-
 EXTENSION OF SEMIGROUPS BY SYMMETRIC INVERSE SEMIGROUPS OF A BOUNDED FINITE RANK

Oleg GUTIK, Oleksandra SOBOL
Ivan Franko National University of Lviv, Universitetska Str., 1, 79000, Lviv, Ukraine
e-mail: oleg.gutik@lnu.edu.ua,ovgutik@yahoo.com, o.yu.sobol@gmail.com

Abstract

We study the semigroup extension $\mathscr{I}_{\lambda}^{n}(S)$ of a semigroup S by symmetric inverse semigroup of a bounded finite rank n. We describe idempotents and regular elements of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ and show that the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is regular, orthodox, inverse or stable if and only if so is S. Green's relations are described on the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ for an arbitrary monoid S. We introduce the conception of a semigroup with strongly tight ideal series, and prove that for any infinite cardinal λ and any positive integer n the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ has a strongly tight ideal series provided so has S. Finally, we show that for every compact Hausdorff semitopological monoid $\left(S, \tau_{S}\right)$ there exists its unique compact topological extension $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{F}}^{\mathrm{c}}\right)$ in the class of Hausdorff semitopological semigroups.

Key words: inverse semigroup, symmetric inverse semigroup of finite transformations, Green's relations, semigroup has a tight ideal series, semitopologica; semigroup, compact semigroup.

1. Introduction, motivation and main definitions

In this paper we follow the terminology of [11, 31].
If S is a semigroup, then by $E(S)$ we denote the subset of all idempotents of S. On the set of idempotents $E(S)$ there exists the natural partial order: $e \leqslant f$ if and only if $e f=f e=e$.

A semigroup S is called:

- regular, if for every $a \in S$ there exists an element b in S such that $a=a b a$;
- orthodox, if S is regular and $E(S)$ is a subsemigroup of S;

[^0]- inverse if every a in S possesses a unique inverse, i.e. if there exists a unique element a^{-1} in S such that

$$
a a^{-1} a=a \quad \text { and } \quad a^{-1} a a^{-1}=a^{-1} .
$$

It is obvious that every inverse semigroup is orthodox and every orthodox semigroup is regular. A map which associates to any element of an inverse semigroup its inverse is called the inversion.

Let λ be an arbitrary non-zero cardinal. A map α from a subset D of λ into λ is called a partial transformation of X. In this case the set D is called the domain of α and is denoted by dom α. Also, the set $\{x \in \lambda: y \alpha=x$ for some $y \in \lambda\}$ is called the range of α and is denoted by ran α. The cardinality of $\operatorname{ran} \alpha$ is called the rank of α and denoted by rank α. For convenience we denote by \varnothing the empty transformation, that is a partial mapping with $\operatorname{dom} \varnothing=\operatorname{ran} \varnothing=\varnothing$.

Let \mathscr{I}_{λ} denote the set of all partial one-to-one transformations of λ together with the following semigroup operation:

$$
x(\alpha \beta)=(x \alpha) \beta \quad \text { if } \quad x \in \operatorname{dom}(\alpha \beta)=\{y \in \operatorname{dom} \alpha: y \alpha \in \operatorname{dom} \beta\}, \quad \text { for } \quad \alpha, \beta \in \mathscr{I}_{\lambda} .
$$

The semigroup \mathscr{I}_{λ} is called the symmetric inverse semigroup over the cardinal λ (see [11]). The symmetric inverse semigroup was introduced by V. V. Wagner [33] and it plays a major role in the theory of semigroups.

Put

$$
\mathscr{I}_{\lambda}^{\infty}=\left\{\alpha \in \mathscr{I}_{\lambda}: \operatorname{rank} \alpha \text { is finite }\right\} \quad \text { and } \quad \mathscr{I}_{\lambda}^{n}=\left\{\alpha \in \mathscr{I}_{\lambda}: \operatorname{rank} \alpha \leqslant n\right\},
$$

for $n=1,2,3, \ldots$ Obviously, $\mathscr{I}_{\lambda}^{\infty}$ and $\mathscr{I}_{\lambda}^{n}(n=1,2,3, \ldots)$ are inverse semigroups, $\mathscr{I}_{\lambda}^{\infty}$ is an ideal of \mathscr{I}_{λ}, and $\mathscr{I}_{\lambda}^{n}$ is an ideal of $\mathscr{I}_{\lambda}^{\infty}$, for each $n=1,2,3, \ldots$. Further, we shall call the semigroup $\mathscr{I}_{\lambda}^{\infty}$ the symmetric inverse semigroup of finite transformations and $\mathscr{I}_{\lambda}^{n}$ the symmetric inverse semigroup of finite transformations of the rank $\leqslant n$. The elements of semigroups $\mathscr{I}_{\lambda}^{\infty}$ and $\mathscr{I}_{\lambda}^{n}$ are called finite one-to-one transformations (partial bijections) of the cardinal λ. By

$$
\left(\begin{array}{lll}
x_{1} & \cdots & x_{n} \\
y_{1} & \cdots & y_{n}
\end{array}\right)
$$

we denote a partial one-to-one transformation which maps x_{1} onto y_{1}, \ldots, x_{n} onto y_{n}, and by 0 the empty transformation. Obviously, in such case we have $x_{i} \neq x_{j}$ and $y_{i} \neq y_{j}$ for $i \neq j(i, j=1, \ldots, n)$. The empty partial map $\varnothing: \lambda \rightharpoonup \lambda$ is denoted by 0 . It is obvious that 0 is zero of the semigroup $\mathscr{I}_{\lambda}^{n}$.

Let λ be a non-zero cardinal. On the set $B_{\lambda}=(\lambda \times \lambda) \cup\{0\}$, where $0 \notin \lambda \times \lambda$, we define the semigroup operation "." as follows

$$
(a, b) \cdot(c, d)=\left\{\begin{array}{cl}
(a, d), & \text { if } b=c \\
0, & \text { if } b \neq c
\end{array}\right.
$$

and $(a, b) \cdot 0=0 \cdot(a, b)=0 \cdot 0=0$ for $a, b, c, d \in \lambda$. The semigroup B_{λ} is called the semigroup of $\lambda \times \lambda$-matrix units (see [11]). Obviously, for any cardinal $\lambda>0$, the semigroup of $\lambda \times \lambda$-matrix units B_{λ} is isomorphic to $\mathscr{I}_{\lambda}^{1}$.

Let S be a semigroup with zero and λ be a non-zero cardinal. We define the semigroup operation on the set $B_{\lambda}(S)=(\lambda \times S \times \lambda) \cup\{0\}$ as follows:

$$
(\alpha, a, \beta) \cdot(\gamma, b, \delta)=\left\{\begin{array}{cl}
(\alpha, a b, \delta), & \text { if } \beta=\gamma \\
0, & \text { if } \beta \neq \gamma
\end{array}\right.
$$

and $(\alpha, a, \beta) \cdot 0=0 \cdot(\alpha, a, \beta)=0 \cdot 0=0$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$. If $S=S^{1}$ then the semigroup $B_{\lambda}(S)$ is called the Brandt λ-extension of the semigroup S [15, 19 . Obviously, if S has zero then $\mathcal{J}=\{0\} \cup\left\{\left(\alpha, 0_{S}, \beta\right): 0_{S}\right.$ is the zero of $\left.S\right\}$ is an ideal of $B_{\lambda}(S)$. We put $B_{\lambda}^{0}(S)=B_{\lambda}(S) / \mathcal{J}$ and the semigroup $B_{\lambda}^{0}(S)$ is called the Brandt λ^{0}-extension of the semigroup S with zero [22].

A semitopological semigroup is a Hausdorff topological space together with a separately continuous semigroup operation.

The Brandt λ-extension $B_{\lambda}(S)$ (or the Brandt λ^{0}-extension $B_{\lambda}^{0}(S)$) of a semigroup S can be considered as some semigroup extension of the semigroup S by the semigroup of $\lambda \times \lambda$-matrix units B_{λ}. An analogue of such extension gives the following construction.

2. The construction of of the semigroup extension $\mathscr{I}_{\lambda}^{n}(S)$

In this paper using the semigroup $\mathscr{I}_{\lambda}^{n}$ we propose the following semigroup extension.
Construction 1. Let S be a semigroup, λ be a non-zero cardinal, n and k be a positive integers such that $k \leqslant n \leqslant \lambda$. We identify every element $\alpha \in \mathscr{I}_{\lambda}^{n}$ with its graph $\operatorname{Gr}(\alpha) \subset$ $\lambda \times \lambda$ and put

$$
\mathscr{I}_{\lambda}^{n}(S)=\left\{\alpha_{S}: \operatorname{Gr}(\alpha) \rightarrow S: \alpha \in \mathscr{I}_{\lambda}^{n}\right\}
$$

and every map from the empty map 0 into S is identified with the empty map $\varnothing: \lambda \times \lambda \rightharpoonup$ S and denote it by 0 . An arbitrary element $0 \neq \operatorname{rank} \alpha \leqslant n$ is denoted by

$$
\left(\begin{array}{ccc}
x_{1} & \cdots & x_{k} \\
s_{1} & \cdots & s_{k} \\
y_{1} & \cdots & y_{k}
\end{array}\right)
$$

where $\alpha=\left(\begin{array}{ccc}x_{1} & \cdots & x_{k} \\ y_{1} & \ldots & y_{k}\end{array}\right)$, and $\left(\left(x_{1}, y_{1}\right)\right) \alpha=s_{1}, \ldots,\left(\left(x_{k}, y_{k}\right)\right) \alpha=s_{k}$. Also for $\alpha_{S} \in \mathscr{I}_{\lambda}^{n}(S)$ such that

$$
\alpha_{S}=\left(\begin{array}{ccc}
x_{1} & \cdots & x_{k} \\
s_{1} & \cdots & s_{k} \\
y_{1} & \cdots & y_{k}
\end{array}\right)
$$

we denote $\mathbf{d}\left(\alpha_{S}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$ and $\mathbf{r}\left(\alpha_{S}\right)=\left\{y_{1}, \ldots, y_{k}\right\}$.
Now, we define a binary operation "." on the set $\mathscr{I}_{\lambda}^{n}(S)$ in the following way:
(i) $\alpha_{S} \cdot 0=0 \cdot \alpha_{S}=0 \cdot 0=0$ for every $\alpha_{S} \in \mathscr{I}_{\lambda}^{n}(S)$;
(ii) if $\alpha \cdot \beta=0$ in $\mathscr{I}_{\lambda}^{n}$ then $\alpha_{S} \cdot \beta_{S}=0$ for any $\alpha_{S}, \beta_{S} \in \mathscr{I}_{\lambda}^{n}(S)$;
(iii) if $\alpha_{S}=\left(\begin{array}{ccc}a_{1} & \cdots & a_{i} \\ s_{1} & \ldots & s_{i} \\ b_{1} & \cdots & b_{i}\end{array}\right), \beta_{S}=\left(\begin{array}{cccc}c_{1} & \cdots & c_{j} \\ t_{1} & \cdots & t_{j} \\ d_{1} & \cdots & d_{j}\end{array}\right)$ and

$$
\alpha \cdot \beta=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{1} & \cdots & c_{j} \\
d_{1} & \cdots & d_{j}
\end{array}\right)=\left(\begin{array}{ccc}
a_{i_{1}} & \cdots & a_{i_{m}} \\
d_{j_{1}} & \cdots & d_{j_{m}}
\end{array}\right) \neq 0 \quad \text { in } \mathscr{I}_{\lambda}^{n},
$$

then $\alpha_{S} \cdot \beta_{S}=\left(\begin{array}{ccc}a_{i_{1}} & \cdots & a_{i_{m}} \\ s_{i_{1}} t_{j_{1}} & \cdots & s_{i_{m}} t_{j_{m}} \\ d_{j_{1}} & \cdots & d_{j_{m}}\end{array}\right)$.
Simple verifications show that the defined binary operation on $\mathscr{I}_{\lambda}^{n}(S)$ is associative and hence $\mathscr{I}_{\lambda}^{n}(S)$ is a semigroup. It is obvious that $\mathscr{I}_{\lambda}^{1}(S)$ is isomorphic to the Brandt λ-extension $B_{\lambda}(S)$ of the semigroup S.

We remark that if the semigroup S contains zero 0_{S} then

$$
\mathcal{J}_{0}=\{0\} \cup\left\{\alpha_{S}=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
0_{S} & \cdots & 0_{S} \\
b_{1} & \cdots & b_{i}
\end{array}\right): 0_{S} \text { is the zero of } S\right\}
$$

is an ideal of $\mathscr{F}_{\lambda}^{n}(S)$.
Also, we define a binary relation \equiv_{0} on the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ in the following way. For $\alpha_{S}, \beta_{S} \in \mathscr{I}_{\lambda}^{n}(S)$ we put $\alpha_{S} \equiv_{0} \beta_{S}$ if and only if at least one of the following conditions holds:
(1) $\alpha_{S}=\beta_{S}$;
(2) $\alpha_{S}, \beta_{S} \in \mathcal{J}_{0}$;
(3) $\alpha_{S}, \beta_{S} \notin \mathcal{J}_{0}$ and each of the conditions
(i) $(x, y) \alpha_{S}$ is determined and $(x, y) \alpha_{S} \neq 0_{S}$; and
(ii) $(x, y) \beta_{S}$ is determined and $(x, y) \beta_{S} \neq 0_{S}$
implies the equality $(x, y) \alpha_{S}=(x, y) \beta_{S}$.
It is obvious that \equiv_{0} is an equivalence relation on the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
The following proposition can be proved by immediate verifications.
Proposition 1. The relation \equiv_{0} is a congruence on the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
We define $\overline{\mathscr{I}_{\lambda}^{n}}(S)=\mathscr{I}_{\lambda}^{n}(S) / \equiv_{0}$.
In this paper we study algebraic properties of the semigroups $\mathscr{I}_{\lambda}^{n}(S)$ and $\overline{\mathscr{I}_{\lambda}^{n}}(S)$. We describe idempotents and regular elements of the semigroups $\mathscr{I}_{\lambda}^{n}(S)$ and $\overline{\mathscr{I}}_{\lambda}^{n}(S)$, show that the semigroup $\mathscr{I}_{\lambda}^{n}(S)\left(\overline{\mathscr{I}_{\lambda}^{n}}(S)\right)$ is regular, orthodox, inverse or stable if and only if so is S. Green's relations are described in the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ for an arbitrary monoid S. We introduce the conception of a semigroup with strongly tight ideal series, and proved that for any infinite cardinal λ and any positive integer n the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ has a strongly tight ideal series provides so has S. Finally, we show that for every compact Hausdorff semitopological monoid $\left(S, \tau_{S}\right)$ there exists its unique compact topological extension $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ in the class of Haudorff semitopological semigroups.

3. Algebraic properties of the semigroup extensions $\mathscr{I}_{\lambda}^{n}(S)$ and $\overline{\mathscr{I}_{\lambda}^{n}}(S)$

The following proposition describes the subset of idempotents of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.

Proposition 2. For every positive integer $i \leqslant n$ a non-zero element $\alpha_{S}=\left(\begin{array}{ccc}a_{1} & \ldots & a_{i} \\ s_{1} & \ldots & s_{i} \\ b_{1} & \ldots & b_{i}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is an idempotent if and only if $a_{1}=b_{1}, \ldots, a_{i}=b_{i}$ and $s_{1}, \ldots, s_{i} \in$ $E(S)$.

Proof. The implication (\Leftarrow) is trivial.
(\Rightarrow) Suppose that $\alpha_{S} \cdot \alpha_{S}=\alpha_{S}$. Then the definition of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ implies that the symbols a_{1}, \ldots, a_{i} are distinct. Similarly we obtain that the symbols b_{1}, \ldots, b_{i} are distinct, too. The above arguments and the equality $\alpha_{S} \cdot \alpha_{S}=\alpha_{S}$ imply that $\left\{a_{1}, \ldots, a_{i}\right\}=\left\{b_{1}, \ldots, b_{i}\right\}$. Assume that $a_{k} \neq b_{k}=a_{l}$ for some integers $k, l \in\{1, \ldots, i\}$,
$k \neq l$. Then we have that $a_{l} \neq b_{l} \neq b_{k}$, which contradicts the equality $\alpha_{S} \cdot \alpha_{S}=\alpha_{S}$. The obtained contradiction implies the equalities $a_{1}=b_{1}, \ldots, a_{i}=b_{i}$. Now, we get that

$$
\alpha_{S} \cdot \alpha_{S}=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} & \ldots & s_{i} \\
a_{1} & \ldots & a_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} & \ldots & s_{i} \\
a_{1} & \ldots & s_{i} \\
a_{i}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} s_{1} & \ldots & s_{i} s_{i} \\
a_{1} & \ldots & a_{i}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} & \ldots & s_{i} \\
a_{1} & \ldots & a_{i}
\end{array}\right)=\alpha_{S},
$$

and hence $s_{1} s_{1}=s_{1}, \ldots, s_{i} s_{i}=s_{i}$. This completes the proof of the proposition.
Proposition 3. For every positive integer $i \leqslant n$ a non-zero element $\alpha_{S}=\left(\begin{array}{ccc}a_{1} & a_{i} & a_{i} \\ s_{1} & \ldots & s_{i} \\ b_{1} & \ldots & b_{i}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is regular if and only if so are s_{1}, \ldots, s_{i} in S.

Proof. The implication (\Leftarrow) is trivial. Indeed, $\alpha_{S}=\alpha_{S} \beta_{S} \alpha_{S}$ for $\beta_{S}=\left(\begin{array}{ccc}b_{1} & \cdots & b_{i} \\ t_{1} & \cdots & t_{i} \\ a_{1} & \cdots & a_{i}\end{array}\right)$, where elements t_{1}, \ldots, t_{i} of the semigroup S are such that $s_{1}=s_{1} t_{1} s_{1}, \ldots, s_{i}=s_{i} t_{i} s_{i}$.
(\Rightarrow) Suppose that α_{S} is a regular element of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$. Then there exists an element $\beta_{S}=\left(\begin{array}{cccc}c_{1} & \cdots & c_{k} \\ t_{1} & \ldots & k_{k} \\ d_{1} & \ldots & d_{k}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S), 0<k \leqslant n$, such that $\alpha_{S}=\alpha_{S} \cdot \beta_{S} \cdot \alpha_{S}$. Now, this implies that $\left\{b_{1}, \ldots, b_{i}\right\} \subseteq\left\{c_{1}, \ldots, c_{k}\right\}$ and hence $k \geqslant i$. Without loss of generality we may assume that $b_{1}=c_{1}, \ldots, b_{i}=c_{i}$. Then the equality $\alpha_{S}=\alpha_{S} \cdot \beta_{S} \cdot \alpha_{S}$ and the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ imply that $d_{1}=a_{1}, \ldots, d_{i}=a_{i}$ and hence we have that

$$
\begin{aligned}
& \alpha_{S}=\alpha_{S} \cdot \beta_{S} \cdot \alpha_{S}=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \ldots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{cccc}
c_{1} & \ldots & c_{k} \\
t_{1} & \ldots & k_{k} \\
d_{1} & \ldots & d_{k}
\end{array}\right) \cdot\left(\begin{array}{lll}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{ccccccc}
b_{1} & \cdots & b_{i} & c_{i+1} & \cdots & c_{k} \\
t_{1} & \cdots & t_{i} & t_{i+1} & \cdots & t_{k} \\
a_{1} & \cdots & a_{i} & d_{i+1} & \cdots & d_{k}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} t_{1} s_{1} & \ldots & s_{i} t_{i} s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & \ldots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \ldots & b_{i}
\end{array}\right) .
\end{aligned}
$$

This implies that the equalities $s_{1}=s_{1} t_{1} s_{1}, \ldots, s_{i}=s_{i} t_{i} s_{i}$ hold in S, which completes the proof of our proposition.

