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We study the semigroup extension #3'(S) of a semigroup S by symmetric
inverse semigroup of a bounded finite rank n. We describe idempotents and
regular elements of the semigroup .#' (S) and show that the semigroup .3 (S)
is regular, orthodox, inverse or stable if and only if so is S. Green’s relati-
ons are described on the semigroup #y'(S) for an arbitrary monoid S. We
introduce the conception of a semigroup with strongly tight ideal series, and
prove that for any infinite cardinal A and any positive integer n the semigroup
J3(S) has a strongly tight ideal series provided so has S. Finally, we show
that for every compact Hausdorff semitopological monoid (S, 7s) there exists
its unique compact topological extension (.#3*(S), 7% ) in the class of Hausdorff
semitopological semigroups.

Key words: inverse semigroup, symmetric inverse semigroup of finite
transformations, Green’s relations, semigroup has a tight ideal series, semi-
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1. INTRODUCTION, MOTIVATION AND MAIN DEFINITIONS

In this paper we follow the terminology of [I1], [31].

If S is a semigroup, then by E(S) we denote the subset of all idempotents of S. On
the set of idempotents E(S) there exists the natural partial order: e < f if and only if
ef = fe=e.

A semigroup S is called:

e regular, if for every a € S there exists an element b in S such that a = aba;
e orthodoz, if S is regular and E(S) is a subsemigroup of S;
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e inverse if every a in S possesses a unique inverse, i.e. if there exists a unique
element ¢~ in S such that

aa”Ta=a and a aa” T =a

It is obvious that every inverse semigroup is orthodox and every orthodox semigroup is
regular. A map which associates to any element of an inverse semigroup its inverse is
called the inversion.

Let A be an arbitrary non-zero cardinal. A map « from a subset D of X into \ is
called a partial transformation of X. In this case the set D is called the domain of o and
is denoted by dom «. Also, the set {z € A\: ya = x for some y € A} is called the range of
« and is denoted by ran a. The cardinality of ran « is called the rank of o and denoted
by rank .. For convenience we denote by @ the empty transformation, that is a partial
mapping with dom @ =ran @ = @.

Let ., denote the set of all partial one-to-one transformations of A together with
the following semigroup operation:

z(af) = (za)f if x € dom(af) ={y € doma: ya € dom S}, for «,f € A

The semigroup %y is called the symmetric inverse semigroup over the cardinal \ (see
[I1]). The symmetric inverse semigroup was introduced by V. V. Wagner [33] and it plays
a major role in the theory of semigroups.

Put
I ={a € Sy ranka is finite} and I ={a € S ranka < n},

for n =1,2,3,.... Obviously, .#° and .} (n =1,2,3,...) are inverse semigroups, .#;°
is an ideal of .#), and .#" is an ideal of .#°, for each n = 1,2,3,.... Further, we shall
call the semigroup #° the symmetric inverse semigroup of finite transformations and
F the symmetric inverse semigroup of finite transformations of the rank < n. The
elements of semigroups #° and #3" are called finite one-to-one transformations (partial
bijections) of the cardinal A. By

(o )
we denote a partial one-to-one transformation which maps z; onto yi, ..., T, onto y,,
and by 0 the empty transformation. Obviously, in such case we have x; # z; and y; # y;
for i # j (i,7 = 1,...,n). The empty partial map @: A — X is denoted by 0. It is obvious
that 0 is zero of the semigroup 7"

Let A be a non-zero cardinal. On the set By = (A x A\) U {0}, where 0 ¢ X x A\, we
define the semigroup operation “-” as follows

wh- e ={ G FLZe

and (a,b) -0 = 0 (a,b) = 0-0 = 0 for a,b,c,d € A. The semigroup B, is called
the semigroup of A\ x A\-matriz units (see [11]). Obviously, for any cardinal A > 0, the
semigroup of A\ x A-matrix units B, is isomorphic to .7}
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Let S be a semigroup with zero and A be a non-zero cardinal. We define the semi-
group operation on the set By(S) = (A x S x A) U {0} as follows:

Rl S A

and (a,a,8)-0=0-(a,a,8) =0-0=0, for all a,3,7,0 € A and a,b € S. If § = S*
then the semigroup By (S) is called the Brandt \-extension of the semigroup S [15, 19].
Obviously, if S has zero then J = {0} U {(«,0s,3): Og is the zero of S} is an ideal
of By(S). We put BY(S) = B)(5)/J and the semigroup BY(S) is called the Brandt
\O-extension of the semigroup S with zero [22].

A semitopological semigroup is a Hausdorff topological space together with a
separately continuous semigroup operation.

The Brandt A-extension B,(S) (or the Brandt A\%-extension BY(S9)) of a semigroup
S can be considered as some semigroup extension of the semigroup S by the semigroup
of A X A-matrix units By. An analogue of such extension gives the following construction.

2. THE CONSTRUCTION OF OF THE SEMIGROUP EXTENSION .47 (S)
In this paper using the semigroup .#;* we propose the following semigroup extension.

Construction 1. Let S be a semigroup, A be a non-zero cardinal, n and k be a positive
integers such that k£ < n < A. We identify every element o € .# with its graph Gr(a) C
A X A and put

IN(8) ={as: Grla) = S: € IV}
and every map from the empty map 0 into S is identified with the empty map @: Ax A —
S and denote it by 0. An arbitrary element 0 # rank @ < n is denoted by

T1 v T

S1 o Sk ),

Y1 Yk
T1 o Tk

where o = (51 =0 5F), and ((x1,31)) @ = s1, - .., ((Tk, Yk)) @ = s. Also for ag € Z(5)
such that
(o
Qs = (y1 yi)
we denote d(ag) = {z1,..., 2} and r(as) = {y1,...,yx}-
Now, we define a binary operation “-” on the set #7*(S) in the following way:
(1) ag-0=0-ag=0-0=0 for every ag € #7(S);
(t) if - f=01in &7 then ag - Bs = 0 for any ag, 8s € IV (5);
(i) if g = (b » b) By = (ti t?) and
Lo by

dy - d
_ (a1 a; c1 i\ @iy Qi . n
a-B= (55 (d1 d,-) = (dh djm) #0 in S,

Fig Fim
then ag - /BS = (Siltjl  Simtim ).
djp o djy
Simple verifications show that the defined binary operation on .#*(S) is associative
and hence .#7*(S) is a semigroup. It is obvious that .#](S) is isomorphic to the Brandt

A-extension B)(S) of the semigroup S.
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We remark that if the semigroup S contains zero Og then
Jo={0}U {as = (5; éjs) : Og is the zero of S}
is an ideal of .#J*(S).
Also, we define a binary relation = on the semigroup .#*(S) in the following way.

For ag, Bs € F(S) we put ag =¢ B if and only if at least one of the following conditions
holds:

(1) as = Bs;
(2) as,Bs € Jo;
(3) as,fBs ¢ Jo and each of the conditions
(1) (z,y)as is determined and (x,y)ag # 0g; and
(#) (x,y)Bs is determined and (z,y)Bs # Os
implies the equality (z,y)as = (z,y)8s-
It is obvious that =¢ is an equivalence relation on the semigroup .#J*(.5).

The following proposition can be proved by immediate verifications.

Proposition 1. The relation =¢ is a congruence on the semigroup #3(S).

We define Z7(S) = S3(S)/=,.

In this paper we study algebraic properties of the semigroups .#3*(S) and #7(S).
We describe idempotents and regular elements of the semigroups #'(S) and 47 (S),
show that the semigroup #7*(S) (#7(S)) is regular, orthodox, inverse or stable if and
only if so is S. Green’s relations are described in the semigroup #7(S) for an arbitrary
monoid S. We introduce the conception of a semigroup with strongly tight ideal series,
and proved that for any infinite cardinal A and any positive integer n the semigroup
Z3(S) has a strongly tight ideal series provides so has S. Finally, we show that for
every compact Hausdorff semitopological monoid (S, 7g) there exists its unique compact
topological extension (.#]*(S), 75 ) in the class of Haudorff semitopological semigroups.

3. ALGEBRAIC PROPERTIES OF THE SEMIGROUP EXTENSIONS .#'(S) AND
IR(S)
The following proposition describes the subset of idempotents of the semigroup

IS

by -+ b;
the semigroup J (S) is an idempotent if and only if a1 = by1,...,a; =b; and s1,...,s; €
E(9).

o . . . aj - ag
Proposition 2. For every positive integer i < n a non-zero element ag = <51 %) of

Proof. The implication (<) is trivial.

(=) Suppose that as - as = ag. Then the definition of the semigroup .#7'(S)
implies that the symbols aq,...,a; are distinct. Similarly we obtain that the symbols
b1, ...,b; are distinct, too. The above arguments and the equality ag-as = ag imply that
{a1,...,a;} = {b1,...,b;}. Assume that aj # b = a; for some integers k,l € {1,...,i},
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k # 1. Then we have that a; # b; # by, which contradicts the equality ag - ag = ag. The
obtained contradiction implies the equalities a; = by, ...,a; = b;. Now, we get that

1w\ far e a o o o
e e (BN (Y (Yo (LY 2y
srasg= (g ) (ann 1o1 o &g s S5

and hence s181 = s1,...,5;8; = s;. This completes the proof of the proposition. O

42 .y . . ai -+ a;
Proposition 3. For every positive integer ¢ < n a non-zero element ag = (21 it) of
L by

the semigroup Z(S) is regular if and only if so are s1,...,8; in S.

by - by
Proof. The implication (<) is trivial. Indeed, ag = agfsag for s = (ti R ), where
ay -

-oag

elements tq,...,t; of the semigroup S are such that s; = sit181, ..., s; = s;t;8;.

