} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$ if and only if there exist permutations $\sigma, \rho \colon \{1, \ldots, i\} \to \mathcal{I}^n_{\lambda}(S)$
- $\{1, \ldots, i\} \text{ such that } s_1 \mathscr{R}t_{(1)\sigma}, \ldots, s_i \mathscr{R}t_{(i)\sigma} \text{ and } s_1 \mathscr{L}t_{(1)\rho}, \ldots, s_i \mathscr{L}t_{(i)\rho} \text{ in } S; \\ (v) \ \alpha_S \mathscr{J}\beta_S \text{ in } \mathscr{I}^n_\lambda(S) \text{ if and only if there exists a permutation } \pi: \{1, \ldots, i\} \rightarrow$ $\{1,\ldots,i\}$ such that $s_1 \mathscr{J} t_{(1)\pi}, \ldots, s_i \mathscr{J} t_{(i)\pi}$ in S.

Proof. (i) (\Rightarrow) Suppose that $\alpha_S \mathscr{R} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$. Then there exist non-zero elements $\gamma_S = \begin{pmatrix} e_1 & \cdots & e_k \\ u_1 & \cdots & u_k \\ f_1 & \cdots & f_k \end{pmatrix} \text{ and } \delta_S = \begin{pmatrix} g_1 & \cdots & g_j \\ v_1 & \cdots & v_j \\ h_1 & \cdots & h_j \end{pmatrix} \text{ of the semigroup } \mathscr{I}^n_{\lambda}(S) \text{ such that } \alpha_S = \beta_S \gamma_S,$ $\beta_S = \alpha_S \delta_S, i \leq j \leq n$ and $i \leq k \leq n$. Also, the definition of the semigroup operation of $\mathscr{I}^n_{\lambda}(S)$ implies that without loss of generality we may assume that j = k = i. Then the equalities $\alpha_S = \beta_S \gamma_S$ and $\beta_S = \alpha_S \delta_S$ imply that $\{a_1, \ldots, a_i\} = \{c_1, \ldots, c_i\},\$ $\{b_1,\ldots,b_i\}=\{g_1,\ldots,g_i\}$ and $\{d_1,\ldots,d_i\}=\{e_1,\ldots,e_i\}$. Now, the semigroup operation of $\mathscr{I}^n_{\lambda}(S)$ implies that there exist permutations $\sigma, \rho, \zeta \colon \{1, \ldots, i\} \to \{1, \ldots, i\}$ such that $a_1 = c_{(1)\sigma}, \ldots, a_i = c_{(i)\sigma}, d_1 = e_{(1)\rho}, \ldots, d_i = e_{(i)\rho}, \text{ and } b_1 = g_{(1)\zeta}, \ldots, b_i = g_{(i)\zeta}, \text{ and } b_1 = g_{(1)\zeta}, \ldots, b_i = g_{(i)\zeta}, and b_i = g_{(i)\zeta}$ hence we have that

$$\begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1 \cdots t_i \\ d_1 \cdots d_i \end{pmatrix} \cdot \begin{pmatrix} e_1 \cdots e_i \\ u_1 \cdots u_i \\ f_1 \cdots f_i \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ u_1 \cdots u_i \\ d_1 \cdots d_i \end{pmatrix} \cdot \begin{pmatrix} d_1 \cdots d_i \\ u_{(1)\rho} \cdots u_{(i)\rho} \\ f_{(1)\rho} \cdots f_{(i)\rho} \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1 u_{(1)\rho} \cdots t_i u_{(i)\rho} \\ f_{(1)\rho} \cdots f_{(i)\rho} \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1 u_{(1)\rho} \cdots t_i u_{(i)\rho} \\ f_{(1)\rho} \cdots f_{(i)\rho} \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1 u_{(1)\rho} \cdots t_i u_{(i)\rho} \\ f_{(1)\rho} \cdots f_{(i)\rho} \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1 u_{(1)\rho} \cdots t_i u_{(i)\rho} \\ f_{(1)\rho} \cdots f_{(i)\rho} \end{pmatrix}$$

and

$$\begin{pmatrix} c_1 \cdots c_i \\ t_1 \cdots t_i \\ d_1 \cdots d_i \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ h_1 \cdots h_i \end{pmatrix} \cdot \begin{pmatrix} g_1 \cdots g_i \\ v_1 \cdots v_i \\ h_1 \cdots h_i \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} \cdot \begin{pmatrix} b_1 \cdots b_i \\ v_{(1)\zeta} \cdots v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ s_1 v_{(1)\zeta} \cdots s_i v_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \end{pmatrix} = \begin{pmatrix} a_1 \cdots a_i \\ h_{(1)\zeta} \\ h_{(1)\zeta} \cdots h_{(i)\zeta} \\ h_{(1)\zeta} \\$$

Therefore we get that

(1)
$$s_{1} = t_{(1)\sigma} u_{((1)\rho)\sigma}, \quad \dots, \quad s_{i} = t_{(i)\sigma} u_{((i)\rho)\sigma}, \\ \text{and} \quad t_{1} = s_{(1)\sigma^{-1}} v_{((1)\zeta)\sigma^{-1}}, \quad \dots, \quad t_{i} = s_{(i)\sigma^{-1}} v_{((i)\zeta)\sigma^{-1}}$$

Since $\sigma: \{1, \ldots, i\} \to \{1, \ldots, i\}$ is a permutation, conditions (1) imply that $s_1 \mathscr{R} t_{(1)\sigma}$, $\ldots, s_i \mathscr{R} t_{(i)\sigma}$ in S.

 (\Leftarrow) Suppose that for $\alpha_S, \beta_S \in \mathscr{I}^n_{\lambda}(S)$ there exists a permutation $\sigma \colon \{1, \ldots, i\} \to i$ $\{1,\ldots,i\}$ such that $a_1 = c_{(1)\sigma},\ldots,a_i = c_{(i)\sigma}$ and $s_1 \mathscr{R} t_{(1)\sigma},\ldots,s_i \mathscr{R} t_{(i)\sigma}$ in S. Then there exist $u_1, \ldots, u_i, v_1, \ldots, v_i \in S^1$ such that

$$s_1 = t_{(1)\sigma}u_1, \quad \dots, \quad s_i = t_{(i)\sigma}u_i, \quad t_1 = s_{(1)\sigma^{-1}}v_1, \quad \dots, \quad t_i = s_{(i)\sigma^{-1}}v_i$$

Thus we get that

$$\begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} = \begin{pmatrix} c_{(1)\sigma} \cdots c_{(i)\sigma} \\ t_{(1)\sigma}u_1 \cdots t_{(i)\sigma}u_i \\ b_1 \cdots b_i \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1u_{(1)\sigma^{-1}} \cdots t_iu_{(i)\sigma^{-1}} \\ b_{(1)\sigma^{-1}} \cdots b_{(i)\sigma^{-1}} \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ t_1 \cdots t_i \\ d_1 \cdots d_i \end{pmatrix} \cdot \begin{pmatrix} d_1 \cdots d_i \\ u_{(1)\sigma^{-1}} \cdots u_{(i)\sigma^{-1}} \\ b_{(1)\sigma^{-1}} \cdots b_{(i)\sigma^{-1}} \end{pmatrix}$$
 and

$$\begin{pmatrix} c_1 & \cdots & c_i \\ t_1 & \cdots & t_i \\ d_1 & \cdots & d_i \end{pmatrix} = \begin{pmatrix} a_{(1)\sigma^{-1}} & \cdots & a_{(i)\sigma^{-1}} \\ s_{(1)\sigma^{-1}v_1} & \cdots & s_{(i)\sigma^{-1}v_i} \\ d_1 & \cdots & d_i \end{pmatrix} = \begin{pmatrix} a_1 & \cdots & a_i \\ s_1v_{(1)\sigma} & \cdots & s_iv_{(i)\sigma} \\ d_{(1)\sigma} & \cdots & d_{(i)\sigma} \end{pmatrix} = \begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix} \cdot \begin{pmatrix} b_1 & \cdots & b_i \\ v_{(1)\sigma} & \cdots & v_{(i)\sigma} \\ d_{(1)\sigma} & \cdots & d_{(i)\sigma} \end{pmatrix},$$

and hence $\alpha_S \mathscr{R} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$.

The proof of statement (ii) is similar to the proof of (i).

(*iii*) (\Rightarrow) Suppose that $\alpha_S \mathscr{D} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$. Then there exists a non-zero element $\gamma_S = \begin{pmatrix} i_1 & \cdots & i_i \\ u_1 & \cdots & u_i \\ f_1 & \cdots & f_i \end{pmatrix} \text{ of the semigroup } \mathscr{I}_{\lambda}^n(S) \text{ such that } \alpha_S \mathscr{R} \gamma_S \text{ and } \gamma_S \mathscr{L} \beta_S \text{ in } \mathscr{I}_{\lambda}^n(S). \text{ By statement } (i) \text{ there exists a permutation } \zeta \colon \{1, \ldots, i\} \to \{1, \ldots, i\} \text{ such that } e_1 = a_{(1)\zeta},$ $\ldots, e_i = a_{(i)\zeta}$ and $u_1 \mathscr{R} s_{(1)\zeta}, \ldots, u_i \mathscr{R} s_{(i)\zeta}$ in S and by statement (ii) there exists a permutation $\varsigma: \{1, \ldots, i\} \to \{1, \ldots, i\}$ such that $f_1 = d_{(1)\varsigma}, \ldots, f_i = d_{(i)\varsigma}$ and $u_1 \mathscr{L} s_{(1)\varsigma}$, $\ldots, u_i \mathscr{L}_{S(i)\varsigma}$ in S. This implies that $s_1 \mathscr{D}_{I(1)\sigma}, \ldots, s_i \mathscr{D}_{I(i)\sigma}$ in S for the permutation $\sigma = \zeta \circ \varsigma^{-1} \text{ of } \{1, \dots, i\}.$

 (\Leftarrow) Suppose that there exists a permutation $\sigma: \{1, \ldots, i\} \to \{1, \ldots, i\}$ such that $s_1 \mathscr{D} t_{(1)\sigma}, \ldots, s_i \mathscr{D} t_{(i)\sigma}$ in S. Then the definition of the relation \mathscr{D} implies that there exist $u_1, \ldots, u_i \in S$ such that $s_1 \mathscr{R} u_1, \ldots, s_i \mathscr{R} u_i$ and $u_1 \mathscr{L} t_{(1)\sigma}, \ldots, u_i \mathscr{L} t_{(i)\sigma}$ in S. Now, for the element $\gamma_S = \begin{pmatrix} a_1 & \cdots & a_i \\ u_1 & \cdots & u_i \\ d_{(1)\sigma} & \cdots & d_{(i)\sigma} \end{pmatrix}$ of the semigroup $\mathscr{I}^n_{\lambda}(S)$ by statements (i) and (ii) we have that $\alpha_S \mathscr{R} \gamma_S$ and $\gamma_S \mathscr{L} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$.

(iv) follows from statements (i) and (ii).

(v) (\Rightarrow) Suppose that $\alpha_S \mathscr{J} \beta_S$ in \mathscr{I}_{λ}^n (S). Then there exist non-zero elements $\gamma_S^l =$ $\begin{pmatrix} e_1^l \cdots e_{k_l}^l \\ u_1^l \cdots u_{k_l}^l \\ f_1^l \cdots f_{k_l}^l \end{pmatrix}, \ \gamma_S^r = \begin{pmatrix} e_1^r \cdots e_{k_r}^r \\ u_1^r \cdots u_{k_r}^r \\ f_1^r \cdots f_{k_r}^r \end{pmatrix}, \ \delta_S^l = \begin{pmatrix} q_1^r \cdots q_{j_l}^l \\ v_1^l \cdots v_{j_l}^l \\ h_1^l \cdots h_{j_l}^l \end{pmatrix} \text{ and } \delta_S^r = \begin{pmatrix} g_1^r \cdots g_{j_r}^r \\ v_1^r \cdots v_{j_r}^r \\ h_1^r \cdots h_{j_r}^r \end{pmatrix} \text{ of the semi-}$ group $\mathscr{I}^n_{\lambda}(S)$ such that $\alpha_S = \gamma^l_S \beta_S \gamma^r_S$, $\beta_S = \delta^l_S \alpha_S \delta^r_S$ and $i \leq k_l, k_r, j_l, j_r \leq n$ (see [13] or

[14, Section II.1]). Also, the definition of the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that without loss of generality we may assume that $k_{l} = k_{r} = j_{l} = j_{r} = i$. Then the equalities $\alpha_{S} = \gamma_{S}^{l} \beta_{S} \gamma_{S}^{r}$ and $\beta_{S} = \delta_{S}^{l} \alpha_{S} \delta_{S}^{r}$ imply that

$$\{a_1, \dots, a_i\} = \{g_1^l, \dots, g_i^l\} = \{h_1^l, \dots, h_i^l\},\$$

$$\{b_1, \dots, b_i\} = \{f_1^r, \dots, f_i^r\} = \{g_1^r, \dots, g_i^r\},\$$

$$\{c_1, \dots, c_i\} = \{g_1^l, \dots, g_i^l\} = \{f_1^l, \dots, f_i^l\}$$

 and

$$\{d_1, \dots, d_i\} = \{e_1^r, \dots, e_i^r\} = \{h_1^r, \dots, h_i^r\}$$

Now, the semigroup operation of $\mathscr{I}^n_\lambda(S)$ implies that there exist permutations

$$\sigma, \rho, \zeta, \varsigma, \nu, \kappa \colon \{1, \dots, i\} \to \{1, \dots, i\}$$

such that $a_1 = e_{(1)\sigma}^l, \dots, a_i = e_{(i)\sigma}^l, c_1 = f_{(1)\rho}^l, \dots, c_i = f_{(i)\rho}^l, d_1 = e_{(1)\zeta}^r, \dots, d_i = e_{(i)\zeta}^r, c_1 = g_{(1)\zeta}^l, \dots, c_i = g_{(i)\zeta}^l, a_1 = h_{(1)\nu}^l, \dots, a_i = h_{(i)\nu}^l$ and $b_1 = g_{(1)\kappa}^r, \dots, b_i = g_{(i)\kappa}^r$, and hence we have that

$$\begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} = \begin{pmatrix} e_{1}^{l} \cdots e_{k_{l}}^{l} \\ u_{1}^{l} \cdots u_{k_{l}}^{l} \\ f_{1}^{l} \cdots f_{k_{l}}^{l} \end{pmatrix} \cdot \begin{pmatrix} c_{1} \cdots c_{i} \\ t_{1} \cdots t_{i} \\ d_{1} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} e_{1}^{r} \cdots e_{k_{r}}^{r} \\ u_{1}^{r} \cdots u_{k_{r}}^{r} \\ f_{1}^{r} \cdots f_{k_{r}}^{r} \end{pmatrix} = \\ = \begin{pmatrix} e_{(1)\rho}^{l} \cdots e_{(i)\rho}^{l} \\ u_{(1)\rho}^{l} \cdots u_{(i)\rho}^{l} \\ v_{(1)\rho}^{l} \cdots v_{i} \end{pmatrix} \cdot \begin{pmatrix} c_{1} \cdots c_{i} \\ t_{1} \cdots t_{i} \\ d_{1} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} d_{1} \cdots d_{i} \\ w_{(1)\zeta}^{r} \cdots w_{(i)\zeta}^{r} \\ f_{(1)\zeta}^{r} \cdots f_{(i)\zeta}^{r} \end{pmatrix} = \begin{pmatrix} e_{(1)\rho}^{l} \cdots e_{(i)\rho}^{l} \\ u_{(1)\rho}^{l} t_{1} u_{(1)\zeta}^{r} \cdots u_{(i)\rho}^{l} t_{i} u_{(i)\zeta}^{r} \\ f_{(1)\zeta}^{r} \cdots f_{(i)\zeta}^{r} \end{pmatrix} = \\ = \begin{pmatrix} e_{1}^{l} \cdots e_{i} \\ u_{1}^{l} t_{(1)\rho-1} u_{((1)\zeta)\rho-1}^{r} \cdots u_{1}^{l} t_{(i)\rho-1} u_{((i)\zeta)\rho-1}^{r} \\ f_{((1)\zeta)\rho-1}^{r} \cdots f_{((i)\zeta)\rho-1}^{r} \end{pmatrix} = \\ = \begin{pmatrix} u_{1}^{l} t_{(1)\rho-1} u_{((1)\zeta)\rho-1}^{r} \cdots u_{(1)}^{l} t_{(i)\rho-1} u_{((i)\zeta)\rho-1}^{r} \\ f_{(((1)\zeta)\rho-1)\sigma}^{r} \cdots f_{(((i)\zeta)\rho-1)\sigma}^{r} \\ f_{(((i)\zeta)\rho-1)\sigma}^{r} \cdots f_{(((i)\zeta)\rho-1)\sigma}^{r} \end{pmatrix}$$