Two elements a and b of a semigroup S are said to be inverses of each other if

$$
a b a=a \quad \text { and } \quad b a b=b
$$

The definition of the semigroup operation in $\mathscr{I}_{\lambda}^{n}(S)$ implies the following proposition.

Proposition 4. Let λ be a non-zero cardinal, n and i be any positive integers such that $i \leqslant n \leqslant \lambda$. Let S be a semigroup and $a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{i} \in \lambda$. If the elements s_{1} and t_{1}, \ldots, s_{i} and t_{i} are pairwise inverses of each other in S then the elements

$$
\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
b_{1} & \cdots & b_{i} \\
t_{1} & \cdots & t_{i} \\
a_{1} & \cdots & a_{i}
\end{array}\right)
$$

are pairwise inverses of each other in the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
For arbitrary semigroup S, every positive integer $i \leqslant n$, any collection non-empty subsets A_{1}, \ldots, A_{i} of S, and any two collections of distinct elements $\left\{a_{1}, \ldots, a_{i}\right\}$ and $\left\{b_{1}, \ldots, b_{i}\right\}$ of the cardinal λ we define a subset

$$
\left[A_{1}, \ldots, A_{i}\right]_{\left(b_{1}, \ldots, b_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}=\left\{\left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} & s_{i} \\
b_{1} & \ldots & b_{i}
\end{array}\right): s_{1} \in A_{1}, \ldots, s_{i} \in A_{i}\right\}
$$

of $\mathscr{I}_{\lambda}^{n}(S)$. I the case when $A_{1}=\ldots=A_{i}=A$ in S we put

$$
[A]_{\left(b_{1}, \ldots, b_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}=\left[A_{1}, \ldots, A_{i}\right]_{\left(b_{1}, \ldots, b_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}
$$

It is obvious that for every subset A of the semigroup S and any permutation $\sigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ we have that

$$
[A]_{\left(b_{(1) \sigma}, \ldots, b_{(i) \sigma}\right)}^{\left(a_{(1)}, \ldots, a_{(i) \sigma}\right)}=[A]_{\left(b_{1}, \ldots, b_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)} .
$$

Proposition 5. Let λ be a non-zero cardinal and n be any positive integer $\leqslant \lambda$. Then for arbitrary semigroup S, every positive integer $i \leqslant n$ and any collection of distinct elements $\left\{a_{1}, \ldots, a_{i}\right\}$ of λ the direct power S^{i} is isomorphic to a subsemigroup $S_{\left(a_{1}, \ldots, a_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}$ of $\mathscr{I}_{\lambda}^{n}(S)$.

Proof. The semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that $S_{a_{1}, \ldots, a_{i}}^{a_{1}, \ldots, a_{i}}$ is a subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$ for any collection of distinct elements $\left\{a_{1}, \ldots, a_{i}\right\}$ of λ. We define an isomorphism $\mathfrak{h}: S^{i} \rightarrow S_{\left(a_{1}, \ldots, a_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}$ by the formula $\left(s_{1}, \ldots, s_{i}\right) \mathfrak{h}=\left(\begin{array}{ccc}a_{1} & \cdots & a_{i} \\ s_{1} & \ldots & s_{i} \\ a_{1} & \ldots & a_{i}\end{array}\right)$.
Proposition 6. For every semigroup S, any non-zero cardinal λ and any positive integer $n \leqslant \lambda$ the following statements hold:
(i) $\mathscr{I}_{\lambda}^{n}(S)$ is regular if and only if so is S;
(ii) $\mathscr{I}_{\lambda}^{n}(S)$ is orthodox if and only if so is S;
(iii) $\mathscr{I}_{\lambda}^{n}(S)$ is inverse if and only if so is S.

Proof. Statement (i) follows from Proposition 3 .
$($ ii) (\Leftarrow) Suppose that S is an orthodox semigroup. Then statement (i) implies that the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is regular. By Proposition 2 every non-zero idempotent of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ has the form $\left(\begin{array}{ccc}a_{1} & \ldots & a_{i} \\ e_{1} & \ldots & e_{i} \\ a_{1} & \ldots & a_{i}\end{array}\right)$, where $0<i \leqslant n$ and e_{1}, \ldots, e_{i} are idempotents of S. This implies that the product of two idempotents of $\mathscr{I}_{\lambda}^{n}(S)$ is again an idempotent, and hence the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is orthodox.
(\Rightarrow) Suppose that $\mathscr{I}_{\lambda}^{n}(S)$ is an orthodox semigroup. By Proposition $5 . S_{(a)}^{(a)}$ is a subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$ for every $a \in \lambda$ and hence $S_{(a)}^{(a)}$ is orthodox. Then Proposition 5 implies the semigroup S is orthodox, too.
$($ iii $)(\Leftarrow)$ Suppose that S is an inverse semigroup. By statement (i) the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is regular. Then using Proposition 2 we get that idempotents commute in $\mathscr{I}_{\lambda}^{n}(S)$ and hence by Theorem 1.17 of [11], $\mathscr{I}_{\lambda}^{n}(S)$ is an inverse semigroup.
(\Rightarrow) Suppose that $\mathscr{I}_{\lambda}^{n}(S)$ is an inverse semigroup. By Proposition 5, $S_{(a)}^{(a)}$ is a subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$ for every $a \in \lambda$, and by Proposition 4 it is an inverse subsemigroup. Hence by Proposition 5 S is an inverse semigroup.

Since any homomorphic image of a regular (resp., orthodox, inverse) semigroup is a regular (resp., orthodox, inverse) semigroup (see [11, Section 7.4] and [29, Lemma 2.2]), Proposition 6 implies the following corollary.
Corollary 1. For every semigroup S, any non-zero cardinal λ and any positive integer $n \leqslant \lambda$ the following statements hold:
(i) $\overline{\mathscr{I}_{\lambda}^{n}}(S)$ is regular if and only if so is S;
(ii) $\overline{\mathscr{I}_{\lambda}^{n}}(S)$ is orthodox if and only if so is S;
(iii) $\overline{\mathscr{I}_{\lambda}^{n}}(S)$ is inverse if and only if so is S.

If S is a semigroup, then we shall denote by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} the Green relations on S (see [13] or [11, Section 2.1]):

$$
\begin{array}{rcl}
a \mathscr{R} b & \text { if and only if } & a S^{1}=b S^{1} ; \\
a \mathscr{L} b & \text { if and only if } & S^{1} a=S^{1} b ; \\
a \mathscr{J} b & \text { if and only if } & S^{1} a S^{1}=S^{1} b S^{1} ; \\
& \mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L} ; \\
& \mathscr{H}=\mathscr{L} \cap \mathscr{R} .
\end{array}
$$

Remark 1. It is obvious that for non-zero elements $\alpha_{S}=\left(\begin{array}{ccc}a_{1} & \cdots & a_{i} \\ s_{1} & \ldots & s_{i} \\ b_{1} & \cdots & b_{i}\end{array}\right)$ and $\beta_{S}=\left(\begin{array}{ccc}c_{1} & \cdots & c_{k} \\ t_{1} & \ldots & t_{k} \\ d_{1} & \cdots & d_{k}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ any of conditions $\alpha_{S} \mathscr{R} \beta_{S}, \alpha_{S} \mathscr{L} \beta_{S}, \alpha_{S} \mathscr{D} \beta_{S}, \alpha_{S} \mathscr{J} \beta_{S}$, or $\alpha_{S} \mathscr{H} \beta_{S}$ implies the equality $i=k$.

The following proposition describes the Green relations on the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
Proposition 7. Let S be a monoid, λ be any non-zero cardinal and $n \leqslant \lambda$. Let $\alpha_{S}=$ $\left(\begin{array}{lll}a_{1} & \cdots & a_{i} \\ s_{1} & \ldots & s_{i} \\ b_{1} & \cdots & b_{i}\end{array}\right)$ and $\beta_{S}=\left(\begin{array}{cccc}c_{1} & \cdots & c_{i} \\ t_{1} & \ldots & t_{i} \\ d_{1} & \cdots & d_{i}\end{array}\right)$ be non-zero elements of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$. Then the following conditions hold:
(i) $\alpha_{S} \mathscr{R} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$ if and only if there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $a_{1}=c_{(1) \sigma}, \ldots, a_{i}=c_{(i) \sigma}$ and $s_{1} \mathscr{R} t_{(1) \sigma}, \ldots, s_{i} \mathscr{R} t_{(i) \sigma}$ in S;
(ii) $\alpha_{S} \mathscr{L} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$ if and only if there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $b_{1}=d_{(1) \sigma}, \ldots, b_{i}=d_{(i) \sigma}$ and $s_{1} \mathscr{L} t_{(1) \sigma}, \ldots, s_{i} \mathscr{L} t_{(i) \sigma}$ in S;
(iii) $\alpha_{S} \mathscr{D} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$ if and only if there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $s_{1} \mathscr{D} t_{(1) \sigma}, \ldots, s_{i} \mathscr{D} t_{(i) \sigma}$ in S;
(iv) $\alpha_{S} \mathscr{H} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$ if and only if there exist permutations $\sigma, \rho:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $s_{1} \mathscr{R} t_{(1) \sigma}, \ldots, s_{i} \mathscr{R} t_{(i) \sigma}$ and $s_{1} \mathscr{L} t_{(1) \rho}, \ldots, s_{i} \mathscr{L} t_{(i) \rho}$ in S;
(v) $\alpha_{S} \mathscr{J} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$ if and only if there exists a permutation $\pi:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $s_{1} \mathscr{J} t_{(1) \pi}, \ldots, s_{i} \mathscr{J} t_{(i) \pi}$ in S.
Proof. (i) (\Rightarrow) Suppose that $\alpha_{S} \mathscr{R} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$. Then there exist non-zero elements $\gamma_{S}=\left(\begin{array}{ccc}e_{1} & \cdots & e_{k} \\ u_{1} & \cdots & u_{k} \\ f_{1} & \cdots & f_{k}\end{array}\right)$ and $\delta_{S}=\left(\begin{array}{cccc}g_{1} & \cdots & g_{j} \\ v_{1} & \cdots & v_{j} \\ h_{1} & \cdots & h_{j}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ such that $\alpha_{S}=\beta_{S} \gamma_{S}$, $\beta_{S}=\alpha_{S} \delta_{S}, i \leqslant j \leqslant n$ and $i \leqslant k \leqslant n$. Also, the definition of the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that without loss of generality we may assume that $j=k=i$. Then the equalities $\alpha_{S}=\beta_{S} \gamma_{S}$ and $\beta_{S}=\alpha_{S} \delta_{S}$ imply that $\left\{a_{1}, \ldots, a_{i}\right\}=\left\{c_{1}, \ldots, c_{i}\right\}$, $\left\{b_{1}, \ldots, b_{i}\right\}=\left\{g_{1}, \ldots, g_{i}\right\}$ and $\left\{d_{1}, \ldots, d_{i}\right\}=\left\{e_{1}, \ldots, e_{i}\right\}$. Now, the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that there exist permutations $\sigma, \rho, \zeta:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ such that $a_{1}=c_{(1) \sigma}, \ldots, a_{i}=c_{(i) \sigma}, d_{1}=e_{(1) \rho}, \ldots, d_{i}=e_{(i) \rho}$, and $b_{1}=g_{(1) \zeta}, \ldots, b_{i}=g_{(i) \zeta}$, and hence we have that

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
e_{1} & \cdots & e_{i} \\
u_{1} & \ldots & u_{i} \\
f_{1} & \cdots & f_{i}
\end{array}\right)=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
d_{1} & \cdots & d_{i} \\
u_{(1) \rho} & \cdots & u_{(i) \rho} \\
f_{(1) \rho} & \cdots & f_{(i) \rho}
\end{array}\right)=\left(\begin{array}{cccc}
c_{1} & \cdots & c_{i} \\
t_{1} & u_{(1) \rho} & \cdots & c_{i} u_{(i) \rho} \\
f_{(1) \rho} & \cdots & f_{(i) \rho}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
t_{(1) \sigma} u_{((1) \rho) \sigma} & \cdots & t_{(i) \sigma} u_{((i) \rho) \sigma} \\
f_{((1) \rho) \sigma} & \cdots & f_{((i) \rho) \sigma}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\begin{array}{cccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
g_{1} & \cdots & g_{i} \\
v_{1} & \cdots & v_{i} \\
h_{1} & \cdots & h_{i}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
b_{1} & \cdots & b_{i} \\
v_{(1) \zeta} & \cdots & v_{(i) \zeta} \\
h_{(1) \zeta} & \cdots & h_{(i) \zeta}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & v_{(1) \zeta} & \cdots & s_{i} \\
h_{(i) \zeta} \\
h_{(1) \zeta} & \cdots & h_{(i) \zeta}
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
s_{(1) \sigma^{-1}} v_{((1) \zeta) \sigma^{-1}} & \cdots & s_{(i) \sigma^{-1}} v_{1} v_{((i) \zeta) \sigma^{-1}} \\
h_{((1) \zeta) \sigma^{-1}} & \cdots & h_{((i) \zeta) \sigma^{-1}}
\end{array}\right) .
\end{aligned}
$$

Therefore we get that

$$
\begin{align*}
& s_{1}=t_{(1) \sigma} u_{((1) \rho) \sigma}, \quad \ldots, \quad s_{i}=t_{(i) \sigma} u_{((i) \rho) \sigma}, \\
& \quad \text { and } \quad t_{1}=s_{(1) \sigma^{-1}} v_{((1) \zeta) \sigma^{-1}}, \quad \ldots, \quad t_{i}=s_{(i) \sigma^{-1}} v_{((i) \zeta) \sigma^{-1}} . \tag{1}
\end{align*}
$$

Since $\sigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ is a permutation, conditions (1) imply that $s_{1} \mathscr{R} t_{(1) \sigma}$, $\ldots, s_{i} \mathscr{R} t_{(i) \sigma}$ in S.
(\Leftarrow) Suppose that for $\alpha_{S}, \beta_{S} \in \mathscr{I}_{\lambda}^{n}(S)$ there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $a_{1}=c_{(1) \sigma}, \ldots, a_{i}=c_{(i) \sigma}$ and $s_{1} \mathscr{R} t_{(1) \sigma}, \ldots, s_{i} \mathscr{R} t_{(i) \sigma}$ in S. Then there exist $u_{1}, \ldots, u_{i}, v_{1}, \ldots, v_{i} \in S^{1}$ such that

$$
s_{1}=t_{(1) \sigma} u_{1}, \quad \ldots, \quad s_{i}=t_{(i) \sigma} u_{i}, \quad t_{1}=s_{(1) \sigma^{-1}} v_{1}, \quad \ldots, \quad t_{i}=s_{(i) \sigma^{-1}} v_{i}
$$

Thus we get that

$$
\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{ccc}
c_{(1) \sigma} & \cdots & c_{(i) \sigma} \\
t_{(1) \sigma} u_{1} & \cdots & t_{(i) \sigma} u_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} u_{(1) \sigma^{-1}} & \cdots & t_{i} u_{(i) \sigma^{-1}} \\
b_{(1) \sigma^{-1}} & \cdots & b_{(i) \sigma^{-1}}
\end{array}\right)=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right) \cdot\left(\begin{array}{cccc}
d_{1} & \cdots & d_{i} \\
u_{(1) \sigma-1} & \cdots & u_{(i) \sigma-1} \\
b_{(1) \sigma-1} & \cdots & b_{(i) \sigma-1}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right)=\left(\begin{array}{cccc}
a_{(1) \sigma}-1 & \cdots & a_{(i) \sigma}-1 \\
s_{(1) \sigma}-1 v_{1} & \cdots & s_{(i) \sigma}-1 v_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} v_{(1) \sigma} & \cdots & s_{i} v_{(i) \sigma} \\
d_{(1) \sigma} & \cdots & d_{(i) \sigma}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
b_{1} & \cdots & b_{i} \\
v_{(1) \sigma} & \cdots & v_{(i) \sigma} \\
d_{(1) \sigma} & \cdots & d_{(i) \sigma}
\end{array}\right),
$$

and hence $\alpha_{S} \mathscr{R} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$.
The proof of statement (ii) is similar to the proof of (i).
$($ iii $)(\Rightarrow)$ Suppose that $\alpha_{S} \mathscr{D} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$. Then there exists a non-zero element $\gamma_{S}=\left(\begin{array}{ccc}e_{1} & \cdots & e_{i} \\ u_{1} & \ldots & u_{i} \\ f_{1} & \cdots & f_{i}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ such that $\alpha_{S} \mathscr{R} \gamma_{S}$ and $\gamma_{S} \mathscr{L} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$. By statement (i) there exists a permutation $\zeta:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ such that $e_{1}=a_{(1) \zeta}$, $\ldots, e_{i}=a_{(i) \zeta}$ and $u_{1} \mathscr{R} s_{(1) \zeta}, \ldots, u_{i} \mathscr{R} s_{(i) \zeta}$ in S and by statement (ii) there exists a permutation $\varsigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ such that $f_{1}=d_{(1) \varsigma}, \ldots, f_{i}=d_{(i) \varsigma}$ and $u_{1} \mathscr{L} s_{(1) \varsigma}$, $\ldots, u_{i} \mathscr{L} s_{(i) \varsigma}$ in S. This implies that $s_{1} \mathscr{D} t_{(1) \sigma}, \ldots, s_{i} \mathscr{D} t_{(i) \sigma}$ in S for the permutation $\sigma=\zeta \circ \varsigma^{-1}$ of $\{1, \ldots, i\}$.
(\Leftarrow) Suppose that there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ such that $s_{1} \mathscr{D} t_{(1) \sigma}, \ldots, s_{i} \mathscr{D} t_{(i) \sigma}$ in S. Then the definition of the relation \mathscr{D} implies that there exist $u_{1}, \ldots, u_{i} \in S$ such that $s_{1} \mathscr{R} u_{1}, \ldots, s_{i} \mathscr{R} u_{i}$ and $u_{1} \mathscr{L} t_{(1) \sigma}, \ldots, u_{i} \mathscr{L} t_{(i) \sigma}$ in S. Now, for the element $\gamma_{S}=\left(\begin{array}{ccc}a_{1} & \cdots & a_{i} \\ u_{1} & \cdots & u_{i} \\ d_{(1) \sigma} & \cdots & d_{(i) \sigma}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ by statements (i) and (ii) we have that $\alpha_{S} \mathscr{R} \gamma_{S}$ and $\gamma_{S} \mathscr{L} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$.
(iv) follows from statements (i) and (ii).
$(v)(\Rightarrow)$ Suppose that $\alpha_{S} \mathscr{J} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$. Then there exist non-zero elements $\gamma_{S}^{l}=$ $\left(\begin{array}{ccc}e_{1}^{l} & \cdots & e_{k_{l}}^{l} \\ u_{1}^{l} & \ldots & u_{k_{l}}^{l} \\ f_{1}^{l} & \cdots & f_{k_{l}}^{l}\end{array}\right), \gamma_{S}^{r}=\left(\begin{array}{cccc}e_{1}^{r} & \cdots & e_{k_{r}}^{r} \\ u_{1}^{r} & \cdots & u_{k_{r}}^{r} \\ f_{1}^{r} & \cdots & f_{k_{r}}^{r}\end{array}\right), \delta_{S}^{l}=\left(\begin{array}{ccc}g_{1}^{l} & \cdots & g_{j_{l}}^{l} \\ v_{1}^{l} & \ldots & v_{j_{l}}^{l} \\ h_{1}^{l} & \cdots & h_{j_{l}}^{l}\end{array}\right)$ and $\delta_{S}^{r}=\left(\begin{array}{ccc}g_{1}^{r} & \cdots & g_{j_{r}}^{r} \\ v_{1}^{r} & \ldots & v_{j_{r}}^{r} \\ h_{1}^{r} & \cdots & h_{j_{r}}^{r}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ such that $\alpha_{S}=\gamma_{S}^{l} \beta_{S} \gamma_{S}^{r}, \beta_{S}=\delta_{S}^{l} \alpha_{S} \delta_{S}^{r}$ and $i \leqslant k_{l}, k_{r}, j_{l}, j_{r} \leqslant n$ (see [13] or
[14, Section II.1]). Also, the definition of the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that without loss of generality we may assume that $k_{l}=k_{r}=j_{l}=j_{r}=i$. Then the equalities $\alpha_{S}=\gamma_{S}^{l} \beta_{S} \gamma_{S}^{r}$ and $\beta_{S}=\delta_{S}^{l} \alpha_{S} \delta_{S}^{r}$ imply that

$$
\begin{aligned}
\left\{a_{1}, \ldots, a_{i}\right\}=\left\{g_{1}^{l}, \ldots, g_{i}^{l}\right\} & =\left\{h_{1}^{l}, \ldots, h_{i}^{l}\right\}, \\
\left\{b_{1}, \ldots, b_{i}\right\}=\left\{f_{1}^{r}, \ldots, f_{i}^{r}\right\} & =\left\{g_{1}^{r}, \ldots, g_{i}^{r}\right\}, \\
\left\{c_{1}, \ldots, c_{i}\right\}=\left\{g_{1}^{l}, \ldots, g_{i}^{l}\right\} & =\left\{f_{1}^{l}, \ldots, f_{i}^{l}\right\}
\end{aligned}
$$

and

$$
\left\{d_{1}, \ldots, d_{i}\right\}=\left\{e_{1}^{r}, \ldots, e_{i}^{r}\right\}=\left\{h_{1}^{r}, \ldots, h_{i}^{r}\right\} .
$$