(=) Suppose that ag is a regular element of the semigroup #*(S). Then there
(t; (ti:) of the semigroup #7(S), 0 < k < n, such that
L dy
as = ag - fs - ag. Now, this implies that {b1,...,b;} C {e1,...,cx} and hence k > i.
Without loss of generality we may assume that by = ¢1,...,b; = ¢;. Then the equality
ag = ag - fs - as and the semigroup operation of #*(S) imply that di = a1,...,d; = q;
and hence we have that

ay - a; c1 o ay - a;
ag = Q- g = 81+ S . ty - tp . 81+ S =
o o ﬁS o (bl bi) ((il ceody by -+ by
a1 - a; by -+ b; cip1 v ck ay - a;
:(Sl Si) . ty oty tign ety . <Sl Sq‘,) —
by -+ by a - a; digpq o dy by -+ by
a; - ay ay - a;
— | s1t1s1 - sitis; = s1 0 Sq ),
by b, by - by

This implies that the equalities s; = s1t181, ..., $; = s;t;8; hold in S, which completes
the proof of our proposition. O

exists an element Bg = (

Two elements a and b of a semigroup S are said to be inverses of each other if
aba = a and bab = b.

The definition of the semigroup operation in .#*(S) implies the following proposi-
tion.

Proposition 4. Let \ be a non-zero cardinal, n and i be any positive integers such that
i1 <n< A Let S be a semigroup and ay,...,a;,b1,...,b; € \. If the elements s1 and ty,
.., 8; and t; are pairwise inverses of each other in S then the elements

ai -oag by - by
81 v 8 and t o b
by - b; ai - a;
are pairwise inverses of each other in the semigroup Z(S).

For arbitrary semigroup S, every positive integer ¢ < n, any collection non-empty
subsets Aj,...,A; of S, and any two collections of distinct elements {a1,...,a;} and
{b1,...,b;} of the cardinal A we define a subset

) ay - oa;
[Al, A ’Ai]gzllj..::l()l;)) = {(Sl roSi ) © 81 € Al, Lo, 8 € Az}

by -+ b
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of #7(S). Ithe case when A; =... =4, =Ain S we put
A = W A0,
It is obvious that for every subset A of the semigroup S and any permutation
o:{1,...,i} = {1,...,i} we have that
(a@yosea(i)e) (a1,...,a:)
[Alp (Al
Proposition 5. Let A be a non-zero cardinal and n be any positive integer < \. Then
for arbitrary semigroup S, every positive integer i < n and any collection of distinct
elements {ay,...,a;} of \ the direct power S* is isomorphic to a subsemigroup glansmai)

(a,..., a;i)
of I3(S).

Proof. The semigroup operation of .#3'(S) implies that Sg!¢¢ is a subsemigroup of

Z1(S) for any collection of distinct elements {aq, ..., a;} of \. We define an isomorphism
b: S S0 by the formula (s, 5)h = ( . ) O

1"~7ai) ag

Proposition 6. For every semigroup S, any non-zero cardinal \ and any positive integer
n < A the following statements hold:
(2) F(S) is regular if and only if so is S;
(13) F(S) is orthodoz if and only if so is S;
(i9) F(S) is inverse if and only if so is S.

Proof. Statement (i) follows from Proposition

(#) (<) Suppose that S is an orthodox semigroup. Then statement (i) implies
that the semigroup #7'(5) is regular. By Proposition [2| every non-zero idempotent of the

semigroup #;"(S) has the form (gi EZ ), where 0 <7 < nandey,...,e; are idempotents
of S. This implies that the product of two idempotents of .#}*(S) is again an idempotent,
and hence the semigroup .#*(5) is orthodox.

=) Suppose that £*(S) is an orthodox semigroup. By Proposition |3} S s a
A (@)

subsemigroup of .#"(S) for every a € A and hence S((Z)) is orthodox. Then Proposition
implies the semigroup S is orthodox, too.

(#4i) (<) Suppose that S is an inverse semigroup. By statement (i) the semigroup
Z1(S) is regular. Then using Proposition [2| we get that idempotents commute in .#(.5)
and hence by Theorem 1.17 of [I1], .#*(S) is an inverse semigroup.

(=) Suppose that #*(S) is an inverse semigroup. By Proposition S((Z)) is a
subsemigroup of .#*(.S) for every a € A, and by Proposition {4) it is an inverse subsemi-
group. Hence by Proposition [5] S is an inverse semigroup. O

Since any homomorphic image of a regular (resp., orthodox, inverse) semigroup is a
regular (resp., orthodox, inverse) semigroup (see [11l Section 7.4] and [29, Lemma 2.2]),
Proposition [6] implies the following corollary.

Corollary 1. For every semigroup S, any non-zero cardinal A\ and any positive integer
n < A the following statements hold:

(i) F(S) is regular if and only if so is S;
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(ii) I7(S) is orthodoz if and only if so is S;
(iii) F7(S) is inverse if and only if so is S.
If S is a semigroup, then we shall denote by Z, .2, ¢, Z and S the Green relations
on S (see [13] or [11}, Section 2.1]):
aZb if and only if aS' = bS";
aLb if and only if Sla = Stb;
a ?b if and only if StaSt = SthSt,
D = LR = RoL;

H=ZLNXA.
Remark 1. It is obvious that for non-zero elements avg = (gi R E) and Bg = (5 » ;: )
1 i 1o dy

of the semigroup .#(S) any of conditions ag#fs, ag-ZBs, asﬁég, as 7 Bs,or agH Bs
implies the equality ¢ = k.

The following proposition describes the Green relations on the semigroup .#}'(S).

Proposition 7. Let S be a monoid, A be any non-zero cardinal and n < \. Let ag =

aj -t ag C1 = G4
(ii iz) and Bg = (Zii 21’ ) be non-zero elements of the semigroup #'(S). Then the
1 7 1 i

following conditions hold:
(1) asZBs in F(S) if and only if there exists a permutation o: {1,...,i} —
;{gl, .y i) such that ay = ¢y, ..., 0; = Ciyo and s1Ft(1)e, ..., 85iRlG)e N
(11) agZPs in F7(S) if and only if there exists a permutation o: {1,...,i} —
;{91, .y} such that b1 = dys, ..., b = duye and s1.Lt0, ..., 51 L4 0

(13i) asPBs in L (S) if and only if there exists a permutation o: {1,...,i} —
{1,...,i} such that s1Pt(1)s, ..., 5Dty i S;
(v) agHBg in FL3(S) if and only if there exist permutations o,p: {1,...,i} —
{1, cen ,i} such that 51%’75(1)0, ey Si%t(i)o and Slft(l)p, ey Sl'ft(i)p mn S,‘
(v) ag #Bs in F7(S) if and only if there exists a permutation 7: {1,...,i} —
{1,...,i} such that sy _Ztayg, ...,8: Ftiyx in S.

Proof. (i) (=) Suppose that asZfs in #(S). Then there exist non-zero elements
ey - € g1 -+ gj

v = (1;1 ?z) and dg = <Zl =+ v | of the semigroup #(S) such that ag = Bsvs,
1 Je 1 by

Bs = agds, i < j < nand i < k < n. Also, the definition of the semigroup operati-

on of #*(S) implies that without loss of generality we may assume that j = k = 4.

Then the equalities ag = fsvs and Ss = agds imply that {ai,...,a;} = {c1,...,¢i},

{b1,...,b0;} ={g1,...,9:} and {ds,...,d;} = {e1,...,e;}. Now, the semigroup operation

of .#{*(S) implies that there exist permutations o, p,¢: {1,...,i} — {1,...,4} such that

a1 = C(1)gy -+ @i = C(i)os A1 = €(1)ps + -+, di = €(3)p, and b1 = g(1)¢, -+, bi = giy¢, and

hence we have that

ai - oa; c1 o ¢ e1 - € c1 o ¢ di - dj cr o Ci
(51 e Si ) = <t1 ) ) . <U«1 Uz) = (tl 7 ) e v w@, | = Bt v tite, | =
br e b dy e di fooe fi dy o di faye = fare fae = fa

a1 ai
= [ teU(p)e  ti)eU((i)p)o
ftwee = fee
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and
€1 = G ap - a; gi = Ggi ap - a; by e b ay o oa
(tl S ) - (51 S'i> ’ (”1 vi): (51 S) vy v | = [ S1Vae v siviye | =
dy - d; by -+ b; hy -+ h; by -+ by h(l)( h(z‘)c ]—,((1)< h(i)(
o ¢
= (S<1>01”<<1><>ol S<i>alv<<i>c>al> .

hyoe=t 0 h@oe—t
Therefore we get that

(1)

Since o: {1,...,i} — {1,...,4} is a permutation, conditions imply that s1.%t (),
ey Si%t(i)g in S.

(<) Suppose that for ag, s € #'(S) there exists a permutation o: {1,...,i} —
{1,...,i} such that a1 = c(1)s, - .., 0 = C(3)e and 1%t (1o, - . ., 5i%1(;)o in S. Then there
exist u,...,u;,v1,...,v; € S! such that

81 =tWolU(()p)or -+ i = taoU((i)p)o>

and t] = 8(1)0—17)((1)00—1, ey t; = S(#)o=1V((i)¢)o 1+

S1 = t(l)aul, ey S; — t(i)gui, t1 = 8(1)0—11}1, ey t; = S(Z‘)U—l’Ui.
Thus we get that

ai - a; C(ye (i) €1 Ci c1 ¢ di - d;
(51 57’,) = [tyour - tayous | = it (y,—1 o tity,—1) — (h et ) S raye—1  Ugye—t
b1 bi bl bi b(1)0_1 b(i)a—l d1 di, b(l)g,1 b(i>a,1

and

c1 o G R O ap GG a - a, by - by
(t1 et ) = [8(1)e—1Y1 = S(3y,—1Vi | = [F1VW)e 7 SiV(i)o | = <S1 572) - vae o Ve |
dy - d; dy d; dye - Ao by - by d1ye  di)e
and hence agZfs in I(S).
The proof of statement (i) is similar to the proof of (7).

(#4i) (=) Suppose that ag?Bs in #(S). Then there exists a non-zero element
Vs = (16;11 1;2) of the semigroup .#*(S) such that ag%vs and v5.ZBg in #'(S). By
.

statement (7) there exists a permutation ¢: {1,...,i} — {1,...,i} such that e; = a(yc,
coeg = agye and uiAEsqye, - uiASeyc in S and by statement (ii) there exists a
permutation ¢: {1,...,i} — {1,...,i} such that f; =d),..., fi = du) and u1.L5(1)c,
oo ui L8 in S. This implies that s1%t(1)s, ...,8:%t4), in S for the permutation
o=Cos tof {1,...,i}.

