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Answering one problem that has its origins in quantum mechanics, we prove
that for any sequence (An)n∈N of convex nowhere dense sets in a Banach space
X and any sequence (εn)

∞
n=1 of positive real numbers with limn→∞ εn = 0, the

set A = {x ∈ X : ∀n ∈ N ∃a ∈ An ‖x− a‖ < εn} is nowhere dense in X.
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The question that is considered in the article arose in a problem of quantum mechani-
cs. In the last two decades the Hamiltonians with singular potentials supported on
submanifolds of the con�guration space Rd of a lower dimension, also known as pseudo-
Hamiltonians, have attracted considerable attention both in the physical and mathemati-
cal literature. The potentials that are distributions with supports on curves, surfaces, and
more complicated sets composed of them, often used in simulation of quantum systems,
because the corresponding Schr�odinger equations are generally easier to solve. These so-
called exactly solvable models allow us to calculate explicitly numerical characteristics
of systems such as eigenvalues, eigenfunctions or scattering data, the original di�erential
equation being reduced to the analysis of an algebraic or functional problem. Very often
the pseudo-Hamiltonians reveal an unquestioned e�ectiveness whenever the exact solvabi-
lity together with non trivial qualitative description of the actual quantum dynamics is
required. In spite of all advantages of the exactly solvable models they give rise to many
mathematical di�culties. One of the main di�culties deals with the multiplication of di-
stributions. To get round the problem of multiplication of distributions, we can regularize
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pseudo-potential V ∈ D′(Rd) by a sequence of smooth enough potentials V ε such that
V ε → V as ε → 0 in the sense of distributions, and then investigate the convergence of
Hamiltonians Hε = −∆ + V ε in a suitable operator topology [1]�[3]. The main goal is
to �nd the limit self-adjoint operator H0 and thereby to assign for the quantum system
a mathematically correct solvable model that describes the real quantum evolution with
adequate accuracy.

Let M be a smooth compact manifold embedded in Rd. Assume that VM ∈ D′(Rd)
and suppVM ⊂ M . We choose a sequence {V ε}ε>0 of smooth functions with compact
supports shrinking to the manifold M as ε → 0. Also, this sequence converges to the
distribution VM in D′(Rd). Let us introduce the sesquilinear form

aε(u, v) =

∫
Rd

(
∇u∇v̄ + V ε(x)uv̄

)
dx

in the Sobolev space W 1
2 (Rd). We can realize the Hamiltonian as the operator Aε associ-

ated with form aε, i.e., aε(u, v) = (Aεu, v)L2(Rd). Two cases arise depending on the order
of the distribution VM . For example, if VM is a δM -measure with density µ, that is to
say

VM (φ) =

∫
M

µφdM, φ ∈ C∞0 (Rd),

then the forms aε are bounded from below uniformly with respect to ε and there exists
the limit form

a0(u, v) =

∫
Rd

∇u∇v̄ dx+

∫
M

µuv̄ dM.

with the same domain W 1
2 (Rd). From the convergence of the forms we readily deduce

the convergence Aε → A0 in the strong resolvent topology, where A0 is an operator
associated with a0. In the case when the distribution VM is more singular, the forms aε
are not uniformly bounded from below and the presupposed �limit form� a0 has generally
the domain which does not coincide with the domain of aε. For instance, when trying to
prove the operator convergence in the problem with VM = ∂νδM , where ∂ν is a normal
derivative on M , we were confronted with

Question 1. Is it true that for any positive real number s there exist positive real numbers

C,α, β such that for any function v ∈ W−s2 (M) there exists a sequence {vn}∞n=1 ⊂
W s

2 (M) such that

‖v − vn‖W−s
2 (M) 6 C · n

−α and ‖vn‖W s
2 (M) 6 C · nβ

for all n ∈ N?

It turns out that the answer to this question is negative. This negative answer will
be derived (in Corollary 2) from the following theorems.

Theorem 1. For any sequence (An)n∈N of convex nowhere dense sets in a normed space

X and any sequence (εn)n∈N of positive real numbers with limn→∞ εn = 0 the set

A = {x ∈ X : ∀n ∈ N ∃a ∈ An ‖x− a‖ < εn}

is convex and nowhere dense in X.
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Proof. Let B = {x ∈ X : ‖x‖ < 1} be the open unit ball in the normed space X and
observe that

A =
⋂
n∈N

(An + εnB),

which implies that the set A is convex (as the intersection of convex sets An + εnB).
It remains to prove that the set A is nowhere dense. In the opposite case its closure

Ā contains an ε-ball c + εB for some small ε > 0. Since limn→∞ εn = 0, there exists
n ∈ N such that εn <

1
8ε. It follows that

c+ εB ⊂ Ā ⊂ An + εnB ⊂ An + 2εnB.