Now, the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that there exist permutations

$$
\sigma, \rho, \zeta, \varsigma, \nu, \kappa:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}
$$

such that $a_{1}=e_{(1) \sigma}^{l}, \ldots, a_{i}=e_{(i) \sigma}^{l}, c_{1}=f_{(1) \rho}^{l}, \ldots, c_{i}=f_{(i) \rho}^{l}, d_{1}=e_{(1) \zeta}^{r}, \ldots, d_{i}=e_{(i) \zeta}^{r}$, $c_{1}=g_{(1) \varsigma}^{l}, \ldots, c_{i}=g_{(i) \varsigma}^{l}, a_{1}=h_{(1) \nu}^{l}, \ldots, a_{i}=h_{(i) \nu}^{l}$ and $b_{1}=g_{(1) \kappa}^{r}, \ldots, b_{i}=g_{(i) \kappa}^{r}$, and hence we have that

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{ccc}
e_{1}^{l} & \cdots & e_{k_{l}}^{l} \\
u_{1}^{l} & \cdots & u_{k_{l}}^{l} \\
f_{1}^{l} & \cdots & f_{k_{l}}^{l}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
e_{1}^{r} & \cdots & e_{k_{k}}^{r} \\
u_{1}^{r} & \cdots & k_{k_{k}}^{r} \\
f_{1}^{r} & \cdots & f_{k_{r}}^{r}
\end{array}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
e_{1}^{l} & \cdots & e_{i}^{l} \\
u_{1}^{l} t_{(1) \rho}-1 u_{((1) \zeta) \rho^{-1}}^{r} & \cdots & u_{1}^{l} t_{(i) \rho}-1 u_{((i) \zeta) \rho^{-1}}^{r} \\
f_{((1) \zeta) \rho^{-1}}^{r} & \cdots & f_{((i) \varsigma) \rho^{-1}}^{r}
\end{array}\right)=
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \ldots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right)=\left(\begin{array}{ccc}
g_{1}^{l} & \cdots & g_{i}^{l} \\
v_{1}^{l} & \ldots & v_{i}^{l} \\
h_{1}^{l} & \cdots & h_{i}^{l}
\end{array}\right) \cdot\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
g_{1}^{r} & \cdots & g_{i}^{r} \\
v_{1}^{r} & \cdots & v_{i}^{r} \\
h_{1}^{r} & \cdots & h_{i}^{r}
\end{array}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
g_{1}^{l} & \cdots & g_{i}^{l} \\
v_{1}^{l} s_{(1) \nu}-1 v_{(1) \kappa) \nu}^{r}-1 & \cdots & v_{i}^{l} s_{(i) \nu}-1 v_{((i) \kappa) \nu}^{r}-1 \\
h_{((1) \kappa) \nu}^{r}-1 & \cdots & h_{((i) \kappa) \nu}^{r}-1
\end{array}\right)=
\end{aligned}
$$

Then the definition of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ implies the equalities

$$
d_{1}=h_{\left(((1) \kappa) \nu^{-1}\right) \varsigma}^{r}, \quad \ldots, \quad d_{i}=h_{\left(((i) \kappa) \nu^{-1}\right) \varsigma}^{r}
$$

Now, by the equality $\alpha_{S}=\gamma_{S}^{l} \beta_{S} \gamma_{S}^{r}$ we get that

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{cccc}
e_{1}^{l} & \cdots & e_{k_{l}}^{l} \\
u_{1}^{l} & \cdots & u_{k_{l}}^{l} \\
f_{1}^{l} & \cdots & f_{k_{l}}^{l}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & t_{i}
\end{array}\right) \cdot\left(\begin{array}{cccc}
e_{1}^{r} & \cdots & e_{k_{r}}^{r} \\
u_{1}^{r} & \cdots & u_{k_{r}}^{r} \\
f_{1}^{r} & \cdots & f_{k_{r}}^{r}
\end{array}\right)=
\end{aligned}
$$

which implies the equalities

$$
\begin{aligned}
& s_{1}=u_{(1) \sigma}^{l} v_{\left(((1) \zeta) \rho^{-1}\right) \sigma}^{l} s_{\left(\left(\left((1) \nu^{-1}\right) \varsigma\right) \rho^{-1}\right) \sigma} v_{\left(\left(\left(((1) \kappa) \nu^{-1}\right) \varsigma\right) \rho^{-1}\right) \sigma}^{r} u_{\left(((1) \zeta) \rho^{-1}\right) \sigma}^{r} \\
& s_{i}=u_{(i) \sigma}^{l} v_{\left(((i) \zeta) \rho^{-1}\right) \sigma^{l}}^{l} S_{\left(\left(\left((i) \nu^{-1}\right) \varsigma\right) \rho^{-1}\right) \sigma} v_{\left(\left(\left(((i) \kappa) \nu^{-1}\right) \varsigma\right) \rho^{-1}\right) \sigma}^{r} u_{\left(((i) \zeta) \rho^{-1}\right) \sigma}^{r} .
\end{aligned}
$$

Hence for the permutation $\pi=\nu^{-1} \varsigma \rho^{-1} \sigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ we have that $s_{1} \mathscr{J} t_{(1) \pi}$, $\ldots, s_{i} \mathscr{J} t_{(i) \pi}$ in S.
(\Leftarrow) Suppose that for elements $\alpha_{S}, \beta_{S} \in \mathscr{I}_{\lambda}^{n}(S)$ there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ such that $s_{1} \mathscr{J} t_{(1) \sigma}, \ldots, s_{i} \mathscr{J} t_{(i) \sigma}$ in S. Then there exist $u_{1}, \ldots, u_{i}, v_{1}, \ldots, v_{i}, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i} \in S^{1}$ such that

$$
s_{1}=x_{1} t_{(1) \sigma} u_{1}, \quad \ldots, \quad s_{i}=x_{i} t_{(i) \sigma} u_{i}, \quad t_{1}=y_{1} s_{(1) \sigma^{-1}} v_{1}, \quad \ldots, \quad t_{i}=y_{i} s_{(i) \sigma^{-1}} v_{i} .
$$

Thus, we have that

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right)=\left(\begin{array}{cccc}
c_{(1) \sigma} & \cdots & c_{(i) \sigma} \\
x_{1} t_{(1) \sigma} u_{1} & \cdots & x_{i} t_{(i) \sigma} u_{i} \\
b_{(1) \sigma} & \cdots & b_{(i) \sigma}
\end{array}\right)=\left(\begin{array}{cccc}
c_{1} & \cdots & c_{i} \\
c_{1} & \cdots & x_{1} \\
x_{(1) \sigma}-1 & t_{1} u_{(1) \sigma-1} & \cdots & x_{(i) \sigma^{-1}} t_{i} u_{(i) \sigma}-1 \\
b_{1} & \cdots & b_{i}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
c_{1} & \cdots & c_{i} \\
c_{(1) \sigma^{-1}} & \cdots & x_{(i) \sigma^{-1}} \\
c_{1} & \cdots & c_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \ldots & t_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot\left(\begin{array}{cccc}
b_{1} & \cdots & b_{i} \\
u_{(1) \sigma^{-1}} & \cdots & u_{(i) \sigma^{-1}} \\
b_{1} & \cdots & b_{i}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\begin{array}{ccc}
c_{1} & \cdots & c_{i} \\
t_{1} & \cdots & t_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right) & =\left(\begin{array}{cccc}
a_{(1) \sigma^{-1}} & \cdots & a_{(i) \sigma}-1 \\
y_{1} s_{(1) \sigma^{-1}} v_{1} & \cdots & y_{i} s(i) \sigma^{-1} & v_{i} \\
d_{(1) \sigma}-1 & \cdots & d_{(i) \sigma-1}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
y_{(1) \sigma} s_{1} v_{(1) \sigma} & \cdots & y_{(i) \sigma} s_{i} v_{(i) \sigma} \\
d_{1} & \cdots & d_{i}
\end{array}\right)= \\
& =\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
y_{(1) \sigma} & \cdots & y_{(i) \sigma} \\
a_{1} & \cdots & a_{i}
\end{array}\right) \cdot\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
d_{1} & \cdots & d_{i}
\end{array}\right) \cdot\left(\begin{array}{cccc}
d_{1} & \cdots & d_{i} \\
v_{(1) \sigma} \sigma & \cdots & v_{(i) \sigma} \\
d_{1} & \cdots & d_{i}
\end{array}\right),
\end{aligned}
$$

and hence we get that $\alpha_{S} \mathscr{J} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$.
Remark 2. Proposition $7(i v)$ implies that if there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow$ $\{1, \ldots, i\}$ such that $s_{1} \mathscr{H} t_{(1) \sigma}, \ldots, s_{i} \mathscr{H} t_{(i) \sigma}$ in S then $\alpha_{S} \mathscr{H} \beta_{S}$ in $\mathscr{I}_{\lambda}^{n}(S)$. But Example 1 implies that the converse statement is not true.

Example 1. Let λ be any cardinal $\geqslant 2$ and $\mathscr{C}(p, q)$ be the bicyclic monoid. The bicyclic monoid $\mathscr{C}(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition $p q=1$. The distinct elements of $\mathscr{C}(p, q)$ are exhibited in the following useful array

$$
\begin{array}{ccccc}
1 & p & p^{2} & p^{3} & \ldots \\
q & q p & q p^{2} & q p^{3} & \ldots \\
q^{2} & q^{2} p & q^{2} p^{2} & q^{2} p^{3} & \ldots \\
q^{3} & q^{3} p & q^{3} p^{2} & q^{3} p^{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

and the semigroup operation on $\mathscr{C}(p, q)$ is determined as follows:

$$
q^{k} p^{l} \cdot q^{m} p^{n}=q^{k+m-\min \{l, m\}} p^{l+n-\min \{l, m\}}
$$

We fix arbitrary distinct elements a_{1} and a_{1} of λ and put

$$
\alpha=\left(\begin{array}{cc}
a_{1} & a_{1} \\
q p & q^{2} p^{2} \\
a_{1} & a_{1}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cc}
a_{1} & a_{2} \\
q p^{2} \\
a_{2} & q^{2} p \\
a_{1}
\end{array}\right) .
$$

Then we have that

$$
\alpha=\left(\begin{array}{cc}
a_{1} & a_{2} \\
q p^{2} \\
a_{2} & q^{2} p \\
a_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{2} & q \\
a_{2} & a_{1}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cc}
a_{1} & a_{1} \\
q p & q^{2} p^{2} \\
a_{1} & a_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} & a_{2} \\
p & q \\
a_{2} & a_{1}
\end{array}\right)
$$

and hence $\alpha \mathscr{R} \beta$ in $\mathscr{I}_{\lambda}^{n}(S)$, and similarly we have that

$$
\alpha=\left(\begin{array}{cc}
a_{1} & a_{2} \\
p & q \\
a_{2} & a_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} & a_{2} \\
q p^{2} & q^{2} p \\
a_{2} & a_{1}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cc}
a_{1} & a_{2} \\
p_{2} & q \\
a_{2} & a_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} & a_{1} \\
q p & q_{1}^{2} p^{2} \\
a_{1} & a_{1}
\end{array}\right)
$$

and hence $\alpha \mathscr{L} \beta$ in $\mathscr{I}_{\lambda}^{n}(S)$. Thus $\alpha \mathscr{H} \beta$ in $\mathscr{I}_{\lambda}^{n}(S)$, but the elements $q p$ and $q^{2} p^{2}$ are not pairwise \mathscr{H}-equivalent to $q p^{2}$ and $q^{2} p$ for any permutation $\sigma:\{1,2\} \rightarrow\{1,2\}$.

Recall [28], a semigroup S is said to be:
(a) left stable if for $a, b \in S, S a \subseteq S a b$ implies $S a=S a b$;
(b) right stable if for $c, d \in S, c S \subseteq d c S$ implies $c S=d c S$;
(b) stable if it is both left and right stable.

We observe that in the book [11 an other definition of a stable semigroup is given, and these two notion are distinct. A semigroup stable in the sense of Koch and Wallace is always stable in the sense of the book [11, but not conversely (see: [30]). For the semigroups with an identity element and for regular semigroups these two definitions of stability coincide.

The following proposition states that the construction of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ preserves left an right stabilities.
Proposition 8. For every semigroup S, any non-zero cardinal λ and any positive integer $n \leqslant \lambda$ the following statements hold:
(i) $\mathscr{I}_{\lambda}^{n}(S)$ is right stable if and only if so is S;
(ii) $\mathscr{I}_{\lambda}^{n}(S)$ is left stable if and only if so is S;
(iii) $\mathscr{I}_{\lambda}^{n}(S)$ is stable if and only if so is S.

Proof. $(i)(\Leftarrow)$ Suppose that the semigroup S is right stable and assume that $\alpha_{S}=$ $\left(\begin{array}{lll}a_{1} & \cdots & a_{i} \\ s_{1} & \cdots & s_{i} \\ b_{1} & \cdots & b_{i}\end{array}\right)$ and $\beta_{S}=\left(\begin{array}{ccc}c_{1} & \cdots & c_{k} \\ t_{1} & \cdots & t_{k} \\ d_{1} & \cdots & d_{k}\end{array}\right)$ are elements of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ such that
$\alpha_{S} \mathscr{I}_{\lambda}^{n}(S) \subseteq \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$. Then the above inclusion and the definition of the semigroup operation on $\mathscr{I}_{\lambda}^{n}(S)$ imply that $i \leqslant k$ and the inclusion

$$
\left\{a_{1}, \ldots, a_{i}\right\} \subseteq\left\{c_{1}, \ldots, c_{k}\right\} \cap\left\{d_{1}, \ldots, d_{k}\right\}
$$

holds. Without loss of generality we may assume that $d_{1}=a_{1}, \ldots, d_{i}=a_{i}$. Then the inclusion $\alpha_{S} \mathscr{I}_{\lambda}^{n}(S) \subseteq \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$ implies that there exists a permutation $\sigma:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ such that $c_{1}=a_{(1) \sigma}, \ldots, c_{i}=a_{(i) \sigma}$. Hence by the definition of the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ we get that

$$
\text { distinct elements of } \left.\{1, \ldots, i\} \text { and } p_{1}, \ldots, p_{i-1} \in \lambda\right\} \cup \cdots \cup
$$

$$
\cup \bigcup\left\{\left[t_{(l) \sigma^{-1}} s_{(l) \sigma^{-1}} S\right]_{(p)}^{(l)}: l \in\{1, \ldots, i\} \text { and } p \in \lambda\right\}
$$

and

$$
\begin{aligned}
& \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{i} \\
s_{1} & \ldots & s_{i} \\
b_{1} & \ldots & b_{i}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)=\{0\} \cup \bigcup\left\{\left[s_{1} S, \ldots, s_{i} S\right]_{\left(p_{1}, \ldots, p_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}: p_{1}, \ldots, p_{i} \in \lambda\right\} \cup \\
& \cup \bigcup\left\{\left[s_{l_{1}} S, \ldots, s_{l_{i-1}} S\right]_{\left(p_{1}, \ldots, p_{i-1}\right)}^{\left(l_{1}, \ldots, l_{i-1}\right)}: l_{1}, \ldots, l_{i-1} \text { are distinct elements of }\{1, \ldots, i\}\right. \\
& \left.\quad \text { and } p_{1}, \ldots, p_{i-1} \in \lambda\right\} \cup \cdots \cup \\
& \cup \bigcup\left\{\left[s_{l} S\right]_{(p)}^{(l)}: l \in\{1, \ldots, i\} \text { and } p \in \lambda\right\} .
\end{aligned}
$$

Hence, the inclusion $\alpha_{S} \mathscr{I}_{\lambda}^{n}(S) \subseteq \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$ and semigroup operations of the semigroups $\mathscr{I}_{\lambda}^{n}(S)$ and S imply that $s_{l} S \subseteq t_{(l) \sigma^{-1}} S_{(l) \sigma^{-1}} S$, for every $l \in\{1, \ldots, i\}$. Since the semigroup of all permutations of a finite set is finite, we conclude that there exists a positive integer j such that $\sigma^{j}:\{1, \ldots, i\} \rightarrow\{1, \ldots, i\}$ is the identity map and therefore we get that $\sigma^{j-1}=\sigma$. This implies that for every $l \in\{1, \ldots, i\}$ we have that

$$
\begin{aligned}
s_{l} S \subseteq t_{(l) \sigma^{-1}} S_{(l) \sigma^{-1}} S & \subseteq t_{(l) \sigma^{-1}} t_{(l) \sigma^{-2}} s_{(l) \sigma^{-2}} S \subseteq \\
& \subseteq \cdots \subseteq \\
& \subseteq t_{(l) \sigma^{-1}} t_{(l) \sigma^{-2}} \cdots t_{(l) \sigma^{-j+1}} s_{(l) \sigma^{-j+1}} S= \\
& =t_{(l) \sigma^{-1}} t_{(l) \sigma^{-2}} \cdots t_{l} s_{l} S .
\end{aligned}
$$

