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We study the semigroup extension I n
λ (S) of a semigroup S by symmetric

inverse semigroup of a bounded �nite rank n. We describe idempotents and
regular elements of the semigroup I n

λ (S) and show that the semigroup I n
λ (S)

is regular, orthodox, inverse or stable if and only if so is S. Green's relati-
ons are described on the semigroup I n

λ (S) for an arbitrary monoid S. We
introduce the conception of a semigroup with strongly tight ideal series, and
prove that for any in�nite cardinal λ and any positive integer n the semigroup
I n
λ (S) has a strongly tight ideal series provided so has S. Finally, we show

that for every compact Hausdor� semitopological monoid (S, τS) there exists
its unique compact topological extension (I n

λ (S), τ
c
I ) in the class of Hausdor�

semitopological semigroups.

Key words: inverse semigroup, symmetric inverse semigroup of �nite
transformations, Green's relations, semigroup has a tight ideal series, semi-
topologica; semigroup, compact semigroup.

1. Introduction, motivation and main definitions

In this paper we follow the terminology of [11, 31].
If S is a semigroup, then by E(S) we denote the subset of all idempotents of S. On

the set of idempotents E(S) there exists the natural partial order: e 6 f if and only if
ef = fe = e.

A semigroup S is called:

• regular, if for every a ∈ S there exists an element b in S such that a = aba;
• orthodox, if S is regular and E(S) is a subsemigroup of S;
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• inverse if every a in S possesses a unique inverse, i.e. if there exists a unique
element a−1 in S such that

aa−1a = a and a−1aa−1 = a−1.

It is obvious that every inverse semigroup is orthodox and every orthodox semigroup is
regular. A map which associates to any element of an inverse semigroup its inverse is
called the inversion.

Let λ be an arbitrary non-zero cardinal. A map α from a subset D of λ into λ is
called a partial transformation of X. In this case the set D is called the domain of α and
is denoted by domα. Also, the set {x ∈ λ : yα = x for some y ∈ λ} is called the range of
α and is denoted by ranα. The cardinality of ranα is called the rank of α and denoted
by rankα. For convenience we denote by ∅ the empty transformation, that is a partial
mapping with dom∅ = ran∅ = ∅.

Let Iλ denote the set of all partial one-to-one transformations of λ together with
the following semigroup operation:

x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ domα : yα ∈ domβ}, for α, β ∈ Iλ.

The semigroup Iλ is called the symmetric inverse semigroup over the cardinal λ (see
[11]). The symmetric inverse semigroup was introduced by V. V. Wagner [33] and it plays
a major role in the theory of semigroups.

Put

I∞λ = {α ∈ Iλ : rankα is �nite} and I n
λ = {α ∈ Iλ : rankα 6 n},

for n = 1, 2, 3, . . .. Obviously, I∞λ and I n
λ (n = 1, 2, 3, . . .) are inverse semigroups, I∞λ

is an ideal of Iλ, and I n
λ is an ideal of I∞λ , for each n = 1, 2, 3, . . .. Further, we shall

call the semigroup I∞λ the symmetric inverse semigroup of �nite transformations and
I n
λ the symmetric inverse semigroup of �nite transformations of the rank 6 n. The

elements of semigroups I∞λ and I n
λ are called �nite one-to-one transformations (partial

bijections) of the cardinal λ. By

( x1 ··· xn
y1 ··· yn )

we denote a partial one-to-one transformation which maps x1 onto y1, . . ., xn onto yn,
and by 0 the empty transformation. Obviously, in such case we have xi 6= xj and yi 6= yj
for i 6= j (i, j = 1, . . . , n). The empty partial map ∅ : λ ⇀ λ is denoted by 0. It is obvious
that 0 is zero of the semigroup I n

λ .
Let λ be a non-zero cardinal. On the set Bλ = (λ × λ) ∪ {0}, where 0 /∈ λ × λ, we

de�ne the semigroup operation � · � as follows

(a, b) · (c, d) =
{

(a, d), if b = c;
0, if b 6= c,

and (a, b) · 0 = 0 · (a, b) = 0 · 0 = 0 for a, b, c, d ∈ λ. The semigroup Bλ is called
the semigroup of λ × λ-matrix units (see [11]). Obviously, for any cardinal λ > 0, the
semigroup of λ× λ-matrix units Bλ is isomorphic to I 1

λ .
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Let S be a semigroup with zero and λ be a non-zero cardinal. We de�ne the semi-
group operation on the set Bλ(S) = (λ× S × λ) ∪ {0} as follows:

(α, a, β) · (γ, b, δ) =
{

(α, ab, δ), if β = γ;
0, if β 6= γ,

and (α, a, β) · 0 = 0 · (α, a, β) = 0 · 0 = 0, for all α, β, γ, δ ∈ λ and a, b ∈ S. If S = S1

then the semigroup Bλ(S) is called the Brandt λ-extension of the semigroup S [15, 19].
Obviously, if S has zero then J = {0} ∪ {(α, 0S , β) : 0S is the zero of S} is an ideal
of Bλ(S). We put B0

λ(S) = Bλ(S)/J and the semigroup B0
λ(S) is called the Brandt

λ0-extension of the semigroup S with zero [22].
A semitopological semigroup is a Hausdor� topological space together with a

separately continuous semigroup operation.
The Brandt λ-extension Bλ(S) (or the Brandt λ

0-extension B0
λ(S)) of a semigroup

S can be considered as some semigroup extension of the semigroup S by the semigroup
of λ×λ-matrix units Bλ. An analogue of such extension gives the following construction.

2. The construction of of the semigroup extension I n
λ (S)

In this paper using the semigroup I n
λ we propose the following semigroup extension.

Construction 1. Let S be a semigroup, λ be a non-zero cardinal, n and k be a positive
integers such that k 6 n 6 λ. We identify every element α ∈ I n

λ with its graph Gr(α) ⊂
λ× λ and put

I n
λ (S) = {αS : Gr(α)→ S : α ∈ I n

λ }
and every map from the empty map 0 into S is identi�ed with the empty map ∅ : λ×λ ⇀
S and denote it by 0. An arbitrary element 0 6= rankα 6 n is denoted by(

x1 ··· xk
s1 ··· sk
y1 ··· yk

)
,

where α = ( x1 ··· xk
y1 ··· yk ), and ((x1, y1))α = s1, . . . , ((xk, yk))α = sk. Also for αS ∈ I n

λ (S)
such that

αS =
(
x1 ··· xk
s1 ··· sk
y1 ··· yk

)
we denote d(αS) = {x1, . . . , xk} and r(αS) = {y1, . . . , yk}.

Now, we de�ne a binary operation � ·� on the set I n
λ (S) in the following way:

(i) αS · 0 = 0 · αS = 0 · 0 = 0 for every αS ∈ I n
λ (S);

(ii) if α · β = 0 in I n
λ then αS · βS = 0 for any αS , βS ∈ I n

λ (S);

(iii) if αS =
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
, βS =

(
c1 ··· cj
t1 ··· tj
d1 ··· dj

)
and

α · β =
( a1 ··· ai
b1 ··· bi

)
·
(
c1 ··· cj
d1 ··· dj

)
=
(
ai1 ··· aim
dj1 ··· djm

)
6= 0 in I n

λ ,

then αS · βS =

(
ai1 ··· aim
si1 tj1 ··· sim tjm
dj1 ··· djm

)
.

Simple veri�cations show that the de�ned binary operation on I n
λ (S) is associative

and hence I n
λ (S) is a semigroup. It is obvious that I 1

λ (S) is isomorphic to the Brandt
λ-extension Bλ(S) of the semigroup S.
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We remark that if the semigroup S contains zero 0S then

J0 = {0} ∪
{
αS =

( a1 ··· ai
0S ··· 0S
b1 ··· bi

)
: 0S is the zero of S

}
is an ideal of I n

λ (S).

Also, we de�ne a binary relation ≡0 on the semigroup I n
λ (S) in the following way.

For αS , βS ∈ I n
λ (S) we put αS ≡0 βS if and only if at least one of the following conditions

holds:

(1) αS = βS ;
(2) αS , βS ∈ J0;
(3) αS , βS /∈ J0 and each of the conditions

(i) (x, y)αS is determined and (x, y)αS 6= 0S ; and
(ii) (x, y)βS is determined and (x, y)βS 6= 0S
implies the equality (x, y)αS = (x, y)βS .

It is obvious that ≡0 is an equivalence relation on the semigroup I n
λ (S).

The following proposition can be proved by immediate veri�cations.

Proposition 1. The relation ≡0 is a congruence on the semigroup I n
λ (S).

We de�ne I n
λ (S) = I n

λ (S)/≡0 .

In this paper we study algebraic properties of the semigroups I n
λ (S) and I n

λ (S).

We describe idempotents and regular elements of the semigroups I n
λ (S) and I n

λ (S),

show that the semigroup I n
λ (S) (I

n
λ (S)) is regular, orthodox, inverse or stable if and

only if so is S. Green's relations are described in the semigroup I n
λ (S) for an arbitrary

monoid S. We introduce the conception of a semigroup with strongly tight ideal series,
and proved that for any in�nite cardinal λ and any positive integer n the semigroup
I n
λ (S) has a strongly tight ideal series provides so has S. Finally, we show that for

every compact Hausdor� semitopological monoid (S, τS) there exists its unique compact
topological extension (I n

λ (S), τ
c
I ) in the class of Haudor� semitopological semigroups.

3. Algebraic properties of the semigroup extensions I n
λ (S) and

I n
λ (S)

The following proposition describes the subset of idempotents of the semigroup
I n
λ (S).

Proposition 2. For every positive integer i 6 n a non-zero element αS =
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
of

the semigroup I n
λ (S) is an idempotent if and only if a1 = b1, . . . , ai = bi and s1, . . . , si ∈

E(S).

Proof. The implication (⇐) is trivial.

(⇒) Suppose that αS · αS = αS . Then the de�nition of the semigroup I n
λ (S)

implies that the symbols a1, . . . , ai are distinct. Similarly we obtain that the symbols
b1, . . . , bi are distinct, too. The above arguments and the equality αS ·αS = αS imply that
{a1, . . . , ai} = {b1, . . . , bi}. Assume that ak 6= bk = al for some integers k, l ∈ {1, . . . , i},



EXTENSION OF SEMIGROUPS BY SYMMETRIC INVERSE SEMIGROUPS
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2019. Âèïóñê 87 9

k 6= l. Then we have that al 6= bl 6= bk, which contradicts the equality αS ·αS = αS . The
obtained contradiction implies the equalities a1 = b1, . . . , ai = bi. Now, we get that

αS · αS =
(
a1 ··· ai
s1 ··· si
a1 ··· ai

)
·
(
a1 ··· ai
s1 ··· si
a1 ··· ai

)
=
(

a1 ··· ai
s1s1 ··· sisi
a1 ··· ai

)
=
(
a1 ··· ai
s1 ··· si
a1 ··· ai

)
= αS ,

and hence s1s1 = s1, . . . , sisi = si. This completes the proof of the proposition. �

Proposition 3. For every positive integer i 6 n a non-zero element αS =
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
of

the semigroup I n
λ (S) is regular if and only if so are s1, . . . , si in S.

Proof. The implication (⇐) is trivial. Indeed, αS = αSβSαS for βS =
(
b1 ··· bi
t1 ··· ti
a1 ··· ai

)
, where

elements t1, . . . , ti of the semigroup S are such that s1 = s1t1s1, . . . , si = sitisi.

(⇒) Suppose that αS is a regular element of the semigroup I n
λ (S). Then there

exists an element βS =
( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
of the semigroup I n

λ (S), 0 < k 6 n, such that

αS = αS · βS · αS . Now, this implies that {b1, . . . , bi} ⊆ {c1, . . . , ck} and hence k > i.
Without loss of generality we may assume that b1 = c1, . . . , bi = ci. Then the equality
αS = αS · βS ·αS and the semigroup operation of I n

λ (S) imply that d1 = a1, . . . , di = ai
and hence we have that

αS = αS · βS · αS =
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=

=
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
(
b1 ··· bi ci+1 ··· ck
t1 ··· ti ti+1 ··· tk
a1 ··· ai di+1 ··· dk

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=

=
( a1 ··· ai
s1t1s1 ··· sitisi
b1 ··· bi

)
=
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
.

This implies that the equalities s1 = s1t1s1, . . . , si = sitisi hold in S, which completes
the proof of our proposition. �

Two elements a and b of a semigroup S are said to be inverses of each other if

aba = a and bab = b.

The de�nition of the semigroup operation in I n
λ (S) implies the following proposi-

tion.

Proposition 4. Let λ be a non-zero cardinal, n and i be any positive integers such that
i 6 n 6 λ. Let S be a semigroup and a1, . . . , ai, b1, . . . , bi ∈ λ. If the elements s1 and t1,
. . . , si and ti are pairwise inverses of each other in S then the elements( a1 ··· ai

s1 ··· si
b1 ··· bi

)
and

(
b1 ··· bi
t1 ··· ti
a1 ··· ai

)
are pairwise inverses of each other in the semigroup I n

λ (S).