and

$$\begin{pmatrix} c_{1} \cdots c_{i} \\ t_{1} \cdots t_{i} \\ d_{1} \cdots d_{i} \end{pmatrix} = \begin{pmatrix} g_{1}^{l} \cdots g_{i}^{l} \\ v_{1}^{l} \cdots v_{i}^{l} \\ h_{1}^{l} \cdots h_{i}^{l} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \begin{pmatrix} g_{1}^{r} \cdots g_{i}^{r} \\ v_{1}^{r} \cdots v_{i}^{r} \\ h_{1}^{r} \cdots h_{i}^{r} \end{pmatrix} = \\ = \begin{pmatrix} g_{1}^{l} \cdots g_{i}^{l} \\ v_{1}^{l} \cdots v_{i}^{l} \\ h_{1}^{l} \cdots h_{i}^{l} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \begin{pmatrix} b_{1} \cdots b_{i} \\ v_{(1)\kappa}^{r} \cdots v_{(i)\kappa}^{r} \\ h_{(1)\kappa}^{r} \cdots h_{i}^{r} \end{pmatrix} = \begin{pmatrix} g_{(1)\nu}^{l} \cdots g_{(i)\nu}^{l} \\ v_{(1)\nu}^{l} s_{1}v_{(1)\kappa}^{r} \cdots v_{(i)\nu}^{l} s_{i}v_{(i)\kappa}^{r} \\ h_{(1)\kappa}^{r} \cdots h_{(i)\kappa}^{r} \end{pmatrix} = \\ = \begin{pmatrix} g_{1}^{l} \cdots g_{i}^{l} \\ v_{1}^{l} s_{(1)\nu-1}v_{((1)\kappa)\nu-1}^{r} \cdots v_{i}^{l} s_{(i)\nu-1}v_{((i)\kappa)\nu-1}^{r} \\ h_{((1)\kappa)\nu-1}^{r} \cdots h_{((i)\kappa)\nu-1}^{r} \end{pmatrix} = \\ = \begin{pmatrix} v_{1}^{l} s_{((1)\nu-1)\varsigma}v_{(((1)\kappa)\nu-1)\varsigma}^{r} \cdots v_{i}^{l} s_{((1)\nu-1)\varsigma}v_{(((i)\kappa)\nu-1)\varsigma}^{r} \\ h_{((1)\kappa)\nu-1}^{r} s_{i} \cdots h_{((i)\kappa)\nu-1}^{r} \\ h_{(((1)\kappa)\nu-1)\varsigma}^{r} \cdots h_{((i)\kappa)\nu-1}^{r} \\ \end{pmatrix} \end{pmatrix} .$$

Then the definition of the semigroup $\mathscr{I}_{\lambda}^n(S)$ implies the equalities

$$d_1 = h^r_{((1)\kappa)\nu^{-1})\varsigma}, \qquad \dots, \qquad d_i = h^r_{((i)\kappa)\nu^{-1})\varsigma}.$$

Now, by the equality $\alpha_S = \gamma_S^l \beta_S \gamma_S^r$ we get that

$$\begin{pmatrix} a_{1} \cdots a_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} = \begin{pmatrix} e_{1}^{l} \cdots e_{k_{l}}^{l} \\ u_{1}^{l} \cdots u_{k_{l}}^{l} \\ f_{1}^{l} \cdots f_{k_{l}}^{l} \end{pmatrix} \cdot \begin{pmatrix} c_{1} \cdots c_{i} \\ t_{1} \cdots t_{i} \\ d_{1} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} e_{1}^{r} \cdots e_{k_{r}}^{r} \\ t_{1}^{r} \cdots t_{k_{r}}^{r} \\ f_{1}^{r} \cdots f_{k_{r}}^{r} \end{pmatrix} = \\ = \begin{pmatrix} e_{1}^{l} \cdots e_{k_{l}}^{l} \\ u_{1}^{l} \cdots u_{k_{l}}^{l} \\ f_{1}^{l} \cdots f_{k_{l}}^{l} \end{pmatrix} \cdot \begin{pmatrix} c_{1} \cdots c_{i} \\ v_{(1)\zeta}^{l} s_{((1)\nu-1)\zeta}^{r} v_{(((1)\kappa)\nu-1)\zeta}^{r} \cdots v_{(i)\zeta}^{l} s_{((1)\nu-1)\zeta}^{r} v_{(((i)\kappa)\nu-1)\zeta}^{r} \\ d_{1} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} e_{1}^{r} \cdots e_{k_{r}}^{r} \\ u_{1}^{r} \cdots u_{k_{r}}^{r} \\ f_{1}^{r} \cdots f_{k_{r}}^{r} \end{pmatrix} = \\ = \begin{pmatrix} e_{1}^{l} e_{1} \cdots e_{l}^{l} \\ u_{1}^{l} \rho \cdots e_{l}^{l} \\ u_{(1)\rho}^{l} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} v_{(1)\zeta}^{l} s_{((1)\nu-1)\zeta}^{r} v_{(((1)\kappa)\nu-1)\zeta}^{r} \cdots v_{(i)\zeta}^{l} s_{((1)\nu-1)\zeta}^{r} v_{(((i)\kappa)\nu-1)\zeta}^{r} \\ d_{1} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} d_{1}^{l} \cdots d_{i} \\ u_{(1)\zeta}^{r} \cdots u_{(i)\zeta}^{r} \\ f_{(1)\zeta}^{r} \cdots f_{(i)\zeta}^{r} \\ f_{(1)\zeta}^{r} \cdots f_{(i)\zeta}^{r} \\ \end{pmatrix} + \begin{pmatrix} e_{1}^{l} e_{1} \cdots e_{k}^{l} \\ e_{1}^{l} e_{1} \cdots e_{k}^{r} \\ e_{1}^{l} e_{1} \cdots e_{k}^{r} \\ e_{1}^{l} e_{1} \\ e_{1}^$$

which implies the equalities

Hence for the permutation $\pi = \nu^{-1} \varsigma \rho^{-1} \sigma \colon \{1, \ldots, i\} \to \{1, \ldots, i\}$ we have that $s_1 \not J t_{(1)\pi}$,

 $\begin{array}{l} \dots, s_i \not J t_{(i)\pi} \text{ in } S. \\ (\Leftarrow) \text{ Suppose that for elements } \alpha_S, \beta_S \in \mathscr{I}_{\lambda}^n(S) \text{ there exists a permutation} \\ \sigma \colon \{1, \dots, i\} \to \{1, \dots, i\} \text{ such that } s_1 \not J t_{(1)\sigma}, \dots, s_i \not J t_{(i)\sigma} \text{ in } S. \text{ Then there exist} \\ u_1, \dots, u_i, v_1, \dots, v_i, x_1, \dots, x_i, y_1, \dots, y_i \in S^1 \text{ such that} \end{array}$

$$s_1 = x_1 t_{(1)\sigma} u_1, \ldots, s_i = x_i t_{(i)\sigma} u_i, t_1 = y_1 s_{(1)\sigma^{-1}} v_1, \ldots, t_i = y_i s_{(i)\sigma^{-1}} v_i.$$

Thus, we have that

$$\begin{pmatrix} a_1 \cdots a_i \\ s_1 \cdots s_i \\ b_1 \cdots b_i \end{pmatrix} = \begin{pmatrix} c_{(1)\sigma} \cdots c_{(i)\sigma} \\ x_1 t_{(1)\sigma} u_1 \cdots x_i t_{(i)\sigma} u_i \\ b_{(1)\sigma} \cdots b_{(i)\sigma} \end{pmatrix} = \begin{pmatrix} c_1 \cdots c_i \\ x_{(1)\sigma^{-1}} t_1 u_{(1)\sigma^{-1}} \cdots x_{(i)\sigma^{-1}} t_i u_{(i)\sigma^{-1}} \\ b_1 \cdots b_i \end{pmatrix} = \\ = \begin{pmatrix} c_1 \cdots c_i \\ x_{(1)\sigma^{-1}} \cdots x_{(i)\sigma^{-1}} \\ c_1 \cdots c_i \end{pmatrix} \cdot \begin{pmatrix} c_1 \cdots c_i \\ t_1 \cdots t_i \\ b_1 \cdots b_i \end{pmatrix} \cdot \begin{pmatrix} b_1 \cdots b_i \\ u_{(1)\sigma^{-1}} \cdots u_{(i)\sigma^{-1}} \\ b_1 \cdots b_i \end{pmatrix}$$

and

$$\begin{pmatrix} c_1 & \cdots & c_i \\ t_1 & \cdots & t_i \\ d_1 & \cdots & d_i \end{pmatrix} = \begin{pmatrix} a_{(1)\sigma^{-1}} & \cdots & a_{(i)\sigma^{-1}} \\ y_{1s_{(1)\sigma^{-1}}v_1 & \cdots & y_{is_{(i)\sigma^{-1}}v_i} \\ d_{(1)\sigma^{-1}} & \cdots & d_{(i)\sigma^{-1}} \end{pmatrix} = \begin{pmatrix} a_1 & \cdots & a_i \\ y_{(1)\sigma}s_1v_{(1)\sigma} & \cdots & y_{(i)\sigma}s_iv_{(i)\sigma} \\ d_1 & \cdots & d_i \end{pmatrix} = \\ = \begin{pmatrix} a_1 & \cdots & a_i \\ y_{(1)\sigma} & \cdots & y_{(i)\sigma} \\ a_1 & \cdots & a_i \end{pmatrix} \cdot \begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ d_1 & \cdots & d_i \end{pmatrix} \cdot \begin{pmatrix} d_1 & \cdots & d_i \\ v_{(1)\sigma} & \cdots & v_{(i)\sigma} \\ d_1 & \cdots & d_i \end{pmatrix},$$

and hence we get that $\alpha_S \mathscr{J}\beta_S$ in $\mathscr{I}^n_{\lambda}(S)$.

Remark 2. Proposition 7(iv) implies that if there exists a permutation $\sigma: \{1, \ldots, i\} \rightarrow i$ $\{1,\ldots,i\}$ such that $s_1 \mathscr{H} t_{(1)\sigma},\ldots,s_i \mathscr{H} t_{(i)\sigma}$ in S then $\alpha_S \mathscr{H} \beta_S$ in $\mathscr{I}^n_{\lambda}(S)$. But Example 1 implies that the converse statement is not true.

Example 1. Let λ be any cardinal ≥ 2 and $\mathscr{C}(p,q)$ be the bicyclic monoid. The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The distinct elements of $\mathscr{C}(p,q)$ are exhibited in the following useful array

and the semigroup operation on $\mathscr{C}(p,q)$ is determined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = q^{k+m-\min\{l,m\}}p^{l+n-\min\{l,m\}}.$$

We fix arbitrary distinct elements a_1 and a_1 of λ and put

$$\alpha = \begin{pmatrix} a_1 & a_1 \\ qp & q^2p^2 \\ a_1 & a_1 \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} a_1 & a_2 \\ qp^2 & q^2p \\ a_2 & a_1 \end{pmatrix}.$$

Then we have that

$$\alpha = \begin{pmatrix} a_1 & a_2 \\ qp^2 & q^2p \\ a_2 & a_1 \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_2 \\ p & q \\ a_2 & a_1 \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} a_1 & a_1 \\ qp & q^2p^2 \\ a_1 & a_1 \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_2 \\ p & q \\ a_2 & a_1 \end{pmatrix}$$

and hence $\alpha \mathscr{R} \beta$ in $\mathscr{I}^n_{\lambda}(S)$, and similarly we have that

$$\alpha = \begin{pmatrix} a_1 & a_2 \\ p & q \\ a_2 & a_1 \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_2 \\ qp^2 & q^2p \\ a_2 & a_1 \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} a_1 & a_2 \\ p & q \\ a_2 & a_1 \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_1 \\ qp & q^2p^2 \\ a_1 & a_1 \end{pmatrix}$$

and hence $\alpha \mathscr{L}\beta$ in $\mathscr{I}^n_{\lambda}(S)$. Thus $\alpha \mathscr{H}\beta$ in $\mathscr{I}^n_{\lambda}(S)$, but the elements qp and q^2p^2 are not pairwise \mathscr{H} -equivalent to qp^2 and q^2p for any permutation $\sigma \colon \{1,2\} \to \{1,2\}$.

Recall [28], a semigroup S is said to be:

- (a) *left stable* if for $a, b \in S$, $Sa \subseteq Sab$ implies Sa = Sab;
- (b) right stable if for $c, d \in S$, $cS \subseteq dcS$ implies cS = dcS;
- (b) *stable* if it is both left and right stable.

We observe that in the book [11] an other definition of a stable semigroup is given, and these two notion are distinct. A semigroup stable in the sense of Koch and Wallace is always stable in the sense of the book [11], but not conversely (see: [30]). For the semigroups with an identity element and for regular semigroups these two definitions of stability coincide.

The following proposition states that the construction of the semigroup $\mathscr{I}^n_{\lambda}(S)$ preserves left an right stabilities.

Proposition 8. For every semigroup S, any non-zero cardinal λ and any positive integer $n \leq \lambda$ the following statements hold:

- (i) $\mathscr{I}^n_{\lambda}(S)$ is right stable if and only if so is S;
- (ii) $\mathscr{I}_{\lambda}^{n}(S)$ is left stable if and only if so is S;
- (iii) $\mathscr{I}^n_{\lambda}(S)$ is stable if and only if so is S.