(<) Suppose that there exists a permutation o: {1,...,i} — {1,...,i} such that
519t(1)os - - -5 85i%t(i)o in S. Then the definition of the relation & implies that there exist
u1,...,u; € 8 such that s1%Zuy, ..., si%u; and w1 Lt(1)s, - .., wi L), in S. Now, for

ay [e23
the element vs = ( ur o Ui

a i ) of the semigroup .#'(S) by statements (i) and (i) we
have that as%Zvs and y5.ZfBs in Z£7(S).
(iv) follows from statements (i) and (i7).
(v) (=) Suppose that as_# s in #*(S). Then there exist non-zero elements v =
ey - ek, e e, gt - g, 9y gl
ub a5 = et g, |, 85 = | ol vl | and 05 = [ vi - vj, | of the semi-
Ao ;o g e i o
group #(S) such that as = 758575, Bs = dkasds and i < ki, ky, j1, jr < n (see [13] or
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[14] Section II.1]). Also, the definition of the semigroup operation of .#"(.S) implies that
without loss of generality we may assume that k; = k. = j; = j, = i. Then the equalities
as = 758575 and Bs = dkagdl imply that

{ar,...,a;} ={d', ..., ¢"y ={nt, ... nl},
{b177b1}:{ff?7fzr}:{g7ln?7g:}7
{Claacl}:{glh,gﬁ}:{fi?ale}
and
{d1,...,di} ={el,...,el} ={h],... ., hl }.
Now, the semigroup operation of #*(S) implies that there exist permutations
o, 0, ¢ v,k {1, i = {1,...,i}

such that a; = el(l)g, ce, = el(i)a, c = f(ll)p, B O f(li)p, di = 6?1)0 e dp = efi)c,

c = gél)g, cey G = géi)g, a = hl(1)w e = hl(l.)y and by = 9(T1)m b= g(ri)n, and
hence we have that

l 1 .
ai -+ a; €1 Chy c1 o G el ek,
(81 Si) ull uécl . (tl EET 1 ) . u;" u;r —

-

el el dy - d‘ ey el

(Mp (i)p (‘t:l ft:z-) (UT T > , Cwe | e

- { ol . 1o i) ()¢ @] = (u tiug. ceuggy tiug, =

u U, Wp (1)¢ (@)p "t 2 (8)¢

(1) () e dy T . .
T’ d - ds Jye = fye ; l

i fioe flire

ei el
= [t <1>n—1“((1><>p—1 UL -1 U -t | =

((1)<)0_1 f<(7><>a—1

a;
1 I8
B <"<1>a ((1)071)“ (Wb “<i>at<<i>p1>a“<<<i><>p1)a>
Florp—1)e Fwore—1e

and

! l { {
91 0 9 a1 - a; 571 ?z 91y 9y
— vll ook . (21 Z;) . US})N ”(Ti)n = ’Uél)vslvz‘l)n vél)ys v(ri)*i =
hé 1 i h(l)’.c h(i) KT AT

)r (i)r
-
= (”1 (1)v—1”<(1)h)u—1 VIS (=1 V(i my 1 ) =
(<1>~)u—1 T Mt

¢

1 r

(v(l)c ((1>v*1)< ((Wymyv—1y ’U(i)cs((l)”1>§v(((i)n)vl)s> .
hmv=1y¢ h@mv=1y¢

Then the definition of the semigroup #;*(S) implies the equalities

b =hmpyer e = e
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Now, by the equality ag = ’yfgﬂgfyg we get that

1 1

(a1 g L €1 - e er - e,
s1 s ) = | ub o wd ot ot ) e Ul ey | =
bl bl) 't <d1 ceody o rr
f{ f’lcz ° f1 fkr
1 l
ey ey, c1 Ci ey eir
1 1 1 T ol r s s _
= |k [ (POt (@mr=T)s ”(i><s(<1)v—1><”<<(m>u—1><) B s T B
. oL, i
e aly i . Lo B

€ o . “ Ty “ o i
=l - ul PSP yryr—1ye T V@SV —1ye | | Be T Ye | =
(Lp (i)p d a4 i e T
el e 1 f (1)¢ (i)¢

1 l
€(1)p E(i)p
I l 1 ™ r l 1 ™ ™
= | %WpPm)¢S)rv—1H<V(1)r)r—1)c ()¢ T ¥(@)p V()¢S (1)r 1) V(i) r)r—1)s H(1)¢
Fle Flye

which implies the equalities

1 ! r r
S1= U)o V(((1))p=1)e S (((Dr=1))p~ o V((1)k)r—1)e)p~ 1) H((1)¢)p~1)o

1 l r r
51 = UG e V(((1)¢)p= 1) S((((1r=1)9)p~ e V((((1)r)r—1)s)p= 1) ()¢ p=1) o

Hence for the permutation 7 = v~ *¢p~to: {1,...,i} — {1,...,i} we have that s;_#Zt(1)x,
--~75ijt(i)7r in S.

(<) Suppose that for elements ag,Bs € #(S) there exists a permutation
o:{1,...,i} — {1,...,i} such that s; Ztuys, ...,5i (), in S. Then there exist
ULy ooy Uiy Vye oy Uiy T1ye ey TiyY1ye o, Yi € St such that

$1=T1t(1)oULs .- 5 Si=Til())oWUi, T1=Y1S(1)o-1V1, --- ,  Ei=YiS()o-1Vi-

Thus, we have that
ai - a; C(1)o Cli)o c1 C;
(81 5i> = [z1t@your - mit(youi | = m(l)gf1t1u(1)a71 at<i)aflti’u.(i)o.—1 =
b1 -+ b; b(1)e biiyo by b

c1 [ c1 o C b1 b;
= (I(l)ofl x(i)afl) . (tl ti) | Yaye—1 7 U)ot
C1 C; b] bZ bl b1

and
c1 ¢ dye—=1 7 Cye—1 a1 a;
(t1 ti) = [ Y15)o—1V1 " YiS(j,—1Vi | = (y(l)aslv(l)o y(i)as’iv(i)a) =
dy - d; diygo1 o dgy, L 5
ay - a; ay -+ a; di - d;
= (y(l)a y(i)o) . (31 Si) | Yo ot V() s
ay o a dy - dg dy -+ d;
and hence we get that ag_# s in Z(S). d

Remark 2. Proposition iv) implies that if there exists a permutation o: {1,...,i} —
{1,...,i} such that 515 1)s, . .., 87 t(;)s in S then ag Bs in I'(S). But Example
implies that the converse statement is not true.
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Example 1. Let A be any cardinal > 2 and €'(p, ¢) be the bicyclic monoid. The bicyclic
monoid % (p, ¢) is the semigroup with the identity 1 generated by two elements p and ¢
subjected only to the condition pg = 1. The distinct elements of & (p, q) are exhibited in
the following useful array

p p P
3

1
g ap @ qp
o o o

and the semigroup operation on %(p, q) is determined as follows:
qkpl . qmpn — qk+m7min{l,m}pl+n7min{l,m}'
We fix arbitrary distinct elements a; and a; of A and put
a; ai aip az
Oé:(qpquz) and ﬁi(quqZp)-
a1 ap az ai

Then we have that

a12 ¢122 ay az ai 12112 al as
04:(qpqp)-(?fl> and ﬁ:(qpqp).(pq>
a2 ai az ay a; ai a2 ai

and hence aZf in J(S), and similarly we have that

a a2 a; az aj a2 ay aix
a:(p Q)~(qp2q2p> and ﬂ—(P Q>‘<qpq2p2>
az ai ay ai az ai a; ai

and hence a.Z in #*(S). Thus a#j3 in #7(S), but the elements gp and ¢*p? are not
pairwise #-equivalent to gp? and ¢?p for any permutation o: {1,2} — {1,2}.

Recall [28], a semigroup S is said to be:

(a) left stable if for a,b € S, Sa C Sab implies Sa = Sab;
(b) right stable if for ¢,d € S, ¢S C deS implies ¢S = dcS;
(b) stable if it is both left and right stable.

We observe that in the book [11] an other definition of a stable semigroup is given,
and these two notion are distinct. A semigroup stable in the sense of Koch and Wallace
is always stable in the sense of the book [11], but not conversely (see: [30]). For the
semigroups with an identity element and for regular semigroups these two definitions of
stability coincide.

The following proposition states that the construction of the semigroup .#7(S5)
preserves left an right stabilities.

Proposition 8. For every semigroup S, any non-zero cardinal \ and any positive integer
n < A the following statements hold:
(1) F3(S) is right stable if and only if so is S;
(13) F(S) is left stable if and only if so is S;
(i3) FV(S) is stable if and only if so is S.

Proof. (i) (<) Suppose that the semigroup S is right stable and assume that ags =

ay - ai) Ci1 -+ Cg .
(18)1 Z) and 85 = (fil ék) are elements of the semigroup #7'(S) such that
1 K 1 k
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agH(S) C Bsag T (S). Then the above inclusion and the definition of the semigroup
operation on #(S) imply that ¢ < k and the inclusion

{al,..‘,ai}Q{cl,.‘.,ck}ﬂ{dh...,dk}

holds. Without loss of generality we may assume that d; = a1, ...,d; = a;. Then
the inclusion ag 2 (S) C BgasH(S) implies that there exists a permutation
o:{1,...,i} — {1,...,i} such that ¢; = ags, ...,¢;i = ag)o. Hence by the defini-

tion of the semigroup operation of #*(S) we get that
i = (SN (Y gy - (ST () g
BsasI3(S) (1 k><b1 b) x(9) dy oo dy dosy e dy (b; bz‘) x ()

dy -+ dg
ai -+ G4 A(1)o " Ao ai -+ Qg
<s1 SL)f/\n(S) = ( ti -t ).(51 Si) j/{l(S) =
[ ai a; b1 bi,

A(1)o *** A(i)o Cit+1 **° Ck

= t1 .- t; tig1 otk |-
( a1 o a; dig1 oo dk) by - b

A(1)e " A(i)o a o

= tas1 - tisi ) IP(S) = (Pwa—r@a—t 7 e —15wme-1 ). g1(S) =
br - b; b1yo—1 biye—1

={0} U U{ (1)o-18(1)o-15; - t(i)g—l8(1-)0715]2;1’“,:?; D1y s Pi € A} U

@] U {[t(h)o'*ls(l])o'*l S, ... at(li,1)0*1 s(liil)flS]E ,pL 3) tly, ..., ;1 are

distinct elements of {1,...,i} and p1,...,pi—1 € A} U---u

U U {[t(l)g—ls(l)g—l S]EQ): le{l,...;iland p € )\}
and
n _ (NN gn _ _qla,...ai) )
as 2 (S) = (bi b) B (S)—{O}UU{[sls,...7sZS](pl ’pl) ph...,ple)\}u

U U {[5115, ce sli_lS}&ll”"'.'.’yl;i‘_lf) :l1,...,li—1 are distinct elements of {1,...,i}

andpl,...,pi_le)\}U'“U

UU{[S;S]EQ): le{l,...,i}andpe )\}.