For arbitrary semigroup S, every positive integer i 6 n, any collection non-empty
subsets A1, . . . , Ai of S, and any two collections of distinct elements {a1, . . . , ai} and
{b1, . . . , bi} of the cardinal λ we de�ne a subset

[A1, . . . , Ai]
(a1,...,ai)
(b1,...,bi)

=
{( a1 ··· ai

s1 ··· si
b1 ··· bi

)
: s1 ∈ A1, . . . , si ∈ Ai

}
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of I n
λ (S). I the case when A1 = . . . = Ai = A in S we put

[A]
(a1,...,ai)
(b1,...,bi)

= [A1, . . . , Ai]
(a1,...,ai)
(b1,...,bi)

.

It is obvious that for every subset A of the semigroup S and any permutation
σ : {1, . . . , i} → {1, . . . , i} we have that

[A]
(a(1)σ,...,a(i)σ)

(b(1)σ,...,b(i)σ)
= [A]

(a1,...,ai)
(b1,...,bi)

.

Proposition 5. Let λ be a non-zero cardinal and n be any positive integer 6 λ. Then
for arbitrary semigroup S, every positive integer i 6 n and any collection of distinct

elements {a1, . . . , ai} of λ the direct power Si is isomorphic to a subsemigroup S
(a1,...,ai)
(a1,...,ai)

of I n
λ (S).

Proof. The semigroup operation of I n
λ (S) implies that Sa1,...,aia1,...,ai is a subsemigroup of

I n
λ (S) for any collection of distinct elements {a1, . . . , ai} of λ. We de�ne an isomorphism

h : Si → S
(a1,...,ai)
(a1,...,ai)

by the formula (s1, . . . , si)h =
(
a1 ··· ai
s1 ··· si
a1 ··· ai

)
. �

Proposition 6. For every semigroup S, any non-zero cardinal λ and any positive integer
n 6 λ the following statements hold:

(i) I n
λ (S) is regular if and only if so is S;

(ii) I n
λ (S) is orthodox if and only if so is S;

(iii) I n
λ (S) is inverse if and only if so is S.

Proof. Statement (i) follows from Proposition 3.

(ii) (⇐) Suppose that S is an orthodox semigroup. Then statement (i) implies
that the semigroup I n

λ (S) is regular. By Proposition 2 every non-zero idempotent of the

semigroup I n
λ (S) has the form

(
a1 ··· ai
e1 ··· ei
a1 ··· ai

)
, where 0 < i 6 n and e1, . . . , ei are idempotents

of S. This implies that the product of two idempotents of I n
λ (S) is again an idempotent,

and hence the semigroup I n
λ (S) is orthodox.

(⇒) Suppose that I n
λ (S) is an orthodox semigroup. By Proposition 5, S

(a)
(a) is a

subsemigroup of I n
λ (S) for every a ∈ λ and hence S

(a)
(a) is orthodox. Then Proposition 5

implies the semigroup S is orthodox, too.

(iii) (⇐) Suppose that S is an inverse semigroup. By statement (i) the semigroup
I n
λ (S) is regular. Then using Proposition 2 we get that idempotents commute in I n

λ (S)
and hence by Theorem 1.17 of [11], I n

λ (S) is an inverse semigroup.

(⇒) Suppose that I n
λ (S) is an inverse semigroup. By Proposition 5, S

(a)
(a) is a

subsemigroup of I n
λ (S) for every a ∈ λ, and by Proposition 4 it is an inverse subsemi-

group. Hence by Proposition 5, S is an inverse semigroup. �

Since any homomorphic image of a regular (resp., orthodox, inverse) semigroup is a
regular (resp., orthodox, inverse) semigroup (see [11, Section 7.4] and [29, Lemma 2.2]),
Proposition 6 implies the following corollary.

Corollary 1. For every semigroup S, any non-zero cardinal λ and any positive integer
n 6 λ the following statements hold:

(i) I n
λ (S) is regular if and only if so is S;
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(ii) I n
λ (S) is orthodox if and only if so is S;

(iii) I n
λ (S) is inverse if and only if so is S.

If S is a semigroup, then we shall denote by R, L , J , D and H the Green relations
on S (see [13] or [11, Section 2.1]):

aRb if and only if aS1 = bS1;
aL b if and only if S1a = S1b;
aJ b if and only if S1aS1 = S1bS1;

D = L ◦R = R◦L ;
H = L ∩R.

Remark 1. It is obvious that for non-zero elements αS =
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
and βS =

( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
of the semigroup I n

λ (S) any of conditions αSRβS , αSL βS , αSDβS , αSJ βS , or αSH βS
implies the equality i = k.

The following proposition describes the Green relations on the semigroup I n
λ (S).

Proposition 7. Let S be a monoid, λ be any non-zero cardinal and n 6 λ. Let αS =( a1 ··· ai
s1 ··· si
b1 ··· bi

)
and βS =

( c1 ··· ci
t1 ··· ti
d1 ··· di

)
be non-zero elements of the semigroup I n

λ (S). Then the

following conditions hold:

(i) αSRβS in I n
λ (S) if and only if there exists a permutation σ : {1, . . . , i} →

{1, . . . , i} such that a1 = c(1)σ, . . . , ai = c(i)σ and s1Rt(1)σ, . . . , siRt(i)σ in
S;

(ii) αSL βS in I n
λ (S) if and only if there exists a permutation σ : {1, . . . , i} →

{1, . . . , i} such that b1 = d(1)σ, . . . , bi = d(i)σ and s1L t(1)σ, . . . , siL t(i)σ in
S;

(iii) αSDβS in I n
λ (S) if and only if there exists a permutation σ : {1, . . . , i} →

{1, . . . , i} such that s1Dt(1)σ, . . . , siDt(i)σ in S;
(iv) αSH βS in I n

λ (S) if and only if there exist permutations σ, ρ : {1, . . . , i} →
{1, . . . , i} such that s1Rt(1)σ, . . . , siRt(i)σ and s1L t(1)ρ, . . . , siL t(i)ρ in S;

(v) αSJ βS in I n
λ (S) if and only if there exists a permutation π : {1, . . . , i} →

{1, . . . , i} such that s1J t(1)π, . . . , siJ t(i)π in S.

Proof. (i) (⇒) Suppose that αSRβS in I n
λ (S). Then there exist non-zero elements

γS =
( e1 ··· ek
u1 ··· uk
f1 ··· fk

)
and δS =

(
g1 ··· gj
v1 ··· vj
h1 ··· hj

)
of the semigroup I n

λ (S) such that αS = βSγS ,

βS = αSδS , i 6 j 6 n and i 6 k 6 n. Also, the de�nition of the semigroup operati-
on of I n

λ (S) implies that without loss of generality we may assume that j = k = i.
Then the equalities αS = βSγS and βS = αSδS imply that {a1, . . . , ai} = {c1, . . . , ci},
{b1, . . . , bi} = {g1, . . . , gi} and {d1, . . . , di} = {e1, . . . , ei}. Now, the semigroup operation
of I n

λ (S) implies that there exist permutations σ, ρ, ζ : {1, . . . , i} → {1, . . . , i} such that
a1 = c(1)σ, . . . , ai = c(i)σ, d1 = e(1)ρ, . . . , di = e(i)ρ, and b1 = g(1)ζ , . . . , bi = g(i)ζ , and
hence we have that( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=
( c1 ··· ci
t1 ··· ti
d1 ··· di

)
·
( e1 ··· ei
u1 ··· ui
f1 ··· fi

)
=
( c1 ··· ci
t1 ··· ti
d1 ··· di

)
·
(

d1 ··· di
u(1)ρ ··· u(i)ρ

f(1)ρ ··· f(i)ρ

)
=

(
c1 ··· ci

t1u(1)ρ ··· tiu(i)ρ

f(1)ρ ··· f(i)ρ

)
=

=

(
a1 ··· ai

t(1)σu((1)ρ)σ ··· t(i)σu((i)ρ)σ

f((1)ρ)σ ··· f((i)ρ)σ

)
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and( c1 ··· ci
t1 ··· ti
d1 ··· di

)
=
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
( g1 ··· gi
v1 ··· vi
h1 ··· hi

)
=
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
(

b1 ··· bi
v(1)ζ ··· v(i)ζ
h(1)ζ ··· h(i)ζ

)
=

(
a1 ··· ai

s1v(1)ζ ··· siv(i)ζ
h(1)ζ ··· h(i)ζ

)
=

=

( c1 ··· ci
s(1)σ−1v((1)ζ)σ−1 ··· s(i)σ−1v((i)ζ)σ−1

h((1)ζ)σ−1 ··· h((i)ζ)σ−1

)
.

Therefore we get that

s1 = t(1)σu((1)ρ)σ, . . . , si = t(i)σu((i)ρ)σ,

and t1 = s(1)σ−1v((1)ζ)σ−1 , . . . , ti = s(i)σ−1v((i)ζ)σ−1 .
(1)

Since σ : {1, . . . , i} → {1, . . . , i} is a permutation, conditions (1) imply that s1Rt(1)σ,
. . . , siRt(i)σ in S.

(⇐) Suppose that for αS , βS ∈ I n
λ (S) there exists a permutation σ : {1, . . . , i} →

{1, . . . , i} such that a1 = c(1)σ, . . . , ai = c(i)σ and s1Rt(1)σ, . . . , siRt(i)σ in S. Then there

exist u1, . . . , ui, v1, . . . , vi ∈ S1 such that

s1 = t(1)σu1, . . . , si = t(i)σui, t1 = s(1)σ−1v1, . . . , ti = s(i)σ−1vi.

Thus we get that( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=

(
c(1)σ ··· c(i)σ
t(1)σu1 ··· t(i)σui
b1 ··· bi

)
=

( c1 ··· ci
t1u(1)σ−1 ··· tiu(i)σ−1

b(1)σ−1 ··· b(i)σ−1

)
=
( c1 ··· ci
t1 ··· ti
d1 ··· di

)
·
(

d1 ··· di
u(1)σ−1 ··· u(i)σ−1

b(1)σ−1 ··· b(i)σ−1

)
and( c1 ··· ci

t1 ··· ti
d1 ··· di

)
=

(
a(1)σ−1 ··· a(i)σ−1

s(1)σ−1v1 ··· s(i)σ−1vi

d1 ··· di

)
=

(
a1 ··· ai

s1v(1)σ ··· siv(i)σ
d(1)σ ··· d(i)σ

)
=
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
(

b1 ··· bi
v(1)σ ··· v(i)σ
d(1)σ ··· d(i)σ

)
,

and hence αSRβS in I n
λ (S).

The proof of statement (ii) is similar to the proof of (i).

(iii) (⇒) Suppose that αSDβS in I n
λ (S). Then there exists a non-zero element

γS =
( e1 ··· ei
u1 ··· ui
f1 ··· fi

)
of the semigroup I n

λ (S) such that αSRγS and γSL βS in I n
λ (S). By

statement (i) there exists a permutation ζ : {1, . . . , i} → {1, . . . , i} such that e1 = a(1)ζ ,
. . . , ei = a(i)ζ and u1Rs(1)ζ , . . . , uiRs(i)ζ in S and by statement (ii) there exists a
permutation ς : {1, . . . , i} → {1, . . . , i} such that f1 = d(1)ς , . . . , fi = d(i)ς and u1L s(1)ς ,
. . . , uiL s(i)ς in S. This implies that s1Dt(1)σ, . . . , siDt(i)σ in S for the permutation

σ = ζ ◦ ς−1 of {1, . . . , i}.
(⇐) Suppose that there exists a permutation σ : {1, . . . , i} → {1, . . . , i} such that

s1Dt(1)σ, . . . , siDt(i)σ in S. Then the de�nition of the relation D implies that there exist
u1, . . . , ui ∈ S such that s1Ru1, . . . , siRui and u1L t(1)σ, . . . , uiL t(i)σ in S. Now, for

the element γS =
( a1 ··· ai

u1 ··· ui
d(1)σ ··· d(i)σ

)
of the semigroup I n

λ (S) by statements (i) and (ii) we

have that αSRγS and γSL βS in I n
λ (S).

(iv) follows from statements (i) and (ii).