Proof. (i) (\Leftarrow) Suppose that the semigroup S is right stable and assume that $\alpha_S = \begin{pmatrix} a_1 & \cdots & a_i \\ s_1 & \cdots & s_i \\ b_1 & \cdots & b_i \end{pmatrix}$ and $\beta_S = \begin{pmatrix} c_1 & \cdots & c_k \\ t_1 & \cdots & t_k \\ d_1 & \cdots & d_k \end{pmatrix}$ are elements of the semigroup $\mathscr{I}^n_{\lambda}(S)$ such that

 $\alpha_S \mathscr{I}^n_{\lambda}(S) \subseteq \beta_S \alpha_S \mathscr{I}^n_{\lambda}(S)$. Then the above inclusion and the definition of the semigroup operation on $\mathscr{I}^n_{\lambda}(S)$ imply that $i \leq k$ and the inclusion

$$\{a_1,\ldots,a_i\}\subseteq\{c_1,\ldots,c_k\}\cap\{d_1,\ldots,d_k\}$$

holds. Without loss of generality we may assume that $d_1 = a_1, \ldots, d_i = a_i$. Then the inclusion $\alpha_S \mathscr{I}^n_{\lambda}(S) \subseteq \beta_S \alpha_S \mathscr{I}^n_{\lambda}(S)$ implies that there exists a permutation $\sigma: \{1, \ldots, i\} \to \{1, \ldots, i\}$ such that $c_1 = a_{(1)\sigma}, \ldots, c_i = a_{(i)\sigma}$. Hence by the definition of the semigroup operation of $\mathscr{I}^n_{\lambda}(S)$ we get that

$$\begin{split} \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S) &= \begin{pmatrix} c_{1}^{c_{1}} \cdots c_{k} \\ s_{1}^{n} \cdots s_{i} \\ d_{1} \cdots d_{k} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \begin{pmatrix} c_{1} \cdots c_{i} \\ t_{1} \cdots t_{i} \\ t_{1} \cdots t_{i} \\ t_{1} \cdots t_{i} \\ d_{i} + 1 \cdots d_{k} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ d_{1} \cdots d_{i} \\ d_{i+1} \cdots d_{k} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ d_{1} \cdots d_{i} \\ d_{i+1} \cdots d_{k} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ s_{1} \cdots s_{i} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \begin{pmatrix} a_{(1)\sigma} \cdots a_{(i)\sigma} \\ t_{1} \cdots t_{i} \\ a_{1} \cdots a_{i} \\ d_{i+1} \cdots d_{k} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \begin{pmatrix} a_{(1)\sigma} \cdots a_{(i)\sigma} \\ t_{1} \cdots t_{i} \\ a_{1} \cdots a_{i} \\ d_{1} \cdots d_{i} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \cdots a_{i} \\ s_{1} \cdots s_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \\ &= \begin{pmatrix} a_{(1)\sigma} \cdots a_{(i)\sigma} \\ t_{1}s_{1} \cdots t_{i}s_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \begin{pmatrix} t_{(1)\sigma^{-1}s(1)\sigma^{-1}} \cdots t_{(i)\sigma^{-1}s(i)\sigma^{-1}} \\ b_{(1)\sigma^{-1}} \cdots b_{(i)\sigma^{-1}} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \\ &= \{0\} \cup \bigcup \left\{ \left[t_{(1)\sigma^{-1}s(1)\sigma^{-1}S, \dots, t_{(i)\sigma^{-1}s(i)\sigma^{-1}S} \right]_{(p_{1},\dots,p_{i})}^{(a_{1},\dots,a_{i})} : p_{1}, \dots, p_{i} \in \lambda \right\} \cup \\ & \cup \bigcup \left\{ \left[t_{(l)\sigma^{-1}s(l)\sigma^{-1}S} \right]_{(p)}^{(l)} : l \in \{1,\dots,i\} \text{ and } p_{1},\dots, p_{i-1} \in \lambda \right\} \cup \cdots \cup \\ & \cup \bigcup \left\{ \left[t_{(l)\sigma^{-1}s(l)\sigma^{-1}S} \right]_{(p)}^{(l)} : l \in \{1,\dots,i\} \text{ and } p \in \lambda \right\} \end{aligned} \right\}$$

 and

$$\alpha_{S}\mathscr{I}_{\lambda}^{n}(S) = \begin{pmatrix} a_{1} \cdots a_{i} \\ b_{1} \cdots b_{i} \end{pmatrix} \cdot \mathscr{I}_{\lambda}^{n}(S) = \{0\} \cup \bigcup \left\{ [s_{1}S, \dots, s_{i}S]_{(p_{1}, \dots, p_{i})}^{(a_{1}, \dots, a_{i})} \colon p_{1}, \dots, p_{i} \in \lambda \right\} \cup \\ \cup \bigcup \left\{ [s_{l_{1}}S, \dots, s_{l_{i-1}}S]_{(p_{1}, \dots, p_{i-1})}^{(l_{1}, \dots, l_{i-1})} \colon l_{1}, \dots, l_{i-1} \text{ are distinct elements of } \{1, \dots, i\} \\ \text{ and } p_{1}, \dots, p_{i-1} \in \lambda \right\} \cup \dots \cup \\ \cup \bigcup \left\{ [s_{l}S]_{(p)}^{(l)} \colon l \in \{1, \dots, i\} \text{ and } p \in \lambda \right\}.$$

Hence, the inclusion $\alpha_S \mathscr{I}^n_{\lambda}(S) \subseteq \beta_S \alpha_S \mathscr{I}^n_{\lambda}(S)$ and semigroup operations of the semigroups $\mathscr{I}^n_{\lambda}(S)$ and S imply that $s_l S \subseteq t_{(l)\sigma^{-1}}s_{(l)\sigma^{-1}}S$, for every $l \in \{1, \ldots, i\}$. Since the semigroup of all permutations of a finite set is finite, we conclude that there exists a positive integer j such that $\sigma^j : \{1, \ldots, i\} \to \{1, \ldots, i\}$ is the identity map and therefore we get that $\sigma^{j-1} = \sigma$. This implies that for every $l \in \{1, \ldots, i\}$ we have that

$$s_l S \subseteq t_{(l)\sigma^{-1}} s_{(l)\sigma^{-1}} S \subseteq t_{(l)\sigma^{-1}} t_{(l)\sigma^{-2}} S \subseteq$$
$$\subseteq \cdots \subseteq$$
$$\subseteq t_{(l)\sigma^{-1}} t_{(l)\sigma^{-2}} \cdots t_{(l)\sigma^{-j+1}} s_{(l)\sigma^{-j+1}} S =$$
$$= t_{(l)\sigma^{-1}} t_{(l)\sigma^{-2}} \cdots t_l s_l S.$$

Then the right stability of the semigroup S implies the equality

$$s_l S = t_{(l)\sigma^{-1}} t_{(l)\sigma^{-2}} \cdots t_l s_l S$$

and hence we have that $s_l S = t_{(l)\sigma^{-1}} S_{(l)\sigma^{-1}} S$, for every $l \in \{1, \ldots, i\}$. Then the inclusion $\alpha_S \mathscr{I}^n_{\lambda}(S) \subseteq \beta_S \alpha_S \mathscr{I}^n_{\lambda}(S)$ and above formulae imply the equality $\alpha_S \mathscr{I}^n_{\lambda}(S) = \beta_S \alpha_S \mathscr{I}^n_{\lambda}(S)$, and hence the semigroup $\mathscr{I}^n_{\lambda}(S)$ is right stable.

 $\begin{array}{l} \beta_{S}\alpha_{S}\mathscr{I}_{\lambda}^{n}(S) \cong \beta_{S}\alpha_{S}\mathscr{I}_{\lambda}(S) \cong \beta_{S}\alpha_{S}\mathscr{I}_{\lambda}(S) \cong \beta_{S}\alpha_{S}\mathscr{I}_{\lambda}^{n}(S), \\ \beta_{S}\alpha_{S}\mathscr{I}_{\lambda}^{n}(S), \text{ and hence the semigroup } \mathscr{I}_{\lambda}^{n}(S) \text{ is right stable.} \\ (\Rightarrow) \text{ Suppose that the semigroup } \mathscr{I}_{\lambda}^{n}(S) \text{ is right stable and } sS \subseteq tsS \text{ for } s, t \in S. \\ \text{We fix an arbitrary } a \in \lambda \text{ and put } \alpha_{S} = \begin{pmatrix} s \\ s \\ a \end{pmatrix} \text{ and } \beta_{S} = \begin{pmatrix} a \\ t \\ a \end{pmatrix}. \text{ Hence by the definition of the semigroup operation of } \mathscr{I}_{\lambda}^{n}(S) \text{ we get that} \end{array}$

$$\alpha_{S}\mathscr{I}^{n}_{\lambda}(S) = \begin{pmatrix} a\\s\\a \end{pmatrix} \mathscr{I}^{n}_{\lambda}(S) = \{0\} \cup \bigcup \left\{ [sS]^{(a)}_{(p)} \colon p \in \lambda \right\}$$

 and

$$\beta_S \alpha_S \mathscr{I}^n_{\lambda}(S) = \begin{pmatrix} a \\ t \\ a \end{pmatrix} \begin{pmatrix} a \\ s \\ a \end{pmatrix} \mathscr{I}^n_{\lambda}(S) = \begin{pmatrix} a \\ ts \\ a \end{pmatrix} \mathscr{I}^n_{\lambda}(S) = \{0\} \cup \bigcup \left\{ [tsS]^{(a)}_{(p)} \colon p \in \lambda \right\},$$

and hence by the inclusion $sS \subseteq tsS$ we have that $\alpha_S \mathscr{I}_{\lambda}^n(S) \subseteq \beta_S \alpha_S \mathscr{I}_{\lambda}^n(S)$. Now the right stability of $\mathscr{I}_{\lambda}^n(S)$ implies the equality $\alpha_S \mathscr{I}_{\lambda}^n(S) = \beta_S \alpha_S \mathscr{I}_{\lambda}^n(S)$. This implies $[sS]_{(p)}^{(a)} = [tsS]_{(p)}^{(a)}$ in $\mathscr{I}_{\lambda}^n(S)$ for every $p \in \lambda$, and hence sS = tsS.

The proof of statement (ii) is dual to that of statement (i).

(iii) follows from statements (i) and (ii).

4. ON SEMIGROUPS WITH A TIGHT IDEAL SERIES

Fix an arbitrary positive integer m and any $p \in \{0, \ldots, m\}$. Let A be a non-empty set and let B be a non-empty proper subset of A. By $[B \subset A]_p^m$ we denote all elements (x_1, \ldots, x_m) of the power A^m which satisfy the following property: at most p coordinates of (x_1, \ldots, x_m) belong to $A \setminus B$. It is obvious that $[B \subset A]_m^m = A^m$ for any positive integer m, any non-empty set A and any non-empty proper subset B of A.

The above definition implies the following two lemmas.

Lemma 1. Let m be an arbitrary positive integer and $p \in \{1, \ldots, m\}$. Let A be a non-empty set and let B be a non-empty proper subset of A. Then the set $[B \subset A]_p^m \setminus [B \subset A]_{p-1}^m$ consists of all elements (x_1, \ldots, x_m) of the power A^m such that exactly p coordinates of (x_1, \ldots, x_m) belong to $A \setminus B$.

Lemma 2. Let m be an arbitrary positive integer and $p \in \{0, 1, ..., m\}$. Let S be a semigroup, A and B be ideals in S such that $B \subset A$. Then $[B \subset A]_p^m$ is an ideal of the direct power S^m .

An subset D of a semigroup S is said to be ω -unstable if D is infinite and $aB \cup Ba \notin D$ for any $a \in D$ and any infinite subset $B \subseteq D$.

Definition 1 ([18]). An *ideal series* (see, for example, [11]) for a semigroup S is a chain of ideals

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = S.$$

We call the ideal series *tight* if I_0 is a finite set and $D_k = I_k \setminus I_{k-1}$ is an ω -unstable subset for each $k = 1, \ldots, n$.

It is obvious that for every infinite cardinal λ and any positive integer *n* the semigroup $\mathscr{I}_{\lambda}^{n}$ has a tight ideal series. A finite direct product of semigroups with tight ideal series is a semigroup with a tight ideal series and a homomorphic image of a semigroup with a tight ideal series with finite preimages is a semigroup with a tight ideal series too [18].

A subset D of a semigroup S is said to be *strongly* ω -unstable if D is infinite and $aB \cup Bb \nsubseteq D$ for any $a, b \in D$ and any infinite subset $B \subseteq D$. It is obvious that a subset D of a semigroup S is strongly ω -unstable then D is ω -unstable.

Definition 2. We call the ideal series $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = S$ strongly tight if I_0 is a finite set and $D_k = I_k \setminus I_{k-1}$ is a strongly ω -unstable subset for each $k = 1, \ldots, n$.

An example of a semigroup with a strongly tight ideal series gives the following proposition.

Proposition 9. Let λ be any infinite cardinal and n be any positive integer. Then

$$I_0 = \{0\} \subseteq I_1 = \mathscr{I}_{\lambda}^1 \subseteq I_2 = \mathscr{I}_{\lambda}^2 \subseteq \cdots \subseteq I_n = \mathscr{I}_{\lambda}^n$$

is the strongly tight ideal series in the semigroup \mathscr{I}^n_λ .

Proof. The definition of the semigroup \mathscr{I}^n_{λ} implies that $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$ is an ideal series in \mathscr{I}^n_{λ} .

Fix an arbitrary integer i = 1, ..., n. For any infinite subset B of $\mathscr{I}^i_{\lambda} \setminus \mathscr{I}^{i-1}_{\lambda}$ at least one of the following families of sets

$$\mathfrak{d}(B) = \{ \operatorname{dom} \gamma \colon \gamma \in B \} \quad \text{or} \quad \mathfrak{r}(B) = \{ \operatorname{ran} \gamma \colon \gamma \in B \}$$

is infinite. Then the definition of the semigroup operation in \mathscr{I}^n_{λ} implies that $\alpha B \not\subseteq \mathscr{I}^i_{\lambda} \setminus \mathscr{I}^{i-1}_{\lambda}$ in the case when the set $\mathfrak{d}(B)$ is infinite, and $B\beta \not\subseteq \mathscr{I}^i_{\lambda} \setminus \mathscr{I}^{i-1}_{\lambda}$ in the case when the set $\mathfrak{r}(B)$ is infinite, for any $\alpha, \beta \in \mathscr{I}^i_{\lambda} \setminus \mathscr{I}^{i-1}_{\lambda}$.

Later for an arbitrary non-empty set A, any positive integer n and any $i \in \{1, \ldots, n\}$ by $\pi_i \colon A^n \to A$, $(a_1, \ldots, a_n) \mapsto a_i$ we shall denote the projection on the *i*-th factor of the power A^n .

Proposition 10. Let n be a positive integer ≥ 2 and let $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m = S$ be the strongly tight ideal series for a semigroup S. Then the series

is a strongly tight ideal series for the direct power S^n .

Proof. It is obvious that I_0^n is a finite ideal of S^n . Also by Lemma 2 all subsets in series (2) are ideals in S^n .

Fix any $k \in \{1, \ldots, m\}$ and any $p \in \{1, \ldots, n\}$. We claim that the sets

$$[I_{k-1} \subset I_k]_p^n \setminus [I_{k-1} \subset I_k]_{p-1}^n \quad \text{and} \quad [I_{k-1} \subset I_k]_1^n \setminus I_{k-1}^n$$

are strongly ω -unstable in S^n . Indeed, fix an arbitrary infinite subset

$$B \subseteq [I_{k-1} \subset I_k]_p^n \setminus [I_{k-1} \subset I_k]_{p-1}^n$$

and any points

$$a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in [I_{k-1} \subset I_k]_p^n \setminus [I_{k-1} \subset I_k]_{p-1}^n$$

Then there exists a coordinate $i \in \{1, \ldots, n\}$ such that the set $\pi_i(B) \subseteq I_k \setminus I_{k-1}$ is infinite. If $a_i \notin I_k \setminus I_{k-1}$ or $b_i \notin I_k \setminus I_{k-1}$ then

$$(a_i \cdot \pi_i(B) \cup \pi_i(B) \cdot b_i) \cap I_k \setminus I_{k-1} = \emptyset,$$

and hence

$$aB \cup Bb \nsubseteq [I_{k-1} \subset I_k]_p^n \setminus [I_{k-1} \subset I_k]_{p-1}^n$$

If $a_i, b_i \in I_k \setminus I_{k-1}$ then $(a_i \cdot \pi_i(B) \cup \pi_i(B) \cdot b_i) \notin I_k \setminus I_{k-1}$, because the set $I_k \setminus I_{k-1}$ is strongly ω -unstable in S, and hence $aB \cup Bb \notin [I_{k-1} \subset I_k]_p^n \setminus [I_{k-1} \subset I_k]_{p-1}^n$. The proof of the statement that the set $[I_{k-1} \subset I_k]_1^n \setminus I_{k-1}^n$ is strongly ω -unstable in S^n is similar.

Later we fix an arbitrary positive integer n. Then for any semigroup S and any positive integer $k \leq n$, since $\mathscr{I}^k_{\lambda}(S)$ is a subsemigroup of $\mathscr{I}^n_{\lambda}(S)$, by $\iota: \mathscr{I}^k_{\lambda}(S) \to \mathscr{I}^n_{\lambda}(S)$ we denote this natural embedding. Similar arguments imply that, without loss of generality, for any subsemigroup T of S and any positive integer $k \leq n$ since $\mathscr{I}^k_{\lambda}(T)$ is a subsemigroup of $\mathscr{I}^n_{\lambda}(S)$ by $\iota: \mathscr{I}^k_{\lambda}(T) \to \mathscr{I}^n_{\lambda}(S)$, we denote this natural embedding.

