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Functional representations of the capacity monad based on the max and min
operations were considered in [10] and [7]. Nykyforchyn considered in [8] some
alternative monad structure for the possibility capacity functor based on the
max and usual multiplication operations. We show that such a capacity monad
(which we call the capacity multiplication monad) has a functional representati-
on, i.e. the space of capacities on a compactum X can be naturally embedded
(with preservation of the monad structure) in some space of functionals on
C(X, I). We also describe this space of functionals in terms of properties of
functionals.
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1. Introduction

Functional representations of monads (i.e. natural embeddings into RC(X,S) which
preserves a monad structure where S is a subset of R) were considered in [11] and [12].
Some functional representations of hyperspace monad were constructed in [13] and [14].

Capacities (non-additive measures, fuzzy measures) were introduced by Choquet
in [1] as a natural generalization of additive measures. They found numerous appli-
cations (see for example [2],[4],[16]). Categorical and topological properties of spaces of
upper-semicontinuous capacities on compact Hausdor� spaces were investigated in [9].
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In particular, the capacity functor was constructed. This functor is a functorial part of
a capacity monad M based on the max and min operations.

The space of capacities MX can be naturally embedded in RC(X) by means
of the Choquet integral. In other words, the Choquet integral provides some functi-
onal representation of the functor M . However, this representation does not preserve
the monad structure. Nykyforchyn using the Sugeno integral provided a functional
representation of capacities as functionals on the space C(X, I) which preserves the
monad structure [7]. Some modi�cation of the Sugeno integral yields a functional
representation of capacities as functionals on the space C(X) [10].

Let us remark that the min operation is a triangular norm on the unit interval
I. Another important triangular norm is the multiplication operation. Nykyforchyn
constructed a capacity monad based on the max and multiplication operations [8]. (Let
us remark that recently Zarichnyi proposed to use triangular norms to construct monads
[20]). The main aim of this paper is to �nd a representation of the monad from [8]. We
use a fuzzy integral based on the max and multiplication operations for this purpose.

2. Capacities and monads

By Comp we denote the category of compact Hausdor� spaces (compacta) and
continuous maps. For each compactum X we denote by C(X) the Banach space of all
continuous functions φ : X → R with the usual sup-norm: ‖φ‖ = sup{|φ(x)| | x ∈ X}.
We also consider on C(X) the natural partial order.

In what follows, all spaces and maps are assumed to be in Comp except for R, the
spaces C(X) and functionals de�ned on C(X) with X compact Hausdor�.

We recall some categorical notions (see [15] and [17] for more details). We de�ne
them only for the category Comp. The central notion is the notion of monad (or triple)
in the sense of S.Eilenberg and J.Moore.

A monad [3] T = (T, η, µ) in the category Comp consists of an endofunctor T :
Comp → Comp and natural transformations η : IdComp → T (unity), µ : T 2 → T
(multiplication) satisfying the relations µ ◦ Tη = µ ◦ ηT =1T and µ ◦ µT = µ ◦ Tµ. (By
IdComp we denote the identity functor on the category Comp and T 2 is the superposition
T ◦ T of T .)

Let T = (T, η, µ) be a monad in the category Comp. The pair (X, ξ) where ξ : TX →
X is a map is called a T-algebra if ξ ◦ηX = idX and ξ ◦µX = ξ ◦Tξ. Let (X, ξ), (Y, ξ′) be
two T-algebras. A map f : X → Y is called a morphism of T-algebras if ξ′ ◦ Tf = f ◦ ξ.

A natural transformation ψ : T → T ′ is called a morphism from a monad T =
(T, η, µ) into a monad T′ = (T ′, η′, µ′) if ψ ◦ η = η′ and ψ ◦ µ = µ′ ◦ ηT ′ ◦ Tψ. If all of
the components of ψ are monomorphisms then the monad T is called a submonad of T′
and ψ is called a monad embedding.

Let A be a subset of X. By F(X) we denote the family of all closed subsets of X.
Put I = [0, 1].

We follow a terminology from [9]. A function ν : F(X) → I is called an upper-

semicontinuous capacity onX if the following three properties hold for each closed subsets
F and G of X:

(1) ν(X) = 1, ν(∅) = 0,
(2) if F ⊂ G, then ν(F ) ≤ ν(G),
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(3) if ν(F ) < a, then there exists an open set O ⊃ F such that ν(B) < a for each
compactum B ⊂ O.

A capacity ν is extended in [9] to all open subsets U ⊂ X by the formula

ν(U) = sup{ν(K) | K is a closed subset of X such that K ⊂ U}.
It was proved in [9] that the space MX of all upper-semicontinuous capacities on a

compactum X is a compactum as well, if a topology onMX is de�ned by a subbase that
consists of all sets of the form O−(F, a) = {c ∈ MX | c(F ) < a}, where F is a closed
subset of X, a ∈ [0, 1], and O+(U, a) = {c ∈MX | c(U) > a}, where U is an open subset
of X, a ∈ [0, 1]. Since all capacities under consideration here are upper-semicontinuous,
in the following we call the elements of MX simply capacities.

A capacity ν ∈ MX for a compactum X is called a necessity (possibility) capacity
if for each family {At}t∈T of closed subsets of X (such that

⋃
t∈T At is a closed subset of

X) we have ν(
⋂
t∈T At) = inft∈T ν(At) (ν(

⋃
t∈T At) = supt∈T ν(At)). (See [19] for more

details.) We denote by M∩X (M∪X) the subspace of MX consisting of all necessity
(possibility) capacities. Since X is compact and ν is upper-semicontinuous, ν ∈M∩X if
and only if ν satis�es the simpler requirement that ν(A ∩B) = min{ν(A), ν(B)}.