(v) (⇒) Suppose that αSJ βS in I n
λ (S). Then there exist non-zero elements γlS = el1 ··· e

l
kl

ul1 ··· u
l
kl

f l1 ··· f
l
kl

, γrS =

(
er1 ··· e

r
kr

ur1 ··· u
r
kr

fr1 ··· f
r
kr

)
, δlS =

 gl1 ··· g
l
jl

vl1 ··· v
l
jl

hl1 ··· h
l
jl

 and δrS =

(
gr1 ··· g

r
jr

vr1 ··· v
r
jr

hr1 ··· h
r
jr

)
of the semi-

group I n
λ (S) such that αS = γlSβSγ

r
S , βS = δlSαSδ

r
S and i 6 kl, kr, jl, jr 6 n (see [13] or
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[14, Section II.1]). Also, the de�nition of the semigroup operation of I n
λ (S) implies that

without loss of generality we may assume that kl = kr = jl = jr = i. Then the equalities
αS = γlSβSγ

r
S and βS = δlSαSδ

r
S imply that

{a1, . . . , ai} = {gl1, . . . , gli} = {hl1, . . . , hli},

{b1, . . . , bi} = {fr1 , . . . , fri } = {gr1, . . . , gri },

{c1, . . . , ci} = {gl1, . . . , gli} = {f l1, . . . , f li}
and

{d1, . . . , di} = {er1, . . . , eri } = {hr1, . . . , hri }.
Now, the semigroup operation of I n

λ (S) implies that there exist permutations

σ, ρ, ζ, ς, ν, κ : {1, . . . , i} → {1, . . . , i}

such that a1 = el(1)σ, . . . , ai = el(i)σ, c1 = f l(1)ρ, . . . , ci = f l(i)ρ, d1 = er(1)ζ , . . . , di = er(i)ζ ,

c1 = gl(1)ς , . . . , ci = gl(i)ς , a1 = hl(1)ν , . . . , ai = hl(i)ν and b1 = gr(1)κ, . . . , bi = gr(i)κ, and

hence we have that( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=

 el1 ··· e
l
kl

ul1 ··· u
l
kl

f l1 ··· f
l
kl

 ·( c1 ··· cit1 ··· ti
d1 ··· di

)
·

(
er1 ··· e

r
kr

ur1 ··· u
r
kr

fr1 ··· f
r
kr

)
=

=

(
el(1)ρ ··· e

l
(i)ρ

ul(1)ρ ··· u
l
(i)ρ

c1 ··· ci

)
·
( c1 ··· ci
t1 ··· ti
d1 ··· di

)
·
(
d1 ··· di
ur(1)ζ ··· u

r
(i)ζ

fr(1)ζ ··· f
r
(i)ζ

)
=

(
el(1)ρ ··· el(i)ρ

ul(1)ρt1u
r
(1)ζ ··· u

l
(i)ρtiu

r
(i)ζ

fr(1)ζ ··· fr(i)ζ

)
=

=

(
el1 ··· eli

ul1t(1)ρ−1u
r
((1)ζ)ρ−1 ··· ul1t(i)ρ−1u

r
((i)ζ)ρ−1

fr
((1)ζ)ρ−1 ··· fr

((i)ζ)ρ−1

)
=

=

(
a1 ··· ai

ul(1)σt((1)ρ−1)σu
r
(((1)ζ)ρ−1)σ

··· ul(i)σt((i)ρ−1)σu
r
(((i)ζ)ρ−1)σ

fr
(((1)ζ)ρ−1)σ

··· fr
(((i)ζ)ρ−1)σ

)
and( c1 ··· ci

t1 ··· ti
d1 ··· di

)
=

(
gl1 ··· g

l
i

vl1 ··· v
l
i

hl1 ··· h
l
i

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
(
gr1 ··· g

r
i

vr1 ··· v
r
i

hr1 ··· h
r
i

)
=

=

(
gl1 ··· g

l
i

vl1 ··· v
l
i

hl1 ··· h
l
i

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·
(

b1 ··· bi
vr(1)κ ··· v

r
(i)κ

hr(1)κ ··· h
r
(i)κ

)
=

(
gl(1)ν ··· gl(i)ν

vl(1)νs1v
r
(1)κ ··· v

l
(i)νsiv

r
(i)κ

hr(1)κ ··· hr(i)κ

)
=

=

(
gl1 ··· gli

vl1s(1)ν−1v
r
((1)κ)ν−1 ··· vlis(i)ν−1v

r
((i)κ)ν−1

hr
((1)κ)ν−1 ··· hr

((i)κ)ν−1

)
=

=

(
c1 ··· ci

vl(1)ζs((1)ν−1)ςv
r
(((1)κ)ν−1)ς

··· vl(i)ζs((1)ν−1)ςv
r
(((i)κ)ν−1)ς

hr
(((1)κ)ν−1)ς

··· hr
(((i)κ)ν−1)ς

)
.

Then the de�nition of the semigroup I n
λ (S) implies the equalities

d1 = hr(((1)κ)ν−1)ς , . . . , di = hr(((i)κ)ν−1)ς .
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Now, by the equality αS = γlSβSγ
r
S we get that

( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=

el1 ··· e
l
kl

ul1 ··· u
l
kl

f l1 ··· f
l
kl

 ·( c1 ··· cit1 ··· ti
d1 ··· di

)
·

(
er1 ··· e

r
kr

ur1 ··· u
r
kr

fr1 ··· f
r
kr

)
=

=

el1 ··· e
l
kl

ul1 ··· u
l
kl

f l1 ··· f
l
kl

 ·( c1 ··· ci
vl(1)ζs((1)ν−1)ςv

r
(((1)κ)ν−1)ς

··· vl(i)ζs((1)ν−1)ςv
r
(((i)κ)ν−1)ς

d1 ··· di

)
·

(
er1 ··· e

r
kr

ur1 ··· u
r
kr

fr1 ··· f
r
kr

)
=

=

(
el(1)ρ ··· e

l
(i)ρ

ul(1)ρ ··· u
l
(i)ρ

c1 ··· ci

)
·
( c1 ··· ci
vl(1)ζs((1)ν−1)ςv

r
(((1)κ)ν−1)ς

··· vl(i)ζs((1)ν−1)ςv
r
(((i)κ)ν−1)ς

d1 ··· di

)
·
(

d1 ··· di
ur(1)ζ ··· u

r
(i)ζ

fr(1)ζ ··· f
r
(i)ζ

)
=

=

(
el(1)ρ ··· el(i)ρ

ul(1)ρv
l
(1)ζs((1)ν−1)ςv

r
(((1)κ)ν−1)ς

ur(1)ζ ··· u
l
(i)ρv

l
(i)ζs((1)ν−1)ςv

r
(((i)κ)ν−1)ς

ur(1)ζ

fr(1)ζ ··· fr(i)ζ

)
which implies the equalities

s1 = ul(1)σv
l
(((1)ζ)ρ−1)σs((((1)ν−1)ς)ρ−1)σv

r
(((((1)κ)ν−1)ς)ρ−1)σu

r
(((1)ζ)ρ−1)σ

. . . . . . . . . . . . . . . . . . . . . . . .

si = ul(i)σv
l
(((i)ζ)ρ−1)σs((((i)ν−1)ς)ρ−1)σv

r
(((((i)κ)ν−1)ς)ρ−1)σu

r
(((i)ζ)ρ−1)σ.

Hence for the permutation π = ν−1ςρ−1σ : {1, . . . , i} → {1, . . . , i} we have that s1J t(1)π,
. . . , siJ t(i)π in S.

(⇐) Suppose that for elements αS , βS ∈ I n
λ (S) there exists a permutation

σ : {1, . . . , i} → {1, . . . , i} such that s1J t(1)σ, . . . , siJ t(i)σ in S. Then there exist

u1, . . . , ui, v1, . . . , vi, x1, . . . , xi, y1, . . . , yi ∈ S1 such that

s1=x1t(1)σu1, . . . , si=xit(i)σui, t1=y1s(1)σ−1v1, . . . , ti=yis(i)σ−1vi.

Thus, we have that( a1 ··· ai
s1 ··· si
b1 ··· bi

)
=

( c(1)σ ··· c(i)σ
x1t(1)σu1 ··· xit(i)σui
b(1)σ ··· b(i)σ

)
=

(
c1 ··· ci

x(1)σ−1 t1u(1)σ−1 ··· x(i)σ−1 tiu(i)σ−1

b1 ··· bi

)
=

=
( c1 ··· ci
x(1)σ−1 ··· x(i)σ−1

c1 ··· ci

)
·
( c1 ··· ci
t1 ··· ti
b1 ··· bi

)
·
(

b1 ··· bi
u(1)σ−1 ··· u(i)σ−1

b1 ··· bi

)
and ( c1 ··· ci

t1 ··· ti
d1 ··· di

)
=

( a(1)σ−1 ··· a(i)σ−1

y1s(1)σ−1v1 ··· yis(i)σ−1vi

d(1)σ−1 ··· d(i)σ−1

)
=
( a1 ··· ai
y(1)σs1v(1)σ ··· y(i)σsiv(i)σ

d1 ··· di

)
=

=
( a1 ··· ai
y(1)σ ··· y(i)σ
a1 ··· ai

)
·
( a1 ··· ai
s1 ··· si
d1 ··· di

)
·
(

d1 ··· di
v(1)σ ··· v(i)σ
d1 ··· di

)
,

and hence we get that αSJ βS in I n
λ (S). �

Remark 2. Proposition 7(iv) implies that if there exists a permutation σ : {1, . . . , i} →
{1, . . . , i} such that s1H t(1)σ, . . . , siH t(i)σ in S then αSH βS in I n

λ (S). But Example 1
implies that the converse statement is not true.
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Example 1. Let λ be any cardinal > 2 and C (p, q) be the bicyclic monoid. The bicyclic
monoid C (p, q) is the semigroup with the identity 1 generated by two elements p and q
subjected only to the condition pq = 1. The distinct elements of C (p, q) are exhibited in
the following useful array

1 p p2 p3 · · ·
q qp qp2 qp3 · · ·
q2 q2p q2p2 q2p3 · · ·
q3 q3p q3p2 q3p3 · · ·
...

...
...

...
. . .

and the semigroup operation on C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

We �x arbitrary distinct elements a1 and a1 of λ and put

α =
( a1 a1
qp q2p2

a1 a1

)
and β =

( a1 a2
qp2 q2p
a2 a1

)
.

Then we have that

α =
( a1 a2
qp2 q2p
a2 a1

)
·
(
a1 a2
p q
a2 a1

)
and β =

( a1 a1
qp q2p2

a1 a1

)
·
(
a1 a2
p q
a2 a1

)
and hence αRβ in I n

λ (S), and similarly we have that

α =
(
a1 a2
p q
a2 a1

)
·
( a1 a2
qp2 q2p
a2 a1

)
and β =

(
a1 a2
p q
a2 a1

)
·
( a1 a1
qp q2p2

a1 a1

)
and hence αL β in I n

λ (S). Thus αH β in I n
λ (S), but the elements qp and q2p2 are not

pairwise H -equivalent to qp2 and q2p for any permutation σ : {1, 2} → {1, 2}.

Recall [28], a semigroup S is said to be:

(a) left stable if for a, b ∈ S, Sa ⊆ Sab implies Sa = Sab;
(b) right stable if for c, d ∈ S, cS ⊆ dcS implies cS = dcS;
(b) stable if it is both left and right stable.

We observe that in the book [11] an other de�nition of a stable semigroup is given,
and these two notion are distinct. A semigroup stable in the sense of Koch and Wallace
is always stable in the sense of the book [11], but not conversely (see: [30]). For the
semigroups with an identity element and for regular semigroups these two de�nitions of
stability coincide.

The following proposition states that the construction of the semigroup I n
λ (S)

preserves left an right stabilities.

Proposition 8. For every semigroup S, any non-zero cardinal λ and any positive integer
n 6 λ the following statements hold:

(i) I n
λ (S) is right stable if and only if so is S;

(ii) I n
λ (S) is left stable if and only if so is S;

(iii) I n
λ (S) is stable if and only if so is S.

Proof. (i) (⇐) Suppose that the semigroup S is right stable and assume that αS =( a1 ··· ai
s1 ··· si
b1 ··· bi

)
and βS =

( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
are elements of the semigroup I n

λ (S) such that
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αSI n
λ (S) ⊆ βSαSI n

λ (S). Then the above inclusion and the de�nition of the semigroup
operation on I n

λ (S) imply that i 6 k and the inclusion

{a1, . . . , ai} ⊆ {c1, . . . , ck} ∩ {d1, . . . , dk}

holds. Without loss of generality we may assume that d1 = a1, . . . , di = ai. Then
the inclusion αSI n

λ (S) ⊆ βSαSI n
λ (S) implies that there exists a permutation

σ : {1, . . . , i} → {1, . . . , i} such that c1 = a(1)σ, . . . , ci = a(i)σ. Hence by the de�ni-
tion of the semigroup operation of I n

λ (S) we get that

βSαSI n
λ (S) =

( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·I n

λ (S) =

(
c1 ··· ci ci+1 ··· ck
t1 ··· ti ti+1 ··· tk
d1 ··· di di+1 ··· dk

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·I n

λ (S)=

=

(
a(1)σ ··· a(i)σ ci+1 ··· ck
t1 ··· ti ti+1 ··· tk
a1 ··· ai di+1 ··· dk

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·I n

λ (S) =
(a(1)σ ··· a(i)σ

t1 ··· ti
a1 ··· ai

)
·
( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·I n

λ (S) =

=

(
a(1)σ ··· a(i)σ
t1s1 ··· tisi
b1 ··· bi

)
·I n

λ (S) =

( a1 ··· ai
t(1)σ−1s(1)σ−1 ··· t(i)σ−1s(i)σ−1

b(1)σ−1 ··· b(i)σ−1

)
·I n

λ (S) =

={0} ∪
⋃{

[t(1)σ−1s(1)σ−1S, . . . , t(i)σ−1s(i)σ−1S]
(a1,...,ai)
(p1,...,pi)

: p1, . . . , pi ∈ λ
}
∪

∪
⋃{

[t(l1)σ−1s(l1)σ−1S, . . . , t(li−1)σ−1s(li−1)σ−1S]
(l1,...,li−1)
(p1,...,pi−1)

: l1, . . . , li−1 are

distinct elements of {1, . . . , i} and p1, . . . , pi−1 ∈ λ
}
∪ · · · ∪

∪
⋃{

[t(l)σ−1s(l)σ−1S]
(l)
(p) : l ∈ {1, . . . , i} and p ∈ λ

}
and

αSI n
λ (S) =

( a1 ··· ai
s1 ··· si
b1 ··· bi

)
·I n

λ (S) = {0} ∪
⋃{

[s1S, . . . , siS]
(a1,...,ai)
(p1,...,pi)

: p1, . . . , pi ∈ λ
}
∪

∪
⋃{

[sl1S, . . . , sli−1S]
(l1,...,li−1)
(p1,...,pi−1)

: l1, . . . , li−1 are distinct elements of {1, . . . , i}

and p1, . . . , pi−1 ∈ λ
}
∪ · · · ∪

∪
⋃{

[slS]
(l)
(p) : l ∈ {1, . . . , i} and p ∈ λ

}
.