Hence, the inclusion ag.#(S) C Bsag.#y(S) and semigroup operations of the semi-
groups #y'(S) and S imply that 5,5 C t(;)5-150),-15, for every [ € {1,...,i}. Since the
semigroup of all permutations of a finite set is finite, we conclude that there exists a
positive integer j such that o7: {1,...,i} — {1,...,i} is the identity map and therefore
we get that 0/~ = . This implies that for every [ € {1,...,i} we have that
SlS Q t(l)afls(l)gqs g t(l)aflt(l)gfzs(l)afzS Q
C...C
Ctpyo-1t@yo—2 t)o—it181)e—i+1 S =
=tyo-1tye-2- - t151S.

Then the right stability of the semigroup S implies the equality
SZS = t(l)gflt(l)gfz s tlSlS
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and hence we have that 5,5 = tq),-150),-15, for every [ € {1,...,i}. Then the
inclusion ag #(S) C Bgag #(S) and above formulae imply the equality ag ' (S) =
Bsas Y (S), and hence the semigroup #*(.S) is right stable.

(=) Suppose that the semigroup #{*(S) is right stable and sS C ¢sS for s,t € S.
We fix an arbitrary a € A and put ag = (g) and Bg = (Z) Hence by the definition of

the semigroup operation of #7'(S) we get that

asI(S) = () 78 = {0y ulJ {[35}53 pe )\}

and
a
S

Bsas s () = (1) (3) 709) = (4

a a

) 73(8) = {0y ulJ{ess1lg): p e A}

and hence by the inclusion sS C tsS we have that as.#(S) C BsasZ(S). Now the
right stability of #7(S) implies the equality ag#(S) = fsas#(S). This implies
[SS]E;; = [tsS]Ezg in #7(S) for every p € A, and hence sS = tsS.

The proof of statement (i7) is dual to that of statement ().

(i47) follows from statements (7) and (4i). O

4. ON SEMIGROUPS WITH A TIGHT IDEAL SERIES

Fix an arbitrary positive integer m and any p € {0,...,m}. Let A be a non-empty
set and let B be a non-empty proper subset of A. By [B C A];n we denote all elements
(z1,...,2Tm,) of the power A™ which satisfy the following property: at most p coordinates
of (x1,...,xy) belong to A\ B. It is obvious that [B C A]" = A™ for any positive integer
m, any non-empty set A and any non-empty proper subset B of A.

The above definition implies the following two lemmas.

Lemma 1. Let m be an arbitrary positive integer and p € {1,...,m}. Let A be a
non-empty set and let B be a non-empty proper subset of A. Then the set [B C A];n \

[B C A];"_l consists of all elements (x1,...,2;,) of the power A™ such that exactly p
coordinates of (x1,...,%y,) belong to A\ B.

Lemma 2. Let m be an arbitrary positive integer and p € {0,1,...,m}. Let S be a
semigroup, A and B be ideals in S such that B C A. Then [B C A];ﬂ is an ideal of the
direct power S™.

An subset D of a semigroup S is said to be w-unstable if D is infinite and aBUBa ¢
D for any a € D and any infinite subset B C D.

Definition 1 ([18]). An ideal series (see, for example, [I1]) for a semigroup S is a chain
of ideals

LhchLhcCl,C---CI,=65.

We call the ideal series tight if I is a finite set and Dy = Ij \ Ix_1 is an w-unstable
subset for each k =1,...,n.
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It is obvious that for every infinite cardinal A and any positive integer n the semi-
group £y has a tight ideal series. A finite direct product of semigroups with tight ideal
series is a semigroup with a tight ideal series and a homomorphic image of a semigroup
with a tight ideal series with finite preimages is a semigroup with a tight ideal series
too [I8].

A subset D of a semigroup S is said to be strongly w-unstable if D is infinite and
aBUBb ¢ D for any a,b € D and any infinite subset B C D. It is obvious that a subset
D of a semigroup S is strongly w-unstable then D is w-unstable.

Definition 2. We call the ideal series Iy CI; C Io C--- C I, = S strongly tight if I is
a finite set and Dy = Iy, \ Ix—1 is a strongly w-unstable subset for each k =1,... n.

An example of a semigroup with a strongly tight ideal series gives the following
proposition.
Proposition 9. Let A be any infinite cardinal and n be any positive integer. Then
Ly={0}Ch=dClh=J5C--Cl, =77,
is the strongly tight ideal series in the semigroup J3*.
Proof. The definition of the semigroup £y implies that In C I; C I C --- C I, is an
ideal series in #".

Fix an arbitrary integer ¢ = 1,...,n. For any infinite subset B of .7} \ ff;*l at least
one of the following families of sets

9(B) = {dom~: v € B} or t(B) = {ranvy: v € B}

is infinite. Then the definition of the semigroup operation in .#" implies that aB ¢
S\ #71 in the case when the set 9(B) is infinite, and B8 ¢ #{ \ #} ! in the case

when the set t(B) is infinite, for any o, 8 € 3 \ F{7t. O
Later for an arbitrary non-empty set A, any positive integer n and any i € {1,...,n}
by m;: A" — A, (a1,...,a,) — a; we shall denote the projection on the i-th factor of

the power A".

Proposition 10. Let n be a positive integer > 2 and let [y C I C I, C---C I, =5
be the strongly tight ideal series for a semigroup S. Then the series
Iy Cllychlf CllyCh]y C---ClloC L]y, S [Io C L]y =17
20 ClhchlfClhchlyC---Clhchly Clhchl=1I} c
c [Imf1CImHL - [ImfICIm]g c.--C [ImfICImM;—l c [Imflclm]legz =5"

C
C

is a strongly tight ideal series for the direct power S™.

Proof. Tt is obvious that I{ is a finite ideal of S™. Also by Lemma [2] all subsets in series
are ideals in S™.
Fix any k € {1,...,m} and any p € {1,...,n}. We claim that the sets

[I}C,1 C Ik]g \ [Ik,1 C Ik]gq and [Ik,1 - IkHl \ I;?fl
are strongly w-unstable in S™. Indeed, fix an arbitrary infinite subset

B C [Ix—1 CIx]y \ k-1 C Ixly
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and any points
a=(ay,...,an),b=(b1,...,bn) € [lr—1 C Ly \ [Tx—1 C I]y ;.
Then there exists a coordinate ¢ € {1,...,n} such that the set m;(B) C Ij \ I is
infinite. If a; ¢ Ij; \ I_1 or b; ¢ Ij \ I_1 then
(a; - m(BYUm;(B) -b;)) N Ix \ Iy_1 = &,
and hence
aBUBb & [Ix—1 C Ity \ [I—1 C Il 5.

If a;,b; € I \ 1,1 then (ai . 7Ti(B) ] Wi(B) . bz) g 1 \ I._1, because the set I} \ I
is strongly w-unstable in S, and hence aB U Bb & [I;,—1 C 1]} \ [Ix—1 C Ix];_;. The
proof of the statement that the set [Iy_1 C Ix]} \ I}, is strongly w-unstable in S™ is
similar. O

Later we fix an arbitrary positive integer n. Then for any semigroup S and any posi-
tive integer k < n, since .#(9) is a subsemigroup of #*(S), by ¢: FF(S) — F#1(S) we
denote this natural embedding. Similar arguments imply that, without loss of generality,
for any subsemigroup T of S and any positive integer k < n since #f(T) is a subsemi-
group of Z7(S) by v: IE(T) — #7(S), we denote this natural embedding.

Let A # @ and k be any positive integer. A subset B C A" is said to be k-symmetric
if the following condition holds: (by,...,b;) € B implies (5(1)07 ey b(k)g) € B for every
permutation o: {1,...,k} — {1,... k}.

Remark 3. We observe that every element of the tight ideal series is m-symmetric in
S", and moreover the sets

[Ik,1 C Ik]g \ [Ik,1 C Ik]gq and [Ik,1 C IkHl \ I;?fl
are m-symmetric in S™, too, for all k € {1,...,m} and p € {1,...,n}.
We need the following construction.

Construction 2. Let A be a cardinal > 1, n be any positive integer, k be any positive
integer < min{n, A}, and S be a semigroup. For any ordered collections of k distinct
elements (a1, ...,a) and (by,...,b;) of A\¥, we define a map

(a1,mak) . gk _, qlar....ax)
f(bll,...,b:) DS — S(bll,...,bkk)

by the formula
(at,ar) _ (G0 Gk
(Sla R Sk)f(bll,...,b:) - (Zi i: ) :
For any non-empty subset A C S* and any positive integer k& < n we define the
following subsets

[A]S%k(s) = U {(A)fg‘gll ’4'.“"5:)): (a1,...,ax) and (by,...,b) are ordered collections

of k distinct elements of )\k}
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and

(%) [A]f;%k(s) U (S), ifk>1
— (#)k
[A]fiL(S) = e

[ ]yﬂl(s)u{o} if k=1,
of the semigroup .#*(.5).

The following lemma can be immediately derived from the definition of k-symmetric
sets.

