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Answering one problem that has its origins in quantum mechanics, we prove
that for any sequence (A )nen of convex nowhere dense sets in a Banach space
X and any sequence (ep)n=; of positive real numbers with lim,—, . €, = 0, the
set A={z € X:VYne€N3a€ A, ||z —a| <en}is nowhere dense in X.
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The question that is considered in the article arose in a problem of quantum mechani-
cs. In the last two decades the Hamiltonians with singular potentials supported on
submanifolds of the configuration space R? of a lower dimension, also known as pseudo-
Hamiltonians, have attracted considerable attention both in the physical and mathemati-
cal literature. The potentials that are distributions with supports on curves, surfaces, and
more complicated sets composed of them, often used in simulation of quantum systems,
because the corresponding Schrédinger equations are generally easier to solve. These so-
called exactly solvable models allow us to calculate explicitly numerical characteristics
of systems such as eigenvalues, eigenfunctions or scattering data, the original differential
equation being reduced to the analysis of an algebraic or functional problem. Very often
the pseudo-Hamiltonians reveal an unquestioned effectiveness whenever the exact solvabi-
lity together with non trivial qualitative description of the actual quantum dynamics is
required. In spite of all advantages of the exactly solvable models they give rise to many
mathematical difficulties. One of the main difficulties deals with the multiplication of di-
stributions. To get round the problem of multiplication of distributions, we can regularize
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pseudo-potential V € D’(R?) by a sequence of smooth enough potentials V¢ such that
Ve — V as € — 0 in the sense of distributions, and then investigate the convergence of
Hamiltonians H. = —A + V¢ in a suitable operator topology [1]-[3]. The main goal is
to find the limit self-adjoint operator Hy and thereby to assign for the quantum system
a mathematically correct solvable model that describes the real quantum evolution with
adequate accuracy.

Let M be a smooth compact manifold embedded in R?. Assume that Vy; € D'(R?)
and supp Viy € M. We choose a sequence {V¢}.5o of smooth functions with compact
supports shrinking to the manifold M as ¢ — 0. Also, this sequence converges to the
distribution Vs in D’(R?). Let us introduce the sesquilinear form

ac(u,v) = /Rd (VuVo + Ve (z)ud) do

in the Sobolev space W, (R?). We can realize the Hamiltonian as the operator A. associ-
ated with form a, i.e., a-(u,v) = (Acu,v)p,®a). Two cases arise depending on the order
of the distribution Vj;. For example, if V), is a dj;-measure with density u, that is to
say

Vie(6) = /M wodM, ¢ e CF(RY),

then the forms a. are bounded from below uniformly with respect to ¢ and there exists
the limit form

ap(u,v) = /]Rd VuVodr + /M puv dM.

with the same domain W3 (R?). From the convergence of the forms we readily deduce
the convergence A, — Ag in the strong resolvent topology, where Ay is an operator
associated with ag. In the case when the distribution Vj; is more singular, the forms a.
are not uniformly bounded from below and the presupposed “limit form” ag has generally
the domain which does not coincide with the domain of a.. For instance, when trying to
prove the operator convergence in the problem with V3, = 0,85, where 0, is a normal
derivative on M, we were confronted with

Question 1. Is it true that for any positive real number s there exist positive real numbers
C,a, 5 such that for any function v € Wy *(M) there exists a sequence {v,}52, C
W3 (M) such that

llv — vnHWES(M) <C-n*  and  |vallwpon) <O nf

for all n € N?

It turns out that the answer to this question is negative. This negative answer will
be derived (in Corollary [2) from the following theorems.

Theorem 1. For any sequence (A, )nen of convex nowhere dense sets in a normed space
X and any sequence (ep)nen of positive real numbers with lim,, o, €, = 0 the set

A={zeX:VYneN Jac A, |z—a| <e,}

is convex and nowhere dense in X.
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Proof. Let B = {z € X : ||z|| < 1} be the open unit ball in the normed space X and
observe that
A= ﬂ (A, +enB),
neN

which implies that the set A is convex (as the intersection of convex sets A,, + €, B).

It remains to prove that the set A is nowhere dense. In the opposite case its closure
A contains an e-ball ¢ + €B for some small € > 0. Since lim,,_,o0 €, = 0, there exists
n € N such that ¢, < %s. It follows that

c+eBCc AC A, +e,BC A, +2,B.