Then the right stability of the semigroup S implies the equality

$$
s_{l} S=t_{(l) \sigma^{-1}} t_{(l) \sigma^{-2}} \cdots t_{l} s_{l} S
$$

$$
\begin{aligned}
& \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{k} \\
t_{1} & \cdots & t_{k} \\
d_{1} & \cdots & d_{k}
\end{array}\right) \cdot\left(\begin{array}{cccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{cccccc}
c_{1} & \cdots & c_{i} & c_{i+1} & \cdots & c_{k} \\
t_{1} & \cdots & t_{i} & t_{i+1} & \cdots & t_{k} \\
d_{1} & \cdots & d_{i} & d_{i+1} & \cdots & d_{k}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)= \\
& =\left(\begin{array}{cccccc}
a_{(1) \sigma} & \cdots & a_{(i) \sigma} & c_{i+1} & \cdots & c_{k} \\
t_{1} & \cdots & t_{i} & t_{i+1} & \cdots & t_{k} \\
a_{1} & \cdots & a_{i} & d_{i+1} & \cdots & d_{k}
\end{array}\right) \cdot\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{cccc}
a_{(1) \sigma} & \cdots & a_{(i) \sigma} \\
t_{1} & \cdots & t_{i} \\
a_{1} & \cdots & t_{i} \\
a_{i}
\end{array}\right) \cdot\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
s_{1} & \cdots & s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)= \\
& =\left(\begin{array}{ccc}
a_{(1) \sigma} & \cdots & a_{(i) \sigma} \\
t_{1} s_{1} & \cdots & t_{i} s_{i} \\
b_{1} & \cdots & b_{i}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{i} \\
t_{(1) \sigma^{-1}} s_{(1) \sigma^{-1}} & \cdots & t_{(i) \sigma^{-1}}{ }^{1} s_{(i) \sigma^{-1}} \\
b_{(1) \sigma^{-1}} & \cdots & b_{(i) \sigma^{-1}}
\end{array}\right) \cdot \mathscr{I}_{\lambda}^{n}(S)= \\
& =\{0\} \cup \bigcup\left\{\left[t_{(1) \sigma^{-1}} s_{(1) \sigma^{-1}} S, \ldots, t_{(i) \sigma^{-1}} s_{(i) \sigma^{-1}} S\right]_{\left(p_{1}, \ldots, p_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}: p_{1}, \ldots, p_{i} \in \lambda\right\} \cup \\
& \cup \bigcup\left\{\left[t_{\left(l_{1}\right) \sigma^{-1}} s_{\left(l_{1}\right) \sigma^{-1}} S, \ldots, t_{\left(l_{i-1}\right) \sigma^{-1}} s_{\left(l_{i-1}\right) \sigma^{-1}} S\right]_{\left(p_{1}, \ldots, p_{i-1}\right)}^{\left(l_{1}, \ldots, l_{i-1}\right)}: l_{1}, \ldots, l_{i-1}\right. \text { are }
\end{aligned}
$$

and hence we have that $s_{l} S=t_{(l) \sigma^{-1}} s_{(l) \sigma^{-1}} S$, for every $l \in\{1, \ldots, i\}$. Then the inclusion $\alpha_{S} \mathscr{I}_{\lambda}^{n}(S) \subseteq \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$ and above formulae imply the equality $\alpha_{S} \mathscr{I}_{\lambda}^{n}(S)=$ $\beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$, and hence the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is right stable.
(\Rightarrow) Suppose that the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ is right stable and $s S \subseteq t s S$ for $s, t \in S$. We fix an arbitrary $a \in \lambda$ and put $\alpha_{S}=\left(\begin{array}{l}a \\ s \\ a\end{array}\right)$ and $\beta_{S}=\left(\begin{array}{c}a \\ t \\ a\end{array}\right)$. Hence by the definition of the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ we get that

$$
\alpha_{S} \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{l}
a \\
s \\
a
\end{array}\right) \mathscr{I}_{\lambda}^{n}(S)=\{0\} \cup \bigcup\left\{[s S]_{(p)}^{(a)}: p \in \lambda\right\}
$$

and

$$
\beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{l}
a \\
t \\
a
\end{array}\right)\left(\begin{array}{l}
a \\
s \\
a
\end{array}\right) \mathscr{I}_{\lambda}^{n}(S)=\left(\begin{array}{c}
a \\
t s \\
a
\end{array}\right) \mathscr{I}_{\lambda}^{n}(S)=\{0\} \cup \bigcup\left\{[t s S]_{(p)}^{(a)}: p \in \lambda\right\}
$$

and hence by the inclusion $s S \subseteq t s S$ we have that $\alpha_{S} \mathscr{I}_{\lambda}^{n}(S) \subseteq \beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$. Now the right stability of $\mathscr{I}_{\lambda}^{n}(S)$ implies the equality $\alpha_{S} \mathscr{I}_{\lambda}^{n}(S)=\beta_{S} \alpha_{S} \mathscr{I}_{\lambda}^{n}(S)$. This implies $[s S]_{(p)}^{(a)}=[t s S]_{(p)}^{(a)}$ in $\mathscr{I}_{\lambda}^{n}(S)$ for every $p \in \lambda$, and hence $s S=t s S$.

The proof of statement $(i i)$ is dual to that of statement (i).
(iii) follows from statements (i) and (ii).

4. On Semigroups with a tight ideal series

Fix an arbitrary positive integer m and any $p \in\{0, \ldots, m\}$. Let A be a non-empty set and let B be a non-empty proper subset of A. By $[B \subset A]_{p}^{m}$ we denote all elements $\left(x_{1}, \ldots, x_{m}\right)$ of the power A^{m} which satisfy the following property: at most p coordinates of $\left(x_{1}, \ldots, x_{m}\right)$ belong to $A \backslash B$. It is obvious that $[B \subset A]_{m}^{m}=A^{m}$ for any positive integer m, any non-empty set A and any non-empty proper subset B of A.

The above definition implies the following two lemmas.
Lemma 1. Let m be an arbitrary positive integer and $p \in\{1, \ldots, m\}$. Let A be a non-empty set and let B be a non-empty proper subset of A. Then the set $[B \subset A]_{p}^{m} \backslash$ $[B \subset A]_{p-1}^{m}$ consists of all elements $\left(x_{1}, \ldots, x_{m}\right)$ of the power A^{m} such that exactly p coordinates of $\left(x_{1}, \ldots, x_{m}\right)$ belong to $A \backslash B$.

Lemma 2. Let m be an arbitrary positive integer and $p \in\{0,1, \ldots, m\}$. Let S be a semigroup, A and B be ideals in S such that $B \subset A$. Then $[B \subset A]_{p}^{m}$ is an ideal of the direct power S^{m}.

An subset D of a semigroup S is said to be ω-unstable if D is infinite and $a B \cup B a \nsubseteq$ D for any $a \in D$ and any infinite subset $B \subseteq D$.

Definition 1 ([18]). An ideal series (see, for example, [11]) for a semigroup S is a chain of ideals

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}=S
$$

We call the ideal series tight if I_{0} is a finite set and $D_{k}=I_{k} \backslash I_{k-1}$ is an ω-unstable subset for each $k=1, \ldots, n$.

It is obvious that for every infinite cardinal λ and any positive integer n the semigroup $\mathscr{I}_{\lambda}^{n}$ has a tight ideal series. A finite direct product of semigroups with tight ideal series is a semigroup with a tight ideal series and a homomorphic image of a semigroup with a tight ideal series with finite preimages is a semigroup with a tight ideal series too 18 .

A subset D of a semigroup S is said to be strongly ω-unstable if D is infinite and $a B \cup B b \nsubseteq D$ for any $a, b \in D$ and any infinite subset $B \subseteq D$. It is obvious that a subset D of a semigroup S is strongly ω-unstable then D is ω-unstable.
Definition 2. We call the ideal series $I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}=S$ strongly tight if I_{0} is a finite set and $D_{k}=I_{k} \backslash I_{k-1}$ is a strongly ω-unstable subset for each $k=1, \ldots, n$.

An example of a semigroup with a strongly tight ideal series gives the following proposition.
Proposition 9. Let λ be any infinite cardinal and n be any positive integer. Then

$$
I_{0}=\{0\} \subseteq I_{1}=\mathscr{I}_{\lambda}^{1} \subseteq I_{2}=\mathscr{I}_{\lambda}^{2} \subseteq \cdots \subseteq I_{n}=\mathscr{I}_{\lambda}^{n}
$$

is the strongly tight ideal series in the semigroup $\mathscr{I}_{\lambda}^{n}$.
Proof. The definition of the semigroup $\mathscr{I}_{\lambda}^{n}$ implies that $I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}$ is an ideal series in $\mathscr{I}_{\lambda}^{n}$.

Fix an arbitrary integer $i=1, \ldots, n$. For any infinite subset B of $\mathscr{I}_{\lambda}^{i} \backslash \mathscr{I}_{\lambda}^{i-1}$ at least one of the following families of sets

$$
\mathfrak{d}(B)=\{\operatorname{dom} \gamma: \gamma \in B\} \quad \text { or } \quad \mathfrak{r}(B)=\{\operatorname{ran} \gamma: \gamma \in B\}
$$

is infinite. Then the definition of the semigroup operation in $\mathscr{I}_{\lambda}^{n}$ implies that $\alpha B \nsubseteq$ $\mathscr{I}_{\lambda}^{i} \backslash \mathscr{I}_{\lambda}^{i-1}$ in the case when the set $\mathfrak{d}(B)$ is infinite, and $B \beta \nsubseteq \mathscr{I}_{\lambda}^{i} \backslash \mathscr{I}_{\lambda}^{i-1}$ in the case when the set $\mathfrak{r}(B)$ is infinite, for any $\alpha, \beta \in \mathscr{I}_{\lambda}^{i} \backslash \mathscr{I}_{\lambda}^{i-1}$.

Later for an arbitrary non-empty set A, any positive integer n and any $i \in\{1, \ldots, n\}$ by $\pi_{i}: A^{n} \rightarrow A,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{i}$ we shall denote the projection on the i-th factor of the power A^{n}.
Proposition 10. Let n be a positive integer $\geqslant 2$ and let $I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m}=S$ be the strongly tight ideal series for a semigroup S. Then the series

$$
\begin{align*}
I_{0}^{n} & \subseteq\left[I_{0} \subset I_{1}\right]_{1}^{n} \subseteq\left[I_{0} \subset I_{1}\right]_{2}^{n} \subseteq \cdots \subseteq\left[I_{0} \subset I_{1}\right]_{n-1}^{n} \subseteq\left[I_{0} \subset I_{1}\right]_{n}^{n}=I_{1}^{n} \subseteq \\
& \subseteq\left[I_{1} \subset I_{2}\right]_{1}^{n} \subseteq\left[I_{1} \subset I_{2}\right]_{2}^{n} \subseteq \cdots \subseteq\left[I_{1} \subset I_{2}\right]_{n-1}^{n} \subseteq\left[I_{1} \subset I_{2}\right]_{n}^{n}=I_{2}^{n} \subseteq \quad \cdots \quad \subseteq \tag{2}\\
& \subseteq\left[I_{m-1} \subset I_{m}\right]_{1}^{n} \subseteq\left[I_{m-1} \subset I_{m}\right]_{2}^{n} \subseteq \cdots \subseteq\left[I_{m-1} \subset I_{m}\right]_{n-1}^{n} \subseteq\left[I_{m-1} \subset I_{m}\right]_{n}^{n}=I_{m}^{n}=S^{n}
\end{align*}
$$

is a strongly tight ideal series for the direct power S^{n}.
Proof. It is obvious that I_{0}^{n} is a finite ideal of S^{n}. Also by Lemma 2 all subsets in series (2) are ideals in S^{n}.

Fix any $k \in\{1, \ldots, m\}$ and any $p \in\{1, \ldots, n\}$. We claim that the sets

$$
\left[I_{k-1} \subset I_{k}\right]_{p}^{n} \backslash\left[I_{k-1} \subset I_{k}\right]_{p-1}^{n} \quad \text { and } \quad\left[I_{k-1} \subset I_{k}\right]_{1}^{n} \backslash I_{k-1}^{n}
$$

are strongly ω-unstable in S^{n}. Indeed, fix an arbitrary infinite subset

$$
B \subseteq\left[I_{k-1} \subset I_{k}\right]_{p}^{n} \backslash\left[I_{k-1} \subset I_{k}\right]_{p-1}^{n}
$$

and any points

$$
a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in\left[I_{k-1} \subset I_{k}\right]_{p}^{n} \backslash\left[I_{k-1} \subset I_{k}\right]_{p-1}^{n}
$$

Then there exists a coordinate $i \in\{1, \ldots, n\}$ such that the set $\pi_{i}(B) \subseteq I_{k} \backslash I_{k-1}$ is infinite. If $a_{i} \notin I_{k} \backslash I_{k-1}$ or $b_{i} \notin I_{k} \backslash I_{k-1}$ then

$$
\left(a_{i} \cdot \pi_{i}(B) \cup \pi_{i}(B) \cdot b_{i}\right) \cap I_{k} \backslash I_{k-1}=\varnothing
$$

and hence

$$
a B \cup B b \nsubseteq\left[I_{k-1} \subset I_{k}\right]_{p}^{n} \backslash\left[I_{k-1} \subset I_{k}\right]_{p-1}^{n}
$$

If $a_{i}, b_{i} \in I_{k} \backslash I_{k-1}$ then $\left(a_{i} \cdot \pi_{i}(B) \cup \pi_{i}(B) \cdot b_{i}\right) \nsubseteq I_{k} \backslash I_{k-1}$, because the set $I_{k} \backslash I_{k-1}$ is strongly ω-unstable in S, and hence $a B \cup B b \nsubseteq\left[I_{k-1} \subset I_{k}\right]_{p}^{n} \backslash\left[I_{k-1} \subset I_{k}\right]_{p-1}^{n}$. The proof of the statement that the set $\left[I_{k-1} \subset I_{k}\right]_{1}^{n} \backslash I_{k-1}^{n}$ is strongly ω-unstable in S^{n} is similar.

Later we fix an arbitrary positive integer n. Then for any semigroup S and any positive integer $k \leqslant n$, since $\mathscr{I}_{\lambda}^{k}(S)$ is a subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$, by $\iota: \mathscr{I}_{\lambda}^{k}(S) \rightarrow \mathscr{I}_{\lambda}^{n}(S)$ we denote this natural embedding. Similar arguments imply that, without loss of generality, for any subsemigroup T of S and any positive integer $k \leqslant n$ since $\mathscr{I}_{\lambda}^{k}(T)$ is a subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$ by $\iota: \mathscr{I}_{\lambda}^{k}(T) \rightarrow \mathscr{I}_{\lambda}^{n}(S)$, we denote this natural embedding.

Let $A \neq \varnothing$ and k be any positive integer. A subset $B \subseteq A^{k}$ is said to be k-symmetric if the following condition holds: $\left(b_{1}, \ldots, b_{k}\right) \in B$ implies $\left(b_{(1) \sigma}, \ldots, b_{(k) \sigma}\right) \in B$ for every permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$.
Remark 3. We observe that every element of the tight ideal series (2) is m-symmetric in S^{n}, and moreover the sets

$$
\left[I_{k-1} \subset I_{k}\right]_{p}^{n} \backslash\left[I_{k-1} \subset I_{k}\right]_{p-1}^{n} \quad \text { and } \quad\left[I_{k-1} \subset I_{k}\right]_{1}^{n} \backslash I_{k-1}^{n}
$$

are m-symmetric in S^{n}, too, for all $k \in\{1, \ldots, m\}$ and $p \in\{1, \ldots, n\}$.
We need the following construction.
Construction 2. Let λ be a cardinal $\geqslant 1, n$ be any positive integer, k be any positive integer $\leqslant \min \{n, \lambda\}$, and S be a semigroup. For any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}, we define a map

$$
\mathfrak{f}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}: S^{k} \rightarrow S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}
$$

by the formula

$$
\left(s_{1}, \ldots, s_{k}\right) \mathfrak{f}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}=\left(\begin{array}{ccc}
a_{1} & a_{k} \\
s_{1} & a_{k} \\
b_{1} & \ldots & s_{k}
\end{array}\right) .
$$

For any non-empty subset $A \subseteq S^{k}$ and any positive integer $k \leqslant n$ we define the following subsets

$$
\begin{aligned}
{[A]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}=\bigcup\left\{(A) \mathfrak{f}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}:\right.} & \left(a_{1}, \ldots, a_{k}\right) \text { and }\left(b_{1}, \ldots, b_{k}\right) \text { are ordered collections } \\
& \text { of } \left.k \text { distinct elements of } \lambda^{k}\right\}
\end{aligned}
$$

and

$$
\overline{[A]}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}=\left\{\begin{array}{cl}
{[A]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}} \cup \mathscr{I}_{\lambda}^{k-1}(S),} & \text { if } k \geqslant 1 ; \\
{[A]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)} \cup\{0\},} & \text { if } k=1,
\end{array}\right.
$$

of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
The following lemma can be immediately derived from the definition of k-symmetric sets.

Lemma 3. Let λ be a cardinal $\geqslant 1, k$ be any positive integer $\leqslant \lambda$ and S be a semigroup. Let $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ be arbitrary ordered collections of k distinct elements of λ^{k}. If $A \neq \varnothing$ is a k-symmetric subset of S^{k}, then

$$
(A) \mathfrak{f}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}=(A) \mathfrak{f}_{\left(b_{(1) \sigma}, \ldots, b_{(k) \sigma}\right)}^{\left(a_{(1) \sigma}, \ldots, a_{(k) \sigma}\right)}
$$

for every permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$.
Theorem 1. Let λ be an infinite cardinal and n be a positive integer. If S is a finite semigroup, then

$$
I_{0}=\{0\} \subseteq I_{1}=\mathscr{I}_{\lambda}^{1}(S) \subseteq I_{2}=\mathscr{I}_{\lambda}^{2}(S) \subseteq \cdots \subseteq I_{n}=\mathscr{I}_{\lambda}^{n}(S)
$$

is a strongly tight ideal series for the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
Proof. It is obvious that for every $i=0,1, \ldots, n$ the set I_{i} is an ideal in $\mathscr{I}_{\lambda}^{n}(S)$ and moreover the set I_{0} is finite.

Fix an arbitrary $i=1, \ldots, n$ and any infinite subset $B \subseteq I_{i} \backslash I_{i-1}$. Since the semigroup S is finite, every infinite subset X of $I_{i} \backslash I_{i-1}$ intersects infinitely many sets of the form $S_{\left(b_{1}, \ldots, b_{i}\right)}^{\left(a_{1}, \ldots, a_{i}\right)}$. Then the definition of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ implies that at least one of the families of sets

$$
\mathfrak{d}(B)=\{\mathbf{d} \gamma: \gamma \in B\} \quad \text { or } \quad \mathfrak{r}(B)=\{\mathbf{r} \gamma: \gamma \in B\}
$$

is infinite. Then the definition of the semigroup operation in $\mathscr{I}_{\lambda}^{n}(S)$ implies that $\alpha B \nsubseteq$ $I_{i} \backslash I_{i-1}$ in the case when the set $\mathfrak{d}(B)$ is infinite, and $B \beta \nsubseteq I_{i} \backslash I_{i-1}$ in the case when the set $\mathfrak{r}(B)$ is infinite, for any $\alpha, \beta \in I_{i} \backslash I_{i-1}$.