Lemma 3. Let A be a cardinal > 1, k be any positive integer < A and S be a semigroup.
Let (ay,...,ax) and (by,...,by) be arbztmry ordered collections of k distinct elements of
N If A # @ is a k-symmetric subset of S, then

(a1, ak) (a(1yosea(k)o)
(4 )f(bl, -bK) =(4 )f(b(l)aw‘“ub(k)o)

for every permutation o: {1,... k} — {1,... ,k}.

Theorem 1. Let A be an infinite cardinal and n be a positive integer. If S is a finite
semigroup, then

I ={0} S L, = F}(S) C I = F(S) -+~ C I, = F7(5)
is a strongly tight ideal series for the semigroup J(S5).

Proof. Tt is obvious that for every ¢ = 0,1,...,n the set I; is an ideal in #*(S) and
moreover the set I is finite.

Fix an arbitrary ¢ = 1,...,n and any infinite subset B C I; \ I;_y. Since the
semigroup S is finite, every infinite subset X of I; \ I,_; intersects infinitely many sets
of the form S(al’ i). Then the definition of the semigroup .#7(S) implies that at least

,,,,, b;)
one of the famlhes of sets

3(B)={d~v:ve B} or  t(B)={rvy:vye€ B}
is infinite. Then the definition of the semigroup operation in .#*(S) implies that aB ¢

I;\ I,_1 in the case when the set 9(B) is infinite, and BB ¢ I; \ I,_; in the case when
the set v(B) is infinite, for any «, 8 € I; \ I;_1. O

Theorem 2. Let A be an infinite cardinal, n be a positive integer and let
Lhchclhc --Cl,=5

be a strongly tight ideal series for a semigroup S. Then the series
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(%)
Jo={0} C Jip= [IO]]”l(S) <

(*) ()1 (%)
- J1 1= [Il]jnl(s) Cc J; 2= [Ig]]n(s) Cc..-C (]Lm = [Im]ynl(s) = f)}(S) -

(*) T g7(*)2 57 (*)2
C oo =[12 ]y:s C Joq = [[{oCi)? ]yn gy € J22 = [Iz]yn 5 &
(S) (S) (S)

(¥)2 a7 (¥)2

CJas= [[11C—72]1](¢n(5) C Joa= [122](;15(5) € C
C J2om-1= m;?(s) C Joom = [[Im]%]g;Q(S) = J3(8) € <
C Jno =TT Ys) € Jna = OCHT o is) € Jna = el i) €
C s = TOCTBL5is) € s = OCTRI g € -+ €
(3) e ()n ()
CJpn-1= [[IoCh]Z,l]fn(S) CJnn= [Iln]y;(s) <
CJnn+1 = m;‘l(s) C Jnny2 = m;i"nw) <
C Jnnis = m;)n(s C Jnnta = m;)n”@ S
C Jnnr = (MR yrig) € T =[Elris) € - €
C Jn(m-1)n+1 = m%@ C Jn(m-1ynt2 = m%@ <
C Jn,(m-1)nt3 = m;)n@) C Jn(m-1)nta = m(;ln(s) <

“)n = (¥)n
C- o Cdpmn1 = [[Im 1CL )7 1};,7(5) C Jnmn = [In]ﬂn(s I3(S)

is a strongly tight ideal series for the semigroup I (95).

Proof. The definition of the semigroup #7*(S) and Lemma [2| imply that all subsets in
series ([3) are ideals in #7(S5).

Since Iy is a finite ideal in S, the equalities

J1.0\ Jo = o] sy \ {0} = [10]%1(3)

()1 1
J2.0\ Jrm = 1 1,,,1(3)\4&() 15N

T (*)n n— n
0\ It mn-1y = I \ X7 S) = (1506

and the semigroup operation of #;*(S) imply that
Jio\Jo, J20\Jimy ooy Ino \ Tn—tmn—1)

are strongly w-unstable subsets in .#}*(S).
Next we shall show that the set Jj p, \ Ji p—1 is strongly w-unstable in .#*(S) for all
k=1,...,nand p=1,...,km.
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Fix any infinite subset B of Ji , \ Jxp—1 and any o, 8 € J p \ i p—1. If d(B) # r(a)
then the semigroup operation of .#7*(S) implies that aB & Jip \ Jip—1. Similarly, if
d(ﬂ) #* r(B) then Bj 7¢_ Jk’p \ Jk’pfl.

Next we suppose that d(B) = r(«), d(5) = r(B),

ay -+ Qg c1 r Ck

a:(sl“' 3k> and ,8=<t1"' tk)’

by - by dy - dy
for some sy,...,8k,t1,...,tx € S and ordered collections of k distinct elements
(ai,-..,ax), (bi,...,bx), (c1,-..,cx), (di,...,dy) of A¥. Then the set B consists of
the elements of the form

(o b
7 o (C(lio C(k’;a) ’

where z1,...,2 € Sand o: {1,...,k} — {1,...,k} is a permutation.
First we consider the case when Jy , = Jy ji = [I’“]( )k( for some j = 1,...,m.
Then “
-
Tep-1 = Jrge-1 = [[li-1 C LIE ] e
and B C [Ik];n(s) Since the set B is infinite, there exists b;, € {b1,...,bx} such that

there exist infinitely many v € B such that d(y) > b;,. Without loss of generality we
may assume that b;, = b;. We put By = {y € B: b1 € d(v)}. Then the set By is infinite
and hence the set
s bl bk . A
By = {xl €s: ( T @, > € By, o is a permutation of {1, .. ,k}}

C(1)o " C(k)o

is infinite, too. The above implies that there exists a permutation og of {1,...,k} such
by - b
that infinitely many elements of the form ( o1 @ ) belong to By. Since s1, (1), €

C()og " (K)o
I;\I;_; and the set I; \ I;_; is strongly w-unstable we obtain that a; - Bg UB@g “t(1)o0 ¢

I;\ I;_1, and hence the set [Ik]( )n"( 5 18 strongly w-unstable, as well.
)k

Next we consider the case Jip = Jy (j—1)ktq = [[I 1 C L]k ]ﬂ"( for some j =

1,...,m. Then
T Tk
Jkp-1 = Jn,(j—l)kJrqfl = [[IJ 1 C ]q l]yn(s)
and B C [[I] 1 C I }(f) (5" Since the set B is infinite, without loss of generality we
may assume that B contalns an infinite subset By which consists of elements of the form

by - by bgs1 - by
(4) ¥y = @1 ®g Tg41 - Sk |,

C1 ** Cq Cq41 '+ Ck
where z1,...,24 € I; \ I;_1 and x¢41,...,25 € Ij_1 \ I;_o for some ordered collections
of k distinct elements (b1, ...,bx) and (cy,...,ci) of \F. Fix arbitrary elements
ay - ag cy +r Ck
Oé:(sl"' Sk> and Bz(tl tk)
by - by dy - dy

of the set B. If either s, ¢ I; \ I,_; for some v € {1,...,q} or s, ¢ I;_1 \ I;_o for some

ve{q+1,...,k} then aBy € [[I;-1 C I}] ](yzlk(s) Similarly, ¢, ¢ I; \ I,—; for some u €



EXTENSION OF SEMIGROUPS BY SYMMETRIC INVERSE SEMIGROUPS
ISSN 2078-3744. Bicuuk JIpBiB. yu-Ty. Cepis mex.-mar. 2019. Bumyck 87 23

{1,...,q}ort, & I;_1\I;_5 for some v € {g+1,...,k} then By ¢ [[[;—1 C Ij]g]ilk(s)'
A

Hence later we shall assume that s, € I; \ I;_1 for all w € {1,...,q}, sy € Ij—1 \ I;—2
forallve {g+1,....k}, t, € [;\Ij—; forall u e {1,...,¢} and t, € I;_1 \ I;_» for all
v e {q+1,...,k}. Since the set By is infinite, there exists igp € {1,...,k} such that there
exist infinitely many v € By such that d(y) 3 b;,. We put By = {y € By: b;, € d(v)}.
Since the set B is infinite, the following statements hold:

(1) if ig € {1, Ce ,q} then SioA U Atio )¢_ Ij \Ij—la where

b o by o by o b
A=z y= |21 @iy zqg sk | €By o,
€1 =t Cig ot Cq vt Ck
because the set I; \ I;_; is strongly w-unstable in S;
(2) if 19 € {q +1,..., k} then SigA U Atio g Ij—l \[j_g, where

by e by o big - b
A=<z y=| 21 g @ig sk | €Byp,
1 cq o Cio e Ck

because the set I;_1 \ I;_o is strongly w-unstable in S.

Both above statements imply that

(O
aBiUB1y € [[Ij-1 C Ij}’;]y;(S)

and hence

)k

aBUBy ¢ [[Ij-1 C Ij]’;]ﬂl(s),

i.e., theset [[I;_1 C Ij]];]f;zf(s)

of the theorem. O

is strongly w-unstable in #(.5). This completes the proof

Theorem [2] implies the following
Corollary 2. Let \ be an infinite cardinal, n be a positive integer and let
LhchLhchc<c --Cl,=8

be a strongly tight ideal series for a semigroup S. Then the ideal series is tight for
the semigroup I(S).

The proof of the following theorem is similar to Theorem
Theorem 3. Let A\ be a finite cardinal, n be a positive integer < A and let
hchchc<c---Clyp, =S5

be a strongly tight ideal series for a semigroup S. Then the following series



Oleg GUTIK, Oleksandra SOBOL
24 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2019. Bunyck 87

(%)
Jo = {0} U] s(s) €

(%) (%) ()
Cha= [Il]ynl(S) Cip= [12]y;(5) CCdim = [In ]ynl(S) I3 (8) <

()2 ey (*)2

C oy = [[MCRE s € Ta2 = [CRJ] s € -+ C
C Joomor = TnaCLaBl sy € Toom = [Tnlpp s #2(S) € c
C s =TT s) € Jne = [T HIE] s €
C Jus = TaCLTE] g5y € Jma = [ToChllops) € -+ €
(5) C Jpn-1= mil(s) C Jpn = [In]ﬁl(s) -
C Jumi1 = [HCEIT s € Tnnsz = BBy C
€ Jnnts = m%@ C Jnnta = m;)f(s) c ... C
S Jn2n—1 :mgl( s) & Inan = [In]((ﬂln(s) c - C

T T () T T (*)n
C Jn,m-1nt+1 = [Im—1CIn]T] g5y € In,m-1ynt2 = [Im-1CIm]3] s (s)

T (n T )n
C Jn,(mfl)n+3 = [[Im ICIm] ]ﬂn(g) - '] ,(m—1)n+4 = [[Im 1Clm, } }J”(S)

()n T )n n
c .- C Jn,mn—l = [[Im—lclm] ]\ﬂ"( S) < ‘]ﬂ mn — [In] = fA (S)

N

N

is a strongly tight ideal series for the semigroup Z(S5).
Theorem [3] implies the following

Corollary 3. Let A be a finite cardinal, n be a positive integer < A and let Iy C I; C
I, C--- C I, =8 be a strongly tight ideal series for a semigroup S. Then the ideal
series is tight for the semigroup ' (S).