Let $A \neq \emptyset$ and k be any positive integer. A subset $B \subseteq A^k$ is said to be k-symmetric if the following condition holds: $(b_1, \ldots, b_k) \in B$ implies $(b_{(1)\sigma}, \ldots, b_{(k)\sigma}) \in B$ for every permutation $\sigma: \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$.

Remark 3. We observe that every element of the tight ideal series (2) is *m*-symmetric in S^n , and moreover the sets

$$[I_{k-1} \subset I_k]_p^n \setminus [I_{k-1} \subset I_k]_{p-1}^n \quad \text{and} \quad [I_{k-1} \subset I_k]_1^n \setminus I_{k-1}^n$$

are *m*-symmetric in S^n , too, for all $k \in \{1, \ldots, m\}$ and $p \in \{1, \ldots, n\}$.

We need the following construction.

Construction 2. Let λ be a cardinal ≥ 1 , n be any positive integer, k be any positive integer $\leq \min\{n, \lambda\}$, and S be a semigroup. For any ordered collections of k distinct elements (a_1, \ldots, a_k) and (b_1, \ldots, b_k) of λ^k , we define a map

$$\mathfrak{f}_{(b_1,...,b_k)}^{(a_1,...,a_k)} \colon S^k \to S_{(b_1,...,b_k)}^{(a_1,...,a_k)}$$

by the formula

$$(s_1,\ldots,s_k)\mathfrak{f}_{(b_1,\ldots,b_k)}^{(a_1,\ldots,a_k)} = \begin{pmatrix} a_1 \cdots a_k \\ s_1 \cdots s_k \\ b_1 \cdots b_k \end{pmatrix}.$$

For any non-empty subset $A\subseteq S^k$ and any positive integer $k\leqslant n$ we define the following subsets

$$[A]_{\mathscr{I}^n_{\lambda}(S)}^{(*)_k} = \bigcup \left\{ (A) \mathfrak{f}_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)} \colon (a_1,\dots,a_k) \text{ and } (b_1,\dots,b_k) \text{ are ordered collections} \right.$$

of k distinct elements of $\lambda^k \right\}$

and

$$\overline{[A]}_{\mathscr{I}^n_\lambda(S)}^{(*)_k} = \left\{ \begin{array}{ll} [A]_{\mathscr{I}^n_\lambda(S)}^{(*)_k} \cup \mathscr{I}^{k-1}_\lambda(S), & \text{if } k \geqslant 1; \\ \\ \\ [A]_{\mathscr{I}^n_\lambda(S)}^{(*)_1} \cup \{0\}, & \text{if } k = 1, \end{array} \right.$$

of the semigroup $\mathscr{I}^n_{\lambda}(S)$.

The following lemma can be immediately derived from the definition of k-symmetric sets.

Lemma 3. Let λ be a cardinal ≥ 1 , k be any positive integer $\leq \lambda$ and S be a semigroup. Let (a_1, \ldots, a_k) and (b_1, \ldots, b_k) be arbitrary ordered collections of k distinct elements of λ^k . If $A \neq \emptyset$ is a k-symmetric subset of S^k , then

$$(A)\mathfrak{f}^{(a_1,...,a_k)}_{(b_1,...,b_k)} = (A)\mathfrak{f}^{(a_{(1)\sigma},...,a_{(k)\sigma})}_{(b_{(1)\sigma},...,b_{(k)\sigma})}$$

for every permutation $\sigma: \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$.

Theorem 1. Let λ be an infinite cardinal and n be a positive integer. If S is a finite semigroup, then

$$I_0 = \{0\} \subseteq I_1 = \mathscr{I}_{\lambda}^1(S) \subseteq I_2 = \mathscr{I}_{\lambda}^2(S) \subseteq \cdots \subseteq I_n = \mathscr{I}_{\lambda}^n(S)$$

is a strongly tight ideal series for the semigroup $\mathscr{I}^n_{\lambda}(S)$.

Proof. It is obvious that for every i = 0, 1, ..., n the set I_i is an ideal in $\mathscr{I}^n_{\lambda}(S)$ and moreover the set I_0 is finite.

Fix an arbitrary i = 1, ..., n and any infinite subset $B \subseteq I_i \setminus I_{i-1}$. Since the semigroup S is finite, every infinite subset X of $I_i \setminus I_{i-1}$ intersects infinitely many sets of the form $S_{(b_1,...,b_i)}^{(a_1,...,a_i)}$. Then the definition of the semigroup $\mathscr{I}_{\lambda}^n(S)$ implies that at least one of the families of sets

$$\mathfrak{d}(B) = \{ \mathbf{d} \, \gamma \colon \gamma \in B \} \qquad \text{or} \qquad \mathfrak{r}(B) = \{ \mathbf{r} \, \gamma \colon \gamma \in B \}$$

is infinite. Then the definition of the semigroup operation in $\mathscr{I}_{\lambda}^{n}(S)$ implies that $\alpha B \notin I_{i} \setminus I_{i-1}$ in the case when the set $\mathfrak{d}(B)$ is infinite, and $B\beta \notin I_{i} \setminus I_{i-1}$ in the case when the set $\mathfrak{r}(B)$ is infinite, for any $\alpha, \beta \in I_{i} \setminus I_{i-1}$. \Box

Theorem 2. Let λ be an infinite cardinal, n be a positive integer and let

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m = S$$

be a strongly tight ideal series for a semigroup S. Then the series

 $\mathbf{20}$

$$J_{0} = \{0\} \subseteq J_{1,0} = \overline{[I_{0}]}_{\mathscr{J}_{\Lambda}^{(n)}(S)}^{(*)_{\Lambda}} \subseteq \\ \subseteq J_{1,1} = \overline{[I_{1}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)} \subseteq J_{1,2} = \overline{[I_{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{\Lambda}} \subseteq \cdots \subseteq J_{1,m} = \overline{[I_{m}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{1}} = \mathscr{J}_{\Lambda}^{(1)}(S) \subseteq \\ \subseteq J_{2,0} = \overline{[I_{0}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} \subseteq J_{2,1} = \overline{[[I_{0} \subset I_{1}]_{1}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} \subseteq J_{2,2} = \overline{[I_{1}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} \subseteq \\ \subseteq J_{2,3} = \overline{[[I_{1} \subset I_{2}]_{1}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} \subseteq J_{2,4} = \overline{[I_{2}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} \subseteq \cdots \subseteq \\ \subseteq J_{2,2m-1} = \overline{[[I_{m-1} \subset I_{m}]_{1}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} \subseteq J_{2,2m} = \overline{[[I_{m}]_{2}^{2}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{2}} = \mathscr{J}_{\Lambda}^{2}(S) \subseteq \cdots \subseteq \\ \subseteq J_{n,0} = \overline{[I_{0}^{(*)_{n}}}_{\mathscr{J}_{\Lambda}^{(k)}(S)} \subseteq J_{n,1} = \overline{[[I_{0} \subset I_{1}]_{1}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,2} = \overline{[[I_{0} \subset I_{1}]_{2}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq \\ \subseteq J_{n,3} = \overline{[[I_{0} \subset I_{1}]_{3}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,4} = \overline{[[I_{0} \subset I_{1}]_{4}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq \cdots \subseteq \\ GJ_{n,3} = \overline{[[I_{0} \subset I_{1}]_{n}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,4} = \overline{[[I_{0} \subset I_{1}]_{4}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq \\ GJ_{n,n-1} = \overline{[[I_{0} \subset I_{1}]_{n}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,n} = \overline{[I_{1}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq \\ GJ_{n,n+1} = \overline{[[I_{0} \subset I_{1}]_{n}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,n+2} = \overline{[[I_{1} \subset I_{2}]_{n}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq \\ GJ_{n,n+3} = \overline{[[I_{1} \subset I_{2}]_{n}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,n+4} = \overline{[[I_{1} \subset I_{2}]_{n}^{n}]}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq \\ GJ_{n,(m-1)n+1} = \overline{[[I_{m-1} \subset I_{m}]_{1}^{(*)_{n}}}_{\mathscr{J}_{\Lambda}^{(k)}(S)}^{(*)_{n}} \subseteq J_{n,(m-1)n+2} = \overline{[[I_{m-1} \subseteq I_{m}]_{n}^{(*)_{n}}}_{\mathscr{J}_{\Lambda}^{(k)}(S)} \subseteq \\ GJ_{n,(m-1)n+3} = \overline{[[I_{m-1} \subseteq I_{m}]_{1}^{(*)_{n}}}_{\mathscr{J}_{\Lambda}^{(k)}(S)} \subseteq J_{n,(m-1)n+4} = \overline{[I_{m-1} \subseteq I_{m}]_{n}^{(*)_{n}}}_{\mathscr{J}_{\Lambda}^{(k)}(S)} \subseteq \\ GJ_{n,(m-1)n+3} = \overline{[[I_{m-1} \subseteq I_{m}]_{1}^{(*)_{n}}}_{\mathscr{J}_{\Lambda$$

is a strongly tight ideal series for the semigroup $\mathscr{I}^n_\lambda(S).$

Proof. The definition of the semigroup $\mathscr{I}^n_{\lambda}(S)$ and Lemma 2 imply that all subsets in series (3) are ideals in $\mathscr{I}^n_{\lambda}(S)$. Since I_0 is a finite ideal in S, the equalities

$$J_{1,0} \setminus J_0 = \overline{[I_0]}_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1} \setminus \{0\} = [I_0]_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1}$$
$$J_{2,0} \setminus J_{1,m} = \overline{[I_0^2]}_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1} \setminus \mathscr{I}^1_{\lambda}(S) = [I_0^2]_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1}$$
$$\cdots \cdots$$
$$J_{n,0} \setminus J_{n-1,m(n-1)} = \overline{[I_0^n]}_{\mathscr{I}^n_{\lambda}(S)}^{(*)_n} \setminus \mathscr{I}^{n-1}_{\lambda}(S) = [I_0^n]_{\mathscr{I}^n_{\lambda}(S)}^{(*)_n}$$

and the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ imply that

$$J_{1,0} \setminus J_0, \quad J_{2,0} \setminus J_{1,m}, \quad \dots, \quad J_{n,0} \setminus J_{n-1,m(n-1)}$$

are strongly ω -unstable subsets in $\mathscr{I}_{\lambda}^{n}(S)$. Next we shall show that the set $J_{k,p} \setminus J_{k,p-1}$ is strongly ω -unstable in $\mathscr{I}_{\lambda}^{n}(S)$ for all $k = 1, \ldots, n$ and $p = 1, \ldots, km$.

Fix any infinite subset B of $J_{k,p} \setminus J_{k,p-1}$ and any $\alpha, \beta \in J_{k,p} \setminus J_{k,p-1}$. If $\mathbf{d}(B) \neq \mathbf{r}(\alpha)$ then the semigroup operation of $\mathscr{I}^n_{\lambda}(S)$ implies that $\alpha B \nsubseteq J_{k,p} \setminus J_{k,p-1}$. Similarly, if $\mathbf{d}(\beta) \neq \mathbf{r}(B)$ then $B\beta \nsubseteq J_{k,p} \setminus J_{k,p-1}$.

Next we suppose that $\mathbf{d}(B) = \mathbf{r}(\alpha), \, \mathbf{d}(\beta) = \mathbf{r}(B),$

$$\alpha = \begin{pmatrix} a_1 \cdots a_k \\ s_1 \cdots s_k \\ b_1 \cdots b_k \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} c_1 \cdots c_k \\ t_1 \cdots t_k \\ d_1 \cdots d_k \end{pmatrix}$$

for some $s_1, \ldots, s_k, t_1, \ldots, t_k \in S$ and ordered collections of k distinct elements (a_1, \ldots, a_k) , (b_1, \ldots, b_k) , (c_1, \ldots, c_k) , (d_1, \ldots, d_k) of λ^k . Then the set B consists of the elements of the form

$$\gamma = \begin{pmatrix} b_1 & \cdots & b_k \\ x_1 & \cdots & x_k \\ c_{(1)\sigma} & \cdots & c_{(k)\sigma} \end{pmatrix},$$

where $x_1, \ldots, x_k \in S$ and $\sigma \colon \{1, \ldots, k\} \to \{1, \ldots, k\}$ is a permutation.

First we consider the case when $J_{k,p} = J_{k,jk} = \overline{[I_j^k]}_{\mathscr{I}_{\lambda}^n(S)}^{(*)_k}$ for some $j = 1, \ldots, m$. Then

$$J_{k,p-1} = J_{k,jk-1} = \overline{\left[[I_{j-1} \subset I_j]_{k-1}^k \right]}_{\mathscr{I}_{\lambda}^n(S)}^{(*)_k}$$

and $B \subseteq [I_j^k]_{\mathscr{J}_{\lambda}^n(S)}^{(*)_k}$. Since the set B is infinite, there exists $b_{i_0} \in \{b_1, \ldots, b_k\}$ such that there exist infinitely many $\gamma \in B$ such that $\mathbf{d}(\gamma) \ni b_{i_0}$. Without loss of generality we may assume that $b_{i_0} = b_1$. We put $B_0 = \{\gamma \in B : b_1 \in \mathbf{d}(\gamma)\}$. Then the set B_0 is infinite and hence the set

$$B_0^S = \left\{ x_1 \in S \colon \begin{pmatrix} b_1 & \cdots & b_k \\ x_1 & \cdots & x_k \\ c_{(1)\sigma} & \cdots & c_{(k)\sigma} \end{pmatrix} \in B_0, \ \sigma \text{ is a permutation of } \{1, \dots, k\} \right\}$$

is infinite, too. The above implies that there exists a permutation σ_0 of $\{1, \ldots, k\}$ such that infinitely many elements of the form $\begin{pmatrix} b_1 & \cdots & b_k \\ x_1 & \cdots & x_k \\ c_{(1)\sigma_0} & \cdots & c_{(k)\sigma_0} \end{pmatrix}$ belong to B_0 . Since $s_1, t_{(1)\sigma_0} \in I_j \setminus I_{j-1}$ and the set $I_j \setminus I_{j-1}$ is strongly ω -unstable we obtain that $a_1 \cdot B_0^S \cup B_0^S \cdot t_{(1)\sigma_0} \notin I_j \setminus I_{j-1}$, and hence the set $[I_j^k]_{\mathscr{J}_h^n(S)}^{(*)_k}$ is strongly ω -unstable, as well.