Theorem 2. Let λ be an infinite cardinal, n be a positive integer and let

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m}=S
$$

be a strongly tight ideal series for a semigroup S. Then the series

$$
\begin{aligned}
& J_{0}=\{0\} \subseteq J_{1,0}={\left.\overline{\left[I_{0}\right]}\right]_{\mathscr{J}_{\lambda}^{n}(S)}^{(*)_{1}} \subseteq}^{n} \\
& \subseteq J_{1,1}={\overline{\left[I_{1}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}} \subseteq J_{1,2}={\overline{\left[I_{2}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}} \subseteq \cdots \subseteq J_{1, m}={\overline{\left[I_{m}\right]}}_{\mathscr{\mathscr { I }}_{\lambda}^{n}(S)}^{(*)_{1}}=\mathscr{I}_{\lambda}^{1}(S) \subseteq
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq J_{2,3}={\overline{\left[\left[I_{1} \subset I_{2}\right]_{1}^{2}\right]}{ }_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)} \subseteq J_{2,4}={\overline{\left[I_{2}^{2}\right]}}_{\mathscr{\mathscr { I }}_{\lambda}^{n}(S)}^{(*)_{2}} \subseteq \cdots \subseteq}^{n} \subseteq
\end{aligned}
$$

$$
\begin{aligned}
& \left.\subseteq J_{n, 0}={\overline{\left[I_{0}^{n}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, 1}=\overline{\left[\left[I_{0} \subset I_{1}\right]_{1}^{n}\right]} \mathscr{\mathscr { I }}_{\lambda}^{n}()_{n}^{n}(S) \subseteq J_{n, 2}=\overline{\left[\left[I_{0} \subset I_{1}\right]_{2}^{n]}\right.}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq \\
& \subseteq J_{n, 3}=\overline{\left.\left[\left[I_{0} \subset I_{1}\right]_{3}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, 4}=\overline{\left[\left[I_{0} \subset I_{1}\right]_{4}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq \cdots \subseteq}{ }^{n} \subseteq\right)} \\
& \subseteq J_{n, n-1}=\overline{\left[\left[I_{0} \subset I_{1}\right]_{n-1}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, n}={\overline{\left[I_{1}^{n}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq}
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq J_{n, n+3}=\overline{\left[\left[I_{1} \subset I_{2}\right]_{3}^{n]}\right.}{ }_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, n+4}=\overline{\left[\left[I_{1} \subset I_{2}\right]_{4}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq \cdots \subseteq}
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq J_{n,(m-1) n+3}=\overline{\left.\left[\left[I_{m-1} \subset I_{m}\right]_{3}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n,(m-1) n+4}=\overline{\left[\left[I_{m-1} \subset I_{m}\right]_{4}^{n}\right.}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq}
\end{aligned}
$$

is a strongly tight ideal series for the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
Proof. The definition of the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ and Lemma 2 imply that all subsets in series (3) are ideals in $\mathscr{I}_{\lambda}^{n}(S)$.

Since I_{0} is a finite ideal in S, the equalities

$$
\begin{aligned}
J_{1,0} \backslash J_{0} & ={\overline{\left[I_{0}\right]}}_{\mathscr{\mathscr { I }}_{\lambda}^{n}(S)}^{(*)_{1}} \backslash\{0\}=\left[I_{0}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}} \\
J_{2,0} \backslash J_{1, m} & ={\overline{\left[I_{0}^{2}\right]_{\mathscr{I}}^{()_{1}^{n}(S)} \backslash \mathscr{I}_{\lambda}^{1}(S)=\left[I_{0}^{2}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}}}}^{\cdots} \quad \cdots \quad \cdots \\
J_{n, 0} \backslash J_{n-1, m(n-1)} & ={\overline{\left[I_{0}^{n}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \backslash \mathscr{I}_{\lambda}^{n-1}(S)=\left[I_{0}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}}
\end{aligned}
$$

and the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ imply that

$$
J_{1,0} \backslash J_{0}, \quad J_{2,0} \backslash J_{1, m}, \quad \ldots, \quad J_{n, 0} \backslash J_{n-1, m(n-1)}
$$

are strongly ω-unstable subsets in $\mathscr{I}_{\lambda}^{n}(S)$.
Next we shall show that the set $J_{k, p} \backslash J_{k, p-1}$ is strongly ω-unstable in $\mathscr{I}_{\lambda}^{n}(S)$ for all $k=1, \ldots, n$ and $p=1, \ldots, k m$.

Fix any infinite subset B of $J_{k, p} \backslash J_{k, p-1}$ and any $\alpha, \beta \in J_{k, p} \backslash J_{k, p-1}$. If $\mathbf{d}(B) \neq \mathbf{r}(\alpha)$ then the semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that $\alpha B \nsubseteq J_{k, p} \backslash J_{k, p-1}$. Similarly, if $\mathbf{d}(\beta) \neq \mathbf{r}(B)$ then $B \beta \nsubseteq J_{k, p} \backslash J_{k, p-1}$.

Next we suppose that $\mathbf{d}(B)=\mathbf{r}(\alpha), \mathbf{d}(\beta)=\mathbf{r}(B)$,

$$
\alpha=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{k} \\
s_{1} & \cdots & s_{k} \\
b_{1} & \cdots & b_{k}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{k} \\
t_{1} & \cdots & t_{k} \\
d_{1} & \cdots & d_{k}
\end{array}\right),
$$

for some $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k} \in S$ and ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right),\left(c_{1}, \ldots, c_{k}\right),\left(d_{1}, \ldots, d_{k}\right)$ of λ^{k}. Then the set B consists of the elements of the form

$$
\gamma=\left(\begin{array}{ccc}
b_{1} & \cdots & b_{k} \\
x_{1} & \cdots & x_{k} \\
c_{(1) \sigma} & \cdots & c_{(k) \sigma}
\end{array}\right),
$$

where $x_{1}, \ldots, x_{k} \in S$ and $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ is a permutation.
First we consider the case when $J_{k, p}=J_{k, j k}=\overline{\left[I_{j}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)}}$ for some $j=1, \ldots, m$. Then

$$
J_{k, p-1}=J_{k, j k-1}=\overline{\left.\left[\left[I_{j-1} \subset I_{j}\right]_{k-1}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}\right) .}
$$

and $B \subseteq\left[I_{j}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}$. Since the set B is infinite, there exists $b_{i_{0}} \in\left\{b_{1}, \ldots, b_{k}\right\}$ such that there exist infinitely many $\gamma \in B$ such that $\mathbf{d}(\gamma) \ni b_{i_{0}}$. Without loss of generality we may assume that $b_{i_{0}}=b_{1}$. We put $B_{0}=\left\{\gamma \in B: b_{1} \in \mathbf{d}(\gamma)\right\}$. Then the set B_{0} is infinite and hence the set

$$
B_{0}^{S}=\left\{x_{1} \in S:\left(\begin{array}{ccc}
b_{1} & \cdots & b_{k} \\
x_{1} & \cdots & x_{k} \\
c_{(1) \sigma} & \cdots & c_{(k) \sigma}
\end{array}\right) \in B_{0}, \sigma \text { is a permutation of }\{1, \ldots, k\}\right\}
$$

is infinite, too. The above implies that there exists a permutation σ_{0} of $\{1, \ldots, k\}$ such that infinitely many elements of the form $\left(\begin{array}{ccc}b_{1} & \cdots & b_{k} \\ x_{1} & \cdots & x_{k} \\ c_{(1) \sigma_{0}} & \cdots & c_{(k) \sigma_{0}}\end{array}\right)$ belong to B_{0}. Since $s_{1}, t_{(1) \sigma_{0}} \in$ $I_{j} \backslash I_{j-1}$ and the set $I_{j} \backslash I_{j-1}$ is strongly ω-unstable we obtain that $a_{1} \cdot B_{0}^{S} \cup B_{0}^{S} \cdot t_{(1) \sigma_{0}} \nsubseteq$ $I_{j} \backslash I_{j-1}$, and hence the set $\left[I_{j}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}$ is strongly ω-unstable, as well.

Next we consider the case $J_{k, p}=J_{n,(j-1) k+q}=\overline{\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)}}$ for some $j=$ $1, \ldots, m$. Then

$$
J_{k, p-1}=J_{n,(j-1) k+q-1}=\overline{\left.\left[\left[I_{j-1} \subset I_{j}\right]_{q-1}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}\right)}
$$

and $B \subseteq\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}$. Since the set B is infinite, without loss of generality we may assume that B contains an infinite subset B_{0} which consists of elements of the form

$$
\gamma=\left(\begin{array}{cccccccc}
b_{1} & \cdots & b_{q} & b_{q+} & \cdots & b_{k} \tag{4}\\
x_{1} & \ldots & x_{q} & x_{q+1} & \cdots & s_{k} \\
c_{1} & \cdots & c_{q} & c_{q+1} & \ldots & s_{k} \\
c_{q} & \ldots & c_{k}
\end{array}\right),
$$

where $x_{1}, \ldots, x_{q} \in I_{j} \backslash I_{j-1}$ and $x_{q+1}, \ldots, x_{k} \in I_{j-1} \backslash I_{j-2}$ for some ordered collections of k distinct elements $\left(b_{1}, \ldots, b_{k}\right)$ and $\left(c_{1}, \ldots, c_{k}\right)$ of λ^{k}. Fix arbitrary elements

$$
\alpha=\left(\begin{array}{ccc}
a_{1} & a_{k} \\
s_{1} & \cdots & s_{k} \\
b_{1} & \cdots & b_{k}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{k} \\
t_{1} & \cdots & t_{k} \\
d_{1} & \cdots & d_{k}
\end{array}\right),
$$

of the set B. If either $s_{u} \notin I_{j} \backslash I_{j-1}$ for some $u \in\{1, \ldots, q\}$ or $s_{v} \notin I_{j-1} \backslash I_{j-2}$ for some $v \in\{q+1, \ldots, k\}$ then $\alpha B_{0} \nsubseteq\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}$. Similarly, $t_{u} \notin I_{j} \backslash I_{j-1}$ for some $u \in$
$\{1, \ldots, q\}$ or $t_{v} \notin I_{j-1} \backslash I_{j-2}$ for some $v \in\{q+1, \ldots, k\}$ then $B_{0} \beta \nsubseteq\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}$. Hence later we shall assume that $s_{u} \in I_{j} \backslash I_{j-1}$ for all $u \in\{1, \ldots, q\}, s_{v} \in I_{j-1} \backslash I_{j-2}$ for all $v \in\{q+1, \ldots, k\}, t_{u} \in I_{j} \backslash I_{j-1}$ for all $u \in\{1, \ldots, q\}$ and $t_{v} \in I_{j-1} \backslash I_{j-2}$ for all $v \in\{q+1, \ldots, k\}$. Since the set B_{0} is infinite, there exists $i_{0} \in\{1, \ldots, k\}$ such that there exist infinitely many $\gamma \in B_{0}$ such that $\mathbf{d}(\gamma) \ni b_{i_{0}}$. We put $B_{1}=\left\{\gamma \in B_{0}: b_{i_{0}} \in \mathbf{d}(\gamma)\right\}$. Since the set B_{1} is infinite, the following statements hold:
(1) if $i_{0} \in\{1, \ldots, q\}$ then $s_{i_{0}} A \cup A t_{i_{0}} \nsubseteq I_{j} \backslash I_{j-1}$, where

$$
A=\left\{x_{i_{0}}: \gamma=\left(\begin{array}{ccccccc}
b_{1} & \cdots & b_{i} & \cdots & b_{q} & \cdots & b_{k} \\
x_{1} & \cdots & x_{i_{0}} & \cdots & x_{q} & \cdots & s_{k} \\
c_{1} & \cdots & c_{i_{0}} & \cdots & c_{q} & \cdots & c_{k}
\end{array}\right) \in B_{1}\right\},
$$

because the set $I_{j} \backslash I_{j-1}$ is strongly ω-unstable in S;
(2) if $i_{0} \in\{q+1, \ldots, k\}$ then $s_{i_{0}} A \cup A t_{i_{0}} \nsubseteq I_{j-1} \backslash I_{j-2}$, where

$$
A=\left\{x_{i_{0}}: \gamma=\left(\begin{array}{ccccccc}
b_{1} & \cdots & b_{q} & \cdots & b_{i_{0}} & \cdots & b_{k} \\
x_{1} & \cdots & x_{q} & \cdots & x_{i_{0}} & \cdots & s_{k} \\
c_{1} & \cdots & c_{q} & \cdots & c_{i_{0}} & \cdots & c_{k}
\end{array}\right) \in B_{1}\right\},
$$

because the set $I_{j-1} \backslash I_{j-2}$ is strongly ω-unstable in S.
Both above statements imply that

$$
\alpha B_{1} \cup B_{1} \gamma \nsubseteq\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}
$$

and hence

$$
\alpha B \cup B \gamma \nsubseteq\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}
$$

i.e., the set $\left[\left[I_{j-1} \subset I_{j}\right]_{q}^{k}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{k}}$ is strongly ω-unstable in $\mathscr{I}_{\lambda}^{n}(S)$. This completes the proof of the theorem.

Theorem 2 implies the following
Corollary 2. Let λ be an infinite cardinal, n be a positive integer and let

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m}=S
$$

be a strongly tight ideal series for a semigroup S. Then the ideal series (3) is tight for the semigroup $\mathscr{F}_{\lambda}^{n}(S)$.

The proof of the following theorem is similar to Theorem 2 .
Theorem 3. Let λ be a finite cardinal, n be a positive integer $\leqslant \lambda$ and let

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m}=S
$$

be a strongly tight ideal series for a semigroup S. Then the following series

$$
\begin{aligned}
& J_{0}=\{0\} \cup \overline{\left[I_{0}\right]}{ }_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}} \subseteq \\
& \subseteq J_{1,1}={\left.\overline{\left[I_{1}\right]}\right]_{\lambda}^{(*)}(S)}_{(*)}^{\mathscr{I}_{\lambda}^{n}\left(J_{1,2}={\overline{\left[I_{2}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}} \subseteq \cdots \subseteq J_{1, m}={\overline{\left[I_{m}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}}=\mathscr{I}_{\lambda}^{1}(S) \subseteq\right.} \\
& \left.\subseteq J_{2,1}=\overline{\left[\left[I_{1} \subset I_{2}\right]_{1}^{2}\right.}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{2}} \subseteq J_{2,2}=\overline{\left[\left[I_{1} \subset I_{2}\right]_{2}^{2}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{2}} \subseteq \cdots \subseteq}
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq J_{n, 1}=\overline{\left[\left[I_{0} \subset I_{1}\right]_{1}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)} \subseteq J_{n, 2}=\overline{\left[\left[I_{0} \subset I_{1}\right]_{2}^{n]}\right.}{ }_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq}
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq J_{n, n+1}={\overline{\left[\left[I_{1} \subset I_{2}\right]_{1}^{n}\right.}{ }_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)} \subseteq J_{n, n+2}=\overline{\left[\left[I_{1} \subset I_{2}\right]_{2}^{n]}\right.}{ }_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq}^{n} \\
& \subseteq J_{n, n+3}={\overline{\left[\left[I_{1} \subset I_{2}\right]_{3}^{n}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, n+4}={\left.\overline{\left.\left[\left[I_{1} \subset I_{2}\right]_{4}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(}\right) \subseteq \cdots \subseteq}\right)_{n} \subseteq \subseteq}^{\left.()_{n}\right)} \\
& \subseteq J_{n, 2 n-1}=\overline{\left[\left[I_{1} \subset I_{2}\right]_{n-1}^{n}\right]_{\mathscr{\mathscr { A }}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, 2 n}={\overline{\left[I_{2}^{n}\right]_{\mathscr{\mathscr { A }}}^{\lambda}}}_{(*)_{n}^{n}}^{(S)} \subseteq \quad \cdots \quad \subseteq}
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq J_{n,(m-1) n+3}=\overline{\left.\left[\left[I_{m-1} \subset I_{m}\right]_{3}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)} \subseteq J_{n,(m-1) n+4}=\overline{\left[\left[I_{m-1} \subset I_{m}\right]_{4}^{n}\right.}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq} \\
& \subseteq \cdots \subseteq J_{n, m n-1}=\overline{\left[\left[I_{m-1} \subset I_{m}\right]_{n-1}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}} \subseteq J_{n, m n}=\overline{\left[I_{m}^{n}\right]_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{n}}=\mathscr{I}_{\lambda}^{n}(S)}{ }^{n}(S)}
\end{aligned}
$$

is a strongly tight ideal series for the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.
Theorem 3 implies the following
Corollary 3. Let λ be a finite cardinal, n be a positive integer $\leqslant \lambda$ and let $I_{0} \subseteq I_{1} \subseteq$ $I_{2} \subseteq \cdots \subseteq I_{m}=S$ be a strongly tight ideal series for a semigroup S. Then the ideal series (3) is tight for the semigroup $\mathscr{I}_{\lambda}^{n}(S)$.

Let \mathfrak{S} be a class of semitopological semigroups. A semigroup $S \in \mathfrak{S}$ is called H closed in \mathfrak{S}, if S is a closed subsemigroup of any semitopological semigroup $T \in \mathfrak{S}$ which contains S both as a subsemigroup and as a topological space. The H-closed topological semigroups were introduced by Stepp in [32], and therein they were called maximal semigroups. An algebraic semigroup S is called: algebraically complete in \mathfrak{S}, if S with any Hausdorff topology τ such that $(S, \tau) \in \mathfrak{S}$ is H-closed in \mathfrak{S}. We observe that many distinct types of H-closedness of topological and semitopological semigroups is studied in [1]-[10], [16]-[21], 24], [26].

By Proposition 10 from [18] every inverse semigroup S with a tight ideal series is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion. Hence Proposition 6 and Theorems 2, 3 imply the following

Theorem 4. Let S be an inverse semigroup which admits a strongly tight ideal series. Then for every non-zero cardinal λ and any positive integer $n \leqslant \lambda$ the semigroup $\mathscr{I}_{\lambda}^{n}(S)$
is algebraically complete in the class of Hausdorff semitopological inverse semigroups with continuous inversion.

We remark that in the case when $n=1$ the construction of $\mathscr{I}_{\lambda}^{1}(S)$ preserves the property to be a semigroup with a tight ideal series, and this follows from the following theorem.

Theorem 5. Let λ be any non-zero cardinal, n be a positive integer $n \leqslant \lambda$ and let $I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m}=S$ be a tight ideal series for a semigroup S. Then the series
(6) $J_{0}=\{0\} \subseteq J_{1}={\overline{\left[I_{0}\right]}}_{\mathscr{I}_{\lambda}^{n}(S)}^{(*)_{1}} \subseteq J_{2}={\overline{\left[I_{1}\right]}}_{\mathscr{J}_{\lambda}^{n}(S)}^{(*)} \subseteq \cdots \subseteq J_{m}={\left.\overline{\left[I_{m-1}\right]}\right]_{\lambda}^{(*)}}_{\mathscr{I}_{\lambda}^{n}(S)} \subseteq J_{m+1}=\mathscr{I}_{\lambda}^{1}(S)$
is a tight ideal series for the semigroup $\mathscr{I}_{\lambda}^{1}(S)$ in the case when λ is infinite, and
is a tight ideal series for the semigroup $\mathscr{I}_{\lambda}^{1}(S)$ in the case when λ is finite.
Proof. We consider the case when the cardinal λ is infinite. In the other case the proof is similar.