Hence, the inclusion αSI n
λ (S) ⊆ βSαSI n

λ (S) and semigroup operations of the semi-
groups I n

λ (S) and S imply that slS ⊆ t(l)σ−1s(l)σ−1S, for every l ∈ {1, . . . , i}. Since the
semigroup of all permutations of a �nite set is �nite, we conclude that there exists a
positive integer j such that σj : {1, . . . , i} → {1, . . . , i} is the identity map and therefore
we get that σj−1 = σ. This implies that for every l ∈ {1, . . . , i} we have that

slS ⊆ t(l)σ−1s(l)σ−1S ⊆ t(l)σ−1t(l)σ−2s(l)σ−2S ⊆
⊆ · · · ⊆
⊆ t(l)σ−1t(l)σ−2 · · · t(l)σ−j+1s(l)σ−j+1S =

= t(l)σ−1t(l)σ−2 · · · tlslS.

Then the right stability of the semigroup S implies the equality

slS = t(l)σ−1t(l)σ−2 · · · tlslS
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and hence we have that slS = t(l)σ−1s(l)σ−1S, for every l ∈ {1, . . . , i}. Then the
inclusion αSI n

λ (S) ⊆ βSαSI n
λ (S) and above formulae imply the equality αSI n

λ (S) =
βSαSI n

λ (S), and hence the semigroup I n
λ (S) is right stable.

(⇒) Suppose that the semigroup I n
λ (S) is right stable and sS ⊆ tsS for s, t ∈ S.

We �x an arbitrary a ∈ λ and put αS =
(
a
s
a

)
and βS =

(
a
t
a

)
. Hence by the de�nition of

the semigroup operation of I n
λ (S) we get that

αSI n
λ (S) =

(
a
s
a

)
I n
λ (S) = {0} ∪

⋃{
[sS]

(a)
(p) : p ∈ λ

}
and

βSαSI n
λ (S) =

(
a
t
a

)(
a
s
a

)
I n
λ (S) =

(
a
ts
a

)
I n
λ (S) = {0} ∪

⋃{
[tsS]

(a)
(p) : p ∈ λ

}
,

and hence by the inclusion sS ⊆ tsS we have that αSI n
λ (S) ⊆ βSαSI n

λ (S). Now the
right stability of I n

λ (S) implies the equality αSI n
λ (S) = βSαSI n

λ (S). This implies

[sS]
(a)
(p) = [tsS]

(a)
(p) in I n

λ (S) for every p ∈ λ, and hence sS = tsS.

The proof of statement (ii) is dual to that of statement (i).

(iii) follows from statements (i) and (ii). �

4. On semigroups with a tight ideal series

Fix an arbitrary positive integer m and any p ∈ {0, . . . ,m}. Let A be a non-empty
set and let B be a non-empty proper subset of A. By [B ⊂ A]mp we denote all elements

(x1, . . . , xm) of the power Am which satisfy the following property: at most p coordinates
of (x1, . . . , xm) belong to A\B. It is obvious that [B ⊂ A]mm = Am for any positive integer
m, any non-empty set A and any non-empty proper subset B of A.

The above de�nition implies the following two lemmas.

Lemma 1. Let m be an arbitrary positive integer and p ∈ {1, . . . ,m}. Let A be a
non-empty set and let B be a non-empty proper subset of A. Then the set [B ⊂ A]mp \
[B ⊂ A]mp−1 consists of all elements (x1, . . . , xm) of the power Am such that exactly p

coordinates of (x1, . . . , xm) belong to A \B.

Lemma 2. Let m be an arbitrary positive integer and p ∈ {0, 1, . . . ,m}. Let S be a
semigroup, A and B be ideals in S such that B ⊂ A. Then [B ⊂ A]mp is an ideal of the
direct power Sm.

An subset D of a semigroup S is said to be ω-unstable if D is in�nite and aB∪Ba *
D for any a ∈ D and any in�nite subset B ⊆ D.

De�nition 1 ([18]). An ideal series (see, for example, [11]) for a semigroup S is a chain
of ideals

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In = S.

We call the ideal series tight if I0 is a �nite set and Dk = Ik \ Ik−1 is an ω-unstable
subset for each k = 1, . . . , n.
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It is obvious that for every in�nite cardinal λ and any positive integer n the semi-
group I n

λ has a tight ideal series. A �nite direct product of semigroups with tight ideal
series is a semigroup with a tight ideal series and a homomorphic image of a semigroup
with a tight ideal series with �nite preimages is a semigroup with a tight ideal series
too [18].

A subset D of a semigroup S is said to be strongly ω-unstable if D is in�nite and
aB ∪Bb * D for any a, b ∈ D and any in�nite subset B ⊆ D. It is obvious that a subset
D of a semigroup S is strongly ω-unstable then D is ω-unstable.

De�nition 2. We call the ideal series I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In = S strongly tight if I0 is
a �nite set and Dk = Ik \ Ik−1 is a strongly ω-unstable subset for each k = 1, . . . , n.

An example of a semigroup with a strongly tight ideal series gives the following
proposition.

Proposition 9. Let λ be any in�nite cardinal and n be any positive integer. Then

I0 = {0} ⊆ I1 = I 1
λ ⊆ I2 = I 2

λ ⊆ · · · ⊆ In = I n
λ ,

is the strongly tight ideal series in the semigroup I n
λ .

Proof. The de�nition of the semigroup I n
λ implies that I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In is an

ideal series in I n
λ .

Fix an arbitrary integer i = 1, . . . , n. For any in�nite subset B of I i
λ \I

i−1
λ at least

one of the following families of sets

d(B) = {dom γ : γ ∈ B} or r(B) = {ran γ : γ ∈ B}
is in�nite. Then the de�nition of the semigroup operation in I n

λ implies that αB *
I i
λ \ I i−1

λ in the case when the set d(B) is in�nite, and Bβ * I i
λ \ I i−1

λ in the case

when the set r(B) is in�nite, for any α, β ∈ I i
λ \I i−1

λ . �

Later for an arbitrary non-empty set A, any positive integer n and any i ∈ {1, . . . , n}
by πi : A

n → A, (a1, . . . , an) 7→ ai we shall denote the projection on the i-th factor of
the power An.

Proposition 10. Let n be a positive integer > 2 and let I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S
be the strongly tight ideal series for a semigroup S. Then the series

In0 ⊆ [I0 ⊂ I1]n1 ⊆ [I0 ⊂ I1]n2 ⊆ · · · ⊆ [I0 ⊂ I1]nn−1 ⊆ [I0 ⊂ I1]nn = In1 ⊆
⊆ [I1 ⊂ I2]n1 ⊆ [I1 ⊂ I2]n2 ⊆ · · · ⊆ [I1 ⊂ I2]nn−1 ⊆ [I1 ⊂ I2]nn = In2 ⊆ · · · ⊆
⊆ [Im−1⊂Im]n1 ⊆ [Im−1⊂Im]n2 ⊆ · · · ⊆ [Im−1⊂Im]nn−1 ⊆ [Im−1⊂Im]nn=I

n
m = Sn

(2)

is a strongly tight ideal series for the direct power Sn.

Proof. It is obvious that In0 is a �nite ideal of Sn. Also by Lemma 2 all subsets in series
(2) are ideals in Sn.

Fix any k ∈ {1, . . . ,m} and any p ∈ {1, . . . , n}. We claim that the sets

[Ik−1 ⊂ Ik]np \ [Ik−1 ⊂ Ik]np−1 and [Ik−1 ⊂ Ik]n1 \ Ink−1
are strongly ω-unstable in Sn. Indeed, �x an arbitrary in�nite subset

B ⊆ [Ik−1 ⊂ Ik]np \ [Ik−1 ⊂ Ik]np−1
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and any points

a = (a1, . . . , an), b = (b1, . . . , bn) ∈ [Ik−1 ⊂ Ik]np \ [Ik−1 ⊂ Ik]np−1.

Then there exists a coordinate i ∈ {1, . . . , n} such that the set πi(B) ⊆ Ik \ Ik−1 is
in�nite. If ai /∈ Ik \ Ik−1 or bi /∈ Ik \ Ik−1 then

(ai · πi(B) ∪ πi(B) · bi) ∩ Ik \ Ik−1 = ∅,

and hence

aB ∪Bb * [Ik−1 ⊂ Ik]np \ [Ik−1 ⊂ Ik]np−1.

If ai, bi ∈ Ik \ Ik−1 then (ai · πi(B) ∪ πi(B) · bi) * Ik \ Ik−1, because the set Ik \ Ik−1
is strongly ω-unstable in S, and hence aB ∪ Bb * [Ik−1 ⊂ Ik]

n
p \ [Ik−1 ⊂ Ik]

n
p−1. The

proof of the statement that the set [Ik−1 ⊂ Ik]
n
1 \ Ink−1 is strongly ω-unstable in Sn is

similar. �

Later we �x an arbitrary positive integer n. Then for any semigroup S and any posi-
tive integer k 6 n, since I k

λ (S) is a subsemigroup of I n
λ (S), by ι : I k

λ (S)→ I n
λ (S) we

denote this natural embedding. Similar arguments imply that, without loss of generality,
for any subsemigroup T of S and any positive integer k 6 n since I k

λ (T ) is a subsemi-
group of I n

λ (S) by ι : I k
λ (T )→ I n

λ (S), we denote this natural embedding.

Let A 6= ∅ and k be any positive integer. A subset B ⊆ Ak is said to be k-symmetric
if the following condition holds: (b1, . . . , bk) ∈ B implies

(
b(1)σ, . . . , b(k)σ

)
∈ B for every

permutation σ : {1, . . . , k} → {1, . . . , k}.

Remark 3. We observe that every element of the tight ideal series (2) is m-symmetric in
Sn, and moreover the sets

[Ik−1 ⊂ Ik]np \ [Ik−1 ⊂ Ik]np−1 and [Ik−1 ⊂ Ik]n1 \ Ink−1
are m-symmetric in Sn, too, for all k ∈ {1, . . . ,m} and p ∈ {1, . . . , n}.

We need the following construction.

Construction 2. Let λ be a cardinal > 1, n be any positive integer, k be any positive
integer 6 min{n, λ}, and S be a semigroup. For any ordered collections of k distinct
elements (a1, . . . , ak) and (b1, . . . , bk) of λ

k, we de�ne a map

f
(a1,...,ak)
(b1,...,bk)

: Sk → S
(a1,...,ak)
(b1,...,bk)

by the formula

(s1, . . . , sk)f
(a1,...,ak)
(b1,...,bk)

=
( a1 ··· ak
s1 ··· sk
b1 ··· bk

)
.

For any non-empty subset A ⊆ Sk and any positive integer k 6 n we de�ne the
following subsets

[A]
(∗)k
In
λ (S) =

⋃{
(A)f

(a1,...,ak)
(b1,...,bk)

: (a1, . . . , ak) and (b1, . . . , bk) are ordered collections

of k distinct elements of λk
}



20
Oleg GUTIK, Oleksandra SOBOL

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2019. Âèïóñê 87

and

[A]
(∗)k
In
λ (S) =


[A]

(∗)k
In
λ (S) ∪I k−1

λ (S), if k > 1;

[A]
(∗)1
In
λ (S) ∪ {0}, if k = 1,

of the semigroup I n
λ (S).

The following lemma can be immediately derived from the de�nition of k-symmetric
sets.

Lemma 3. Let λ be a cardinal > 1, k be any positive integer 6 λ and S be a semigroup.
Let (a1, . . . , ak) and (b1, . . . , bk) be arbitrary ordered collections of k distinct elements of
λk. If A 6= ∅ is a k-symmetric subset of Sk, then

(A)f
(a1,...,ak)
(b1,...,bk)

= (A)f
(a(1)σ,...,a(k)σ)

(b(1)σ,...,b(k)σ)

for every permutation σ : {1, . . . , k} → {1, . . . , k}.

Theorem 1. Let λ be an in�nite cardinal and n be a positive integer. If S is a �nite
semigroup, then

I0 = {0} ⊆ I1 = I 1
λ (S) ⊆ I2 = I 2

λ (S) ⊆ · · · ⊆ In = I n
λ (S)

is a strongly tight ideal series for the semigroup I n
λ (S).