Then B C (A, — ¢) + 2¢,B. Since the convex set A,, — ¢ is nowhere dense in X, there
exists a point b € %63 \ A,, — ¢. By the Hahn-Banach Separation Theorem, there exists
an R-linear functional z* : X — R of norm ||z*|| = 1 such that

supa*(A, —¢) < z*(b) < |lz*|| - |b]| < Le.
By the definition of the norm ||z*|| of the functional =*, there exists a point € B such

that z*(z) > 3. Since ex € eB C (A, — ¢) + 2¢,,B, there exist points a € A, and z € B
such that ex = a — ¢+ 2¢,,z. Then

le<e-a*(z) =x*(ex) = 2" (a — ¢+ 2e,2) = 2" (a — ¢) + 2¢,, - z*(2) <
<supa”(An — ) + 25 - 27| - [I2]] < 27(b) + 20 < ge+ 16 = 35,
which is a contradiction that completes the proof of the theorem. O

It is interesting that Theorem [I| does not generalize to locally convex linear metric
spaces. Moreover, the property described in Theorem [I] can be used to characterize
normable spaces among metrizable locally convex spaces.

By a locally convex space we understand a locally convex linear topological space over
the field of real numbers. A locally convex space is normable if its topology is generated
by a norm. By Proposition 4.12 in [4], a locally convex space is normable if and only if
it contains a bounded neighborhood of zero.

A subset B of a linear topological space X is bounded if for any neighborhood U of
zero in X there exists a positive real number r such that B C r-U.

Theorem 2. Let X be a locally convex space and (U, )nen be a base of neighborhoods of
zero in X. Then the following conditions are equivalent:

(1) X is normable;

(2) for any sequence (A,)nen of nowhere dense convex sets in X, the intersection
Mpen(An 4 Uy) is nowhere dense in X ;

(3) for any sequence (Ly,)nen of nowhere dense linear subspaces in X the intersection
Npen(Ln + Uy) is not equal to X.

Josedenns. (1) = (2) Assume that the locally convex space X is normable and let || - ||
be a norm generating the topology of X. Since (U, )nen is a base of neighborhoods of
zero, for every k € N there exists nj, € N such that U,, C {z € X : |z|| < £}

Let (Ay)nen be a sequence of nowhere dense convex sets in X. Applying Theorem
to the normed space (X, | - ||), we conclude that the set

A={zeX:VkeNIyecA4,, |z—y| <t}
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is nowhere dense in X. Observing that

() (An+Un) € () (An, +Un,) C A
neN keN
we conclude that the set [, .y(An + Uy) is nowhere dense, too.

The implication (2) = (3) is trivial.

(3) = (1) Assume that the space X is not normable. By Proposition 4.12 [4], the
space contains no bounded neighborhoods of zero. Then for every n € N the neighborhood
V., = U, N (=U,) of zero is unbounded. By Theorem 3.18 in [5], the set V;, is not weakly
bounded, which allows us to find a linear continuous functional f, : X — R such that
the image f, (V) is unbounded in the real line. Taking into account that V;, is convex

and V,, = —=V,,, we conclude that f,, (V') = R. Then for the nowhere dense linear subspace
L, = f;1(0) of X weget X = L,+V,, C L, +U,, which implies Mpen(Ln+Up) = X. O

In spite of Theorem [2] Theorem [I] does admit a partial generalization to locally
convex linear metric spaces.

Theorem 3. Let X be a locally convexr space and d be an invariant metric generating
the topology of X. For any sequence (Bp)nen of nowhere dense bounded convex sets in
X and any sequence (ep)nen of positive real numbers with lim, o €, = 0 the set

B={zxeX:VneN JyeB, dz,y) <e,}
is nowhere dense in X.

JHosedenns. The space X being locally convex and metrizable, has a neighborhood base
{Uy }ren at zero consisting of open convex neighborhoods of zero such that U; = X and
Uky41 C U = —Uy, for all k € N. For every n € N let k,, € N be the largest number such
that {z € X : d(x,0) < g,} C Uy, . It follows from lim,_, £, = 0 that lim, o k, = c0.