Let & be a class of semitopological semigroups. A semigroup S € & is called H-
closed in G, if S is a closed subsemigroup of any semitopological semigroup 7" € & which
contains S both as a subsemigroup and as a topological space. The H-closed topological
semigroups were introduced by Stepp in [32], and therein they were called mazimal
semigroups. An algebraic semigroup S is called: algebraically complete in &, if S with
any Hausdorff topology 7 such that (S,7) € & is H-closed in &. We observe that many
distinct types of H-closedness of topological and semitopological semigroups is studied
in [T]HI0], [16]-[21], [24], [26].

By Proposition 10 from [I8] every inverse semigroup S with a tight ideal series is
algebraically complete in the class of Hausdorff semitopological inverse semigroups with
continuous inversion. Hence Proposition [6] and Theorems imply the following

Theorem 4. Let S be an inverse semigroup which admits a strongly tight ideal series.
Then for every non-zero cardinal \ and any positive integer n < X\ the semigroup 3 (S)
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1s algebraically complete in the class of Hausdorff semitopological inverse semigroups with
continuous inversion.

We remark that in the case when n = 1 the construction of .#,!(S) preserves the
property to be a semigroup with a tight ideal series, and this follows from the following
theorem.

Theorem 5. Let A\ be any non-zero cardinal, n be a positive integer n < X\ and let

InCL CI,C---C I, =S be a tight ideal series for a semigroup S. Then the series

=70 =70 ()
(6) Jo={0} < 1= [IO]yn( S) < JQ—[II]J"(S)C Cm=[Im- 1]Jn1(S) < J??L-&-l—j)\( )

is a tight ideal series for the semigroup .7\ (S) in the case when X is infinite, and

() 7701 7(*)
(1) Jo={0}uU [Io]ynl(s) CNh=[l]yns S € Ima=[Im-ls g

is a tight ideal series for the semigroup 7, (S) in the case when X is finite.

(s) € JIm =7(9)

Proof. We consider the case when the cardinal A is infinite. In the other case the proof
is similar.

The semigroup operation of .#, (S) implies that the the set Jj is an ideal in ] (S)
for an arbitrary integer k € {0,1,...,m + 1}.

Fix an arbitrary k € {1,...,m+1}. Then for any infinite subset B of Jj, \ Jx_1 and

any a = (‘;) € Ji \ Jg—1 the following statements hold.

(1) If BN S(l is infinite for some ¢ € A then BN S((Z) C [Tr-1 \ I’@]Eg' Hence,
the semlgroup operation of .#}(S) implies that B U Ba € Ji \ J—1 in the
case when a = b = i, because the set Iy_; \ I, is w-unstable in S. Otherwise
0e OzBUBOzg Jk\Jk—l-

(2) In the other case the semigroup operation of .# (S) implies that 0 € «BU Ba ¢

Ji \ Jk—1-
Both above statements imply that the set Jj \ Jy_1 is w-unstable in .#}(S), which
completes the proof of the theorem. O

5. ON A SEMITOPOLOGICAL SEMIGROUP .7'(S)

i1 ... ik

For any element a = (j1 jk) of the semigroup .#* and any s € S we denote

als] = (lel - 15 ), which is an element of .#*(.S). Later in this case we shall say that a[s]

J1 - Jk
is the s-eztension of a or « is the S -restriction of as].
Proposition 11. Let S be a monoid, \ be any non-zero cardinal, n be an arbitrary
positive integer < A\, 0 < k < n and F7(S) be a Hausdorff semitopological semigroup.
Then for any ordered collections of k distinct elements (ay,...,ay) and (by,...,by) of A\
and any element ag € S(le’ """" a:)) there exists an open nezghbourhood Ul(as) of ag such
that

e Uas)N I HS) = @ and U(as) N IF(S) C S((lei-‘.‘.,;c’“)) in the case when k > 2
e 0¢ U(ag) and U(ag) N ZL(S) C S((le)) in the case when k = 1.

Thus F(S) is a closed subsemigroup of F3(S).
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al ... ak

Proof. Fix an arbitrary k < n and an arbitrary ag = (Zl e ) € Sgll li’“ It is obvious
k

that e1[1g] - as - £2[ls] = ag, where

aj ... ag bl bk
alis] = (B 00) elisl= (520 ),
and 1g is the unit element of S.
Simple calculations imply that
(at,ear)

(br,....bk) T
=e1ls] - FV(S) - e2[ls] \ U {&1[1s] - F(S) - E2[lg): €1 < &1 and &3 < &3 in E(I)}.

We observe that e1" and T'e are closed subset in an arbitrary Hausdorff semitopologi-
cal semigroup 7" for any its idempotent e. Since for any idempotent ¢ € #* the set
le ={t€ E(F)): v < €} is finite, the set

s = U{gl[ls] - I(S) - Ea[lg): E1 < €1 and By < €2}

is closed in £ (S). Fix an arbitrary open neighbourhood W (ag) of ag such that W(ag)N
Ans = @. The separate continuity of the semigroup operation on .#{*(S) implies that
there exists an open neighbourhood U(ag) of ag such that e1[15]-U(ag)-e2[ls] € W(ag).
The neighbourhood U(as) is a requested one. Indeed, if there exists 8s € ZF(S)\

S(le’ ..... ak)) then 1[1g] - Bs - e2[ls] € Aay. -

Remark 4. We observe that in Proposition [11] we may assume that the neighbourhood

U(as) may be chosen with the property that £1[1s] - U(as) - e2[1s] C S(al’ lik))

Proposition 12. Let S be a monoid, A be any non-zero cardinal, n be an arbitrary posi-
tive integer < A\, 0 < k < n and FJ(S) be a Hausdorff semitopological semigroup. Then
for any ordered collections of k distinct elements (a1, ...,ax), (b1,...,bx), (c1,...,¢k),

and (dy,...,dy) of \* the subspaces S al""’;f)) and S((Zi’ Ck)) are homeomorphic, and

moreover S(a """ Z:)) and S(zll’ 5:)) are topologically isomorphic subsemigroups of #(S).

Proof. Since .#*(S) is a semitopological semigroup, the restrictions of the maps

(a1,...,ar) \Ck) .7 Fn(S 161 f’”‘ fl 117’“

(b1 yersbr) "(dl, ayt IN(S) = IL(S), am (Ls s ) -a &
and

(e1yeoek) p(ar,...,ak) | n ai ... ay dy ... dg

(di,..., d];)b(bl b:) I3(S) = £(9), a— (lcf - if) ca- (if - ii)

on the subspaces S(al’ ’ba:)) and S(Cl""'fl")) respectively, are mutually inverse, and hence

S(al’ a’“)) and S(q’_“ P’;)) are homeomorphic subspaces in #*(S). Also, it is obvious that

in the case of subsemigroups S(al’ g:) and S (c1,.. Ck)) so defined restrictions of maps are

topological isomorphisms. O
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For any ordered collections of k distinct elements (ay,...,ax) and (by,...,bg) of AF
we define a map
ai,..., ak n n ai ... ak) ) ) bl bk
fon iy AR(S) = AR(S), e (12012 ) 0 (%,fjjj},j :

Proposition [11]implies the following corollary.

Corollary 4. Let S be a monoid, A be any non-zero cardinal, n be an arbitrary positive
integer < X\, 0 < k < n and FJ(S) be a Hausdorff semitopological semigroup. Then the

set .
(a,..., ag) (a,..., ay) (a1,..., ar)\
ﬂs(bll,m,bkk) - (S(b11,~ Juk ) (f(bll’,b:)>
is open in I\'(S) for any ordered collections of k distinct elements (a1, ...,ar) and
(b1,...,br) of AF.
We recall that a topological space X is said to be

e compact if each open cover of X has a finite subcover;
e H-closed if X is a closed subspace of every Hausdorff topological space in which
it contained.

It is well known that every Hausdorff compact space is H-closed, and every regular H-
closed topological space is compact (see [12], 3.12.5]).

Lemma 4. Let S be a monoid, A be any non-zero cardinal, n be an arbitrary positive
integer < X\, 0 < k < n and Z](S) be a Hausdorff semitopological semigroup. If S((g)) is

a closed subset of Z(S) for any a,b € X then S(al’ ’ak)) is a closed subspace of Z(S)

for any ordered collections of k distinct elements (al, o.yag) and (by, ..., bg) of AF.

Proof. For any a,b € \ the map
a n n a b
s A3 (8) = A1), amr (1) e (1)
is continuous, because .#J*(S) is a semitopological semigroup. This and Proposition
imply that

s = (se) (199) 00 () (1) nstes)
a closed subspace of #7(S). O

Since a continuous image of a compact (an H-closed) space is compact (H-closed)
(see [12, Chapter 3]), Proposition [12| and Lemma [4] imply the following corollary.

Corollary 5. Let S be a monoid, A be any non-zero cardinal, n be an arbitrary positive
integer < X\, 0 < k < n and F(S) be a Hausdorff semitopological semigroup. If the set

S’((g)) is H-closed (compact) in Z1(S) for some a,b € X then S(al""’bak)) is a closed subspace
of Z(S) for any ordered collections of k distinct elements (a1, ...,ax) and (b, ..., by)

of \F.