Proof. It is obvious that for every i = 0, 1, . . . , n the set Ii is an ideal in I n
λ (S) and

moreover the set I0 is �nite.
Fix an arbitrary i = 1, . . . , n and any in�nite subset B ⊆ Ii \ Ii−1. Since the

semigroup S is �nite, every in�nite subset X of Ii \ Ii−1 intersects in�nitely many sets

of the form S
(a1,...,ai)
(b1,...,bi)

. Then the de�nition of the semigroup I n
λ (S) implies that at least

one of the families of sets

d(B) = {d γ : γ ∈ B} or r(B) = {r γ : γ ∈ B}

is in�nite. Then the de�nition of the semigroup operation in I n
λ (S) implies that αB *

Ii \ Ii−1 in the case when the set d(B) is in�nite, and Bβ * Ii \ Ii−1 in the case when
the set r(B) is in�nite, for any α, β ∈ Ii \ Ii−1. �

Theorem 2. Let λ be an in�nite cardinal, n be a positive integer and let

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S

be a strongly tight ideal series for a semigroup S. Then the series
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J0 = {0} ⊆ J1,0 = [I0]
(∗)1
In
λ (S) ⊆

⊆ J1,1 = [I1]
(∗)1
In
λ (S) ⊆ J1,2 = [I2]

(∗)1
In
λ (S) ⊆ · · · ⊆ J1,m = [Im]

(∗)1
In
λ (S) = I 1

λ (S) ⊆

⊆ J2,0 = [I20 ]
(∗)2
In
λ (S) ⊆ J2,1 = [[I0⊂I1]21]

(∗)2
In
λ (S) ⊆ J2,2 = [I21 ]

(∗)2
In
λ (S) ⊆

⊆ J2,3 = [[I1⊂I2]21]
(∗)2
In
λ (S) ⊆ J2,4 = [I22 ]

(∗)2
In
λ (S) ⊆ · · · ⊆

⊆ J2,2m−1 = [[Im−1⊂Im]21]
(∗)2
In
λ (S) ⊆ J2,2m = [[Im]22]

(∗)2
In
λ (S) = I 2

λ (S) ⊆ · · · ⊆

⊆ Jn,0 = [In0 ]
(∗)n
In
λ (S) ⊆ Jn,1 = [[I0⊂I1]n1 ]

(∗)n
In
λ (S) ⊆ Jn,2 = [[I0⊂I1]n2 ]

(∗)n
In
λ (S) ⊆

⊆ Jn,3 = [[I0⊂I1]n3 ]
(∗)n
In
λ (S) ⊆ Jn,4 = [[I0⊂I1]n4 ]

(∗)n
In
λ (S) ⊆ · · · ⊆

⊆ Jn,n−1 =
[
[I0⊂I1]nn−1

](∗)n
In
λ (S)

⊆ Jn,n = [In1 ]
(∗)n
In
λ (S) ⊆

⊆ Jn,n+1 = [[I1⊂I2]n1 ]
(∗)n
In
λ (S) ⊆ Jn,n+2 = [[I1⊂I2]n2 ]

(∗)n
In
λ (S) ⊆

⊆ Jn,n+3 = [[I1⊂I2]n3 ]
(∗)n
In
λ (S) ⊆ Jn,n+4 = [[I1⊂I2]n4 ]

(∗)n
In
λ (S) ⊆ · · · ⊆

⊆ Jn,2n−1 =
[
[I1⊂I2]nn−1

](∗)n
In
λ (S)

⊆ Jn,2n = [In2 ]
(∗)n
In
λ (S) ⊆ · · · ⊆

⊆ Jn,(m−1)n+1 = [[Im−1⊂Im]n1 ]
(∗)n
In
λ (S) ⊆ Jn,(m−1)n+2 = [[Im−1⊂Im]n2 ]

(∗)n
In
λ (S) ⊆

⊆ Jn,(m−1)n+3 = [[Im−1⊂Im]n3 ]
(∗)n
In
λ (S) ⊆ Jn,(m−1)n+4 = [[Im−1⊂Im]n4 ]

(∗)n
In
λ (S) ⊆

⊆ · · · ⊆ Jn,mn−1 =
[
[Im−1⊂Im]nn−1

](∗)n
In
λ (S)

⊆ Jn,mn = [Inm]
(∗)n
In
λ (S) = I n

λ (S)

(3)

is a strongly tight ideal series for the semigroup I n
λ (S).

Proof. The de�nition of the semigroup I n
λ (S) and Lemma 2 imply that all subsets in

series (3) are ideals in I n
λ (S).

Since I0 is a �nite ideal in S, the equalities

J1,0 \ J0 = [I0]
(∗)1
In
λ (S) \ {0} = [I0]

(∗)1
In
λ (S)

J2,0 \ J1,m = [I20 ]
(∗)1
In
λ (S) \I 1

λ (S) = [I20 ]
(∗)1
In
λ (S)

· · · · · · · · ·

Jn,0 \ Jn−1,m(n−1) = [In0 ]
(∗)n
In
λ (S) \I n−1

λ (S) = [In0 ]
(∗)n
In
λ (S)

and the semigroup operation of I n
λ (S) imply that

J1,0 \ J0, J2,0 \ J1,m, . . . , Jn,0 \ Jn−1,m(n−1)

are strongly ω-unstable subsets in I n
λ (S).

Next we shall show that the set Jk,p \Jk,p−1 is strongly ω-unstable in I n
λ (S) for all

k = 1, . . . , n and p = 1, . . . , km.
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Fix any in�nite subset B of Jk,p \Jk,p−1 and any α, β ∈ Jk,p \Jk,p−1. If d(B) 6= r(α)
then the semigroup operation of I n

λ (S) implies that αB * Jk,p \ Jk,p−1. Similarly, if
d(β) 6= r(B) then Bβ * Jk,p \ Jk,p−1.

Next we suppose that d(B) = r(α), d(β) = r(B),

α =
( a1 ··· ak
s1 ··· sk
b1 ··· bk

)
and β =

( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
,

for some s1, . . . , sk, t1, . . . , tk ∈ S and ordered collections of k distinct elements
(a1, . . . , ak), (b1, . . . , bk), (c1, . . . , ck), (d1, . . . , dk) of λk. Then the set B consists of
the elements of the form

γ =
(

b1 ··· bk
x1 ··· xk
c(1)σ ··· c(k)σ

)
,

where x1, . . . , xk ∈ S and σ : {1, . . . , k} → {1, . . . , k} is a permutation.

First we consider the case when Jk,p = Jk,jk =
[
Ikj
](∗)k
In
λ (S)

for some j = 1, . . . ,m.

Then

Jk,p−1 = Jk,jk−1 =
[
[Ij−1 ⊂ Ij ]kk−1

](∗)k
In
λ (S)

and B ⊆
[
Ikj
](∗)k
In
λ (S)

. Since the set B is in�nite, there exists bi0 ∈ {b1, . . . , bk} such that

there exist in�nitely many γ ∈ B such that d(γ) 3 bi0 . Without loss of generality we
may assume that bi0 = b1. We put B0 = {γ ∈ B : b1 ∈ d(γ)}. Then the set B0 is in�nite
and hence the set

BS0 =
{
x1 ∈ S :

(
b1 ··· bk
x1 ··· xk
c(1)σ ··· c(k)σ

)
∈ B0, σ is a permutation of {1, . . . , k}

}
is in�nite, too. The above implies that there exists a permutation σ0 of {1, . . . , k} such
that in�nitely many elements of the form

(
b1 ··· bk
x1 ··· xk

c(1)σ0 ··· c(k)σ0

)
belong to B0. Since s1, t(1)σ0

∈
Ij \ Ij−1 and the set Ij \ Ij−1 is strongly ω-unstable we obtain that a1 ·BS0 ∪BS0 · t(1)σ0

*
Ij \ Ij−1, and hence the set

[
Ikj
](∗)k
In
λ (S)

is strongly ω-unstable, as well.

Next we consider the case Jk,p = Jn,(j−1)k+q =
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

for some j =

1, . . . ,m. Then

Jk,p−1 = Jn,(j−1)k+q−1 =
[
[Ij−1 ⊂ Ij ]kq−1

](∗)k
In
λ (S)

and B ⊆
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

. Since the set B is in�nite, without loss of generality we

may assume that B contains an in�nite subset B0 which consists of elements of the form

(4) γ =

(
b1 ··· bq bq+1 ··· bk
x1 ··· xq xq+1 ··· sk
c1 ··· cq cq+1 ··· ck

)
,

where x1, . . . , xq ∈ Ij \ Ij−1 and xq+1, . . . , xk ∈ Ij−1 \ Ij−2 for some ordered collections
of k distinct elements (b1, . . . , bk) and (c1, . . . , ck) of λ

k. Fix arbitrary elements

α =
( a1 ··· ak
s1 ··· sk
b1 ··· bk

)
and β =

( c1 ··· ck
t1 ··· tk
d1 ··· dk

)
,

of the set B. If either su /∈ Ij \ Ij−1 for some u ∈ {1, . . . , q} or sv /∈ Ij−1 \ Ij−2 for some

v ∈ {q+1, . . . , k} then αB0 *
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

. Similarly, tu /∈ Ij \ Ij−1 for some u ∈
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{1, . . . , q} or tv /∈ Ij−1 \Ij−2 for some v ∈ {q+1, . . . , k} then B0β *
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

.

Hence later we shall assume that su ∈ Ij \ Ij−1 for all u ∈ {1, . . . , q}, sv ∈ Ij−1 \ Ij−2
for all v ∈ {q + 1, . . . , k}, tu ∈ Ij \ Ij−1 for all u ∈ {1, . . . , q} and tv ∈ Ij−1 \ Ij−2 for all
v ∈ {q+1, . . . , k}. Since the set B0 is in�nite, there exists i0 ∈ {1, . . . , k} such that there
exist in�nitely many γ ∈ B0 such that d(γ) 3 bi0 . We put B1 = {γ ∈ B0 : bi0 ∈ d(γ)}.
Since the set B1 is in�nite, the following statements hold:

(1) if i0 ∈ {1, . . . , q} then si0A ∪Ati0 * Ij \ Ij−1, where

A =

{
xi0 : γ =

(
b1 ··· bi0 ··· bq ··· bk
x1 ··· xi0 ··· xq ··· sk
c1 ··· ci0 ··· cq ··· ck

)
∈ B1

}
,

because the set Ij \ Ij−1 is strongly ω-unstable in S;
(2) if i0 ∈ {q + 1, . . . , k} then si0A ∪Ati0 * Ij−1 \ Ij−2, where

A =

{
xi0 : γ =

(
b1 ··· bq ··· bi0 ··· bk
x1 ··· xq ··· xi0 ··· sk
c1 ··· cq ··· ci0 ··· ck

)
∈ B1

}
,

because the set Ij−1 \ Ij−2 is strongly ω-unstable in S.

Both above statements imply that

αB1 ∪B1γ *
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

and hence

αB ∪Bγ *
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

,

i.e., the set
[
[Ij−1 ⊂ Ij ]kq

](∗)k
In
λ (S)

is strongly ω-unstable in I n
λ (S). This completes the proof

of the theorem. �

Theorem 2 implies the following

Corollary 2. Let λ be an in�nite cardinal, n be a positive integer and let

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S

be a strongly tight ideal series for a semigroup S. Then the ideal series (3) is tight for
the semigroup I n

λ (S).

The proof of the following theorem is similar to Theorem 2.

Theorem 3. Let λ be a �nite cardinal, n be a positive integer 6 λ and let

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S

be a strongly tight ideal series for a semigroup S. Then the following series
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J0 = {0} ∪ [I0]
(∗)1
In
λ (S) ⊆

⊆ J1,1 = [I1]
(∗)1
In
λ (S) ⊆ J1,2 = [I2]

(∗)1
In
λ (S) ⊆ · · · ⊆ J1,m = [Im]

(∗)1
In
λ (S) = I 1

λ (S) ⊆

⊆ J2,1 = [[I1⊂I2]21]
(∗)2
In
λ (S) ⊆ J2,2 = [[I1⊂I2]22]

(∗)2
In
λ (S) ⊆ · · · ⊆

⊆ J2,2m−1 = [[Im−1⊂Im]21]
(∗)2
In
λ (S) ⊆ J2,2m = [[Im]22]

(∗)2
In
λ (S)I

2
λ (S) ⊆ · · · ⊆

⊆ Jn,1 = [[I0⊂I1]n1 ]
(∗)n
In
λ (S) ⊆ Jn,2 = [[I0⊂I1]n2 ]

(∗)n
In
λ (S) ⊆

⊆ Jn,3 = [[I0⊂I1]n3 ]
(∗)n
In
λ (S) ⊆ Jn,4 = [[I0⊂I1]n4 ]

(∗)n
In
λ (S) ⊆ · · · ⊆

⊆ Jn,n−1 =
[
[I0⊂I1]nn−1

](∗)n
In
λ (S)

⊆ Jn,n = [In1 ]
(∗)n
In
λ (S) ⊆

⊆ Jn,n+1 = [[I1⊂I2]n1 ]
(∗)n
In
λ (S) ⊆ Jn,n+2 = [[I1⊂I2]n2 ]

(∗)n
In
λ (S) ⊆

⊆ Jn,n+3 = [[I1⊂I2]n3 ]
(∗)n
In
λ (S) ⊆ Jn,n+4 = [[I1⊂I2]n4 ]

(∗)n
In
λ (S) ⊆ · · · ⊆

⊆ Jn,2n−1 =
[
[I1⊂I2]nn−1

](∗)n
In
λ (S)

⊆ Jn,2n = [In2 ]
(∗)n
In
λ (S) ⊆ · · · ⊆

⊆ Jn,(m−1)n+1 = [[Im−1⊂Im]n1 ]
(∗)n
In
λ (S) ⊆ Jn,(m−1)n+2 = [[Im−1⊂Im]n2 ]

(∗)n
In
λ (S) ⊆

⊆ Jn,(m−1)n+3 = [[Im−1⊂Im]n3 ]
(∗)n
In
λ (S) ⊆ Jn,(m−1)n+4 = [[Im−1⊂Im]n4 ]

(∗)n
In
λ (S) ⊆

⊆ · · · ⊆ Jn,mn−1 =
[
[Im−1⊂Im]nn−1

](∗)n
In
λ (S)

⊆ Jn,mn = [Inm]
(∗)n
In
λ (S) = I n

λ (S)

(5)

is a strongly tight ideal series for the semigroup I n
λ (S).