The semigroup operation of $\mathscr{I}_{\lambda}^{1}(S)$ implies that the the set J_{k} is an ideal in $\mathscr{I}_{\lambda}^{1}(S)$ for an arbitrary integer $k \in\{0,1, \ldots, m+1\}$.

Fix an arbitrary $k \in\{1, \ldots, m+1\}$. Then for any infinite subset B of $J_{k} \backslash J_{k-1}$ and any $\alpha=\left(\begin{array}{l}a \\ s \\ b\end{array}\right) \in J_{k} \backslash J_{k-1}$ the following statements hold.
(1) If $B \cap S_{(i)}^{(i)}$ is infinite for some $i \in \lambda$ then $B \cap S_{(i)}^{(i)} \subseteq\left[I_{k-1} \backslash I_{k_{2}}\right]_{(i)}^{(i)}$. Hence, the semigroup operation of $\mathscr{I}_{\lambda}^{1}(S)$ implies that $\alpha B \cup B \alpha \nsubseteq J_{k} \backslash J_{k-1}$ in the case when $a=b=i$, because the set $I_{k-1} \backslash I_{k_{2}}$ is ω-unstable in S. Otherwise $0 \in \alpha B \cup B \alpha \nsubseteq J_{k} \backslash J_{k-1}$.
(2) In the other case the semigroup operation of $\mathscr{I}_{\lambda}^{1}(S)$ implies that $0 \in \alpha B \cup B \alpha \nsubseteq$ $J_{k} \backslash J_{k-1}$.
Both above statements imply that the set $J_{k} \backslash J_{k-1}$ is ω-unstable in $\mathscr{I}_{\lambda}^{1}(S)$, which completes the proof of the theorem.

5. ON A SEMITOPOLOGICAL SEMIGROUP $\mathscr{I}_{\lambda}^{n}(S)$

For any element $\alpha=\left(\begin{array}{lll}i_{1} & \ldots & i_{k} \\ j_{1} & \ldots & j_{k}\end{array}\right)$ of the semigroup $\mathscr{I}_{\lambda}^{n}$ and any $s \in S$ we denote $\alpha[s]=\left(\begin{array}{ccc}i_{1} & \cdots & i_{k} \\ j_{1} & \ldots & j_{k} \\ j_{1} & \ldots & j_{k}\end{array}\right)$, which is an element of $\mathscr{I}_{\lambda}^{n}(S)$. Later in this case we shall say that $\alpha[s]$ is the s-extension of α or α is the $\mathscr{I}_{\lambda}^{n}$-restriction of $\alpha[s]$.
Proposition 11. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\mathscr{I}_{\lambda}^{n}(S)$ be a Hausdorff semitopological semigroup. Then for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k} and any element $\alpha_{S} \in S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ there exists an open neighbourhood $U\left(\alpha_{S}\right)$ of α_{S} such that

- $U\left(\alpha_{S}\right) \cap \mathscr{I}_{\lambda}^{k-1}(S)=\varnothing$ and $U\left(\alpha_{S}\right) \cap \mathscr{I}_{\lambda}^{k}(S) \subseteq S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ in the case when $k \geqslant 2$,
- $0 \notin U\left(\alpha_{S}\right)$ and $U\left(\alpha_{S}\right) \cap \mathscr{I}_{\lambda}^{1}(S) \subseteq S_{\left(b_{1}\right)}^{\left(a_{1}\right)}$ in the case when $k=1$.

Thus $\mathscr{I}_{\lambda}^{k}(S)$ is a closed subsemigroup of $\mathscr{I}_{\lambda}^{n}(S)$.

Proof. Fix an arbitrary $k \leqslant n$ and an arbitrary $\alpha_{S}=\left(\begin{array}{ccc}a_{1} & \ldots & a_{k} \\ s_{1} & \ldots & s_{k} \\ b_{1} & \ldots & b_{k}\end{array}\right) \in S_{b_{1}, \ldots, b_{k}}^{a_{1}, \ldots, a_{k}}$. It is obvious that $\varepsilon_{1}\left[1_{S}\right] \cdot \alpha_{S} \cdot \varepsilon_{2}\left[1_{S}\right]=\alpha_{S}$, where

$$
\varepsilon_{1}\left[1_{S}\right]=\left(\begin{array}{lll}
a_{1} & \ldots & a_{k} \\
1_{S} & \ldots & 1_{S} \\
a_{1} & \ldots & a_{k}
\end{array}\right), \quad \varepsilon_{2}\left[1_{S}\right]=\left(\begin{array}{ccc}
b_{1} & \ldots & b_{k} \\
1_{S} & \ldots & 1_{S} \\
b_{1} & \ldots & b_{k}
\end{array}\right),
$$

and 1_{S} is the unit element of S.
Simple calculations imply that

$$
\begin{aligned}
& S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}= \\
& =\varepsilon_{1}\left[1_{S}\right] \cdot \mathscr{I}_{\lambda}^{n}(S) \cdot \varepsilon_{2}\left[1_{S}\right] \backslash \bigcup\left\{\bar{\varepsilon}_{1}\left[1_{S}\right] \cdot \mathscr{I}_{\lambda}^{n}(S) \cdot \bar{\varepsilon}_{2}\left[1_{S}\right]: \bar{\varepsilon}_{1}<\varepsilon_{1} \text { and } \bar{\varepsilon}_{2}<\varepsilon_{2} \text { in } E\left(\mathscr{I}_{\lambda}^{n}\right)\right\} .
\end{aligned}
$$

We observe that $e T$ and $T e$ are closed subset in an arbitrary Hausdorff semitopological semigroup T for any its idempotent e. Since for any idempotent $\varepsilon \in \mathscr{I}_{\lambda}^{n}$ the set $\downarrow \varepsilon=\left\{\iota \in E\left(\mathscr{I}_{\lambda}^{n}\right): \iota \leqslant \varepsilon\right\}$ is finite, the set

$$
A_{\alpha_{S}}=\bigcup\left\{\bar{\varepsilon}_{1}\left[1_{S}\right] \cdot \mathscr{I}_{\lambda}^{n}(S) \cdot \bar{\varepsilon}_{2}\left[1_{S}\right]: \bar{\varepsilon}_{1}<\varepsilon_{1} \text { and } \bar{\varepsilon}_{2}<\varepsilon_{2}\right\}
$$

is closed in $\mathscr{I}_{\lambda}^{n}(S)$. Fix an arbitrary open neighbourhood $W\left(\alpha_{S}\right)$ of α_{S} such that $W\left(\alpha_{S}\right) \cap$ $A_{\alpha_{S}}=\varnothing$. The separate continuity of the semigroup operation on $\mathscr{I}_{\lambda}^{n}(S)$ implies that there exists an open neighbourhood $U\left(\alpha_{S}\right)$ of α_{S} such that $\varepsilon_{1}\left[1_{S}\right] \cdot U\left(\alpha_{S}\right) \cdot \varepsilon_{2}\left[1_{S}\right] \subseteq W\left(\alpha_{S}\right)$. The neighbourhood $U\left(\alpha_{S}\right)$ is a requested one. Indeed, if there exists $\beta_{S} \in \mathscr{I}_{\lambda}^{k}(S) \backslash$ $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ then $\varepsilon_{1}\left[1_{S}\right] \cdot \beta_{S} \cdot \varepsilon_{2}\left[1_{S}\right] \in A_{\alpha_{S}}$.

Remark 4. We observe that in Proposition 11 we may assume that the neighbourhood $U\left(\alpha_{S}\right)$ may be chosen with the property that $\varepsilon_{1}\left[1_{S}\right] \cdot U\left(\alpha_{S}\right) \cdot \varepsilon_{2}\left[1_{S}\right] \subseteq S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$.

Proposition 12. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\mathscr{I}_{\lambda}^{n}(S)$ be a Hausdorff semitopological semigroup. Then for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right),\left(c_{1}, \ldots, c_{k}\right)$, and $\left(d_{1}, \ldots, d_{k}\right)$ of λ^{k} the subspaces $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $S_{\left(d_{1}, \ldots, d_{k}\right)}^{\left(c_{1}, \ldots, c_{k}\right)}$ are homeomorphic, and moreover $S_{\left(a_{1}, \ldots, a_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $S_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(c_{1}, \ldots, c_{k}\right)}$ are topologically isomorphic subsemigroups of $\mathscr{I}_{\lambda}^{n}(S)$.

Proof. Since $\mathscr{I}_{\lambda}^{n}(S)$ is a semitopological semigroup, the restrictions of the maps

$$
\left(\begin{array}{l}
\left(a_{1}, \ldots, a_{k}\right) \\
\left(b_{1}, \ldots, b_{k}\right)
\end{array} \mathfrak{h}_{\left(d_{1}, \ldots, d_{k}\right)}^{\left(c_{1}, \ldots, c_{k}\right)}: \mathscr{I}_{\lambda}^{n}(S) \rightarrow \mathscr{I}_{\lambda}^{n}(S), \alpha \mapsto\left(\begin{array}{ccc}
c_{1} & \ldots & c_{k} \\
1_{S} & \ldots & 1_{S} \\
a_{1} & \ldots & a_{k}
\end{array}\right) \cdot \alpha \cdot\left(\begin{array}{ccc}
b_{1} & \ldots & b_{k} \\
1_{S} & \ldots & 1_{S} \\
d_{1} & \ldots & d_{k}
\end{array}\right)\right.
$$

and

$$
\underset{\left(d_{1}, \ldots, d_{k}\right)}{\left(c_{1}, \ldots, c_{k}\right)} \mathfrak{h}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}: \mathscr{I}_{\lambda}^{n}(S) \rightarrow \mathscr{I}_{\lambda}^{n}(S), \alpha \mapsto\left(\begin{array}{ccc}
a_{1} & \ldots & a_{k} \\
1_{S} & \ldots & 1_{S} \\
c_{1} & \ldots & c_{k}
\end{array}\right) \cdot \alpha \cdot\left(\begin{array}{ccc}
d_{1} & \ldots & d_{k} \\
1_{S} & \ldots & 1_{S} \\
b_{1} & \ldots & b_{k}
\end{array}\right)
$$

on the subspaces $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $S_{\left(d_{1}, \ldots, d_{k}\right)}^{\left(c_{1}, \ldots, c_{k}\right)}$, respectively, are mutually inverse, and hence $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $S_{\left(d_{1}, \ldots, d_{k}\right)}^{\left(c_{1}, \ldots, c_{k}\right)}$ are homeomorphic subspaces in $\mathscr{I}_{\lambda}^{n}(S)$. Also, it is obvious that in the case of subsemigroups $S_{\left(a_{1}, \ldots, a_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $S_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(c_{1}, \ldots, c_{k}\right)}$ so defined restrictions of maps are topological isomorphisms.

For any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k} we define a map

$$
\mathfrak{f}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}: \mathscr{I}_{\lambda}^{n}(S) \rightarrow \mathscr{I}_{\lambda}^{n}(S), \alpha \mapsto\left(\begin{array}{ccc}
a_{1} & \ldots & a_{k} \\
1_{S} & \ldots & 1_{S} \\
a_{1} & \ldots & a_{k}
\end{array}\right) \cdot \alpha \cdot\left(\begin{array}{ccc}
b_{1} & \ldots & b_{k} \\
1_{S} & \ldots & 1_{S} \\
b_{1} & \ldots & b_{k}
\end{array}\right) .
$$

Proposition 11 implies the following corollary.
Corollary 4. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\mathscr{I}_{\lambda}^{n}(S)$ be a Hausdorff semitopological semigroup. Then the set

$$
\Uparrow S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}=\left(S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}\right)\left(\mathfrak{f}_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}\right)^{-1}
$$

is open in $\mathscr{I}_{\lambda}^{n}(S)$ for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}.

We recall that a topological space X is said to be

- compact if each open cover of X has a finite subcover;
- H-closed if X is a closed subspace of every Hausdorff topological space in which it contained.
It is well known that every Hausdorff compact space is H-closed, and every regular Hclosed topological space is compact (see [12, 3.12.5]).

Lemma 4. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\mathscr{I}_{\lambda}^{n}(S)$ be a Hausdorff semitopological semigroup. If $S_{(b)}^{(a)}$ is a closed subset of $\mathscr{I}_{\lambda}^{n}(S)$ for any $a, b \in \lambda$ then $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ is a closed subspace of $\mathscr{I}_{\lambda}^{n}(S)$ for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}.

Proof. For any $a, b \in \lambda$ the map

$$
\mathfrak{f}_{(b)}^{(a)}: \mathscr{I}_{\lambda}^{n}(S) \rightarrow \mathscr{I}_{\lambda}^{n}(S), \alpha \mapsto\left(\begin{array}{c}
a \\
1_{S} \\
a
\end{array}\right) \cdot \alpha \cdot\left(\begin{array}{c}
b \\
1_{S} \\
b
\end{array}\right)
$$

is continuous, because $\mathscr{I}_{\lambda}^{n}(S)$ is a semitopological semigroup. This and Proposition 11 imply that

$$
S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}=\left(S_{\left(b_{1}\right)}^{\left(a_{1}\right)}\right)\left(\mathfrak{f}_{\left(b_{1}\right)}^{\left(a_{1}\right)}\right)^{-1} \cap \cdots \cap\left(S_{\left(b_{k}\right)}^{\left(a_{k}\right)}\right)\left(\mathfrak{f}_{\left(b_{k}\right)}^{\left(a_{k}\right)}\right)^{-1} \cap \mathscr{I}_{\lambda}^{k}(S)
$$

a closed subspace of $\mathscr{I}_{\lambda}^{n}(S)$.
Since a continuous image of a compact (an H-closed) space is compact (H-closed) (see [12, Chapter 3]), Proposition 12 and Lemma 4 imply the following corollary.

Corollary 5. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\mathscr{I}_{\lambda}^{n}(S)$ be a Hausdorff semitopological semigroup. If the set $S_{(b)}^{(a)}$ is H-closed (compact) in $\mathscr{I}_{\lambda}^{n}(S)$ for some $a, b \in \lambda$ then $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ is a closed subspace of $\mathscr{I}_{\lambda}^{n}(S)$ for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}.
Definition 3. Let \mathfrak{S} be a class of semitopological semigroups. Let $\lambda \geqslant 1$ be a cardinal, n be a positive integer $\leqslant \lambda$, and $(S, \tau) \in \mathfrak{S}$. Let $\tau_{\mathscr{I}}$ be a topology on $\mathscr{I}_{\lambda}^{n}(S)$ such that
a) $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right) \in \mathfrak{S}$;
b) the topological subspace $\left(S_{(a)}^{(a)},\left.\tau_{B}\right|_{S_{\alpha, \alpha}}\right)$ is naturally homeomorphic to (S, τ) for some $a \in \lambda$, i.e., the map $\mathfrak{H}: S \rightarrow \mathscr{I}_{\lambda}^{n}(S), s \mapsto\left(\begin{array}{c}a \\ a \\ a\end{array}\right)$ is a topological embedding. Then $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ is called a topological $\mathscr{I}_{\lambda}^{n}$-extension of (S, τ) in \mathfrak{S}.
Lemma 5. Let (S, τ) be a semitopological monoid, λ be any non-zero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ be a topological $\mathscr{I}_{\lambda}^{n}$ extension of (S, τ) in the class of semitopological semigroups. Let $U_{1}\left(s_{1}\right), \ldots, U_{k}\left(s_{k}\right)$ be open neighbourhoods of the points s_{1}, \ldots, s_{k} in (S, τ), respectively. Then the following sets
$\Uparrow\left[U_{1}\left(s_{1}\right)\right]_{\left(b_{1}\right)}^{\left(a_{1}\right)}=\left(\left[U_{1}\left(s_{1}\right)\right]_{\left(b_{1}\right)}^{\left(a_{1}\right)}\right)\left(\mathfrak{f}_{\left(b_{1}\right)}^{\left(a_{1}\right)}\right)^{-1}, \ldots, \Uparrow\left[U_{k}\left(s_{k}\right)\right]_{\left(b_{k}\right)}^{\left(a_{k}\right)}=\left(\left[U_{k}\left(s_{k}\right)\right]_{\left(b_{k}\right)}^{\left(a_{k}\right)}\right)\left(\mathfrak{f}_{\left(b_{k}\right)}^{\left(a_{k}\right)}\right)^{-1}$,
and

$$
\Uparrow\left[U_{1}\left(s_{1}\right), \ldots, U_{k}\left(s_{k}\right)\right]_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}=\Uparrow\left[U_{1}\left(s_{1}\right)\right]_{\left(b_{1}\right)}^{\left(a_{1}\right)} \cap \ldots \cap \Uparrow\left[U_{k}\left(s_{k}\right)\right]_{\left(b_{k}\right)}^{\left(a_{k}\right)},
$$

are open neighbourhoods of the points

$$
\left(\begin{array}{c}
a_{1} \\
s_{1} \\
b_{1}
\end{array}\right), \cdots,\left(\begin{array}{c}
a_{k} \\
s_{k} \\
b_{k}
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ccc}
a_{1} & \ldots & a_{k} \\
s_{1} & \ldots & s_{k} \\
b_{1} & \ldots & b_{k}
\end{array}\right)
$$

in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$, respectively, for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}.

Proof. Since $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ is a topological $\mathscr{I}_{\lambda}^{n}$-extension of (S, τ) in the class of Hausdorff semitopological semigroups, there exist open neighbourhoods W_{1}, \ldots, W_{k} of of the points $\left(\begin{array}{c}a_{1} \\ s_{1} \\ b_{1}\end{array}\right), \cdots,\left(\begin{array}{c}a_{k} \\ s_{k} \\ b_{k}\end{array}\right)$ in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$, respectively, such that

$$
W_{1} \cap S_{\left(b_{1}\right)}^{\left(a_{1}\right)}=\left[U_{1}\left(s_{1}\right)\right]_{\left(b_{1}\right)}^{\left(a_{1}\right)}, \quad \ldots, \quad W_{k} \cap S_{\left(b_{k}\right)}^{\left(a_{k}\right)}=\left[U_{k}\left(s_{k}\right)\right]_{\left(b_{k}\right)}^{\left(a_{k}\right)} .
$$

Then the requested statement of the lemma follows from the separate continuity of the semigroup operation in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$.
Theorem 6. Let (S, τ) be a Hausdorff compact semitopological monoid, λ be any nonzero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ be a compact topological $\mathscr{I}_{\lambda}^{n}$-extension of (S, τ) in the class of Hausdorff semitopological semigroups. Then the subspace $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ of $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ is compact and moreover it is homeomorphic to the power S^{k} with the product topology by the mapping

$$
\mathfrak{H}: S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \rightarrow S^{k},\left(\begin{array}{ccc}
a_{1} & \ldots & a_{k} \\
s_{1} & \ldots & s_{k} \\
b_{1} & \ldots & b_{k}
\end{array}\right) \mapsto\left(s_{1}, \ldots, s_{k}\right),
$$

for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}.
Proof. Since the monoid (S, τ) is compact, Corollary 5 implies that $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ a closed subset of of $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$. Then compactness of of $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ implies that $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ is compact, as well.