Next we consider the case $J_{k,p} = J_{n,(j-1)k+q} = \overline{\left[[I_{j-1} \subset I_j]_q^k \right]}_{\mathscr{I}_{\lambda}^n(S)}^{(*)_k}$ for some $j = 1, \ldots, m$. Then

$$J_{k,p-1} = J_{n,(j-1)k+q-1} = \overline{\left[[I_{j-1} \subset I_j]_{q-1}^k \right]}_{\mathscr{I}_{\lambda}^n(S)}$$

and $B \subseteq \left[[I_{j-1} \subset I_j]_q^k \right]_{\mathscr{I}_\lambda^n(S)}^{(*)_k}$. Since the set B is infinite, without loss of generality we may assume that B contains an infinite subset B_0 which consists of elements of the form

(4)
$$\gamma = \begin{pmatrix} b_1 \cdots b_q & b_{q+1} \cdots & b_k \\ x_1 \cdots & x_q & x_{q+1} \cdots & s_k \\ c_1 \cdots & c_q & c_{q+1} \cdots & c_k \end{pmatrix}$$

where $x_1, \ldots, x_q \in I_j \setminus I_{j-1}$ and $x_{q+1}, \ldots, x_k \in I_{j-1} \setminus I_{j-2}$ for some ordered collections of k distinct elements (b_1, \ldots, b_k) and (c_1, \ldots, c_k) of λ^k . Fix arbitrary elements

$$\alpha = \begin{pmatrix} a_1 \cdots a_k \\ s_1 \cdots s_k \\ b_1 \cdots b_k \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} c_1 \cdots c_k \\ t_1 \cdots t_k \\ d_1 \cdots d_k \end{pmatrix}$$

of the set *B*. If either $s_u \notin I_j \setminus I_{j-1}$ for some $u \in \{1, \ldots, q\}$ or $s_v \notin I_{j-1} \setminus I_{j-2}$ for some $v \in \{q+1, \ldots, k\}$ then $\alpha B_0 \nsubseteq \left[[I_{j-1} \subset I_j]_q^k \right]_{\mathscr{I}_{\lambda}^n(S)}^{(*)_k}$. Similarly, $t_u \notin I_j \setminus I_{j-1}$ for some $u \in U_j$

 $\{1, \ldots, q\} \text{ or } t_v \notin I_{j-1} \setminus I_{j-2} \text{ for some } v \in \{q+1, \ldots, k\} \text{ then } B_0 \beta \notin \left[[I_{j-1} \subset I_j]_q^k \right]_{\mathscr{I}_\lambda^n(S)}^{(*)_k} .$ Hence later we shall assume that $s_u \in I_j \setminus I_{j-1}$ for all $u \in \{1, \ldots, q\}$, $s_v \in I_{j-1} \setminus I_{j-2}$ for all $v \in \{q+1, \ldots, k\}$, $t_u \in I_j \setminus I_{j-1}$ for all $u \in \{1, \ldots, q\}$ and $t_v \in I_{j-1} \setminus I_{j-2}$ for all $v \in \{q+1, \ldots, k\}$. Since the set B_0 is infinite, there exists $i_0 \in \{1, \ldots, k\}$ such that there exist infinitely many $\gamma \in B_0$ such that $\mathbf{d}(\gamma) \ni b_{i_0}$. We put $B_1 = \{\gamma \in B_0 : b_{i_0} \in \mathbf{d}(\gamma)\}$. Since the set B_1 is infinite, the following statements hold:

(1) if $i_0 \in \{1, \ldots, q\}$ then $s_{i_0}A \cup At_{i_0} \nsubseteq I_j \setminus I_{j-1}$, where

$$A = \left\{ x_{i_0} \colon \gamma = \begin{pmatrix} b_1 \cdots b_{i_0} \cdots b_q \cdots b_k \\ x_1 \cdots x_{i_0} \cdots x_q \cdots s_k \\ c_1 \cdots c_{i_0} \cdots c_q \cdots c_k \end{pmatrix} \in B_1 \right\},$$

because the set $I_j \setminus I_{j-1}$ is strongly ω -unstable in S;

(2) if $i_0 \in \{q+1,\ldots,k\}$ then $s_{i_0}A \cup At_{i_0} \nsubseteq I_{j-1} \setminus I_{j-2}$, where

$$A = \left\{ x_{i_0} \colon \gamma = \begin{pmatrix} b_1 \cdots b_q \cdots b_{i_0} \cdots b_k \\ x_1 \cdots x_q \cdots x_{i_0} \cdots s_k \\ c_1 \cdots c_q \cdots c_{i_0} \cdots c_k \end{pmatrix} \in B_1 \right\},$$

because the set $I_{j-1} \setminus I_{j-2}$ is strongly ω -unstable in S.

Both above statements imply that

$$\alpha B_1 \cup B_1 \gamma \nsubseteq \left[\left[I_{j-1} \subset I_j \right]_q^k \right]_{\mathscr{I}_{\lambda}^n(S)}^{(*)_k}$$

and hence

$$\alpha B \cup B\gamma \nsubseteq \left[[I_{j-1} \subset I_j]_q^k \right]_{\mathscr{J}^n_\lambda(S)}^{(*)_k}$$

i.e., the set $[[I_{j-1} \subset I_j]_q^k]_{\mathscr{I}^n_{\lambda}(S)}^{(*)_k}$ is strongly ω -unstable in $\mathscr{I}^n_{\lambda}(S)$. This completes the proof of the theorem. \Box

Theorem 2 implies the following

Corollary 2. Let λ be an infinite cardinal, n be a positive integer and let

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m = S$$

be a strongly tight ideal series for a semigroup S. Then the ideal series (3) is tight for the semigroup $\mathscr{I}^n_{\lambda}(S)$.

The proof of the following theorem is similar to Theorem 2.

Theorem 3. Let λ be a finite cardinal, n be a positive integer $\leq \lambda$ and let

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m = S$$

be a strongly tight ideal series for a semigroup S. Then the following series

Theorem 3 implies the following

Corollary 3. Let λ be a finite cardinal, n be a positive integer $\leq \lambda$ and let $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m = S$ be a strongly tight ideal series for a semigroup S. Then the ideal series (3) is tight for the semigroup $\mathscr{I}^n_{\lambda}(S)$.

Let \mathfrak{S} be a class of semitopological semigroups. A semigroup $S \in \mathfrak{S}$ is called *H*closed in \mathfrak{S} , if *S* is a closed subsemigroup of any semitopological semigroup $T \in \mathfrak{S}$ which contains *S* both as a subsemigroup and as a topological space. The *H*-closed topological semigroups were introduced by Stepp in [32], and therein they were called *maximal semigroups*. An algebraic semigroup *S* is called: *algebraically complete in* \mathfrak{S} , if *S* with any Hausdorff topology τ such that $(S, \tau) \in \mathfrak{S}$ is *H*-closed in \mathfrak{S} . We observe that many distinct types of *H*-closedness of topological and semitopological semigroups is studied in [1]–[10], [16]–[21], [24], [26].

By Proposition 10 from [18] every inverse semigroup S with a tight ideal series is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion. Hence Proposition 6 and Theorems 2, 3 imply the following

Theorem 4. Let S be an inverse semigroup which admits a strongly tight ideal series. Then for every non-zero cardinal λ and any positive integer $n \leq \lambda$ the semigroup $\mathscr{I}^n_{\lambda}(S)$ is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion.

We remark that in the case when n = 1 the construction of $\mathscr{I}^1_{\lambda}(S)$ preserves the property to be a semigroup with a tight ideal series, and this follows from the following theorem.

Theorem 5. Let λ be any non-zero cardinal, n be a positive integer $n \leq \lambda$ and let $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m = S$ be a tight ideal series for a semigroup S. Then the series

(6)
$$J_0 = \{0\} \subseteq J_1 = \overline{[I_0]}_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1} \subseteq J_2 = \overline{[I_1]}_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1} \subseteq \cdots \subseteq J_m = \overline{[I_{m-1}]}_{\mathscr{I}^n_{\lambda}(S)}^{(*)_1} \subseteq J_{m+1} = \mathscr{I}^1_{\lambda}(S)$$

is a tight ideal series for the semigroup $\mathscr{I}^1_{\lambda}(S)$ in the case when λ is infinite, and

(7)
$$J_0 = \{0\} \cup \overline{[I_0]}_{\mathscr{I}_{\lambda}^n(S)}^{(*)_1} \subseteq J_1 = \overline{[I_1]}_{\mathscr{I}_{\lambda}^n(S)}^{(*)_1} \subseteq \cdots \subseteq J_{m-1} = \overline{[I_{m-1}]}_{\mathscr{I}_{\lambda}^n(S)}^{(*)_1} \subseteq J_m = \mathscr{I}_{\lambda}^1(S)$$

is a tight ideal series for the semigroup $\mathscr{I}^1_{\lambda}(S)$ in the case when λ is finite.

Proof. We consider the case when the cardinal λ is infinite. In the other case the proof is similar.

The semigroup operation of $\mathscr{I}^1_{\lambda}(S)$ implies that the set J_k is an ideal in $\mathscr{I}^1_{\lambda}(S)$ for an arbitrary integer $k \in \{0, 1, \dots, m+1\}$.

Fix an arbitrary $k \in \{1, \ldots, m+1\}$. Then for any infinite subset B of $J_k \setminus J_{k-1}$ and any $\alpha = \begin{pmatrix} s \\ b \end{pmatrix} \in J_k \setminus J_{k-1}$ the following statements hold.

- (1) If $B \cap S_{(i)}^{(i)}$ is infinite for some $i \in \lambda$ then $B \cap S_{(i)}^{(i)} \subseteq [I_{k-1} \setminus I_{k_2}]_{(i)}^{(i)}$. Hence, the semigroup operation of $\mathscr{I}_{\lambda}^1(S)$ implies that $\alpha B \cup B\alpha \not\subseteq J_k \setminus J_{k-1}$ in the case when a = b = i, because the set $I_{k-1} \setminus I_{k_2}$ is ω -unstable in S. Otherwise $0 \in \alpha B \cup B \alpha \nsubseteq J_k \setminus J_{k-1}.$
- (2) In the other case the semigroup operation of $\mathscr{I}^1_{\lambda}(S)$ implies that $0 \in \alpha B \cup B \alpha \nsubseteq$ $J_k \setminus J_{k-1}$.

Both above statements imply that the set $J_k \setminus J_{k-1}$ is ω -unstable in $\mathscr{I}^1_{\lambda}(S)$, which completes the proof of the theorem.

5. On a semitopological semigroup $\mathscr{I}^n_{\lambda}(S)$

For any element $\alpha = \begin{pmatrix} i_1 & \dots & i_k \\ j_1 & \dots & j_k \end{pmatrix}$ of the semigroup \mathscr{I}^n_{λ} and any $s \in S$ we denote $\alpha[s] = \begin{pmatrix} i_1 & \dots & i_k \\ s & \dots & s \\ j_1 & \dots & j_k \end{pmatrix}$, which is an element of $\mathscr{I}^n_{\lambda}(S)$. Later in this case we shall say that $\alpha[s]$ is the *s*-extension of α or α is the \mathscr{I}^n_{λ} -restriction of $\alpha[s]$.

Proposition 11. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda$, $0 < k \leqslant n$ and $\mathscr{I}^n_{\lambda}(S)$ be a Hausdorff semitopological semigroup. Then for any ordered collections of k distinct elements (a_1, \ldots, a_k) and (b_1, \ldots, b_k) of λ^k and any element $\alpha_S \in S^{(a_1, \ldots, a_k)}_{(b_1, \ldots, b_k)}$ there exists an open neighbourhood $U(\alpha_S)$ of α_S such that

- U(α_S) ∩ 𝒢^{k-1}_λ(S) = Ø and U(α_S) ∩ 𝒢^k_λ(S) ⊆ S^(a₁,...,a_k)_(b₁,...,b_k) in the case when k ≥ 2,
 0 ∉ U(α_S) and U(α_S) ∩ 𝒢¹_λ(S) ⊆ S^(a₁)_(b₁) in the case when k = 1.

Thus $\mathscr{I}^k_{\lambda}(S)$ is a closed subsemigroup of $\mathscr{I}^n_{\lambda}(S)$.

Proof. Fix an arbitrary $k \leq n$ and an arbitrary $\alpha_S = \begin{pmatrix} a_1 & \dots & a_k \\ s_1 & \dots & s_k \\ b_1 & \dots & b_k \end{pmatrix} \in S^{a_1,\dots,a_k}_{b_1,\dots,b_k}$. It is obvious that $\varepsilon_1[1_S] \cdot \alpha_S \cdot \varepsilon_2[1_S] = \alpha_S$, where

$$\varepsilon_1[1_S] = \begin{pmatrix} a_1 & \dots & a_k \\ 1_S & \dots & 1_S \\ a_1 & \dots & a_k \end{pmatrix}, \qquad \varepsilon_2[1_S] = \begin{pmatrix} b_1 & \dots & b_k \\ 1_S & \dots & 1_S \\ b_1 & \dots & b_k \end{pmatrix},$$

and 1_S is the unit element of S.

Simple calculations imply that

$$S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)} = \\ = \varepsilon_1[1_S] \cdot \mathscr{I}^n_\lambda(S) \cdot \varepsilon_2[1_S] \setminus \bigcup \left\{ \overline{\varepsilon}_1[1_S] \cdot \mathscr{I}^n_\lambda(S) \cdot \overline{\varepsilon}_2[1_S] \colon \overline{\varepsilon}_1 < \varepsilon_1 \text{ and } \overline{\varepsilon}_2 < \varepsilon_2 \text{ in } E(\mathscr{I}^n_\lambda) \right\}$$

We observe that eT and Te are closed subset in an arbitrary Hausdorff semitopological semigroup T for any its idempotent e. Since for any idempotent $\varepsilon \in \mathscr{I}_{\lambda}^{n}$ the set $\downarrow \varepsilon = \{\iota \in E(\mathscr{I}_{\lambda}^{n}) : \iota \leq \varepsilon\}$ is finite, the set

$$A_{\alpha_S} = \bigcup \left\{ \overline{\varepsilon}_1[1_S] \cdot \mathscr{I}^n_\lambda(S) \cdot \overline{\varepsilon}_2[1_S] \colon \overline{\varepsilon}_1 < \varepsilon_1 \text{ and } \overline{\varepsilon}_2 < \varepsilon_2 \right\}$$

is closed in $\mathscr{I}^n_{\lambda}(S)$. Fix an arbitrary open neighbourhood $W(\alpha_S)$ of α_S such that $W(\alpha_S) \cap A_{\alpha_S} = \emptyset$. The separate continuity of the semigroup operation on $\mathscr{I}^n_{\lambda}(S)$ implies that there exists an open neighbourhood $U(\alpha_S)$ of α_S such that $\varepsilon_1[1_S] \cdot U(\alpha_S) \cdot \varepsilon_2[1_S] \subseteq W(\alpha_S)$. The neighbourhood $U(\alpha_S)$ is a requested one. Indeed, if there exists $\beta_S \in \mathscr{I}^k_{\lambda}(S) \setminus S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)}$ then $\varepsilon_1[1_S] \cdot \beta_S \cdot \varepsilon_2[1_S] \in A_{\alpha_S}$.

Remark 4. We observe that in Proposition 11 we may assume that the neighbourhood $U(\alpha_S)$ may be chosen with the property that $\varepsilon_1[1_S] \cdot U(\alpha_S) \cdot \varepsilon_2[1_S] \subseteq S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)}$.

Proposition 12. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leq \lambda$, $0 < k \leq n$ and $\mathscr{I}^{n}_{\lambda}(S)$ be a Hausdorff semitopological semigroup. Then for any ordered collections of k distinct elements (a_{1}, \ldots, a_{k}) , (b_{1}, \ldots, b_{k}) , (c_{1}, \ldots, c_{k}) , and (d_{1}, \ldots, d_{k}) of λ^{k} the subspaces $S^{(a_{1}, \ldots, a_{k})}_{(b_{1}, \ldots, b_{k})}$ and $S^{(c_{1}, \ldots, c_{k})}_{(d_{1}, \ldots, d_{k})}$ are homeomorphic, and moreover $S^{(a_{1}, \ldots, a_{k})}_{(a_{1}, \ldots, a_{k})}$ and $S^{(c_{1}, \ldots, c_{k})}_{(c_{1}, \ldots, c_{k})}$ are topologically isomorphic subsemigroups of $\mathscr{I}^{n}_{\lambda}(S)$.