Then εB ⊂ (An − c) + 2εnB. Since the convex set An − c is nowhere dense in X, there
exists a point b ∈ 1

4εB \ An − c. By the Hahn-Banach Separation Theorem, there exists
an R-linear functional x∗ : X → R of norm ‖x∗‖ = 1 such that

supx∗(An − c) < x∗(b) ≤ ‖x∗‖ · ‖b‖ < 1
4ε.

By the de�nition of the norm ‖x∗‖ of the functional x∗, there exists a point x ∈ B such
that x∗(x) > 1

2 . Since εx ∈ εB ⊂ (An − c) + 2εnB, there exist points a ∈ An and z ∈ B
such that εx = a− c+ 2εnz. Then

1
2ε < ε · x∗(x) = x∗(εx) = x∗(a− c+ 2εnx) = x∗(a− c) + 2εn · x∗(z) ≤

≤ supx∗(An − c) + 2εn · ‖x∗‖ · ‖z‖ ≤ x∗(b) + 2εn <
1
4ε+ 1

4ε = 1
2ε,

which is a contradiction that completes the proof of the theorem. �

It is interesting that Theorem 1 does not generalize to locally convex linear metric
spaces. Moreover, the property described in Theorem 1 can be used to characterize
normable spaces among metrizable locally convex spaces.

By a locally convex space we understand a locally convex linear topological space over
the �eld of real numbers. A locally convex space is normable if its topology is generated
by a norm. By Proposition 4.12 in [4], a locally convex space is normable if and only if
it contains a bounded neighborhood of zero.

A subset B of a linear topological space X is bounded if for any neighborhood U of
zero in X there exists a positive real number r such that B ⊂ r·U .
Theorem 2. Let X be a locally convex space and (Un)n∈N be a base of neighborhoods of

zero in X. Then the following conditions are equivalent:

(1) X is normable;

(2) for any sequence (An)n∈N of nowhere dense convex sets in X, the intersection⋂
n∈N(An + Un) is nowhere dense in X;

(3) for any sequence (Ln)n∈N of nowhere dense linear subspaces in X the intersection⋂
n∈N(Ln + Un) is not equal to X.

Äîâåäåííÿ. (1)⇒ (2) Assume that the locally convex space X is normable and let ‖ · ‖
be a norm generating the topology of X. Since (Un)n∈N is a base of neighborhoods of
zero, for every k ∈ N there exists nk ∈ N such that Unk

⊂
{
x ∈ X : ‖x‖ < 1

k

}
.

Let (An)n∈N be a sequence of nowhere dense convex sets in X. Applying Theorem 1
to the normed space (X, ‖ · ‖), we conclude that the set

A =
{
x ∈ X : ∀k ∈ N ∃y ∈ Ank

‖x− y‖ < 1
k

}
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is nowhere dense in X. Observing that⋂
n∈N

(An + Un) ⊂
⋂
k∈N

(Ank
+ Unk

) ⊂ A

we conclude that the set
⋂
n∈N(An + Un) is nowhere dense, too.

The implication (2)⇒ (3) is trivial.

(3) ⇒ (1) Assume that the space X is not normable. By Proposition 4.12 [4], the
space contains no bounded neighborhoods of zero. Then for every n ∈ N the neighborhood
Vn = Un ∩ (−Un) of zero is unbounded. By Theorem 3.18 in [5], the set Vn is not weakly
bounded, which allows us to �nd a linear continuous functional fn : X → R such that
the image fn(Vn) is unbounded in the real line. Taking into account that Vn is convex
and Vn = −Vn, we conclude that fn(V ) = R. Then for the nowhere dense linear subspace
Ln = f−1n (0) ofX we getX = Ln+Vn ⊂ Ln+Un, which implies

⋂
n∈N(Ln+Un) = X. �

In spite of Theorem 2, Theorem 1 does admit a partial generalization to locally
convex linear metric spaces.

Theorem 3. Let X be a locally convex space and d be an invariant metric generating

the topology of X. For any sequence (Bn)n∈N of nowhere dense bounded convex sets in

X and any sequence (εn)n∈N of positive real numbers with limn→∞ εn = 0 the set

B = {x ∈ X : ∀n ∈ N ∃y ∈ Bn d(x, y) < εn}
is nowhere dense in X.

Äîâåäåííÿ. The space X being locally convex and metrizable, has a neighborhood base
{Uk}k∈N at zero consisting of open convex neighborhoods of zero such that U1 = X and
Uk+1 ⊂ Uk = −Uk for all k ∈ N. For every n ∈ N let kn ∈ N be the largest number such
that {x ∈ X : d(x, 0) < εn} ⊂ Ukn . It follows from limn→∞ εn = 0 that limn→∞ kn =∞.