Definition 3. Let & be a class of semitopological semigroups. Let A > 1 be a cardinal,
n be a positive integer < A, and (S,7) € &. Let 7+ be a topology on #]*(S) such that

a) (JX(5),7s) € &;
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b) the topological subspace (S((S)) , TB] Sa,a) is naturally homeomorphic to (S, 7) for
some g € A, i.e., the map $: § — F7(5), s — (g) is a topological embedding.

Then (£(S), 7.s) is called a topological 73 -extension of (S,7) in &.
Lemma 5. Let (S,7) be a semitopological monoid, A\ be any non-zero cardinal, n be
an arbitrary positive integer < X\, 0 < k < n and (F3(S),7.s) be a topological I3 -
extension of (S,7) in the class of semitopological semigroups. Let Uy(s1),...,Uk(sk) be

open neighbourhoods of the points s1,...,s, in (S,7T), respectively. Then the following
sets

1 -1
ol = (ele ) (569) o 0kl = (Do) ) (7o)
and
U (s1), - U (o)) = 2 U (s)]5) 0 Uk ()] )
are open neighbourhoods of the points

ay Qg ai ... ag
(Sl> ’ ’ (Sk) ’ and (Sl Sk)
bl bk b1 bk

in (F3(S), T.s), respectively, for any ordered collections of k distinct elements (a1, ..., ax)
and (by,...,by) of \F.

Proof. Since (.#3'(S), 7.#) is a topological .#"-extension of (.S, 7) in the class of Hausdorff
semitopological semigroups, there exist open neighbourhoods W7, ..., Wy of of the points
al a

(Sl) AR (21}:) in (F3(5),7.s), respectively, such that

k

OS((gll)) [U1(81)](a1)) R Wi N 5 ak) [Uk(sk)](ak))
Then the requested statement of the lemma follows from the separate continuity of the
semigroup operation in (& (S), T.s). O
Theorem 6. Let (S,7) be a Hausdorff compact semitopological monoid, A be any non-
zero cardinal, n be an arbitrary positive integer < X\, 0 < k < n and (F(S),7.s) be
a compact topological S -extension of (S,7T) in the class of Hausdorff semitopological

semigroups. Then the subspace S (ar,.. ’;:)) of (F3(S), 7.#) is compact and moreover it is

homeomorphic to the power S* wzth the product topology by the mapping

a0 L
55:5((}]11 bk’“)—>S (Z?::g:)lﬁ(sl,...,sk),

for any ordered collections of k distinct elements (a1, ...,ar) and (by,...,by) of A*.

ar)

Proof. Since the monoid (S, 7) is compact, Corollary [5{implies that S((le ) g closed
subset of of (#]*(S), 7.#). Then compactness of of (#}'(S), 7.») implies that S((leff,l?z:l:)) is
compact, as well.

It is obvious that the above defined map $: S(al""’ba:) — S* is a bijection. Also,
Lemmaimplies that the map $ is continuous, and it is a homeomorphism, because S*

and S((gll’ ’a")) are compacta. O

Proposition [T1] and Theorem [6] imply the following corollary.
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Corollary 6. Let (S,7) be a Hausdorff compact semitopological monoid, A be any non-
zero cardinal, n be an arbitrary positive integer < X\, 0 < k < n and (FJ(S5),7.s) be
a compact topological 7\ -extension of (S,7) in the class of Hausdorff semitopologi-

cal semigroups. Then S((gll"'_l";f)) is an open-and-closed subset of (F(S),7.s) for any

ordered collections of k distinct elements (ay,...,ax) and (by,...,bx) of A\F, and the
space (F1(S), 7.#) is the topological sum of such sets with isolated zero.

Remark 5. Since by Theorem of [21I] an infinite semigroup of matrix units and hence
an infinite semigroup .#;* do not embed into compact Hausdorff topological semigroups,
Corollary |§| describes compact topological .#*-extensions of compact semigroups (.5, 7)
in the class of Hausdorff topological semigroups.

Example 2. Let (S, 75) be a compact Hausdorff semitopological monoid. On the semi-
group #*(S) we define a topology 7% in the following way. Put

Z:(0) = {f)’\z(S) \ ﬂS((le,"'.';’;f)) : (a1,...,ar) and (by,...,b;) are ordered collections

of k distinct elements of /\k},
for any k=1,...,n, and

P(a,s,b) = {ﬂ [U(S)]EZ)) : U(s) is an open neighbourhood of s in (S, TS)} ,

for some (b) e 77(9)\ {0}.

The topology 75 on £ (S) is generated by the family
7 = {Z5(0): k=1,...n} U {2, 5,0): (§) € 7))\ {0}},
as a subbase.

Remark 6. Lemma [5| and the definition of the topology 75 on .#7*(S) implies that the
following statements hold.

(1) For any k =1,...,n and every ordered collection (a1, ...,ax) and (by,...,bs) of
k distinct elements of A* the set ﬂS((sll s f“)) is closed in (£(5),7%).

(2) For any element ags = (%i %g) of #(S) and any open neighbourhoods
Ui(s1),...,Uk(sk) of the points sq,...,s; in (S, 7) the set
U U (a1yerar) S(a%,-~~7az11) S(a]fr-wafp)
ﬂ[ 1(51)a-~-a k(sk)](bl,..,,bk) \ ﬂ (b%*""blll) U"'Uﬂ (b:f7“'7bfp)
(a%,...,alll) (0}177“'70‘? )

oty YUY ﬂS(bp bplp) , is an open neighbourhood of the
[RE N 15000 ip

point ag in (H(S),75). Here {a1,...,ar} G {a{,...,a{j} and {b1,...,br} G
{b{w--,b{j} forall j=1,...,p.

Theorem 7. If (S, 7s) is a compact Hausdorff semitopological monoid then (73 (S),75)
is a compact Hausdorff semitopological semigroup.

such that ag ¢ 1S
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Proof. It is obvious that the topology 75 is Hausdorff.

By the Alexander Subbase Theorem (see [12| 3.12.2]) it is sufficient to show that
every open cover of .#*(S) which consists of elements of the subbase ¢ has a finite
subcover.

We shall show that the space (#3'(S),75) is compact by induction. In the case
when n = 1, Corollary 13 from [23] implies that the space (£} (S5),7$) is compact. Next
we shall show the step of induction: (£ (S),7%) is compact implies (FF(S),75) is
compact, too, for k = 2,...,n. Without loss of generality we may assume that k = n.

Let % be an arbitrary open cover of (#(5), 75 ) which consists of elements of the
subbase &2¢. The assumption of induction implies that there exists a finite subfamily
U,—1 of % which is a subcover of .#7"~*(S). Fix an arbitrary element Vp = #7(S) \

ﬂS((gll’ ’a‘”) € %,_1 which contains the zero 0 of #*(S). Then p € {1,...,n}.

We observe that an arbitrary element Uy of the family {Z75(0): k=1,...,n} con-
tains the set S(al’ ’a" if and only if Uy N S(al’ ’a" # @. This implies that only one of
the following condltlons holds:

(1) there does not exist an element of %, from the family {Z7£(0): k =1,...,n}

which contains the set S(al""’ap);
(b1,...,bp)

(2) there exists Wy € %,-1 N {25(0): k=1,...,n} such that S((le;:)) C W.
Suppose that condition (1) holds. First we consider the case when p < n. By

TheoremlEI, the set S(al’ ’bap)) is compact, and hence there exists finitely many elements

UGN - DU (sm)]G™) in the family %, N 2\ {2g(0): k=1,...,n} such
that

S S U (sl U U U sl
It is obvious that {UO, MU (s )]gsll) o U(s )}Ezm))} is a finite cover of (#7(S5),75).

(a1,.. 7an)

Next, we consider case p = n. We identify the set S ) and the power S™ by
the mapping

(a1, ,an ap ... Qpn
(8) 9H: S(bll — S" (bl z:) — (81,...,Sn).
The semigroup operation of .#(S) implies that 1} [U(s )]EZ) N S e a") # @ if and only
if ¢ = a; and d = b; for some i = 1,...,n. Then by (g) for every i = 1 ,n we have
that
9) (mU( N ns )53 Sx - xU(s)x---x8§C S
——
i—th

Then the subbase &7 on #7*(S) and map determine the product topology on S™

from the space S, and hence the space S™ is compact.

an) an)

Suppose that S(a1 b ) is not compact. Then S(a1 b,y has a cover # which consi-

sts of the open sets of the form 1} [U(s )]EZ)) and # does not have a finite subcover. Then
the cover #gn» of S™ which is determined by formula @D from the family # has no finite
subcover, too. This contradicts the compactness of S™.
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Hence in case (1) the cover % of #7(S) has a finite subcover.
Suppose that condition (2) holds. Then Wy = #7(S) \ﬂS(cl’ ’Cq with ¢ < n. If

ﬂS((sizn_:c") ﬂS(al,"'.;”)) = @ then {Vj, Wy} is a cover of #£7(5). In the other case there

exists a smallest positive integer p; such that max{p + 1,¢} < p1 < n and two ordered
pi1-collections of distinct elements (e1,...,ep,) and (f1,..., fp,) of the power AP* such
that

C1,--45Cq) (a1,..ap) (e1,--repq)
S (e NS ) = s,

Then for the open set Uy = Uy U Wy = J7(S) \ ﬂS((;ll:_'_'_':;:; either condition (1) or
condition (2) holds.

Since p + 1 < p1 < n, we repeating finitely many items the above procedure we get
that the space (S (S5), 75 ) is compact.

Next we shall show that the topology 75 is shift-continuous on (.#*(S5),75). We
consider all possible cases.

(i) 0-0 = 0. Then for any open neighbourhood Uy of zero in (#3(S),7S,) we have
that

Up-0=0-Uy= {0} CUp.

(#4) a -0 = 0. Then for any open neighbourhoods Uy and U, of zero and « in

(F7(S),75), respectively, we have that

Uy -0={0} CUp.