Proof. Since $\mathscr{I}^n_{\lambda}(S)$ is a semitopological semigroup, the restrictions of the maps

$${}^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)} \mathfrak{h}^{(c_1,\ldots,c_k)}_{(d_1,\ldots,d_k)} \colon \mathscr{I}^n_{\lambda}(S) \to \mathscr{I}^n_{\lambda}(S), \ \alpha \mapsto \begin{pmatrix} c_1 & \dots & c_k \\ 1_S & \dots & 1_S \\ a_1 & \dots & a_k \end{pmatrix} \cdot \alpha \cdot \begin{pmatrix} b_1 & \dots & b_k \\ 1_S & \dots & 1_S \\ d_1 & \dots & d_k \end{pmatrix}$$

and

$${}^{(c_1,\ldots,c_k)}_{(d_1,\ldots,d_k)} \mathfrak{h}^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)} \colon \mathscr{I}^n_{\lambda}(S) \to \mathscr{I}^n_{\lambda}(S), \ \alpha \mapsto \begin{pmatrix} a_1 \ \dots \ a_k \\ 1_S \ \dots \ 1_S \\ c_1 \ \dots \ c_k \end{pmatrix} \cdot \alpha \cdot \begin{pmatrix} d_1 \ \dots \ d_k \\ 1_S \ \dots \ 1_S \\ b_1 \ \dots \ b_k \end{pmatrix}$$

on the subspaces $S_{(b_1,...,b_k)}^{(a_1,...,a_k)}$ and $S_{(d_1,...,d_k)}^{(c_1,...,c_k)}$, respectively, are mutually inverse, and hence $S_{(b_1,...,b_k)}^{(a_1,...,a_k)}$ and $S_{(d_1,...,d_k)}^{(c_1,...,c_k)}$ are homeomorphic subspaces in $\mathscr{I}_{\lambda}^n(S)$. Also, it is obvious that in the case of subsemigroups $S_{(a_1,...,a_k)}^{(a_1,...,a_k)}$ and $S_{(c_1,...,c_k)}^{(c_1,...,c_k)}$ so defined restrictions of maps are topological isomorphisms.

For any ordered collections of k distinct elements (a_1, \ldots, a_k) and (b_1, \ldots, b_k) of λ^k we define a map

$$\mathfrak{f}_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)}\colon \mathscr{I}_{\lambda}^n(S) \to \mathscr{I}_{\lambda}^n(S), \ \alpha \mapsto \begin{pmatrix} a_1 \dots a_k \\ 1_S \dots 1_S \\ a_1 \dots a_k \end{pmatrix} \cdot \alpha \cdot \begin{pmatrix} b_1 \dots b_k \\ 1_S \dots 1_S \\ b_1 \dots b_k \end{pmatrix}$$

Proposition 11 implies the following corollary.

Corollary 4. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leq \lambda$, $0 < k \leq n$ and $\mathscr{I}^n_{\lambda}(S)$ be a Hausdorff semitopological semigroup. Then the set

$$\Uparrow S^{(a_1,\dots,a_k)}_{(b_1,\dots,b_k)} = \left(S^{(a_1,\dots,a_k)}_{(b_1,\dots,b_k)}\right) \left(\mathfrak{f}^{(a_1,\dots,a_k)}_{(b_1,\dots,b_k)}\right)^{-1}$$

is open in $\mathscr{I}^n_{\lambda}(S)$ for any ordered collections of k distinct elements (a_1,\ldots,a_k) and (b_1,\ldots,b_k) of λ^k .

We recall that a topological space X is said to be

- *compact* if each open cover of X has a finite subcover;
- H-closed if X is a closed subspace of every Hausdorff topological space in which it contained.

It is well known that every Hausdorff compact space is H-closed, and every regular H-closed topological space is compact (see [12, 3.12.5]).

Lemma 4. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leq \lambda$, $0 < k \leq n$ and $\mathscr{I}^{n}_{\lambda}(S)$ be a Hausdorff semitopological semigroup. If $S^{(a)}_{(b)}$ is a closed subset of $\mathscr{I}^{n}_{\lambda}(S)$ for any $a, b \in \lambda$ then $S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)}$ is a closed subspace of $\mathscr{I}^{n}_{\lambda}(S)$ for any ordered collections of k distinct elements (a_1,\ldots,a_k) and (b_1,\ldots,b_k) of λ^k .

Proof. For any $a, b \in \lambda$ the map

$$\mathfrak{f}_{(b)}^{(a)}\colon\mathscr{I}_{\lambda}^{n}(S)\to\mathscr{I}_{\lambda}^{n}(S),\ \alpha\mapsto \begin{pmatrix}a\\1_{S}\\a\end{pmatrix}\cdot\alpha\cdot\begin{pmatrix}b\\1_{S}\\b\end{pmatrix}$$

is continuous, because $\mathscr{I}^n_\lambda(S)$ is a semitopological semigroup. This and Proposition 11 imply that

$$S_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)} = \left(S_{(b_1)}^{(a_1)}\right) \left(\mathfrak{f}_{(b_1)}^{(a_1)}\right)^{-1} \cap \dots \cap \left(S_{(b_k)}^{(a_k)}\right) \left(\mathfrak{f}_{(b_k)}^{(a_k)}\right)^{-1} \cap \mathscr{I}_{\lambda}^k(S)$$

a closed subspace of $\mathscr{I}^n_{\lambda}(S)$.

Since a continuous image of a compact (an H-closed) space is compact (H-closed) (see [12, Chapter 3]), Proposition 12 and Lemma 4 imply the following corollary.

Corollary 5. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leq \lambda$, $0 < k \leq n$ and $\mathscr{I}^n_{\lambda}(S)$ be a Hausdorff semitopological semigroup. If the set $S^{(a)}_{(b)}$ is H-closed (compact) in $\mathscr{I}^n_{\lambda}(S)$ for some $a, b \in \lambda$ then $S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)}$ is a closed subspace of $\mathscr{I}^n_{\lambda}(S)$ for any ordered collections of k distinct elements (a_1,\ldots,a_k) and (b_1,\ldots,b_k) of λ^k .

Definition 3. Let \mathfrak{S} be a class of semitopological semigroups. Let $\lambda \ge 1$ be a cardinal, n be a positive integer $\leqslant \lambda$, and $(S, \tau) \in \mathfrak{S}$. Let $\tau_{\mathscr{I}}$ be a topology on $\mathscr{I}^n_{\lambda}(S)$ such that

a)
$$(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}}) \in \mathfrak{S}$$

b) the topological subspace $\left(S_{(a)}^{(a)}, \tau_B|_{S_{\alpha,\alpha}}\right)$ is naturally homeomorphic to (S, τ) for some $a \in \lambda$, i.e., the map $\mathfrak{H}: S \to \mathscr{I}_{\lambda}^{n}(S), s \mapsto \begin{pmatrix} s \\ s \\ a \end{pmatrix}$ is a topological embedding.

Then $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$ is called a topological \mathscr{I}^n_{λ} -extension of (S, τ) in \mathfrak{S} .

Lemma 5. Let (S, τ) be a semitopological monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda$, $0 < k \leqslant n$ and $(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}})$ be a topological $\mathscr{I}_{\lambda}^{n}$ extension of (S,τ) in the class of semitopological semigroups. Let $U_1(s_1),\ldots,U_k(s_k)$ be open neighbourhoods of the points s_1, \ldots, s_k in (S, τ) , respectively. Then the following sets

$$\uparrow [U_1(s_1)]_{(b_1)}^{(a_1)} = \left([U_1(s_1)]_{(b_1)}^{(a_1)} \right) \left(\mathfrak{f}_{(b_1)}^{(a_1)} \right)^{-1}, \dots, \ \uparrow [U_k(s_k)]_{(b_k)}^{(a_k)} = \left([U_k(s_k)]_{(b_k)}^{(a_k)} \right) \left(\mathfrak{f}_{(b_k)}^{(a_k)} \right)^{-1},$$
and

$$\Uparrow [U_1(s_1), \dots, U_k(s_k)]_{(b_1, \dots, b_k)}^{(a_1, \dots, a_k)} = \Uparrow [U_1(s_1)]_{(b_1)}^{(a_1)} \cap \dots \cap \Uparrow [U_k(s_k)]_{(b_k)}^{(a_k)}$$

are open neighbourhoods of the points

$$\begin{pmatrix} a_1 \\ s_1 \\ b_1 \end{pmatrix}, \cdots, \begin{pmatrix} a_k \\ s_k \\ b_k \end{pmatrix}, \quad and \quad \begin{pmatrix} a_1 \\ s_1 \\ \cdots \\ s_k \\ b_1 \\ \cdots \\ b_k \end{pmatrix}$$

in $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$, respectively, for any ordered collections of k distinct elements (a_1, \ldots, a_k) and (b_1,\ldots,b_k) of λ^k .

Proof. Since $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$ is a topological \mathscr{I}^n_{λ} -extension of (S, τ) in the class of Hausdorff semitopological semigroups, there exist open neighbourhoods W_1, \ldots, W_k of of the points $\begin{pmatrix} a_1\\s_1\\b_1 \end{pmatrix}, \cdots, \begin{pmatrix} a_k\\s_k\\b_k \end{pmatrix}$ in $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$, respectively, such that

$$W_1 \cap S_{(b_1)}^{(a_1)} = [U_1(s_1)]_{(b_1)}^{(a_1)}, \qquad \dots, \qquad W_k \cap S_{(b_k)}^{(a_k)} = [U_k(s_k)]_{(b_k)}^{(a_k)}$$

Then the requested statement of the lemma follows from the separate continuity of the semigroup operation in $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}}).$ \Box

Theorem 6. Let (S, τ) be a Hausdorff compact semitopological monoid, λ be any nonzero cardinal, n be an arbitrary positive integer $\leq \lambda$, $0 < k \leq n$ and $(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}})$ be a compact topological \mathscr{I}^n_{λ} -extension of (S, τ) in the class of Hausdorff semitopological semigroups. Then the subspace $S_{(b_1,...,b_k)}^{(a_1,...,a_k)}$ of $(\mathscr{I}_{\lambda}^n(S), \tau_{\mathscr{I}})$ is compact and moreover it is homeomorphic to the power S^k with the product topology by the mapping

$$\mathfrak{H}\colon S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)}\to S^k, \ \begin{pmatrix}a_1\ \ldots\ a_k\\s_1\ \ldots\ s_k\\b_1\ \ldots\ b_k\end{pmatrix}\mapsto (s_1,\ldots,s_k),$$

for any ordered collections of k distinct elements (a_1, \ldots, a_k) and (b_1, \ldots, b_k) of λ^k .

Proof. Since the monoid (S, τ) is compact, Corollary 5 implies that $S^{(a_1,...,a_k)}_{(b_1,...,b_k)}$ a closed subset of of $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$. Then compactness of of $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$ implies that $S^{(a_1,...,a_k)}_{(b_1,...,b_k)}$ is compact, as well.

It is obvious that the above defined map $\mathfrak{H}: S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)} \to S^k$ is a bijection. Also, Lemma 5 implies that the map \mathfrak{H} is continuous, and it is a homeomorphism, because S^k and $S_{(b_1,...,b_k)}^{(a_1,...,a_k)}$ are compacta. \square

Proposition 11 and Theorem 6 imply the following corollary.

 $\mathbf{28}$

Corollary 6. Let (S, τ) be a Hausdorff compact semitopological monoid, λ be any nonzero cardinal, n be an arbitrary positive integer $\leq \lambda$, $0 < k \leq n$ and $(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}})$ be a compact topological \mathscr{I}^n_{λ} -extension of (S, τ) in the class of Hausdorff semitopologi-cal semigroups. Then $S^{(a_1,\ldots,a_k)}_{(b_1,\ldots,b_k)}$ is an open-and-closed subset of $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$ for any ordered collections of k distinct elements (a_1,\ldots,a_k) and (b_1,\ldots,b_k) of λ^k , and the space $(\mathscr{I}^n_{\lambda}(S), \tau_{\mathscr{I}})$ is the topological sum of such sets with isolated zero.

Remark 5. Since by Theorem of [21] an infinite semigroup of matrix units and hence an infinite semigroup \mathscr{I}^n_{λ} do not embed into compact Hausdorff topological semigroups, Corollary 6 describes compact topological \mathscr{I}^n_{λ} -extensions of compact semigroups (S, τ) in the class of Hausdorff topological semigroups.

Example 2. Let (S, τ_S) be a compact Hausdorff semitopological monoid. On the semigroup $\mathscr{I}^n_{\lambda}(S)$ we define a topology $\tau^{\mathbf{c}}_{\mathscr{I}}$ in the following way. Put

$$\mathscr{P}_{k}^{\mathbf{c}}(0) = \left\{ \mathscr{I}_{\lambda}^{n}(S) \setminus \Uparrow S_{(b_{1},\dots,b_{k})}^{(a_{1},\dots,a_{k})} : (a_{1},\dots,a_{k}) \text{ and } (b_{1},\dots,b_{k}) \text{ are ordered collections} \\ \text{of } k \text{ distinct elements of } \lambda^{k} \right\},$$

for any $k = 1, \ldots, n$, and

$$\mathscr{P}^{\mathbf{c}}(a,s,b) = \left\{ \Uparrow \left[U(s) \right]_{(b)}^{(a)} : U(s) \text{ is an open neighbourhood of } s \text{ in } (S,\tau_S) \right\},$$

for some $\binom{a}{b} \in \mathscr{I}^n_{\lambda}(S) \setminus \{0\}$. The topology $\tau^{\mathbf{c}}_{\mathscr{I}}$ on $\mathscr{I}^n_{\lambda}(S)$ is generated by the family

$$\mathscr{P}^{\mathbf{c}} = \left\{ \mathscr{P}^{\mathbf{c}}_{k}(0) \colon k = 1, \dots, n \right\} \cup \left\{ \mathscr{P}^{\mathbf{c}}(a, s, b) \colon \begin{pmatrix} a \\ s \\ b \end{pmatrix} \in \mathscr{I}^{n}_{\lambda}(S) \setminus \{0\} \right\},$$

as a subbase.

Remark 6. Lemma 5 and the definition of the topology $\tau^{\mathbf{c}}_{\mathscr{I}}$ on $\mathscr{I}^{n}_{\lambda}(S)$ implies that the following statements hold.

- (1) For any k = 1, ..., n and every ordered collection $(a_1, ..., a_k)$ and $(b_1, ..., b_k)$ of
- (1) For any *k* = 1,..., *k* and every ordered states on (*a*₁,...,*a_k*) and (*c*₁,...,*c_k*) or *k* distinct elements of λ^k the set ↑S^(a₁,...,a_k)_(b₁,...,b_k) is closed in (*I*ⁿ_λ(S), τ^c_J).
 (2) For any element α_S = (^{a₁... a_k}<sub>s₁... s_k)</sup>_{b₁... b_k}) of *I*ⁿ_λ(S) and any open neighbourhoods U₁(s₁),...,U_k(s_k) of the points s₁,...,s_k in (S, τ) the set
 </sub>

$$\Uparrow \left[U_1(s_1), \dots, U_k(s_k) \right]_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)} \setminus \left(\Uparrow S_{(b_1^1,\dots,b_{l_1}^1)}^{(a_1^1,\dots,a_{l_1}^1)} \cup \dots \cup \Uparrow S_{(b_1^p,\dots,b_{l_p}^p)}^{(a_1^p,\dots,a_{l_p}^p)} \right)$$

such that $\alpha_S \notin \Uparrow S_{(b_1^1, \dots, b_{l_1}^1)}^{(a_1^1, \dots, a_{l_1}^1)} \cup \dots \cup \Uparrow S_{(b_1^p, \dots, b_{l_n}^p)}^{(a_1^p, \dots, a_{l_p}^p)}$, is an open neighbourhood of the point α_S in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$. Here $\{a_1, \ldots, a_k\} \stackrel{\cdot}{\subsetneq} \{a_1^j, \ldots, a_{l_j}^j\}$ and $\{b_1, \ldots, b_k\} \stackrel{\frown}{\rightleftharpoons}$ $\left\{b_1^j, \dots, b_{l_j}^j\right\}$ for all $j = 1, \dots, p$.

Theorem 7. If (S, τ_S) is a compact Hausdorff semitopological monoid then $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is a compact Hausdorff semitopological semigroup

Proof. It is obvious that the topology $\tau^{\mathbf{c}}_{\mathscr{I}}$ is Hausdorff.