It is obvious that the above defined map $\mathfrak{H}: S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, k_{k}\right)} \rightarrow S^{k}$ is a bijection. Also, Lemma 5 implies that the map \mathfrak{H} is continuous, and it is a homeomorphism, because S^{k} and $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ are compacta.

Proposition 11 and Theorem 6 imply the following corollary.

Corollary 6. Let (S, τ) be a Hausdorff compact semitopological monoid, λ be any nonzero cardinal, n be an arbitrary positive integer $\leqslant \lambda, 0<k \leqslant n$ and $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ be a compact topological $\mathscr{I}_{\lambda}^{n}$-extension of (S, τ) in the class of Hausdorff semitopological semigroups. Then $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ is an open-and-closed subset of $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{F}}\right)$ for any ordered collections of k distinct elements $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of λ^{k}, and the space $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}\right)$ is the topological sum of such sets with isolated zero.

Remark 5. Since by Theorem of [21] an infinite semigroup of matrix units and hence an infinite semigroup $\mathscr{F}_{\lambda}^{n}$ do not embed into compact Hausdorff topological semigroups, Corollary 6 describes compact topological $\mathscr{I}_{\lambda}^{n}$-extensions of compact semigroups (S, τ) in the class of Hausdorff topological semigroups.

Example 2. Let (S, τ_{S}) be a compact Hausdorff semitopological monoid. On the semigroup $\mathscr{I}_{\lambda}^{n}(S)$ we define a topology $\tau_{\mathscr{I}}^{\mathrm{c}}$ in the following way. Put

$$
\begin{aligned}
\mathscr{P}_{k}^{\mathbf{c}}(0) & =\left\{\mathscr{I}_{\lambda}^{n}(S) \backslash \Uparrow S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}:\left(a_{1}, \ldots, a_{k}\right) \text { and }\left(b_{1}, \ldots, b_{k}\right)\right. \text { are ordered collections } \\
& \text { of } \left.k \text { distinct elements of } \lambda^{k}\right\}
\end{aligned}
$$

for any $k=1, \ldots, n$, and

$$
\mathscr{P}^{\mathbf{c}}(a, s, b)=\left\{\Uparrow[U(s)]_{(b)}^{(a)}: U(s) \text { is an open neighbourhood of } s \text { in }\left(S, \tau_{S}\right)\right\},
$$

for some $\left(\begin{array}{c}a \\ s \\ b\end{array}\right) \in \mathscr{I}_{\lambda}^{n}(S) \backslash\{0\}$.
The topology $\tau_{\mathscr{I}}^{\mathbf{c}}$ on $\mathscr{I}_{\lambda}^{n}(S)$ is generated by the family

$$
\mathscr{P}^{\mathbf{c}}=\left\{\mathscr{P}_{k}^{\mathbf{c}}(0): k=1, \ldots, n\right\} \cup\left\{\mathscr{P}^{\mathbf{c}}(a, s, b):\left(\begin{array}{c}
a \\
s \\
b
\end{array}\right) \in \mathscr{I}_{\lambda}^{n}(S) \backslash\{0\}\right\}
$$

as a subbase.
Remark 6. Lemma 5 and the definition of the topology $\tau_{\mathscr{I}}^{\mathbf{c}}$ on $\mathscr{I}_{\lambda}^{n}(S)$ implies that the following statements hold.
(1) For any $k=1, \ldots, n$ and every ordered collection $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ of k distinct elements of λ^{k} the set $\Uparrow S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ is closed in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$.
(2) For any element $\alpha_{S}=\left(\begin{array}{lll}a_{1} & \ldots & a_{k} \\ s_{1} & \ldots & s_{k} \\ b_{1} & \ldots & b_{k}\end{array}\right)$ of $\mathscr{I}_{\lambda}^{n}(S)$ and any open neighbourhoods $U_{1}\left(s_{1}\right), \ldots, U_{k}\left(s_{k}\right)$ of the points s_{1}, \ldots, s_{k} in (S, τ) the set

$$
\Uparrow\left[U_{1}\left(s_{1}\right), \ldots, U_{k}\left(s_{k}\right)\right]_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{l_{1}}\right)}^{\left(a_{1}^{1}, \ldots, a_{1}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{p}, \ldots, b_{l_{p}}^{p}\right)}^{\left(a_{1}^{p}, \ldots, a_{p}^{p}\right)}\right)
$$

such that $\alpha_{S} \notin \Uparrow S_{\left(b_{1}^{1}, \ldots, b_{l_{1}}\right)}^{\left(a_{1}^{1}, \ldots, a_{1}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{p}, \ldots, b_{l_{p}}^{p}\right)}^{\left(a_{1}^{p}, \ldots, a_{p}^{p}\right)}$, is an open neighbourhood of the point α_{S} in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$. Here $\left\{a_{1}, \ldots, a_{k}\right\} \varsubsetneqq\left\{a_{1}^{j}, \ldots, a_{l_{j}}^{j}\right\}$ and $\left\{b_{1}, \ldots, b_{k}\right\} \varsubsetneqq$ $\left\{b_{1}^{j}, \ldots, b_{l_{j}}^{j}\right\}$ for all $j=1, \ldots, p$.
Theorem 7. If $\left(S, \tau_{S}\right)$ is a compact Hausdorff semitopological monoid then $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ is a compact Hausdorff semitopological semigroup.

Proof. It is obvious that the topology $\tau_{\mathscr{I}}^{\mathrm{c}}$ is Hausdorff.
By the Alexander Subbase Theorem (see [12, 3.12.2]) it is sufficient to show that every open cover of $\mathscr{I}_{\lambda}^{n}(S)$ which consists of elements of the subbase $\mathscr{P}^{\mathbf{c}}$ has a finite subcover.

We shall show that the space $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ is compact by induction. In the case when $n=1$, Corollary 13 from [23] implies that the space $\left(\mathscr{I}_{\lambda}^{1}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ is compact. Next we shall show the step of induction: $\left(\mathscr{I}_{\lambda}^{k-1}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ is compact implies $\left(\mathscr{I}_{\lambda}^{k}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ is compact, too, for $k=2, \ldots, n$. Without loss of generality we may assume that $k=n$.

Let \mathscr{U} be an arbitrary open cover of $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ which consists of elements of the subbase $\mathscr{P}^{\mathbf{c}}$. The assumption of induction implies that there exists a finite subfamily \mathscr{U}_{n-1} of \mathscr{U} which is a subcover of $\mathscr{I}_{\lambda}^{n-1}(S)$. Fix an arbitrary element $V_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash$ $\Uparrow S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)} \in \mathscr{U}_{n-1}$ which contains the zero 0 of $\mathscr{I}_{\lambda}^{n}(S)$. Then $p \in\{1, \ldots, n\}$.

We observe that an arbitrary element U_{0} of the family $\left\{\mathscr{P}_{k}^{\mathbf{c}}(0): k=1, \ldots, n\right\}$ contains the set $S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)}$ if and only if $U_{0} \cap S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)} \neq \varnothing$. This implies that only one of the following conditions holds:
(1) there does not exist an element of \mathscr{U}_{n-1} from the family $\left\{\mathscr{P}_{k}^{\mathbf{c}}(0): k=1, \ldots, n\right\}$ which contains the set $S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)}$;
(2) there exists $W_{0} \in \mathscr{U}_{n-1} \cap\left\{\mathscr{P}_{k}^{\mathbf{c}}(0): k=1, \ldots, n\right\}$ such that $S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)} \subseteq W_{0}$.

Suppose that condition (1) holds. First we consider the case when $p<n$. By Theorem 6 the set $S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)}$ is compact, and hence there exists finitely many elements $\Uparrow\left[U\left(s_{1}\right)\right]_{\left(d_{1}\right)}^{\left(c_{1}\right)}, \ldots, \Uparrow\left[U\left(s_{m}\right)\right]_{\left(d_{m}\right)}^{\left(c_{m}\right)}$ in the family $\mathscr{U}_{n-1} \cap \mathscr{P}^{\mathbf{c}} \backslash\left\{\mathscr{P}_{k}^{\mathbf{c}}(0): k=1, \ldots, n\right\}$ such that

$$
S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)} \subseteq \Uparrow\left[U\left(s_{1}\right)\right]_{\left(d_{1}\right)}^{\left(c_{1}\right)} \cup \cdots \cup \Uparrow\left[U\left(s_{m}\right)\right]_{\left(d_{m}\right)}^{\left(c_{m}\right)} .
$$

It is obvious that $\left\{U_{0}, \Uparrow\left[U\left(s_{1}\right)\right]_{\left(d_{1}\right)}^{\left(c_{1}\right)}, \ldots, \Uparrow\left[U\left(s_{m}\right)\right]_{\left(d_{m}\right)}^{\left(c_{m}\right)}\right\}$ is a finite cover of $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$.
Next, we consider case $p=n$. We identify the set $S_{\left(b_{1}, \ldots, b_{n}\right)}^{\left(a_{1}, \ldots, a_{n}\right)}$ and the power S^{n} by the mapping

The semigroup operation of $\mathscr{I}_{\lambda}^{n}(S)$ implies that $\Uparrow[U(s)]_{(d)}^{(c)} \cap S_{\left(b_{1}, \ldots, b_{n}\right)}^{\left(a_{1}, \ldots, a_{n}\right)} \neq \varnothing$ if and only if $c=a_{i}$ and $d=b_{i}$ for some $i=1, \ldots, n$. Then by (8) for every $i=1, \ldots, n$ we have that

$$
\begin{equation*}
\left(\Uparrow[U(s)]_{\left(b_{i}\right)}^{\left(a_{i}\right)} \cap S_{\left(b_{1}, \ldots, b_{n}\right)}^{\left(a_{1}, \ldots, a_{n}\right)}\right) \mathfrak{H}=S \times \cdots \times \underbrace{U(s)}_{i-\text { th }} \times \cdots \times S \subseteq S^{n} . \tag{9}
\end{equation*}
$$

Then the subbase $\mathscr{P}^{\text {c }}$ on $\mathscr{I}_{\lambda}^{n}(S)$ and map (8) determine the product topology on S^{n} from the space S, and hence the space S^{n} is compact.

Suppose that $S_{\left(b_{1}, \ldots, b_{n}\right)}^{\left(a_{1}, \ldots, a_{n}\right)}$ is not compact. Then $S_{\left(b_{1}, \ldots, b_{n}\right)}^{\left(a_{1}, \ldots, a_{n}\right)}$ has a cover \mathscr{W} which consists of the open sets of the form $\Uparrow[U(s)]_{(d)}^{(c)}$ and \mathscr{W} does not have a finite subcover. Then the cover $\mathscr{W}_{S^{n}}$ of S^{n} which is determined by formula (9) from the family \mathscr{W} has no finite subcover, too. This contradicts the compactness of S^{n}.

Hence in case (1) the cover \mathscr{U} of $\mathscr{I}_{\lambda}^{n}(S)$ has a finite subcover.
Suppose that condition (2) holds. Then $W_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash \Uparrow S_{\left(d_{1}, \ldots, d_{q}\right)}^{\left(c_{1}, \ldots, c_{q}\right)}$ with $q \leqslant n$. If $\Uparrow S_{\left(d_{1}, \ldots, d_{q}\right)}^{\left(c_{1}, \ldots, c_{q}\right)} \cap \Uparrow S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)}=\varnothing$ then $\left\{V_{0}, W_{0}\right\}$ is a cover of $\mathscr{I}_{\lambda}^{n}(S)$. In the other case there exists a smallest positive integer p_{1} such that $\max \{p+1, q\} \leqslant p_{1} \leqslant n$ and two ordered p_{1}-collections of distinct elements $\left(e_{1}, \ldots, e_{p_{1}}\right)$ and $\left(f_{1}, \ldots, f_{p_{1}}\right)$ of the power $\lambda^{p_{1}}$ such that

$$
\Uparrow S_{\left(d_{1}, \ldots, d_{q}\right)}^{\left(c_{1}, \ldots, c_{q}\right)} \cap \Uparrow S_{\left(b_{1}, \ldots, b_{p}\right)}^{\left(a_{1}, \ldots, a_{p}\right)}=\Uparrow S_{\left(f_{1}, \ldots, f_{p_{1}}\right)}^{\left(e_{1}, \ldots, e_{p_{1}}\right)} .
$$

Then for the open set $U_{1}=U_{0} \cup W_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash \Uparrow S_{\left(f_{1}, \ldots, f_{p_{1}}\right)}^{\left(e_{1}, \ldots, e_{p_{1}}\right)}$ either condition (1) or condition (2) holds.

Since $p+1 \leqslant p_{1} \leqslant n$, we repeating finitely many items the above procedure we get that the space $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{J}}^{\mathbf{c}}\right)$ is compact.

Next we shall show that the topology $\tau_{\mathscr{I}}^{\mathbf{c}}$ is shift-continuous on $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$. We consider all possible cases.
(i) $0 \cdot 0=0$. Then for any open neighbourhood U_{0} of zero in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ we have that

$$
U_{0} \cdot 0=0 \cdot U_{0}=\{0\} \subseteq U_{0}
$$

(ii) $\alpha \cdot 0=0$. Then for any open neighbourhoods U_{0} and U_{α} of zero and α in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$, respectively, we have that

$$
U_{\alpha} \cdot 0=\{0\} \subseteq U_{0}
$$

Let $W_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{p_{1}}^{1}\right)}^{\left(a_{1}^{1}, \ldots, a_{p_{1}}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{k}, \ldots, b_{p_{k}}\right)}^{\left(a_{1}^{k}, \ldots, p_{p_{k}}^{k}\right)}\right)$ be a basic neighbourhood of 0 in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$. Without loss of generality we may assume that $p_{1}, \ldots, p_{k} \leqslant|\mathbf{d}(\alpha)|$. Put

$$
\mathbf{B}=\left\{S_{(b)}^{(a)}: a \in \mathbf{d}(\alpha) \quad \text { and } \quad b \in\left\{b_{1}^{1}, \ldots, b_{p_{1}}^{1}, \ldots, b_{1}^{k}, \ldots, b_{p_{k}}^{k}\right\}\right\}
$$

Then the family B is finite and $\alpha \cdot U_{0} \subseteq W_{0}$ for $U_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash \bigcup_{S_{(b)}^{(a)} \in \mathbf{B}} \Uparrow S_{(b)}^{(a)}$.
(iii) $0 \cdot \alpha=0$. Then for any open neighbourhoods U_{0} and U_{α} of zero and α in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$, respectively, we have that

$$
0 \cdot U_{\alpha}=\{0\} \subseteq U_{0}
$$

Let $W_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{p_{1}}^{1}\right)}^{\left(a_{1}^{1}, \ldots, a_{p_{1}}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{k}, \ldots, b_{p_{k}}^{k}\right)}^{\left(a_{1}^{k}, \ldots, a_{p_{k}}^{k}\right)}\right)$ be a basic neighbourhood of 0 in $\left(\mathscr{F}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$. Without loss of generality we may assume that $p_{1}, \ldots, p_{k} \leqslant|\mathbf{d}(\alpha)|$. Put

$$
\mathbf{B}=\left\{S_{(b)}^{(a)}: b \in \mathbf{r}(\alpha) \quad \text { and } \quad a \in\left\{a_{1}^{1}, \ldots, a_{p_{1}}^{1}, \ldots, a_{1}^{k}, \ldots, a_{p_{k}}^{k}\right\}\right\}
$$

Then the family B is finite and $U_{0} \cdot \alpha \subseteq W_{0}$ for $U_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash \bigcup_{S_{(b)}^{(a)} \in \mathbf{B}} \Uparrow S_{(b)}^{(a)}$.
(iv) $\alpha \cdot \beta=0$. Fix an arbitrary open neighbourhood W_{0} of 0 in $\left(\mathscr{F}_{\lambda}^{n}(S), \tau_{\mathscr{H}}^{\mathbf{c}}\right)$.

Without loss of generality we may assume that $W_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash\left(\Uparrow S_{\left(b_{1}\right)}^{\left(a_{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{k}\right)}^{\left(a_{k}\right)}\right)$. Since $\alpha \cdot \beta=0$ we have that $\mathbf{r}(\alpha) \cap \mathbf{d}(\beta)=\varnothing$. We put

$$
\mathbf{B}_{\alpha}=\left\{S_{(b)}^{(a)}: a \in\left\{a_{1}, \ldots, a_{k}\right\}, b \in \mathbf{d}(\beta), \text { and } \alpha \notin \Uparrow S_{(b)}^{(a)}\right\}
$$

and

$$
\mathbf{B}_{\beta}=\left\{S_{(b)}^{(a)}: b \in\left\{b_{1}, \ldots, b_{k}\right\}, a \in \mathbf{r}(\alpha), \text { and } \beta \notin \Uparrow S_{(b)}^{(a)}\right\} .
$$

Let $S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $S_{\left(d_{1}, \ldots, d_{p}\right)}^{\left(c_{1}, \ldots, c_{p}\right)}, 1 \leqslant k, p \leqslant n$, such that $\alpha \in S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)}$ and $\beta \in S_{\left(d_{1}, \ldots, d_{p}\right)}^{\left(c_{1}, \ldots, c_{p}\right)}$. Then the families \mathbf{B}_{α} and \mathbf{B}_{β} are finite, and hence by Remark 6. 2) the sets

$$
V_{\alpha}=S_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash \bigcup_{S_{(b)}^{(a)} \in \mathbf{B}_{\alpha}} \Uparrow S_{(b)}^{(a)} \quad \text { and } \quad V_{\beta}=S_{\left(d_{1}, \ldots, d_{p}\right)}^{\left(c_{1}, \ldots, c_{p}\right)} \backslash \bigcup_{S_{(b)}^{(a)} \in \mathbf{B}_{\beta}} \Uparrow S_{(b)}^{(a)}
$$

are open neighbourhoods of the points α and β in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{J}}^{\mathbf{c}}\right)$, respectively, such that

$$
V_{\alpha} \cdot \beta \subseteq W_{0} \quad \text { and } \quad \alpha \cdot V_{\beta} \subseteq W_{0}
$$