Theorem 3 implies the following

Corollary 3. Let λ be a �nite cardinal, n be a positive integer 6 λ and let I0 ⊆ I1 ⊆
I2 ⊆ · · · ⊆ Im = S be a strongly tight ideal series for a semigroup S. Then the ideal
series (3) is tight for the semigroup I n

λ (S).

Let S be a class of semitopological semigroups. A semigroup S ∈ S is called H-
closed in S, if S is a closed subsemigroup of any semitopological semigroup T ∈ S which
contains S both as a subsemigroup and as a topological space. The H-closed topological
semigroups were introduced by Stepp in [32], and therein they were called maximal
semigroups. An algebraic semigroup S is called: algebraically complete in S, if S with
any Hausdor� topology τ such that (S, τ) ∈ S is H-closed in S. We observe that many
distinct types of H-closedness of topological and semitopological semigroups is studied
in [1]�[10], [16]�[21], [24], [26].

By Proposition 10 from [18] every inverse semigroup S with a tight ideal series is
algebraically complete in the class of Hausdor� semitopological inverse semigroups with
continuous inversion. Hence Proposition 6 and Theorems 2, 3 imply the following

Theorem 4. Let S be an inverse semigroup which admits a strongly tight ideal series.
Then for every non-zero cardinal λ and any positive integer n 6 λ the semigroup I n

λ (S)
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is algebraically complete in the class of Hausdor� semitopological inverse semigroups with
continuous inversion.

We remark that in the case when n = 1 the construction of I 1
λ (S) preserves the

property to be a semigroup with a tight ideal series, and this follows from the following
theorem.

Theorem 5. Let λ be any non-zero cardinal, n be a positive integer n 6 λ and let
I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S be a tight ideal series for a semigroup S. Then the series

(6) J0={0} ⊆ J1 = [I0]
(∗)1
In
λ (S) ⊆ J2=[I1]

(∗)1
In
λ (S)⊆· · ·⊆Jm=[Im−1]

(∗)1
In
λ (S) ⊆ Jm+1=I 1

λ (S)

is a tight ideal series for the semigroup I 1
λ (S) in the case when λ is in�nite, and

(7) J0={0} ∪ [I0]
(∗)1
In
λ (S) ⊆ J1=[I1]

(∗)1
In
λ (S) ⊆ · · · ⊆ Jm−1=[Im−1]

(∗)1
In
λ (S) ⊆ Jm=I 1

λ (S)

is a tight ideal series for the semigroup I 1
λ (S) in the case when λ is �nite.

Proof. We consider the case when the cardinal λ is in�nite. In the other case the proof
is similar.

The semigroup operation of I 1
λ (S) implies that the the set Jk is an ideal in I 1

λ (S)
for an arbitrary integer k ∈ {0, 1, . . . ,m+ 1}.

Fix an arbitrary k ∈ {1, . . . ,m+1}. Then for any in�nite subset B of Jk \Jk−1 and
any α =

(
a
s
b

)
∈ Jk \ Jk−1 the following statements hold.

(1) If B ∩ S(i)
(i) is in�nite for some i ∈ λ then B ∩ S(i)

(i) ⊆ [Ik−1 \ Ik2 ]
(i)
(i). Hence,

the semigroup operation of I 1
λ (S) implies that αB ∪ Bα * Jk \ Jk−1 in the

case when a = b = i, because the set Ik−1 \ Ik2 is ω-unstable in S. Otherwise
0 ∈ αB ∪Bα * Jk \ Jk−1.

(2) In the other case the semigroup operation of I 1
λ (S) implies that 0 ∈ αB ∪Bα *

Jk \ Jk−1.
Both above statements imply that the set Jk \ Jk−1 is ω-unstable in I 1

λ (S), which
completes the proof of the theorem. �

5. On a semitopological semigroup I n
λ (S)

For any element α =
(
i1 ... ik
j1 ... jk

)
of the semigroup I n

λ and any s ∈ S we denote

α[s] =
(
i1 ... ik
s ... s
j1 ... jk

)
, which is an element of I n

λ (S). Later in this case we shall say that α[s]

is the s-extension of α or α is the I n
λ -restriction of α[s].

Proposition 11. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary
positive integer 6 λ, 0 < k 6 n and I n

λ (S) be a Hausdor� semitopological semigroup.
Then for any ordered collections of k distinct elements (a1, . . . , ak) and (b1, . . . , bk) of λ

k

and any element αS ∈ S(a1,...,ak)
(b1,...,bk)

there exists an open neighbourhood U(αS) of αS such

that

• U(αS)∩I k−1
λ (S) = ∅ and U(αS)∩I k

λ (S) ⊆ S
(a1,...,ak)
(b1,...,bk)

in the case when k > 2,

• 0 /∈ U(αS) and U(αS) ∩I 1
λ (S) ⊆ S

(a1)
(b1)

in the case when k = 1.

Thus I k
λ (S) is a closed subsemigroup of I n

λ (S).
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Proof. Fix an arbitrary k 6 n and an arbitrary αS =
( a1 ... ak
s1 ... sk
b1 ... bk

)
∈ Sa1,...,akb1,...,bk

. It is obvious

that ε1[1S ] · αS · ε2[1S ] = αS , where

ε1[1S ] =
( a1 ... ak

1S ... 1S
a1 ... ak

)
, ε2[1S ] =

(
b1 ... bk
1S ... 1S
b1 ... bk

)
,

and 1S is the unit element of S.
Simple calculations imply that

S
(a1,...,ak)
(b1,...,bk)

=

= ε1[1S ] ·I n
λ (S) · ε2[1S ] \

⋃
{ε1[1S ] ·I n

λ (S) · ε2[1S ] : ε1 < ε1 and ε2 < ε2 in E(I n
λ )} .

We observe that eT and Te are closed subset in an arbitrary Hausdor� semitopologi-
cal semigroup T for any its idempotent e. Since for any idempotent ε ∈ I n

λ the set
↓ε = {ι ∈ E(I n

λ ) : ι 6 ε} is �nite, the set

AαS =
⋃
{ε1[1S ] ·I n

λ (S) · ε2[1S ] : ε1 < ε1 and ε2 < ε2}

is closed in I n
λ (S). Fix an arbitrary open neighbourhoodW (αS) of αS such thatW (αS)∩

AαS = ∅. The separate continuity of the semigroup operation on I n
λ (S) implies that

there exists an open neighbourhood U(αS) of αS such that ε1[1S ]·U(αS)·ε2[1S ] ⊆W (αS).
The neighbourhood U(αS) is a requested one. Indeed, if there exists βS ∈ I k

λ (S) \
S
(a1,...,ak)
(b1,...,bk)

then ε1[1S ] · βS · ε2[1S ] ∈ AαS . �

Remark 4. We observe that in Proposition 11 we may assume that the neighbourhood

U(αS) may be chosen with the property that ε1[1S ] · U(αS) · ε2[1S ] ⊆ S(a1,...,ak)
(b1,...,bk)

.

Proposition 12. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary posi-
tive integer 6 λ, 0 < k 6 n and I n

λ (S) be a Hausdor� semitopological semigroup. Then
for any ordered collections of k distinct elements (a1, . . . , ak), (b1, . . . , bk), (c1, . . . , ck),

and (d1, . . . , dk) of λk the subspaces S
(a1,...,ak)
(b1,...,bk)

and S
(c1,...,ck)
(d1,...,dk)

are homeomorphic, and

moreover S
(a1,...,ak)
(a1,...,ak)

and S
(c1,...,ck)
(c1,...,ck)

are topologically isomorphic subsemigroups of I n
λ (S).

Proof. Since I n
λ (S) is a semitopological semigroup, the restrictions of the maps

(a1,...,ak)
(b1,...,bk)

h
(c1,...,ck)
(d1,...,dk)

: I n
λ (S)→ I n

λ (S), α 7→
( c1 ... ck

1S ... 1S
a1 ... ak

)
· α ·

(
b1 ... bk
1S ... 1S
d1 ... dk

)
and

(c1,...,ck)
(d1,...,dk)

h
(a1,...,ak)
(b1,...,bk)

: I n
λ (S)→ I n

λ (S), α 7→
( a1 ... ak

1S ... 1S
c1 ... ck

)
· α ·

(
d1 ... dk
1S ... 1S
b1 ... bk

)
on the subspaces S

(a1,...,ak)
(b1,...,bk)

and S
(c1,...,ck)
(d1,...,dk)

, respectively, are mutually inverse, and hence

S
(a1,...,ak)
(b1,...,bk)

and S
(c1,...,ck)
(d1,...,dk)

are homeomorphic subspaces in I n
λ (S). Also, it is obvious that

in the case of subsemigroups S
(a1,...,ak)
(a1,...,ak)

and S
(c1,...,ck)
(c1,...,ck)

so de�ned restrictions of maps are

topological isomorphisms. �
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For any ordered collections of k distinct elements (a1, . . . , ak) and (b1, . . . , bk) of λ
k

we de�ne a map

f
(a1,...,ak)
(b1,...,bk)

: I n
λ (S)→ I n

λ (S), α 7→
( a1 ... ak

1S ... 1S
a1 ... ak

)
· α ·

(
b1 ... bk
1S ... 1S
b1 ... bk

)
.

Proposition 11 implies the following corollary.

Corollary 4. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive
integer 6 λ, 0 < k 6 n and I n

λ (S) be a Hausdor� semitopological semigroup. Then the
set

⇑S(a1,...,ak)
(b1,...,bk)

=
(
S
(a1,...,ak)
(b1,...,bk)

)(
f
(a1,...,ak)
(b1,...,bk)

)−1
is open in I n

λ (S) for any ordered collections of k distinct elements (a1, . . . , ak) and
(b1, . . . , bk) of λ

k.

We recall that a topological space X is said to be

• compact if each open cover of X has a �nite subcover;
• H-closed if X is a closed subspace of every Hausdor� topological space in which
it contained.

It is well known that every Hausdor� compact space is H-closed, and every regular H-
closed topological space is compact (see [12, 3.12.5]).

Lemma 4. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive

integer 6 λ, 0 < k 6 n and I n
λ (S) be a Hausdor� semitopological semigroup. If S

(a)
(b) is

a closed subset of I n
λ (S) for any a, b ∈ λ then S

(a1,...,ak)
(b1,...,bk)

is a closed subspace of I n
λ (S)

for any ordered collections of k distinct elements (a1, . . . , ak) and (b1, . . . , bk) of λ
k.

Proof. For any a, b ∈ λ the map

f
(a)
(b) : I n

λ (S)→ I n
λ (S), α 7→

(
a
1S
a

)
· α ·

(
b
1S
b

)
is continuous, because I n

λ (S) is a semitopological semigroup. This and Proposition 11
imply that

S
(a1,...,ak)
(b1,...,bk)

=
(
S
(a1)
(b1)

)(
f
(a1)
(b1)

)−1
∩ · · · ∩

(
S
(ak)
(bk)

)(
f
(ak)
(bk)

)−1
∩I k

λ (S)

a closed subspace of I n
λ (S). �

Since a continuous image of a compact (an H-closed) space is compact (H-closed)
(see [12, Chapter 3]), Proposition 12 and Lemma 4 imply the following corollary.

Corollary 5. Let S be a monoid, λ be any non-zero cardinal, n be an arbitrary positive
integer 6 λ, 0 < k 6 n and I n

λ (S) be a Hausdor� semitopological semigroup. If the set

S
(a)
(b) is H-closed (compact) in I n

λ (S) for some a, b ∈ λ then S
(a1,...,ak)
(b1,...,bk)

is a closed subspace

of I n
λ (S) for any ordered collections of k distinct elements (a1, . . . , ak) and (b1, . . . , bk)

of λk.

De�nition 3. Let S be a class of semitopological semigroups. Let λ > 1 be a cardinal,
n be a positive integer 6 λ, and (S, τ) ∈ S. Let τI be a topology on I n

λ (S) such that

a) (I n
λ (S), τI ) ∈ S;
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b) the topological subspace
(
S
(a)
(a) , τB |Sα,α

)
is naturally homeomorphic to (S, τ) for

some a ∈ λ, i.e., the map H : S → I n
λ (S), s 7→

(
a
s
a

)
is a topological embedding.

Then (I n
λ (S), τI ) is called a topological I n

λ -extension of (S, τ) in S.