By the Alexander Subbase Theorem (see [12, 3.12.2]) it is sufficient to show that every open cover of $\mathscr{I}^n_\lambda(S)$ which consists of elements of the subbase $\mathscr{P}^{\mathbf{c}}$ has a finite subcover.

We shall show that the space $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is compact by induction. In the case when n = 1, Corollary 13 from [23] implies that the space $(\mathscr{I}^1_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is compact. Next we shall show the step of induction: $(\mathscr{I}^{k-1}_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is compact implies $(\mathscr{I}^{k}_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is compact, too, for k = 2, ..., n. Without loss of generality we may assume that k = n.

Let \mathscr{U} be an arbitrary open cover of $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ which consists of elements of the subbase $\mathscr{P}^{\mathbf{c}}$. The assumption of induction implies that there exists a finite subfamily \mathscr{U}_{n-1} of \mathscr{U} which is a subcover of $\mathscr{I}_{\lambda}^{n-1}(S)$. Fix an arbitrary element $V_0 = \mathscr{I}_{\lambda}^n(S)$

tains the set $S_{(b_1,\ldots,b_p)}^{(a_1,\ldots,a_p)}$ if and only if $U_0 \cap S_{(b_1,\ldots,b_p)}^{(a_1,\ldots,a_p)} \neq \emptyset$. This implies that only one of the following conditions holds:

- (1) there does not exist an element of \mathscr{U}_{n-1} from the family $\{\mathscr{P}_k^{\mathbf{c}}(0): k=1,\ldots,n\}$ which contains the set $S^{(a_1,\ldots,a_p)}_{(b_1,\ldots,b_p)}$; (2) there exists $W_0 \in \mathscr{U}_{n-1} \cap \{\mathscr{P}^{\mathbf{c}}_k(0) \colon k = 1,\ldots,n\}$ such that $S^{(a_1,\ldots,a_p)}_{(b_1,\ldots,b_p)} \subseteq W_0$.

Suppose that condition (1) holds. First we consider the case when p < n. By Theorem 6, the set $S_{(b_1,\ldots,b_p)}^{(a_1,\ldots,a_p)}$ is compact, and hence there exists finitely many elements $\left[U(s_1)\right]_{(d_1)}^{(c_1)},\ldots, \left[U(s_m)\right]_{(d_m)}^{(c_m)}$ in the family $\mathscr{U}_{n-1} \cap \mathscr{P}^{\mathbf{c}} \setminus \{\mathscr{P}_k^{\mathbf{c}}(0) : k = 1,\ldots,n\}$ such that

$$S_{(b_1,\dots,b_p)}^{(a_1,\dots,a_p)} \subseteq \Uparrow [U(s_1)]_{(d_1)}^{(c_1)} \cup \dots \cup \Uparrow [U(s_m)]_{(d_m)}^{(c_m)}$$

It is obvious that $\left\{ U_0, \Uparrow \left[U(s_1) \right]_{(d_1)}^{(c_1)}, \dots, \Uparrow \left[U(s_m) \right]_{(d_m)}^{(c_m)} \right\}$ is a finite cover of $(\mathscr{I}_{\lambda}^n(S), \tau_{\mathscr{I}}^{\mathbf{c}})$.

Next, we consider case p = n. We identify the set $S_{(b_1,...,b_n)}^{(a_1,...,a_n)}$ and the power S^n by the mapping

(8)
$$\mathfrak{H}: S^{(a_1,\ldots,a_n)}_{(b_1,\ldots,b_n)} \to S^n, \ \begin{pmatrix} a_1 \ \dots \ a_n \\ s_1 \ \dots \ s_n \\ b_1 \ \dots \ b_n \end{pmatrix} \mapsto (s_1,\ldots,s_n).$$

The semigroup operation of $\mathscr{I}^{n}_{\lambda}(S)$ implies that $\Uparrow [U(s)]^{(c)}_{(d)} \cap S^{(a_1,\ldots,a_n)}_{(b_1,\ldots,b_n)} \neq \emptyset$ if and only if $c = a_i$ and $d = b_i$ for some i = 1, ..., n. Then by (8) for every i = 1, ..., n we have that

(9)
$$\left(\Uparrow \left[U(s)\right]_{(b_i)}^{(a_i)} \cap S_{(b_1,\dots,b_n)}^{(a_1,\dots,a_n)}\right) \mathfrak{H} = S \times \dots \times \underbrace{U(s)}_{i-\text{th}} \times \dots \times S \subseteq S^n.$$

Then the subbase $\mathscr{P}^{\mathbf{c}}$ on $\mathscr{I}^{n}_{\lambda}(S)$ and map (8) determine the product topology on S^{n} from the space S, and hence the space S^n is compact.

Suppose that $S_{(b_1,...,b_n)}^{(a_1,...,a_n)}$ is not compact. Then $S_{(b_1,...,b_n)}^{(a_1,...,a_n)}$ has a cover \mathscr{W} which consists of the open sets of the form $\uparrow [U(s)]_{(d)}^{(c)}$ and \mathscr{W} does not have a finite subcover. Then the cover \mathscr{W}_{S^n} of S^n which is determined by formula (9) from the family \mathscr{W} has no finite subcover, too. This contradicts the compactness of S^n .

Hence in case (1) the cover \mathscr{U} of $\mathscr{I}^n_{\lambda}(S)$ has a finite subcover.

Suppose that condition (2) holds. Then $W_0 = \mathscr{I}^n_{\lambda}(S) \setminus \Uparrow S^{(c_1,\ldots,c_q)}_{(d_1,\ldots,d_q)}$ with $q \leq n$. If $\Uparrow S^{(c_1,\ldots,c_q)}_{(d_1,\ldots,d_q)} \cap \Uparrow S^{(a_1,\ldots,a_p)}_{(b_1,\ldots,b_p)} = \emptyset$ then $\{V_0, W_0\}$ is a cover of $\mathscr{I}^n_{\lambda}(S)$. In the other case there exists a smallest positive integer p_1 such that $\max\{p+1,q\} \leq p_1 \leq n$ and two ordered p_1 -collections of distinct elements (e_1,\ldots,e_{p_1}) and (f_1,\ldots,f_{p_1}) of the power λ^{p_1} such that

Then for the open set $U_1 = U_0 \cup W_0 = \mathscr{I}^n_{\lambda}(S) \setminus \Uparrow S^{(e_1,\ldots,e_{p_1})}_{(f_1,\ldots,f_{p_1})}$ either condition (1) or condition (2) holds.

Since $p+1 \leq p_1 \leq n$, we repeating finitely many items the above procedure we get that the space $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is compact.

Next we shall show that the topology $\tau^{\mathbf{c}}_{\mathscr{I}}$ is shift-continuous on $(\mathscr{I}^{n}_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$. We consider all possible cases.

(i) $0 \cdot 0 = 0$. Then for any open neighbourhood U_0 of zero in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ we have that

$$U_0 \cdot 0 = 0 \cdot U_0 = \{0\} \subseteq U_0.$$

(*ii*) $\alpha \cdot 0 = 0$. Then for any open neighbourhoods U_0 and U_{α} of zero and α in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$, respectively, we have that

$$U_{\alpha} \cdot 0 = \{0\} \subseteq U_0.$$

Let $W_0 = \mathscr{I}^n_{\lambda}(S) \setminus \left(\Uparrow S^{(a_1^1, \dots, a_{p_1}^1)}_{(b_1^1, \dots, b_{p_1}^1)} \cup \dots \cup \Uparrow S^{(a_1^k, \dots, a_{p_k}^k)}_{(b_1^k, \dots, b_{p_k}^k)} \right)$ be a basic neighbourhood of 0 in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$. Without loss of generality we may assume that $p_1, \dots, p_k \leq |\mathbf{d}(\alpha)|$. Put

$$\mathbf{B} = \left\{ S_{(b)}^{(a)} : a \in \mathbf{d}(\alpha) \text{ and } b \in \left\{ b_1^1, \dots, b_{p_1}^1, \dots, b_1^k, \dots, b_{p_k}^k \right\} \right\}.$$

Then the family **B** is finite and $\alpha \cdot U_0 \subseteq W_0$ for $U_0 = \mathscr{I}^n_{\lambda}(S) \setminus \bigcup_{S^{(a)}_{(k)} \in \mathbf{B}} \Uparrow S^{(a)}_{(b)}$.

(*iii*) $0 \cdot \alpha = 0$. Then for any open neighbourhoods U_0 and U_{α} of zero and α in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$, respectively, we have that

$$0 \cdot U_{\alpha} = \{0\} \subseteq U_0.$$

Let $W_0 = \mathscr{I}^n_{\lambda}(S) \setminus \left(\Uparrow S^{(a_1^1, \dots, a_{p_1}^1)}_{(b_1^1, \dots, b_{p_1}^1)} \cup \dots \cup \Uparrow S^{(a_1^k, \dots, a_{p_k}^k)}_{(b_1^k, \dots, b_{p_k}^k)} \right)$ be a basic neighbourhood of 0 in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$. Without loss of generality we may assume that $p_1, \dots, p_k \leq |\mathbf{d}(\alpha)|$. Put

$$\mathbf{B} = \left\{ S_{(b)}^{(a)} : b \in \mathbf{r}(\alpha) \text{ and } a \in \left\{ a_1^1, \dots, a_{p_1}^1, \dots, a_1^k, \dots, a_{p_k}^k \right\} \right\}.$$

Then the family **B** is finite and $U_0 \cdot \alpha \subseteq W_0$ for $U_0 = \mathscr{I}^n_{\lambda}(S) \setminus \bigcup_{S^{(a)}_{(b)} \in \mathbf{B}} \Uparrow S^{(a)}_{(b)}$.

(*iv*) $\alpha \cdot \beta = 0$. Fix an arbitrary open neighbourhood W_0 of 0 in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$. Without loss of generality we may assume that $W_0 = \mathscr{I}^n_{\lambda}(S) \setminus \left(\Uparrow S^{(a_1)}_{(b_1)} \cup \cdots \cup \Uparrow S^{(a_k)}_{(b_k)} \right)$. Since $\alpha \cdot \beta = 0$ we have that $\mathbf{r}(\alpha) \cap \mathbf{d}(\beta) = \emptyset$. We put

$$\mathbf{B}_{\alpha} = \left\{ S_{(b)}^{(a)} \colon a \in \{a_1, \dots, a_k\}, b \in \mathbf{d}(\beta), \text{ and } \alpha \notin \Uparrow S_{(b)}^{(a)} \right\}$$

and

$$\mathbf{B}_{\beta} = \left\{ S_{(b)}^{(a)} \colon b \in \{b_1, \dots, b_k\}, a \in \mathbf{r}(\alpha), \text{ and } \beta \notin \Uparrow S_{(b)}^{(a)} \right\}.$$

Let $S_{(b_1,\ldots,b_k)}^{(a_1,\ldots,a_k)}$ and $S_{(d_1,\ldots,d_p)}^{(c_1,\ldots,c_p)}$, $1 \leq k, p \leq n$, such that $\alpha \in S_{(b_1,\ldots,b_k)}^{(a_1,\ldots,a_k)}$ and $\beta \in S_{(d_1,\ldots,d_p)}^{(c_1,\ldots,c_p)}$. Then the families \mathbf{B}_{α} and \mathbf{B}_{β} are finite, and hence by Remark 6(2) the sets

$$V_{\alpha} = S_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)} \setminus \bigcup_{S_{(b)}^{(a)} \in \mathbf{B}_{\alpha}} \Uparrow S_{(b)}^{(a)} \quad \text{and} \quad V_{\beta} = S_{(d_1,\dots,d_p)}^{(c_1,\dots,c_p)} \setminus \bigcup_{S_{(b)}^{(a)} \in \mathbf{B}_{\beta}} \Uparrow S_{(b)}^{(a)}$$

are open neighbourhoods of the points α and β in $(\mathscr{I}^n_\lambda(S), \tau^{\mathbf{c}}_{\mathscr{I}})$, respectively, such that

 $V_{\alpha} \cdot \beta \subseteq W_0 \qquad \text{and} \qquad \alpha \cdot V_{\beta} \subseteq W_0.$

(v) $\alpha \cdot \beta = \gamma \neq 0$ and $\mathbf{r}(\alpha) = \mathbf{d}(\beta)$. Without loss of generality we may assume that $\alpha = \begin{pmatrix} a_1 & \dots & a_k \\ s_1 & \dots & s_k \\ b_1 & \dots & b_k \end{pmatrix}$ and $\beta = \begin{pmatrix} b_1 & \dots & b_k \\ t_1 & \dots & t_k \\ c_1 & \dots & c_k \end{pmatrix}$, and hence we have that $\gamma = \begin{pmatrix} a_1 & \dots & a_k \\ s_1 t_1 & \dots & s_k t_k \\ c_1 & \dots & c_k \end{pmatrix}$. Then for any open neighbourhood

$$U_{\gamma} = \Uparrow \left[U_1(s_1t_1), \dots, U_k(s_kt_k) \right]_{(c_1,\dots,c_k)}^{(a_1,\dots,a_k)} \setminus \left(\Uparrow S_{(b_1^1,\dots,b_{l_1}^1)}^{(a_1^1,\dots,a_{l_1}^1)} \cup \dots \cup \Uparrow S_{(b_1^p,\dots,b_{l_p}^p)}^{(a_1^p,\dots,a_{l_p}^p)} \right)$$

of γ in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ we have that

 $\begin{tabular}{l} & \mbox{\uparrow} [V_1(s_1), \dots, V_k(s_k)]^{(a_1, \dots, a_k)}_{(b_1, \dots, b_k)} \cdot \beta \subseteq \begin{tabular}{l} & \end{tabular} \| U_1(s_1 t_1), \dots, U_k(s_k t_k)]^{(a_1, \dots, a_k)}_{(c_1, \dots, c_k)} \cap S^{(a_1, \dots, a_k)}_{(c_1, \dots, c_k)} \subseteq U_{\gamma} \end{tabular} \end{tabular}$

 and

$$\alpha \cdot \Uparrow \left[V_1(t_1), \dots, V_k(t_k) \right]_{(c_1, \dots, c_k)}^{(b_1, \dots, b_k)} \subseteq \Uparrow \left[U_1(s_1 t_1), \dots, U_k(s_k t_k) \right]_{(c_1, \dots, c_k)}^{(a_1, \dots, a_k)} \cap S_{(c_1, \dots, c_k)}^{(a_1, \dots, a_k)} \subseteq U_{\gamma},$$

where $V_1(s_1), \ldots, V_k(s_k), V_1(t_1), \ldots, V_k(t_k)$ are open neighbourhoods of the points $s_1, \ldots, s_k, t_1, \ldots, t_k$ in (S, τ_S) , respectively, such that

$$V_1(s_1) \cdot t_1 \subseteq U_1(s_1t_1), \ldots, V_k(s_k) \cdot t_k \subseteq U_k(s_kt_k)$$

and

$$s_1 \cdot V_1(t_1) \subseteq U_1(s_1t_1), \ldots, s_k \cdot V_k(t_k) \subseteq U_k(s_kt_k).$$