Observe that B ⊂
⋂
n∈N(Bn + Ukn). So, it su�ces to prove that the set C =⋂

n∈N(Bn+Ukn) is nowhere dense. It is clear that the set C is convex (being the intersecti-
on of the convex sets Bn + Ukn). Next, we show that the set C is bounded in X. Given
any neighborhood U ⊂ X of zero, �nd n ∈ N such that Ukn ⊂ U . Such number kn exists
as limi→∞ ki =∞ and {Uk}k∈N is a decreasing neighborhood base at zero. Since the set
Bn is bounded, there exists a real number r such that Bn ⊂ r·Ukn . The convexity of Ukn
ensures that for any x, y ∈ Ukn we have

rx+ y = (r + 1)
(

r
r+1x+ 1

r+1y
)
∈ (r + 1) · Ukn

and hence

C ⊂ Bn + Ukn ⊂ r · Ukn + Ukn = (r + 1) · Ukn ⊂ (r + 1) · U,
which means that the set C is bounded.

Assuming that C is not nowhere dense, we conclude that its closure C̄ has non-
empty interior and then C̄ − C̄ :=

{
x− y : x, y ∈ C̄

}
is a bounded convex symmetric

neighborhood of zero in X. By Proposition 4.12 in [4], the locally convex space X is
normable. By the implication (1)⇒ (2) in Theorem 2, the intersection

⋂
n∈N(Bn+Unk

) ⊃
B is nowhere dense in X. �

Now we shall use Theorem 3 to give a negative answer to Question 1.
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Corollary 1. Let T : X → Y be a non-open bounded operator from a Banach space

(X, ‖ · ‖X) to a locally convex linear metric space (Y, ‖ · − · ‖Y ). For any sequences

(rn)∞n=1 and (εn)∞n=1 of positive real numbers with limn→∞ εn = 0, the set

A =
{
y ∈ Y : ∀n ∈ N ∃x ∈ X

(
‖x‖X < rn and ‖y − Tx‖Y < εn

)}
is convex and nowhere dense in Y .

Proof. For every n ∈ N consider the εn-neighborhood Un = {y ∈ Y : ‖y − 0‖Y < εn}
of zero in Y . Since the operator T is not open, the image T (BX) of the unit ball
BX = {x ∈ X : ‖x‖X < 1} has empty interior in Y . We claim that T (BX) is nowhere
dense in Y . If the locally convex space Y is not normable, then Y contains no bounded
neighborhoods of zero, which implies that the bounded set T (BX) is nowhere dense in
Y . If Y is normable, then the set T (BX) is nowhere dense in Y by Banach's Lemma 2.23
in [4].

Then for every n ∈ N the bounded convex set An := T (rnBX) is nowhere dense in
Y . Applying Theorem 3, we conclude that the set A =

⋂
n∈N(An + Un) is convex and

nowhere dense in Y . �

Corollary 2. Let T : X → Y be a non-open bounded operator from a Banach space

(X, ‖ · ‖X) to a locally convex linear metric space (Y, ‖ · − · ‖Y ). For any positive real

constants C,α, β the set

AC,α,β =
{
y ∈ Y : ∀n ∈ N ∃x ∈ X

(
‖y − Tx‖Y < Cn−α and ‖x‖X < Cnβ

)}
is convex and nowhere dense in Y . Consequently, the set

A =
⋃

C,α,β>0

AC,α,β =
⋃
k∈N

Ak, 1k ,k

is meager in Y .

Proof. To show that the set AC,α,β is convex and nowhere dense, apply Corollary 1 to
the sequences (rn)n∈N and (εn)n∈N, de�ned by rn = Cnβ and εn = Cn−α for n ∈ N.

To see that
⋃
C,α,β>0AC,α,β =

⋃
k∈NAk, 1k ,k, take any positive real numbers C,α, β

and choose any number k ≥ max{C, 1
α , β}. The choice of k guarantees that Cn

−α ≤ κn− 1
k

and Cnβ ≤ knk for every n ∈ N, which implies the inclusion AC,α,β ⊂ Ak, 1k ,k. �
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Äîâåäåíî, ùî äëÿ áóäü-ÿêî¨ ïîñëiäîâíîñòi (An)n∈N îïóêëèõ íiäå íå
ùiëüíèõ ìíîæèí ó áàíàõîâîìó ïðîñòîðiX i áóäü-ÿêî¨ ïîñëiäîâíîñòi (εn)

∞
n=1

äîäàòíèõ äiéñíèõ ÷èñåë, òàêèõ ùî limn→∞ εn = 0, ìíîæèíà A = {x ∈ X :
∀n ∈ N ∃a ∈ An ‖x− a‖ < εn} íiäå íå ùiëüíà â X. Òàêå ïèòàííÿ âèíèêëî
ïðè ðîçâ'ÿçóâàííÿ îäíi¹¨ çàäà÷i êâàíòîâî¨ ìåõàíiêè.
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