(v) $\alpha \cdot \beta=\gamma \neq 0$ and $\mathbf{r}(\alpha)=\mathbf{d}(\beta)$. Without loss of generality we may assume that $\alpha=\left(\begin{array}{lll}a_{1} & \ldots & a_{k} \\ s_{1} & \ldots & s_{k} \\ b_{1} & \ldots & b_{k}\end{array}\right)$ and $\beta=\left(\begin{array}{cccc}b_{1} & \ldots & b_{k} \\ t_{1} & \ldots & t_{k} \\ c_{1} & \ldots & c_{k}\end{array}\right)$, and hence we have that $\gamma=\left(\begin{array}{cccc}a_{1} & \ldots & a_{k} \\ s_{1} t_{1} & \ldots & s_{k} t_{k} \\ c_{1} & \ldots & c_{k}\end{array}\right)$. Then for any open neighbourhood

$$
U_{\gamma}=\Uparrow\left[U_{1}\left(s_{1} t_{1}\right), \ldots, U_{k}\left(s_{k} t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{l_{1}}^{1}\right)}^{\left(a_{1}^{1}, \ldots, a_{1}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{p}, \ldots, b_{l_{p}}^{p}\right)}^{\left(a_{1}^{p}, \ldots, a_{p_{p}^{p}}^{p}\right)}\right)
$$

of γ in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ we have that

$$
\Uparrow\left[V_{1}\left(s_{1}\right), \ldots, V_{k}\left(s_{k}\right)\right]_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \cdot \beta \subseteq \Uparrow\left[U_{1}\left(s_{1} t_{1}\right), \ldots, U_{k}\left(s_{k} t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \cap S_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \subseteq U_{\gamma}
$$

and

$$
\alpha \cdot \Uparrow\left[V_{1}\left(t_{1}\right), \ldots, V_{k}\left(t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(b_{1}, \ldots, b_{k}\right)} \subseteq \Uparrow\left[U_{1}\left(s_{1} t_{1}\right), \ldots, U_{k}\left(s_{k} t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \cap S_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \subseteq U_{\gamma}
$$

where $V_{1}\left(s_{1}\right), \ldots, V_{k}\left(s_{k}\right), V_{1}\left(t_{1}\right), \ldots, V_{k}\left(t_{k}\right)$ are open neighbourhoods of the points $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$ in $\left(S, \tau_{S}\right)$, respectively, such that

$$
V_{1}\left(s_{1}\right) \cdot t_{1} \subseteq U_{1}\left(s_{1} t_{1}\right), \ldots, V_{k}\left(s_{k}\right) \cdot t_{k} \subseteq U_{k}\left(s_{k} t_{k}\right)
$$

and

$$
s_{1} \cdot V_{1}\left(t_{1}\right) \subseteq U_{1}\left(s_{1} t_{1}\right), \ldots, s_{k} \cdot V_{k}\left(t_{k}\right) \subseteq U_{k}\left(s_{k} t_{k}\right)
$$

(vi) $\alpha \cdot \beta=\gamma \neq 0$ and $\mathbf{r}(\alpha) \varsubsetneqq \mathbf{d}(\beta)$. Without loss of generality we may assume that $\alpha=\left(\begin{array}{cccc}a_{1} & \ldots & a_{k} \\ s_{1} & s_{k} \\ b_{1} & \ldots & s_{k}\end{array}\right)$ and $\beta=\left(\begin{array}{cccccc}b_{1} & \ldots & b_{k} & b_{k+1} & \ldots & b_{k+j} \\ t_{1} & \ldots & t_{k} & t_{k+1} & \ldots & t_{k+j} \\ c_{1} & \ldots & c_{k} & c_{k+1} & \ldots & c_{k+j}\end{array}\right)$, where $1 \leqslant j \leqslant n-k$, and hence we have that $\gamma=\left(\begin{array}{ccc}a_{1} & \ldots & a_{k} \\ s_{1} t_{1} & \ldots & s_{k} t_{k} \\ c_{1} & \ldots & c_{k}\end{array}\right)$. Then for any open neighbourhood

$$
U_{\gamma}=\Uparrow\left[U_{1}\left(s_{1} t_{1}\right), \ldots, U_{k}\left(s_{k} t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{l_{1}}^{1}\right)}^{\left(a_{1}^{1}, \ldots, a_{1}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{p}, \ldots, b_{l_{p}}^{p}\right)}^{\left(a_{1}^{p}, \ldots, a_{p}^{p}\right)}\right)
$$

of the point γ in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ we have that

$$
\alpha \cdot \Uparrow\left[V_{1}\left(t_{1}\right), \ldots, V_{k}\left(t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(b_{1}, \ldots, b_{k}\right)} \subseteq \Uparrow\left[U_{1}\left(s_{1} t_{1}\right), \ldots, U_{k}\left(s_{k} t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \cap S_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \subseteq U_{\gamma},
$$

where $V_{1}\left(t_{1}\right), \ldots, V_{k}\left(t_{k}\right)$ are open neighbourhoods of the points t_{1}, \ldots, t_{k} in $\left(S, \tau_{S}\right)$, respectively, such that

$$
s_{1} \cdot V_{1}\left(t_{1}\right) \subseteq U_{1}\left(s_{1} t_{1}\right), \ldots, s_{k} \cdot V_{k}\left(t_{k}\right) \subseteq U_{k}\left(s_{k} t_{k}\right)
$$

Fix an arbitrary open neighbourhood U_{γ} of the point γ in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$. Then Lemma 5 implies that without loss of generality we may assume that

$$
U_{\gamma}=\Uparrow\left[U_{1}\left(s_{1} t_{1}\right), \ldots, U_{k}\left(s_{k} t_{k}\right)\right]_{\left(c_{1}, \ldots, c_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash\left(\Uparrow S_{\left(c_{1}, \ldots, c_{k}, y_{1}\right)}^{\left(a_{1}, \ldots, a_{k}, x_{1}\right)} \cup \cdots \cup \Uparrow S_{\left(c_{1}, \ldots, c_{k}, y_{p}\right)}^{\left(a_{1}, \ldots, a_{k}, x_{p}\right)}\right)
$$

for some $x_{1}, \ldots, x_{p} \in \lambda \backslash\left\{a_{1}, \ldots, a_{k}\right\}$ and $y_{1}, \ldots, y_{p} \in \lambda \backslash\left\{c_{1}, \ldots, c_{k}\right\}$. We put

$$
\mathbf{B}_{\alpha}=\left\{S_{\left(b_{1}, \ldots, b_{k}, b\right)}^{\left(a_{1}, \ldots, a_{k}, a\right)}: a \in\left\{x_{1}, \ldots, x_{p}\right\} \quad \text { and } \quad b \in\left\{b_{k+1}, \ldots, b_{k+j}\right\}\right\}
$$

It is obvious that the family \mathbf{B}_{α} is finite. Then $V_{\alpha} \cdot \beta \subseteq U_{\gamma}$ for

$$
V_{\alpha}=\Uparrow\left[V_{1}\left(s_{1}\right), \ldots, V_{k}\left(s_{k}\right)\right]_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash \bigcup_{S_{\left(b_{1}, \ldots, b_{k}, b\right)}^{\left(a_{1}, a_{2}, a\right)} \in \mathbf{B}_{\alpha}} \Uparrow S_{\left(b_{1}, \ldots, b_{k}, b\right)}^{\left(a_{1}, \ldots, a_{k}, a\right)}
$$

where $V_{1}\left(s_{1}\right), \ldots, V_{k}\left(s_{k}\right)$ are open neighbourhoods of the points s_{1}, \ldots, s_{k} in $\left(S, \tau_{S}\right)$, respectively, such that

$$
V_{1}\left(s_{1}\right) \cdot t_{1} \subseteq U_{1}\left(s_{1} t_{1}\right), \ldots, V_{k}\left(s_{k}\right) \cdot t_{k} \subseteq U_{k}\left(s_{k} t_{k}\right)
$$

(vii) $\alpha \cdot \beta=\gamma \neq 0$ and $\mathbf{d}(\beta) \varsubsetneqq \mathbf{r}(\alpha)$. In this case the proof of separate continuity of the semigroup operation is similar to case (vi).
(viii) $\alpha \cdot \beta=\gamma \neq 0, \mathbf{d}(\gamma) \varsubsetneqq \mathbf{d}(\alpha)$ and $\mathbf{r}(\gamma) \varsubsetneqq \mathbf{r}(\beta)$. Without loss of generality we may assume that

$$
\alpha=\left(\begin{array}{llll}
a_{1} & \ldots & a_{k} & a_{k+1} \\
s_{1} & \ldots & a_{k} & a_{k+m} \\
b_{1} & \ldots & b_{k} & b_{k+1}
\end{array} \ldots\right.
$$

where $1 \leqslant j, m \leqslant n-k$. We put $\varepsilon=\left(\begin{array}{ccc}b_{1} & \ldots & b_{k} \\ 1_{S} & \ldots & 1_{S} \\ b_{1} & \ldots & b_{k}\end{array}\right)$, where 1_{S} is the unit element of S. It is obvious that $\gamma=\alpha \cdot \varepsilon \cdot \beta$. Hence, in this case the separate continuity of the semigroup operation at the point $\alpha \cdot \beta$ in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ follows from cases (vi) and (vii).

The previous statements of this section imply that $\tau_{\mathscr{I}}^{\mathbf{c}} \subseteq \tau_{\mathscr{I}}$ for any compact shiftcontinuous Hausdorff topology $\tau_{\mathscr{I}}$ on $\mathscr{I}_{\lambda}^{n}(S)$, and hence $\tau_{\mathscr{I}}^{\mathrm{c}}$ is the unique requested compact shift-continuous Hausdorff topology on $\mathscr{I}_{\lambda}^{n}(S)$.

Corollary 7. If $\left(S, \tau_{S}\right)$ is a compact Hausdorff semitopological inverse monoid with continuous inversion then $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{J}}^{\mathbf{c}}\right)$ is a compact Hausdorff semitopological inverse semigroup with continuous inversion.

Proof. Since $W_{0}^{-1}=\mathscr{I}_{\lambda}^{n}(S) \backslash\left(\Uparrow S_{\left(a_{1}^{1}, \ldots, a_{p_{1}}^{1}\right)}^{\left(b_{1}^{1}, \ldots, b_{1}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(a_{1}^{k}, \ldots, a_{p_{k}}^{k}\right)}^{\left(b_{1}^{k} \ldots, b_{1}^{k}\right)}\right)$ for an arbitrary basic neighbourhood $W_{0}=\mathscr{I}_{\lambda}^{n}(S) \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{p_{1}}^{1}\right)}^{\left(a_{1}^{1}, \ldots, a_{p_{1}}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{k}, \ldots, b_{p_{k}}^{k}\right)}^{\left(a_{1}^{k}, \ldots, a_{p_{k}}^{k}\right)}\right)$ of zero, inversion is continuous at zero in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$.

Also, for an arbitrary element $\alpha=\left(\begin{array}{ccc}a_{1} & \ldots & a_{k} \\ s_{1} & \ldots & s_{k} \\ b_{1} & \ldots & b_{k}\end{array}\right)$ of $\mathscr{I}_{\lambda}^{n}(S)$ and any its open neighbourhood

$$
V_{\alpha}=\Uparrow\left[V_{1}\left(s_{1}\right), \ldots, V_{k}\left(s_{k}\right)\right]_{\left(b_{1}, \ldots, b_{k}\right)}^{\left(a_{1}, \ldots, a_{k}\right)} \backslash\left(\Uparrow S_{\left(b_{1}^{1}, \ldots, b_{l_{1}}^{1}\right)}^{\left(a_{1}^{1}, \ldots a_{1_{1}^{1}}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(b_{1}^{p}, \ldots, b_{l_{p}}^{p}\right)}^{\left(a_{1}^{p}, \ldots, a_{p}^{p}\right)}\right)
$$

we have that $\left(V_{\alpha}\right)^{-1} \subseteq U_{\alpha^{-1}}$ for the neighbourhood

$$
U_{\alpha^{-1}}=\Uparrow\left[U_{1}\left(s_{1}^{-1}\right), \ldots, V_{k}\left(s_{k}^{-1}\right)\right]_{\left(a_{1}, \ldots, a_{k}\right)}^{\left(b_{1}, \ldots, b_{k}\right)} \backslash\left(\Uparrow S_{\left(a_{1}^{1}, \ldots, a_{l_{1}}^{1}\right)}^{\left(b_{1}^{1}, \ldots, b_{1}^{1}\right)} \cup \cdots \cup \Uparrow S_{\left(a_{1}^{p}, \ldots, a_{l_{p}}^{p}\right)}^{\left(b_{1}^{p}, \ldots, b_{p}^{p}\right)}\right)
$$

of α^{-1} in $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ with

$$
\left(V_{1}\left(s_{1}\right)\right)^{-1} \subseteq U_{1}\left(s_{1}^{-1}\right), \ldots,\left(V_{k}\left(s_{k}\right)\right)^{-1} \subseteq U_{k}\left(s_{k}^{-1}\right)
$$

This completes the proof of the corollary.

Acknowledgements

The authors are grateful to the referee for several useful comments and suggestions.

References

1. T. Banakh and S. Bardyla, Characterizing chain-compact and chain-finite topological semilattices, Semigroup Forum 98 (2019), no. 2, 234-250. DOI: 10.1007/s00233-018-9921-x
2. T. Banakh and S. Bardyla, Completeness and absolute H-closedness of topological semilattices, Topology Appl. 260 (2019), 189-202. DOI: 10.1016/j.topol.2019.04.001
3. T. Banakh and S. Bardyla, On images of complete topologized subsemilattices in sequential semitopological semilattices, Preprint (arXiv:1806.02864).
4. T. Banakh and S. Bardyla, Complete topologized posets and semilattices, Preprint (arXiv: 1806.02869).
5. T. Banakh, S. Bardyla, and A. Ravsky, The closedness of complete subsemilattices in functionally Hausdorff semitopological semilattices, Preprint (arXiv:1806.02868).
6. S. Bardyla and O. Gutik, On \mathscr{H}-complete topological semilattices, Mat. Stud. 38 (2012), no. 2, 118-123.
7. S. Bardyla and O. Gutik, On a complete topological inverse polycyclic monoid, Carpathian Math. Publ. 8 (2016), no. 2, 183-194. DOI: 10.15330/cmp.8.2.183-194
8. S. Bardyla, O. Gutik, and A. Ravsky, H-closed quasitopological groups, Topology Appl. 217 (2017), 51-58. DOI: 10.1016/j.topol.2016.12.003
9. T. Berezovski, O. Gutik, and K. Pavlyk, Brandt extensions and primitive topological inverse semigroups, Int. J. Math. Math. Sci. 2010 (2010) Article ID 671401, 13 pages. DOI: 10.1155/2010/671401.
10. I. Chuchman and O. Gutik, On H-closed topological semigroups and semilattices, Algebra Discr. Math. (2007), no. 1, 13-23.
11. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
12. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
13. J. A. Green, On the structure of semigroups, Ann. Math. (2) 54 (1951), no. 1, 163-172. DOI: $10.2307 / 1969317$
14. P. A. Grillet, Semigroups. An introduction to the structure theory, Marcel Dekker, New York, 1995.
15. O. V. Gutik, On Howie semigroup, Mat. Metody Phis.-Mech. Polya. 42 (1999), no. 4, 127132 (in Ukrainian).
16. O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discrete Math. 18 (2014), no. 1, 59-85.
17. O. Gutik, Topological properties of Taimanov semigroups, Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 29-34.
18. O. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78 (2009), no. 2, 326-336. DOI: 10.1007/s00233-008-9112-2
19. O. V. Gutik and K. P. Pavlyk, H-closed topological semigroups and topological Brandt λ extensions, Mat. Metody Fiz.-Mekh. Polya 44 (2001), no. 3, $20-28$ (in Ukrainian).
20. O. Gutik and K. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups. Visnyk Lviv. Univ. Ser. Mekh.-Mat. 61 (2003), 98-105.
21. O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71 (2005), no. 3, 389-400. DOI: 10.1007/s00233-005-0530-0
22. O. V. Gutik and K. P. Pavlyk, On Brandt λ^{0}-extensions of semigroups with zero, Mat. Metody Phis.-Mech. Polya 49 (2006), no. 3, 26-40.
23. O. Gutik and K. Pavlyk, On pseudocompact topological Brandt λ^{0}-extensions of semitopological monoids, Topol. Algebra Appl. 1 (2013), 60-79. DOI: 10.2478/taa-2013-0007
24. O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite rank $\leqslant n$, Mat. Metody Fiz.-Mekh. Polya 52 (2009), no. 3, 7-14; reprinted version: J. Math. Sc. 171 (2010), no. 4, 425-432. DOI: 10.1007/s10958-010-0147-z
25. O. Gutik and A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech. Math. 72 (2010), 94-106 (in Ukrainian).
26. O. Gutik and D. Repovš, On linearly ordered H-closed topological semilattices, Semigroup Forum 77 (2008), no. 3, 474-481. DOI: 10.1007/s00233-008-9102-4
27. O. Gutik and D. Repovš, On Brandt λ^{0}-extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8-32. DOI: 10.1007/s00233-009-9191-8
28. R. J. Koch and A. D. Wallace, Stability in semigroups, Duke Math. J. 24 (1957), no. 2, 193-195. DOI: 10.1215/S0012-7094-57-02425-0
29. J. C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. 12 (1971), no. 3, 323-341. DOI: 10.1017/S1446788700009794
30. L. O'Carroll, Counterexamples in stable semigroups, Trans. Amer. Math. Soc. 146 (1969), 377-386. DOI: 10.2307/1995178
31. M. Petrich, Inverse semigroups, John Wiley \& Sons, New York, 1984.
32. J. W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math. Soc. 20 (1969), no. 1, 251-253. DOI: 10.2307/2036002
33. V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), no. 6, 1119-1122 (in Russian).

Статтл: надійшла до редколегії 17.06.2019
доопрацвована 23.08.2019
прийнята до друку 13.11.2019

РОЗШИРЕННЯ НАПІВГРУП СИМЕТРИЧНИМИ ІНВЕРСНИМИ НАПІВГРУПАМИ ОБМЕЖЕНОГО СКІНЧЕННОГО РАНГУ

Олег ГУТІК, Олександра СОБОЛЬ
Лъвівсъкий націоналъний університет імені Івана Франка, вул. Університетсъка, 1, 79000, м. Лъвів
e-mail: oleg.gutik@lnu.edu.ua, ovgutik@yahoo.com, o.yu.sobol@gmail.com

Вивчаємо напівгрупове розширення $\mathscr{I}_{\lambda}^{n}(S)$ напівгрупи S симетричною інверсною напівгрупою обмеженого скінченного рангу n. Описуємо ідемпотенти та регулярні елементи напівгрупи $\mathscr{I}_{\lambda}^{n}(S)$, доводимо, що напівгрупа $\mathscr{I}_{\lambda}^{n}(S)$ є регулярною, ортодоксальною, інверсною або стійкою тоді і тільки тоді, коли такою напівгрупою є моноїд S. Описані відношення Гріна на напівгрупі $\mathscr{I}_{\lambda}^{n}(S)$ для довільного моноїда S. Вводимо поняття напівгрупи з сильними щільними ідеальними рядами і доводимо, що для довільного нескінченного кардинала λ та довільного натурального числа n напівгрупа $\mathscr{I}_{\lambda}^{n}(S)$ має сильний щільний ідеальний ряд за умови, коли моноїд S також має сильний щільний ідеальний ряд. На завершення доводимо, що для кожного компактного гаусдорфового напівтопологічного моноїда $\left(S, \tau_{S}\right)$ існує єдине його компактне топологічне розширення $\left(\mathscr{I}_{\lambda}^{n}(S), \tau_{\mathscr{I}}^{\mathbf{c}}\right)$ в класі гаусдорфових напівтопологічних напівгруп.

Ключові слова: інверсна напівгрупа, симетрична інверсна напівгрупа скінченних перетворень, відношення Г ріна, напівгрупа зі щільними ідеальними рядами, напівтопологічна напівгрупа, компактна напівгрупа.

[^0]: 2010 Mathematics Subject Classification: 20M10, 22A15, 54D40, 54D45, 54H10
 © Gutik, O., Sobol, O., 2019