(af,map,)
b . J”“ )
(F7(5),75). Without loss of generahty we may assume that pq,...,p < |d(a)|. Put

(ay;-- )

Let Wy = #£7(5) \ <ﬂ5(b1 ”1 U---u ﬂS > be a basic neighbourhood of 0 in

B={si:aed() and be{bl,... bbb 0k}

Then the family B is finite and o - Uy C W, for Uy = Z£7(S) \ US((:))GB TTS((Z))

(#4i) 0 - @ = 0. Then for any open neighbourhoods Uy and U, of zero and « in
(F1(S), 75 ), respectively, we have that

0-U, ={0} CUp.

Let Wy = #7(5) \ (ﬂS(bl ----- p1) U TTS(all,, ;;l:k))) be a basic neighbourhood of 0 in
(F31(S), 75 ). Without loss of generahty we may assume that pq,...,pr < |d(«@)|. Put
B—{S(b) ber(a) and ae{a%,...,aél,...,alf,...,al;k }

Then the family B is finite and Uy - o« C€ Wy for Uy = £7(S) \Us<a)€B ﬂS(b)

(iv) a - B = 0. Fix an arbitrary open neighbourhood Wy of 0 in (,ﬂ”(S) 7).
Without loss of generality we may assume that Wy = #7(S) \ (ﬂS((Z 1)) u- ﬂS((g:)))
Since « - 8 = 0 we have that r(«o) Nd(8) = @. We put

B, = {S((Z)) a€{ay,...,a},bed(f), and a ¢ TTS((S))}
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and

Bs = {S((Z)) be{by,...,bp},aer(a), and 8 ¢ ﬂS((g)} )

Let S %) and S5 1< k.p < n, such that o € 5§ and f € S{5)
Then the famlhes B, and By are finite, and hence by Remark @2 ) the sets
_ olar,...,ak) (€140, (a)
Vo= St | nsh)  and - Ve=SEwiy 1S
5(}) €Ba S(3) €Bs
are open neighbourhoods of the points « and § in (#(S), 75 ), respectively, such that
Va~6§W0 and Oé'V,@gWO.
(v) a-B =7 +#0and r(a) = d(B). Without loss of generality we may assume that
a= (‘;} - ?,’j) and 3 = (t1 o ’Z,’;), and hence we have that v = (s?% . Stlzlzk). Then for
by ... by c1 ... Ch c1 ... Ck
any open neighbourhood

ai,...,a (17 ) (a,7a)
U,Y:TT[U1($1251),...7Uk($ktk)]gc11:_“:c;))\( " all U-~-UTTS(b117 b l)>

lp

of vin (F7(5),75) we have that
f[Va(s1),.- -, Vk(sk)]gzll’ ’g:) B C A [Ui(sity),...,Ug (Sktk)]gal, -a) ns R cu,

\Ck) (c1yeser) =
and
bi,...,bk a a at,..., a
o M Va(ta), o VeI 0 C p [Un(sita), o, Uk(sti)] (oo nnsiera) c o,
where Vi(s1),..., Vi(sk),Vi(t1),..., Vi(tx) are open neighbourhoods of the points
S1y.+y8k,t1,..., Tk in (S, 7Tg), respectively, such that
Vi(s1) - t1 CUr(sita), -, Vi(sk) -t C Ug(sktr)
and
s1-Vi(t1) CUi(sity), - ., sk - Vi(te) C Ur(sktr).
(vi) a- B =~ #0and r(a) G d(B). Without loss of generality we may assume that
al ... g b1 bk bk+1 bk'+j
o= (51 sk) and 8= t1 ... tx tet1 ... ty; |, where 1 < j < n — k, and hence we have
by ... b Cl ... Ckp Ch41 - Chij

that v = (s(ﬁl skt ) Then for any open neighbourhood

c1 ... Cg

(a1,...,a a, 7‘11) ("”app)
Uy =1 [Ui(s1t1)s - -, Un(sitn)] e, K \( (bf b%lll) u---UﬂS(bi b,f)>

ck) FRERRES)
of the point v in (#*(S),75) we have that
o M Va(te), o VeI 0 S [Un(sit), o Uk(sti)] (oo nnsier e c o,

(c1, (c1,--Ck) (c1,--5Ck)
where Vi(t1),...,Vi(tx) are open neighbourhoods of the points t,...,t; in (S,7s),
respectively, such that

s1-Vi(t1) CUi(sita), ..., sk - Vi(te) C Uk(sktr)-



EXTENSION OF SEMIGROUPS BY SYMMETRIC INVERSE SEMIGROUPS
ISSN 2078-3744. Bicuuk JIpBiB. yu-Ty. Cepis mex.-mar. 2019. Bumyck 87 33

Fix an arbitrary open neighbourhood U, of the point v in (#{(S5), 75 ). Then
Lemma [5| implies that without loss of generality we may assume that

Uy = 1 U1(sata), o Uit (oo \ (S{emosm) U u e

1Ch Y1) (€150++5Ck»Yp)

for some z1,...,2, € A\ {a1,...,ar} and y1,...,y, € A\ {c1,...,c}. We put

{S((le’ i’“}:;) a€{zy,...,zp} and be{bk+1,...,bk+j}}.

It is obvious that the family B, is finite. Then V,, - 8 C U, for

Vo=t Vils)s o Vel | s,

(a1, ap,a)

(b1 biob) EBa
where Vi(s1),...,Vi(sk) are open neighbourhoods of the points s1,...,s, in (5, 7g),
respectively, such that
Vi(s1) -t1 C Ui(sit1), ..., Vi(sk) - te C Ur(sktr)-

(vit) a- B =~ # 0 and d(B8) G r(a). In this case the proof of separate continuity of
the semigroup operation is similar to case (vi).

(viti) a- B =~ #0,d(y) & d(a) and r(y) S r(f). Without loss of generality we
may assume that

ai ... Gk Ag411 -+ Qk4m by ... b bk+1 bk+_7‘ ay ... ag
o= (81 e Sk Sk411 e Sk+m) , B= t1 ot thrr o tegy and v = (S1t1 Sktk> ,

by ... b bryi1 - bgm C1 oo Ck Ck41 -+ Chktj €1 ... Cg
bl bk/ . .
where 1 < jym <n—k. Weput € = ( 1s ... 1s |, where 1g is the unit element of S. It
b1 bk

is obvious that 7 = « - ¢ - 8. Hence, in this case the separate continuity of the semigroup
operation at the point a - 8 in (#(S), 75 ) follows from cases (vi) and (viz).

The previous statements of this section imply that 75 C 7 for any compact shift-
continuous Hausdorff topology 7., on #7'(S), and hence 75 is the unique requested
compact shift-continuous Hausdorff topology on #7(S). (]

Corollary 7. If (S,7s) is a compact Hausdorff semitopological inverse monoid with

continuous inversion then (F(S),7$) is a compact Hausdorff semitopological inverse

semigroup with continuous inversiomn.

by seensbp, L

(b )) U ﬂS( 1 ,;k))
,,,,,,,,,, ke

( k k

al?"'7apk;) £ . . .
) Ol zero, 1nversion 1S

Proof. Since Wy ' = #7(S) \ <ﬂS ) for an arbitrary basic

1
neighbourhood Wy = #7(S5) \ (ﬂS(bl 5ap,) U---ufs

1 k
) (BF ..o bE

continuous at zero in (#7(S5),75).
ay ... a
Also, for an arbitrary element o = (Si S:) of #7(S) and any its open nei-

by ... b
ghbourhood ' *

o (a1,...,ax) (ai,...,alll) (all)""’alpp)
V= 0 Vi(s1). o V(o) \ (S0 U U
P

-------
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we have that (V,)~' C U,-1 for the neighbourhood

_ _ b1,eensb (b,...,b1 ) (07,67
Ua—l :ﬂ[Ul(Sl 1>7...,Vk(8k1)}( k) \ (ﬂs h l11 U.“Uﬁs(a%’,...,alf ))

(a1,...,ax) (a%,...,all)
of a=tin (#7(S),75) with
(Vi(s1) ™  CUL(sT ), os (Vi) ™ C Uklsic ).
This completes the proof of the corollary. O
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Busuaemo nanisrpynose posmupenss £y (S) Hanisrpynm S cuMeTpHIHOIO
IHBEPCHOIO HAMIBIPYIIOI0 0OMEXKEHOT0 CKiHYeHHOT0 paHry n. Onmucyemo igemmo-
TEHTH Ta PETy/IApHI eneMeHTH HAmBrpymm 5 (S), m0BOaMMO, MO HAMBrpyma
F3(S) € perynspHOIO, OPTOLOKCAIBHOIO, IHBEPCHOIO a60 CTiiiKoI0 TOAl 1 TinbKU
TOJi, KOJIM TAKOK HAIBrpymoo € MoHoix S. Ommcani simsomrenus Ipina Ha
mauisrpyni £ (S) ana posiabuoro monoiza S. BBogumo nonsarra nanisrpynu
3 CHUJIbHUMM HIJIBHUMHU 11EAJIbHUMU PAJAMU 1 TOBOJIMMO, TIO JJIA JOBLIHHO-
0 HECKIHYEHHOTO KapMHAIA A Ta JAOBLIPHOIO HATYPAIHLHOTO UHCJIA 1 HAIB-
rpyna 3 (S) mMae cuibHM migbHME ineaabHuil psit 33 yMOBH, KOJIM MOHOIZ,
S TakoX Ma€ CHIbHWI TIIbHUHN ifeanbHUil psiia. Ha 3aBepireHHsT T0BOIMMO,
IO /I/IsT KOKHOTO KOMITAKTHOTO Taycaop¢dOBOro HAIMBTOIMIOJIOTIYHOTO MOHOIIA
(S, Ts) icuye emmme iforo KoMmakTHe ToTosorivHe posmuperns (' (S),75) B
KJTaci raycaop¢dOBUX HAIIBTOMO/IOTIYHUX HAIBIPYII.

Karowost caosa: iHBEpCHA HANIBIPYyNa, CHUMETPUYHA iHBEPCHA HAIIBIpDYyIA
CKIHYEHHUX T1ePeTBOPEHb, BiHOmeHH s [ pina, HAIIBrpyna 31 WiTbHIMH i1eab-
HUMU PHAJAMU, HAIIBTOIIOJIOrI9HA HAIIBIPYa, KOMIIAKTHA HAINBIPYIIA.
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