Lemma 5. Let (S, τ) be a semitopological monoid, λ be any non-zero cardinal, n be
an arbitrary positive integer 6 λ, 0 < k 6 n and (I n

λ (S), τI ) be a topological I n
λ -

extension of (S, τ) in the class of semitopological semigroups. Let U1(s1), . . . , Uk(sk) be
open neighbourhoods of the points s1, . . . , sk in (S, τ), respectively. Then the following
sets

⇑ [U1(s1)]
(a1)
(b1)

=
(
[U1(s1)]

(a1)
(b1)

)(
f
(a1)
(b1)

)−1
, . . . , ⇑ [Uk(sk)](ak)(bk)

=
(
[Uk(sk)]

(ak)
(bk)

)(
f
(ak)
(bk)

)−1
,

and
⇑ [U1(s1), . . . , Uk(sk)]

(a1,...,ak)
(b1,...,bk)

= ⇑ [U1(s1)]
(a1)
(b1)
∩ . . . ∩ ⇑ [Uk(sk)](ak)(bk)

,

are open neighbourhoods of the points( a1
s1
b1

)
, · · · ,

( ak
sk
bk

)
, and

( a1 ... ak
s1 ... sk
b1 ... bk

)
in (I n

λ (S), τI ), respectively, for any ordered collections of k distinct elements (a1, . . . , ak)
and (b1, . . . , bk) of λ

k.

Proof. Since (I n
λ (S), τI ) is a topological I n

λ -extension of (S, τ) in the class of Hausdor�
semitopological semigroups, there exist open neighbourhoodsW1, . . . ,Wk of of the points( a1
s1
b1

)
, · · · ,

( ak
sk
bk

)
in (I n

λ (S), τI ), respectively, such that

W1 ∩ S(a1)
(b1)

= [U1(s1)]
(a1)
(b1)

, . . . , Wk ∩ S(ak)
(bk)

= [Uk(sk)]
(ak)
(bk)

.

Then the requested statement of the lemma follows from the separate continuity of the
semigroup operation in (I n

λ (S), τI ). �

Theorem 6. Let (S, τ) be a Hausdor� compact semitopological monoid, λ be any non-
zero cardinal, n be an arbitrary positive integer 6 λ, 0 < k 6 n and (I n

λ (S), τI ) be
a compact topological I n

λ -extension of (S, τ) in the class of Hausdor� semitopological

semigroups. Then the subspace S
(a1,...,ak)
(b1,...,bk)

of (I n
λ (S), τI ) is compact and moreover it is

homeomorphic to the power Sk with the product topology by the mapping

H : S
(a1,...,ak)
(b1,...,bk)

→ Sk,
( a1 ... ak
s1 ... sk
b1 ... bk

)
7→ (s1, . . . , sk),

for any ordered collections of k distinct elements (a1, . . . , ak) and (b1, . . . , bk) of λ
k.

Proof. Since the monoid (S, τ) is compact, Corollary 5 implies that S
(a1,...,ak)
(b1,...,bk)

a closed

subset of of (I n
λ (S), τI ). Then compactness of of (I n

λ (S), τI ) implies that S
(a1,...,ak)
(b1,...,bk)

is

compact, as well.

It is obvious that the above de�ned map H : S
(a1,...,ak)
(b1,...,bk)

→ Sk is a bijection. Also,

Lemma 5 implies that the map H is continuous, and it is a homeomorphism, because Sk

and S
(a1,...,ak)
(b1,...,bk)

are compacta. �

Proposition 11 and Theorem 6 imply the following corollary.
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Corollary 6. Let (S, τ) be a Hausdor� compact semitopological monoid, λ be any non-
zero cardinal, n be an arbitrary positive integer 6 λ, 0 < k 6 n and (I n

λ (S), τI ) be
a compact topological I n

λ -extension of (S, τ) in the class of Hausdor� semitopologi-

cal semigroups. Then S
(a1,...,ak)
(b1,...,bk)

is an open-and-closed subset of (I n
λ (S), τI ) for any

ordered collections of k distinct elements (a1, . . . , ak) and (b1, . . . , bk) of λk, and the
space (I n

λ (S), τI ) is the topological sum of such sets with isolated zero.

Remark 5. Since by Theorem of [21] an in�nite semigroup of matrix units and hence
an in�nite semigroup I n

λ do not embed into compact Hausdor� topological semigroups,
Corollary 6 describes compact topological I n

λ -extensions of compact semigroups (S, τ)
in the class of Hausdor� topological semigroups.

Example 2. Let (S, τS) be a compact Hausdor� semitopological monoid. On the semi-
group I n

λ (S) we de�ne a topology τcI in the following way. Put

Pc
k(0) =

{
I n
λ (S) \ ⇑S

(a1,...,ak)
(b1,...,bk)

: (a1, . . . , ak) and (b1, . . . , bk) are ordered collections

of k distinct elements of λk
}
,

for any k = 1, . . . , n, and

Pc(a, s, b) =
{
⇑ [U(s)]

(a)
(b) : U(s) is an open neighbourhood of s in (S, τS)

}
,

for some
(
a
s
b

)
∈ I n

λ (S) \ {0}.
The topology τcI on I n

λ (S) is generated by the family

Pc = {Pc
k(0) : k = 1, . . . , n} ∪

{
Pc(a, s, b) :

(
a
s
b

)
∈ I n

λ (S) \ {0}
}
,

as a subbase.

Remark 6. Lemma 5 and the de�nition of the topology τcI on I n
λ (S) implies that the

following statements hold.

(1) For any k = 1, . . . , n and every ordered collection (a1, . . . , ak) and (b1, . . . , bk) of

k distinct elements of λk the set ⇑S(a1,...,ak)
(b1,...,bk)

is closed in (I n
λ (S), τ

c
I ).

(2) For any element αS =
( a1 ... ak
s1 ... sk
b1 ... bk

)
of I n

λ (S) and any open neighbourhoods

U1(s1), . . . , Uk(sk) of the points s1, . . . , sk in (S, τ) the set

⇑ [U1(s1), . . . , Uk(sk)]
(a1,...,ak)
(b1,...,bk)

\
(
⇑S

(a11,...,a
1
l1
)

(b11,...,b
1
l1
)
∪ · · · ∪ ⇑S

(ap1 ,...,a
p
lp

)

(bp1 ,...,b
p
lp

)

)
such that αS /∈ ⇑S

(a11,...,a
1
l1
)

(b11,...,b
1
l1
)
∪ · · · ∪ ⇑S

(ap1 ,...,a
p
lp

)

(bp1 ,...,b
p
lp

)
, is an open neighbourhood of the

point αS in (I n
λ (S), τ

c
I ). Here {a1, . . . , ak} $

{
aj1, . . . , a

j
lj

}
and {b1, . . . , bk} ${

bj1, . . . , b
j
lj

}
for all j = 1, . . . , p.

Theorem 7. If (S, τS) is a compact Hausdor� semitopological monoid then (I n
λ (S), τ

c
I )

is a compact Hausdor� semitopological semigroup.
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Proof. It is obvious that the topology τcI is Hausdor�.
By the Alexander Subbase Theorem (see [12, 3.12.2]) it is su�cient to show that

every open cover of I n
λ (S) which consists of elements of the subbase Pc has a �nite

subcover.
We shall show that the space (I n

λ (S), τ
c
I ) is compact by induction. In the case

when n = 1, Corollary 13 from [23] implies that the space
(
I 1
λ (S), τ

c
I

)
is compact. Next

we shall show the step of induction:
(
I k−1
λ (S), τcI

)
is compact implies

(
I k
λ (S), τ

c
I

)
is

compact, too, for k = 2, . . . , n. Without loss of generality we may assume that k = n.
Let U be an arbitrary open cover of (I n

λ (S), τ
c
I ) which consists of elements of the

subbase Pc. The assumption of induction implies that there exists a �nite subfamily
Un−1 of U which is a subcover of I n−1

λ (S). Fix an arbitrary element V0 = I n
λ (S) \

⇑S(a1,...,ap)

(b1,...,bp)
∈ Un−1 which contains the zero 0 of I n

λ (S). Then p ∈ {1, . . . , n}.
We observe that an arbitrary element U0 of the family {Pc

k(0) : k = 1, . . . , n} con-
tains the set S

(a1,...,ap)

(b1,...,bp)
if and only if U0 ∩ S

(a1,...,ap)

(b1,...,bp)
6= ∅. This implies that only one of

the following conditions holds:

(1) there does not exist an element of Un−1 from the family {Pc
k(0) : k = 1, . . . , n}

which contains the set S
(a1,...,ap)

(b1,...,bp)
;

(2) there exists W0 ∈ Un−1 ∩ {Pc
k(0) : k = 1, . . . , n} such that S

(a1,...,ap)

(b1,...,bp)
⊆W0.

Suppose that condition (1) holds. First we consider the case when p < n. By

Theorem 6, the set S
(a1,...,ap)

(b1,...,bp)
is compact, and hence there exists �nitely many elements

⇑ [U(s1)]
(c1)
(d1)

, . . . ,⇑ [U(sm)]
(cm)
(dm) in the family Un−1 ∩Pc \ {Pc

k(0) : k = 1, . . . , n} such
that

S
(a1,...,ap)

(b1,...,bp)
⊆ ⇑ [U(s1)]

(c1)
(d1)
∪ · · · ∪ ⇑ [U(sm)]

(cm)
(dm) .

It is obvious that
{
U0,⇑ [U(s1)]

(c1)
(d1)

, . . . ,⇑ [U(sm)]
(cm)
(dm)

}
is a �nite cover of (I n

λ (S), τ
c
I ).

Next, we consider case p = n. We identify the set S
(a1,...,an)
(b1,...,bn)

and the power Sn by

the mapping

(8) H : S
(a1,...,an)
(b1,...,bn)

→ Sn,
( a1 ... an
s1 ... sn
b1 ... bn

)
7→ (s1, . . . , sn).

The semigroup operation of I n
λ (S) implies that ⇑ [U(s)]

(c)
(d) ∩ S

(a1,...,an)
(b1,...,bn)

6= ∅ if and only

if c = ai and d = bi for some i = 1, . . . , n. Then by (8) for every i = 1, . . . , n we have
that

(9)
(
⇑ [U(s)]

(ai)
(bi)
∩ S(a1,...,an)

(b1,...,bn)

)
H = S × · · · × U(s)︸︷︷︸

i−th

× · · · × S ⊆ Sn.

Then the subbase Pc on I n
λ (S) and map (8) determine the product topology on Sn

from the space S, and hence the space Sn is compact.

Suppose that S
(a1,...,an)
(b1,...,bn)

is not compact. Then S
(a1,...,an)
(b1,...,bn)

has a cover W which consi-

sts of the open sets of the form ⇑ [U(s)]
(c)
(d) and W does not have a �nite subcover. Then

the cover WSn of Sn which is determined by formula (9) from the family W has no �nite
subcover, too. This contradicts the compactness of Sn.
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Hence in case (1) the cover U of I n
λ (S) has a �nite subcover.

Suppose that condition (2) holds. Then W0 = I n
λ (S) \ ⇑S

(c1,...,cq)

(d1,...,dq)
with q 6 n. If

⇑S(c1,...,cq)

(d1,...,dq)
∩⇑S(a1,...,ap)

(b1,...,bp)
= ∅ then {V0,W0} is a cover of I n

λ (S). In the other case there

exists a smallest positive integer p1 such that max{p + 1, q} 6 p1 6 n and two ordered
p1-collections of distinct elements (e1, . . . , ep1) and (f1, . . . , fp1) of the power λp1 such
that

⇑S(c1,...,cq)

(d1,...,dq)
∩ ⇑S(a1,...,ap)

(b1,...,bp)
= ⇑S(e1,...,ep1 )

(f1,...,fp1 )
.

Then for the open set U1 = U0 ∪ W0 = I n
λ (S) \ ⇑S

(e1,...,ep1 )

(f1,...,fp1 )
either condition (1) or

condition (2) holds.
Since p+ 1 6 p1 6 n, we repeating �nitely many items the above procedure we get

that the space (I n
λ (S), τ

c
I ) is compact.

Next we shall show that the topology τcI is shift-continuous on (I n
λ (S), τ

c
I ). We

consider all possible cases.
(i) 0 · 0 = 0. Then for any open neighbourhood U0 of zero in (I n

λ (S), τ
c
I ) we have

that

U0 · 0 = 0 · U0 = {0} ⊆ U0.

(ii) α · 0 = 0. Then for any open neighbourhoods U0 and Uα of zero and α in
(I n

λ (S), τ
c
I ), respectively, we have that

Uα · 0 = {0} ⊆ U0.

Let W0 = I n
λ (S) \

(
⇑S

(a11,...,a
1
p1

)

(b11,...,b
1
p1

)
∪ · · · ∪ ⇑S

(ak1 ,...,a
k
pk

)

(bk1 ,...,b
k
pk

)

)
be a basic neighbourhood of 0 in

(I n
λ (S), τ

c
I ). Without loss of generality we may assume that p1, . . . , pk 6 |d(α)|. Put

B =
{
S
(a)
(b) : a ∈ d(α) and b ∈

{
b11, . . . , b

1
p1 , . . . , b

k
1 , . . . , b

k
pk

}}
.

Then the family B is �nite and α · U0 ⊆W0 for U0 = I n
λ (S) \

⋃
S

(a)

(b)
∈B ⇑S

(a)
(b) .

(iii) 0 · α = 0. Then for any open neighbourhoods U0 and Uα of zero and α in
(I n

λ (S), τ
c
I ), respectively, we have that

0 · Uα = {0} ⊆ U0.