 $\begin{array}{l} (vi) \ \alpha \cdot \beta = \gamma \neq 0 \ \text{and} \ \mathbf{r}(\alpha) \subsetneqq \mathbf{d}(\beta). \ \text{Without loss of generality we may assume that} \\ \alpha = \begin{pmatrix} a_1 \dots a_k \\ s_1 \dots s_k \\ b_1 \dots b_k \end{pmatrix} \ \text{and} \ \beta = \begin{pmatrix} b_1 \dots b_k \ b_{k+1} \dots \ b_{k+j} \\ t_1 \dots t_k \ t_{k+1} \dots \ t_{k+j} \\ c_1 \dots c_k \ c_{k+1} \end{pmatrix}, \ \text{where} \ 1 \leqslant j \leqslant n-k, \ \text{and hence we have} \\ \text{that} \ \gamma = \begin{pmatrix} a_1 \dots a_k \\ s_1 t_1 \dots s_k t_k \\ c_1 \dots c_k \end{pmatrix}. \ \text{Then for any open neighbourhood} \end{array}$

$$U_{\gamma} = \Uparrow \left[U_1(s_1 t_1), \dots, U_k(s_k t_k) \right]_{(c_1, \dots, c_k)}^{(a_1, \dots, a_k)} \setminus \left(\Uparrow S_{(b_1^1, \dots, b_{l_1}^1)}^{(a_1^1, \dots, a_{l_1}^1)} \cup \dots \cup \Uparrow S_{(b_1^1, \dots, b_{l_p}^n)}^{(a_1^n, \dots, a_{l_p}^n)} \right)$$

of the point γ in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ we have that

$$\alpha \cdot \Uparrow \left[V_1(t_1), \dots, V_k(t_k) \right]_{(c_1, \dots, c_k)}^{(b_1, \dots, b_k)} \subseteq \Uparrow \left[U_1(s_1 t_1), \dots, U_k(s_k t_k) \right]_{(c_1, \dots, c_k)}^{(a_1, \dots, a_k)} \cap S_{(c_1, \dots, c_k)}^{(a_1, \dots, a_k)} \subseteq U_{\gamma},$$

where $V_1(t_1), \ldots, V_k(t_k)$ are open neighbourhoods of the points t_1, \ldots, t_k in (S, τ_S) , respectively, such that

$$s_1 \cdot V_1(t_1) \subseteq U_1(s_1t_1), \dots, s_k \cdot V_k(t_k) \subseteq U_k(s_kt_k).$$

 $\mathbf{32}$

Fix an arbitrary open neighbourhood U_{γ} of the point γ in $(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}})$. Then Lemma 5 implies that without loss of generality we may assume that

$$U_{\gamma} = \Uparrow \left[U_1(s_1t_1), \dots, U_k(s_kt_k) \right]_{(c_1,\dots,c_k)}^{(a_1,\dots,a_k)} \setminus \left(\Uparrow S_{(c_1,\dots,c_k,y_1)}^{(a_1,\dots,a_k,x_1)} \cup \dots \cup \Uparrow S_{(c_1,\dots,c_k,y_p)}^{(a_1,\dots,a_k,x_p)} \right)$$

for some $x_1, \ldots, x_p \in \lambda \setminus \{a_1, \ldots, a_k\}$ and $y_1, \ldots, y_p \in \lambda \setminus \{c_1, \ldots, c_k\}$. We put

$$\mathbf{B}_{\alpha} = \left\{ S_{(b_1,\dots,b_k,b)}^{(a_1,\dots,a_k,a)} \colon a \in \{x_1,\dots,x_p\} \text{ and } b \in \{b_{k+1},\dots,b_{k+j}\} \right\}.$$

It is obvious that the family \mathbf{B}_{α} is finite. Then $V_{\alpha} \cdot \beta \subseteq U_{\gamma}$ for

$$V_{\alpha} = \Uparrow \left[V_1(s_1), \dots, V_k(s_k) \right]_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)} \setminus \bigcup_{\substack{S_{(b_1,\dots,b_k,b)}^{(a_1,\dots,a_k,a)} \in \mathbf{B}_{\alpha}}} \Uparrow S_{(b_1,\dots,b_k,b)}^{(a_1,\dots,a_k,a)},$$

where $V_1(s_1), \ldots, V_k(s_k)$ are open neighbourhoods of the points s_1, \ldots, s_k in (S, τ_S) , respectively, such that

$$V_1(s_1) \cdot t_1 \subseteq U_1(s_1t_1), \ldots, V_k(s_k) \cdot t_k \subseteq U_k(s_kt_k).$$

 $(vii) \ \alpha \cdot \beta = \gamma \neq 0$ and $\mathbf{d}(\beta) \subsetneq \mathbf{r}(\alpha)$. In this case the proof of separate continuity of the semigroup operation is similar to case (vi).

(viii) $\alpha \cdot \beta = \gamma \neq 0$, $\mathbf{d}(\gamma) \subsetneqq \mathbf{d}(\alpha)$ and $\mathbf{r}(\gamma) \subsetneqq \mathbf{r}(\beta)$. Without loss of generality we may assume that

$$\alpha = \begin{pmatrix} a_1 \dots a_k & a_{k+11} \dots a_{k+m} \\ s_1 \dots s_k & s_{k+11} \dots s_{k+m} \\ b_1 \dots b_k & b_{k+11} \dots b_{k+m} \end{pmatrix}, \quad \beta = \begin{pmatrix} b_1 \dots b_k & b_{k+1} \dots b_{k+j} \\ t_1 \dots t_k & t_{k+1} \dots t_{k+j} \\ c_1 \dots c_k & c_{k+1} \dots c_{k+j} \end{pmatrix} \quad \text{and} \quad \gamma = \begin{pmatrix} a_1 \dots a_k \\ s_1 t_1 \dots s_k t_k \\ c_1 \dots c_k \end{pmatrix},$$

where $1 \leq j, m \leq n-k$. We put $\varepsilon = \begin{pmatrix} b_1 & \dots & b_k \\ 1_S & \dots & 1_S \\ b_1 & \dots & b_k \end{pmatrix}$, where 1_S is the unit element of S. It is obvious that $\gamma = \alpha \cdot \varepsilon \cdot \beta$. Hence, in this case the separate continuity of the semigroup operation at the point $\alpha \cdot \beta$ in $(\mathscr{I}^n_{\lambda}(S), \tau^{\varepsilon}_{\mathscr{I}})$ follows from cases (vi) and (vii).

The previous statements of this section imply that $\tau_{\mathscr{I}}^{\mathbf{c}} \subseteq \tau_{\mathscr{I}}$ for any compact shiftcontinuous Hausdorff topology $\tau_{\mathscr{I}}$ on $\mathscr{I}^{n}_{\lambda}(S)$, and hence $\tau_{\mathscr{I}}^{\mathbf{c}}$ is the unique requested compact shift-continuous Hausdorff topology on $\mathscr{I}^{n}_{\lambda}(S)$.

Corollary 7. If (S, τ_S) is a compact Hausdorff semitopological inverse monoid with continuous inversion then $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ is a compact Hausdorff semitopological inverse semigroup with continuous inversion.

Proof. Since $W_0^{-1} = \mathscr{I}_{\lambda}^n(S) \setminus \left(\Uparrow S_{(a_1^1,\dots,a_{p_1}^1)}^{(b_1^1,\dots,b_{p_1}^1)} \cup \dots \cup \Uparrow S_{(a_1^k,\dots,a_{p_k}^k)}^{(b_1^k,\dots,b_{p_k}^k)} \right)$ for an arbitrary basic neighbourhood $W_0 = \mathscr{I}_{\lambda}^n(S) \setminus \left(\Uparrow S_{(b_1^1,\dots,b_{p_1}^1)}^{(a_1^1,\dots,a_{p_1}^1)} \cup \dots \cup \Uparrow S_{(b_1^k,\dots,b_{p_k}^k)}^{(a_1^k,\dots,a_{p_k}^k)} \right)$ of zero, inversion is continuous at zero in $(\mathscr{I}_{\lambda}^n(S), \tau_{\mathscr{I}}^{\mathbf{c}})$.

Also, for an arbitrary element $\alpha = \begin{pmatrix} a_1 & \dots & a_k \\ s_1 & \dots & s_k \\ b_1 & \dots & b_k \end{pmatrix}$ of $\mathscr{I}^n_{\lambda}(S)$ and any its open neighbourhood

$$V_{\alpha} = \Uparrow \left[V_1(s_1), \dots, V_k(s_k) \right]_{(b_1,\dots,b_k)}^{(a_1,\dots,a_k)} \setminus \left(\Uparrow S_{(b_1^1,\dots,b_{l_1}^1)}^{(a_1^1,\dots,a_{l_1}^1)} \cup \dots \cup \Uparrow S_{(b_1^1,\dots,b_{l_p}^n)}^{(a_1^1,\dots,a_{l_p}^n)} \right)$$

we have that $(V_{\alpha})^{-1} \subseteq U_{\alpha^{-1}}$ for the neighbourhood

$$U_{\alpha^{-1}} = \Uparrow \left[U_1(s_1^{-1}), \dots, V_k(s_k^{-1}) \right]_{(a_1,\dots,a_k)}^{(b_1,\dots,b_k)} \setminus \left(\Uparrow S_{(a_1^1,\dots,a_{l_1}^1)}^{(b_1^1,\dots,b_{l_1}^1)} \cup \dots \cup \Uparrow S_{(a_1^p,\dots,a_{l_p}^p)}^{(b_1^p,\dots,b_{l_p}^p)} \right)$$

of α^{-1} in $(\mathscr{I}^n_{\lambda}(S), \tau^{\mathbf{c}}_{\mathscr{I}})$ with

$$(V_1(s_1))^{-1} \subseteq U_1(s_1^{-1}), \dots, (V_k(s_k))^{-1} \subseteq U_k(s_k^{-1}).$$

This completes the proof of the corollary.

ACKNOWLEDGEMENTS

The authors are grateful to the referee for several useful comments and suggestions.

References

- 1. T. Banakh and S. Bardyla, Characterizing chain-compact and chain-finite topological semilattices, Semigroup Forum 98 (2019), no. 2, 234-250. DOI: 10.1007/s00233-018-9921-x
- 2. T. Banakh and S. Bardyla, Completeness and absolute H-closedness of topological semilattices, Topology Appl. 260 (2019), 189-202. DOI: 10.1016/j.topol.2019.04.001
- 3. T. Banakh and S. Bardyla, On images of complete topologized subsemilattices in sequential semitopological semilattices, Preprint (arXiv:1806.02864).
- 4. T. Banakh and S. Bardyla, *Complete topologized posets and semilattices*, Preprint (arXiv: 1806.02869).
- 5. T. Banakh, S. Bardyla, and A. Ravsky, *The closedness of complete subsemilattices in functi*onally Hausdorff semitopological semilattices, Preprint (arXiv:1806.02868).
- S. Bardyla and O. Gutik, On *H*-complete topological semilattices, Mat. Stud. 38 (2012), no. 2, 118-123.
- S. Bardyla and O. Gutik, On a complete topological inverse polycyclic monoid, Carpathian Math. Publ. 8 (2016), no. 2, 183-194. DOI: 10.15330/cmp.8.2.183-194
- S. Bardyla, O. Gutik, and A. Ravsky, *H-closed quasitopological groups*, Topology Appl. 217 (2017), 51–58. DOI: 10.1016/j.topol.2016.12.003
- T. Berezovski, O. Gutik, and K. Pavlyk, Brandt extensions and primitive topological inverse semigroups, Int. J. Math. Math. Sci. 2010 (2010) Article ID 671401, 13 pages. DOI: 10.1155/2010/671401.
- I. Chuchman and O. Gutik, On H-closed topological semigroups and semilattices, Algebra Discr. Math. (2007), no. 1, 13–23.
- A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- 12. R. Engelking, *General topology*, 2nd ed., Heldermann, Berlin, 1989.
- J. A. Green, On the structure of semigroups, Ann. Math. (2) 54 (1951), no. 1, 163–172. DOI: 10.2307/1969317
- 14. P. A. Grillet, Semigroups. An introduction to the structure theory, Marcel Dekker, New York, 1995.
- O. V. Gutik, On Howie semigroup, Mat. Metody Phis.-Mech. Polya. 42 (1999), no. 4, 127– 132 (in Ukrainian).
- O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discrete Math. 18 (2014), no. 1, 59-85.
- O. Gutik, Topological properties of Taimanov semigroups, Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 29-34.

 $\mathbf{34}$

- O. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78 (2009), no. 2, 326–336. DOI: 10.1007/s00233-008-9112-2
- 19. O. V. Gutik and K. P. Pavlyk, *H*-closed topological semigroups and topological Brandt λ -extensions, Mat. Metody Fiz.-Mekh. Polya **44** (2001), no. 3, 20–28 (in Ukrainian).
- 20. O. Gutik and K. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups. Visnyk Lviv. Univ. Ser. Mekh.-Mat. **61** (2003), 98-105.
- O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71 (2005), no. 3, 389-400. DOI: 10.1007/s00233-005-0530-0
- 22. O. V. Gutik and K. P. Pavlyk, On Brandt λ^0 -extensions of semigroups with zero, Mat. Metody Phis.-Mech. Polya **49** (2006), no. 3, 26-40.
- 23. O. Gutik and K. Pavlyk, On pseudocompact topological Brandt λ^0 -extensions of semitopological monoids, Topol. Algebra Appl. 1 (2013), 60–79. DOI: 10.2478/taa-2013-0007
- 24. O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite rank ≤ n, Mat. Metody Fiz.-Mekh. Polya 52 (2009), no. 3, 7-14; reprinted version: J. Math. Sc. 171 (2010), no. 4, 425-432. DOI: 10.1007/s10958-010-0147-z
- 25. O. Gutik and A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech. Math. **72** (2010), 94-106 (in Ukrainian).
- O. Gutik and D. Repovš, On linearly ordered H-closed topological semilattices, Semigroup Forum 77 (2008), no. 3, 474–481. DOI: 10.1007/s00233-008-9102-4
- 27. O. Gutik and D. Repovš, On Brandt λ⁰-extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8–32. DOI: 10.1007/s00233-009-9191-8
- 28. R. J. Koch and A. D. Wallace, *Stability in semigroups*, Duke Math. J. **24** (1957), no. 2, 193–195. DOI: 10.1215/S0012-7094-57-02425-0
- J. C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. 12 (1971), no. 3, 323-341. DOI: 10.1017/S1446788700009794
- L. O'Carroll, Counterexamples in stable semigroups, Trans. Amer. Math. Soc. 146 (1969), 377-386. DOI: 10.2307/1995178
- 31. M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
- J. W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math. Soc. 20 (1969), no. 1, 251-253. DOI: 10.2307/2036002
- V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), no. 6, 1119–1122 (in Russian).

Стаття: надійшла до редколегії 17.06.2019 доопрацьована 23.08.2019 прийнята до друку 13.11.2019

РОЗШИРЕННЯ НАПІВГРУП СИМЕТРИЧНИМИ ІНВЕРСНИМИ НАПІВГРУПАМИ ОБМЕЖЕНОГО СКІНЧЕННОГО РАНГУ

Олег ГУТІК, Олександра СОБОЛЬ

Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000, м. Львів e-mail: oleg.gutik@lnu.edu.ua, ovgutik@yahoo.com, o.yu.sobol@gmail.com

Вивчаємо напівгрупове розширення $\mathscr{I}^n_{\lambda}(S)$ напівгрупи S симетричною інверсною напівгрупою обмеженого скінченного рангу n. Описуємо ідемпотенти та регулярні елементи напівгрупи $\mathscr{I}^n_{\lambda}(S)$, доводимо, що напівгрупа $\mathscr{I}^n_{\lambda}(S)$ є регулярною, ортодоксальною, інверсною або стійкою тоді і тільки тоді, коли такою напівгрупою є моноїд S. Описані відношення Ґріна на напівгрупі $\mathscr{I}^n_{\lambda}(S)$ для довільного моноїд S. Вводимо поняття напівгрупи з сильними щільними ідеальними рядами і доводимо, що для довільного нескінченного кардинала λ та довільного натурального числа n напівгрупа $\mathscr{I}^n_{\lambda}(S)$ має сильний щільний ідеальний ряд за умови, коли моноїд S також має сильний щільний ідеальний ряд. На завершення доводимо, що для кожного компактного гаусдорфового напівтопологічного моноїда (S, τ_S) існує єдине його компактне топологічне розширення $(\mathscr{I}^n_{\lambda}(S), \tau^c_{\mathscr{I}})$ в класі гаусдорфових напівтопологічних напівгруп.

Ключові слова: інверсна напівгрупа, симетрична інверсна напівгрупа скінченних перетворень, відношення Ґріна, напівгрупа зі щільними ідеальними рядами, напівтопологічна напівгрупа, компактна напівгрупа.