Observe that B C (,cn(Bn + Uy,). So, it suffices to prove that the set C' =
Mnen(Bn+Ug, ) is nowhere dense. It is clear that the set C'is convex (being the intersecti-
on of the convex sets B,, + Uy, ). Next, we show that the set C is bounded in X. Given
any neighborhood U C X of zero, find n € N such that U, C U. Such number k,, exists
as lim; o0 k; = 00 and {Uy }ren is a decreasing neighborhood base at zero. Since the set
B,, is bounded, there exists a real number r such that B,, C r-Uy, . The convexity of Uy,
ensures that for any z,y € Uy, we have

re+y=(r+1) (Tilx—l—ﬁy) e(r+1) Uy,
and hence
CCB,+U, Cr-Ug, +Uy, =(r+1)-Ug, C(r+1)-U,

which means that the set C' is bounded.

Assuming that C' is not nowhere dense, we conclude that its closure C' has non-
empty interior and then C' — C := {z —y: 2,y € C} is a bounded convex symmetric
neighborhood of zero in X. By Proposition 4.12 in [4], the locally convex space X is
normable. By the implication (1) = (2) in Theorem the intersection (), cn(Bn+Un,,) D
B is nowhere dense in X. (]

Now we shall use Theorem [3]to give a negative answer to Question
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Corollary 1. Let T : X — Y be a non-open bounded operator from a Banach space
(X, - llx) to a locally convex linear metric space (Y,| - — - |ly). For any sequences
(rn)S2 and (£,)22, of positive real numbers with lim,,_, . &, = 0, the set

A={yeY:VneN Jze X (|zlx <rn and |ly—Tzlly <en)}
is convex and nowhere dense in Y .

Proof. For every n € N consider the e,-neighborhood U,, = {y €Y : |ly — O|ly < e}
of zero in Y. Since the operator T is not open, the image T(Bx) of the unit ball
Bx = {x € X : ||z||x <1} has empty interior in Y. We claim that T'(Bx) is nowhere
dense in Y. If the locally convex space Y is not normable, then Y contains no bounded
neighborhoods of zero, which implies that the bounded set T(Bx) is nowhere dense in
Y. If Y is normable, then the set T'(Bx) is nowhere dense in Y by Banach’s Lemma 2.23
in [4].

Then for every n € N the bounded convex set A,, := T'(r,,Bx) is nowhere dense in
Y. Applying Theorem 3| we conclude that the set A = [, .y(An + Uy) is convex and
nowhere dense in Y. O

Corollary 2. Let T : X — Y be a non-open bounded operator from a Banach space
(X, - lIx) to a locally convex linear metric space (Y,|| - — - ||y)- For any positive real
constants C, a, 8 the set

Acap={yeY :VneN JzeX (|ly—Tz|y <Cn™® and [z||x <Cn”)}

is convezx and nowhere dense in Y. Consequently, the set

A= | Acos=J A1

C,a,3>0 keN

is meager in Y .

Proof. To show that the set Ac o g is convex and nowhere dense, apply Corollary (1| to
the sequences (r,,)nen and (£, )nen, defined by r, = Cn® and €, = Cn~ for n € N.
To see that Uc 4 g50 Acia,8 = Uken Ak, 1 k- take any positive real numbers C, o, §

and choose any number k& > max{C, é, B}. The choice of k guarantees that Cn~* < Kn~F
and Cn” < kn* for every n € N, which implies the inclusion Ac 4 5 C Ap 1 - O
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Hoseneno, mo mia Oynp-axol mocainoBaocTi (Ap)nen Omyk/amMx Hize e
NIIBHUX MHOXKUH y 6aHax0BOMY POCTOPi X 1 Gy Ib-AKOT IOCIMOBHOCTI (€5, )91
JOJATHUX MIACHUX WWCesI, TAKUX 1O limy o0 €n = 0, Mmuokuaa A = {2 € X :
VYn € Nda € An ||z — al| < en} Hize me mimbaa B X. Take nuTanns BUHUKIIO
py pO3B’sI3yBaHHs OIHIET 33ai KBAHTOBOI MEXaHIKM.

Karowosi caosa: mpoctip Banaxa, JI0KaJbHO OMYKJINU IIPOCTIP, alIpOKCH-
mariis, oneparop LlIpemunrepa.