Let W0 = I n
λ (S) \

(
⇑S

(a11,...,a
1
p1

)

(b11,...,b
1
p1

)
∪ · · · ∪ ⇑S

(ak1 ,...,a
k
pk

)

(bk1 ,...,b
k
pk

)

)
be a basic neighbourhood of 0 in

(I n
λ (S), τ

c
I ). Without loss of generality we may assume that p1, . . . , pk 6 |d(α)|. Put

B =
{
S
(a)
(b) : b ∈ r(α) and a ∈

{
a11, . . . , a

1
p1 , . . . , a

k
1 , . . . , a

k
pk

}}
.

Then the family B is �nite and U0 · α ⊆W0 for U0 = I n
λ (S) \

⋃
S

(a)

(b)
∈B ⇑S

(a)
(b) .

(iv) α · β = 0. Fix an arbitrary open neighbourhood W0 of 0 in (I n
λ (S), τ

c
I ).

Without loss of generality we may assume that W0 = I n
λ (S) \

(
⇑S(a1)

(b1)
∪ · · · ∪ ⇑S(ak)

(bk)

)
.

Since α · β = 0 we have that r(α) ∩ d(β) = ∅. We put

Bα =
{
S
(a)
(b) : a ∈ {a1, . . . , ak}, b ∈ d(β), and α /∈ ⇑S(a)

(b)

}
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and

Bβ =
{
S
(a)
(b) : b ∈ {b1, . . . , bk}, a ∈ r(α), and β /∈ ⇑S(a)

(b)

}
.

Let S
(a1,...,ak)
(b1,...,bk)

and S
(c1,...,cp)

(d1,...,dp)
, 1 6 k, p 6 n, such that α ∈ S(a1,...,ak)

(b1,...,bk)
and β ∈ S(c1,...,cp)

(d1,...,dp)
.

Then the families Bα and Bβ are �nite, and hence by Remark 6(2) the sets

Vα = S
(a1,...,ak)
(b1,...,bk)

\
⋃

S
(a)

(b)
∈Bα

⇑S(a)
(b) and Vβ = S

(c1,...,cp)

(d1,...,dp)
\

⋃
S

(a)

(b)
∈Bβ

⇑S(a)
(b)

are open neighbourhoods of the points α and β in (I n
λ (S), τ

c
I ), respectively, such that

Vα · β ⊆W0 and α · Vβ ⊆W0.

(v) α · β = γ 6= 0 and r(α) = d(β). Without loss of generality we may assume that

α =
( a1 ... ak
s1 ... sk
b1 ... bk

)
and β =

(
b1 ... bk
t1 ... tk
c1 ... ck

)
, and hence we have that γ =

( a1 ... ak
s1t1 ... sktk
c1 ... ck

)
. Then for

any open neighbourhood

Uγ = ⇑ [U1(s1t1), . . . , Uk(sktk)]
(a1,...,ak)
(c1,...,ck)

\
(
⇑S

(a11,...,a
1
l1
)

(b11,...,b
1
l1
)
∪ · · · ∪ ⇑S

(ap1 ,...,a
p
lp

)

(bp1 ,...,b
p
lp

)

)
of γ in (I n

λ (S), τ
c
I ) we have that

⇑ [V1(s1), . . . , Vk(sk)](a1,...,ak)(b1,...,bk)
· β ⊆ ⇑ [U1(s1t1), . . . , Uk(sktk)]

(a1,...,ak)
(c1,...,ck)

∩ S(a1,...,ak)
(c1,...,ck)

⊆ Uγ

and

α · ⇑ [V1(t1), . . . , Vk(tk)](b1,...,bk)(c1,...,ck)
⊆ ⇑ [U1(s1t1), . . . , Uk(sktk)]

(a1,...,ak)
(c1,...,ck)

∩ S(a1,...,ak)
(c1,...,ck)

⊆ Uγ ,

where V1(s1), . . . , Vk(sk), V1(t1), . . . , Vk(tk) are open neighbourhoods of the points
s1, . . . , sk, t1, . . . , tk in (S, τS), respectively, such that

V1(s1) · t1 ⊆ U1(s1t1), . . . , Vk(sk) · tk ⊆ Uk(sktk)

and

s1 · V1(t1) ⊆ U1(s1t1), . . . , sk · Vk(tk) ⊆ Uk(sktk).
(vi) α · β = γ 6= 0 and r(α) $ d(β). Without loss of generality we may assume that

α =
( a1 ... ak
s1 ... sk
b1 ... bk

)
and β =

(
b1 ... bk bk+1 ... bk+j
t1 ... tk tk+1 ... tk+j
c1 ... ck ck+1 ... ck+j

)
, where 1 6 j 6 n− k, and hence we have

that γ =
( a1 ... ak
s1t1 ... sktk
c1 ... ck

)
. Then for any open neighbourhood

Uγ = ⇑ [U1(s1t1), . . . , Uk(sktk)]
(a1,...,ak)
(c1,...,ck)

\
(
⇑S

(a11,...,a
1
l1
)

(b11,...,b
1
l1
)
∪ · · · ∪ ⇑S

(ap1 ,...,a
p
lp

)

(bp1 ,...,b
p
lp

)

)
of the point γ in (I n

λ (S), τ
c
I ) we have that

α · ⇑ [V1(t1), . . . , Vk(tk)](b1,...,bk)(c1,...,ck)
⊆ ⇑ [U1(s1t1), . . . , Uk(sktk)]

(a1,...,ak)
(c1,...,ck)

∩ S(a1,...,ak)
(c1,...,ck)

⊆ Uγ ,

where V1(t1), . . . , Vk(tk) are open neighbourhoods of the points t1, . . . , tk in (S, τS),
respectively, such that

s1 · V1(t1) ⊆ U1(s1t1), . . . , sk · Vk(tk) ⊆ Uk(sktk).
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Fix an arbitrary open neighbourhood Uγ of the point γ in (I n
λ (S), τ

c
I ). Then

Lemma 5 implies that without loss of generality we may assume that

Uγ = ⇑ [U1(s1t1), . . . , Uk(sktk)]
(a1,...,ak)
(c1,...,ck)

\
(
⇑S(a1,...,ak,x1)

(c1,...,ck,y1)
∪ · · · ∪ ⇑S(a1,...,ak,xp)

(c1,...,ck,yp)

)
for some x1, . . . , xp ∈ λ \ {a1, . . . , ak} and y1, . . . , yp ∈ λ \ {c1, . . . , ck}. We put

Bα =
{
S
(a1,...,ak,a)
(b1,...,bk,b)

: a ∈ {x1, . . . , xp} and b ∈ {bk+1, . . . , bk+j}
}
.

It is obvious that the family Bα is �nite. Then Vα · β ⊆ Uγ for

Vα = ⇑ [V1(s1), . . . , Vk(sk)](a1,...,ak)(b1,...,bk)
\

⋃
S

(a1,...,ak,a)

(b1,...,bk,b)
∈Bα

⇑S(a1,...,ak,a)
(b1,...,bk,b)

,

where V1(s1), . . . , Vk(sk) are open neighbourhoods of the points s1, . . . , sk in (S, τS),
respectively, such that

V1(s1) · t1 ⊆ U1(s1t1), . . . , Vk(sk) · tk ⊆ Uk(sktk).

(vii) α · β = γ 6= 0 and d(β) $ r(α). In this case the proof of separate continuity of
the semigroup operation is similar to case (vi).

(viii) α · β = γ 6= 0, d(γ) $ d(α) and r(γ) $ r(β). Without loss of generality we
may assume that

α =
( a1 ... ak ak+11 ... ak+m
s1 ... sk sk+11 ... sk+m
b1 ... bk bk+11 ... bk+m

)
, β =

(
b1 ... bk bk+1 ... bk+j
t1 ... tk tk+1 ... tk+j
c1 ... ck ck+1 ... ck+j

)
and γ =

( a1 ... ak
s1t1 ... sktk
c1 ... ck

)
,

where 1 6 j,m 6 n − k. We put ε =

(
b1 ... bk
1S ... 1S
b1 ... bk

)
, where 1S is the unit element of S. It

is obvious that γ = α · ε · β. Hence, in this case the separate continuity of the semigroup
operation at the point α · β in (I n

λ (S), τ
c
I ) follows from cases (vi) and (vii).

The previous statements of this section imply that τcI ⊆ τI for any compact shift-
continuous Hausdor� topology τI on I n

λ (S), and hence τcI is the unique requested
compact shift-continuous Hausdor� topology on I n

λ (S). �

Corollary 7. If (S, τS) is a compact Hausdor� semitopological inverse monoid with
continuous inversion then (I n

λ (S), τ
c
I ) is a compact Hausdor� semitopological inverse

semigroup with continuous inversion.

Proof. Since W−10 = I n
λ (S) \

(
⇑S

(b11,...,b
1
p1

)

(a11,...,a
1
p1

)
∪ · · · ∪ ⇑S

(bk1 ,...,b
k
pk

)

(ak1 ,...,a
k
pk

)

)
for an arbitrary basic

neighbourhood W0 = I n
λ (S) \

(
⇑S

(a11,...,a
1
p1

)

(b11,...,b
1
p1

)
∪ · · · ∪ ⇑S

(ak1 ,...,a
k
pk

)

(bk1 ,...,b
k
pk

)

)
of zero, inversion is

continuous at zero in (I n
λ (S), τ

c
I ).

Also, for an arbitrary element α =
( a1 ... ak
s1 ... sk
b1 ... bk

)
of I n

λ (S) and any its open nei-

ghbourhood

Vα = ⇑ [V1(s1), . . . , Vk(sk)](a1,...,ak)(b1,...,bk)
\
(
⇑S

(a11,...,a
1
l1
)

(b11,...,b
1
l1
)
∪ · · · ∪ ⇑S

(ap1 ,...,a
p
lp

)

(bp1 ,...,b
p
lp

)

)
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we have that (Vα)
−1 ⊆ Uα−1 for the neighbourhood

Uα−1 = ⇑
[
U1(s

−1
1 ), . . . , Vk(s

−1
k )
](b1,...,bk)
(a1,...,ak)

\
(
⇑S

(b11,...,b
1
l1
)

(a11,...,a
1
l1
)
∪ · · · ∪ ⇑S

(bp1 ,...,b
p
lp

)

(ap1 ,...,a
p
lp

)

)
of α−1 in (I n

λ (S), τ
c
I ) with

(V1(s1))
−1 ⊆ U1(s

−1
1 ), . . . , (Vk(sk))

−1 ⊆ Uk(s−1k ).

This completes the proof of the corollary. �
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ÐÎÇØÈÐÅÍÍß ÍÀÏIÂÃÐÓÏ ÑÈÌÅÒÐÈ×ÍÈÌÈ
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Âèâ÷à¹ìî íàïiâãðóïîâå ðîçøèðåííÿ I n
λ (S) íàïiâãðóïè S ñèìåòðè÷íîþ

iíâåðñíîþ íàïiâãðóïîþ îáìåæåíîãî ñêií÷åííîãî ðàíãó n. Îïèñó¹ìî iäåìïî-
òåíòè òà ðåãóëÿðíi åëåìåíòè íàïiâãðóïè I n

λ (S), äîâîäèìî, ùî íàïiâãðóïà
I n
λ (S) ¹ ðåãóëÿðíîþ, îðòîäîêñàëüíîþ, iíâåðñíîþ àáî ñòiéêîþ òîäi i òiëüêè

òîäi, êîëè òàêîþ íàïiâãðóïîþ ¹ ìîíî¨ä S. Îïèñàíi âiäíîøåííÿ �ðiíà íà
íàïiâãðóïi I n

λ (S) äëÿ äîâiëüíîãî ìîíî¨äà S. Ââîäèìî ïîíÿòòÿ íàïiâãðóïè
ç ñèëüíèìè ùiëüíèìè iäåàëüíèìè ðÿäàìè i äîâîäèìî, ùî äëÿ äîâiëüíî-
ãî íåñêií÷åííîãî êàðäèíàëà λ òà äîâiëüíîãî íàòóðàëüíîãî ÷èñëà n íàïiâ-
ãðóïà I n

λ (S) ìà¹ ñèëüíèé ùiëüíèé iäåàëüíèé ðÿä çà óìîâè, êîëè ìîíî¨ä
S òàêîæ ìà¹ ñèëüíèé ùiëüíèé iäåàëüíèé ðÿä. Íà çàâåðøåííÿ äîâîäèìî,
ùî äëÿ êîæíîãî êîìïàêòíîãî ãàóñäîðôîâîãî íàïiâòîïîëîãi÷íîãî ìîíî¨äà
(S, τS) iñíó¹ ¹äèíå éîãî êîìïàêòíå òîïîëîãi÷íå ðîçøèðåííÿ (I n

λ (S), τ
c
I ) â

êëàñi ãàóñäîðôîâèõ íàïiâòîïîëîãi÷íèõ íàïiâãðóï.

Êëþ÷îâi ñëîâà: iíâåðñíà íàïiâãðóïà, ñèìåòðè÷íà iíâåðñíà íàïiâãðóïà
ñêií÷åííèõ ïåðåòâîðåíü, âiäíîøåííÿ �ðiíà, íàïiâãðóïà çi ùiëüíèìè iäåàëü-
íèìè ðÿäàìè, íàïiâòîïîëîãi÷íà íàïiâãðóïà, êîìïàêòíà íàïiâãðóïà.
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