If ν is a capacity on a compactum X, then the function κX(ν) de�ned on the
family F(X) by the formula κX(ν)(F ) = 1− ν(X \ F ), is a capacity as well. It is called
the dual capacity (or conjugate capacity ) to ν. The mapping κX : MX → MX is a
homeomorphism and an involution [9]. Moreover, ν is a necessity capacity if and only if
κX(ν) is a possibility capacity. This implies in particular that ν ∈M∪X if and only if ν
satis�es the simpler requirement that ν(A ∪ B) = max{ν(A), ν(B)}. It is easy to check
that M∩X and M∪X are closed subsets of MX.

The assignment M extends to the capacity functor M in the category of compacta,
if the map Mf : MX →MY for a continuous map of compacta f : X → Y is de�ned by
the formula Mf(c)(F ) = c(f−1(F )) where c ∈MX and F is a closed subset of X. This
functor was completed to the monad M = (M,η, µ) [9], where the components of the
natural transformations are de�ned as follows: ηX(x)(F ) = 1 if x ∈ F and ηX(x)(F ) = 0
if x /∈ F ;

µX(C)(F ) = sup{t ∈ [0, 1] | C({c ∈MX | c(F ) ≥ t}) ≥ t},
where x ∈ X, F is a closed subset of X and C ∈M2(X) (see [9] for more details).

It was shown in [5] that M∪ and M∩ are subfunctors of M and if we take the
corresponding restrictions of the functions µX, we obtain submonads M∪ and M∩ of the
monad M.

The semicontinuity of capacities yields that we can change sup for max in the
de�nition of the map µX. More precisely, existing of max follows from Lemma 3.7 [9].
For a closed set F ⊂ X and for t ∈ I put Ft = {c ∈MX | c(F ) ≥ t}. We can rewrite the
de�nition of the map µX as follows

µX(C)(F ) = max{C(Ft) ∧ t | t ∈ (0, 1]}.
Let us remark that the operation ∧ is a triangular norm. It seems natural to consider

another triangular norm instead of ∧. De�ne the map µ•X : M2X →MX by the formula

µ•X(C)(F ) = max{C(Ft) · t | t ∈ (0, 1]}.
(Existence of max also follows from Lemma 3.7 [9].)
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Proposition 1. The natural transformation µ• does not satisfy the property µ• ◦µ•M =
µ• ◦Mµ•.

Proof. Consider X = {a, b}, where {a, b} is a two-point discrete space. De�ne A1 ∈M2X
as follows A1(α) = 1 if and only if α ⊃ {a} 1

2
and A1(α) = 0 otherwise for α ∈ F(MX).

De�ne A2 ∈ M2X as follows A2(α) = 1 if and only if α = MX, A2(α) = 1
2 if and only

if α ⊃ {a}1 and A1(α) = 0 otherwise for α ∈ F(MX). Now, de�ne ג ∈ M3(X) by the
formula

(Λ)ג =
1

2
ηM2X(A1)(Λ) +

1

2
ηM2X(A2)(Λ)

for Λ ∈ F(M2X).
We have

µ•X ◦M(µ•X)(ג)({a}) = max{ג((µ•X)−1({a}t)) · t | t ∈ (0, 1]}.

It is easy to see that µ•X(A1)({a}) = µ•X(A2)({a}) = 1
2 . Then 1({a}−(µ•X))ג 1

2
)) · 12 =

1 · 12 = 1
2 . Hence we obtain µ

•X ◦ µ•MX(ג)({a}) ≥ 1
2 .

On the other hand

µ•X ◦ µ•MX(ג)({a}) = max{µ•MX(ג)({a}t)) · t | t ∈ (0, 1]} =

= max{max{ג(({a}t)s) · s | s ∈ (0, 1]} · t | t ∈ (0, 1]}.

The function δ(s, t) = (s(t{a}))ג is nonincreasing on both variables. We have δ(s, t) = 0
for each (s, t) such that s > 1

2 and t > 1
2 . Moreover δ(1, 12 ) = δ( 1

2 , 1) = 1
2 . Hence

µ•X ◦ µ•MX(ג)({a}) = max{max{ג(({a}t)s) · s | s ∈ (0, 1]} · t | t ∈ (0, 1]} =
1

4
.

�

Remark 1. Since the triple M• = (M,η, µ•) does not form a monad, the problem of
uniqueness of the monad M stated in [9] is still open.

But things may turn out di�erently if we restrict the map µ•X to the set
M∪(M∪X) ⊂ M(MX). It is easy to see that for such restriction we can consider
the sets At in the de�nition of the map µ•X as subsets of M∪X. It was deduced from
some general facts that the triple M•∪ = (M∪, η, µ

•) is a monad [8]. For the sake of
completeness we give here a direct proof.

Lemma 1. We have µ•X(M∪(M∪X)) ⊂M∪X for each compactum X.

Proof. Consider any A ∈ M∪(M∪X) and B, C ∈ F(X). Since Bt and Ct are subsets of
M∪X, we have (C ∪B)t = Ct ∪Bt. Then

µ•X(A)(B ∪ C) = max{A((C ∪B)t) · t | t ∈ (0, 1]} =

= max{A(Ct ∪Bt) · t | t ∈ (0, 1]} =

= max{max{A(Ct) · t | t ∈ (0, 1]},max{A(Bt) · t | t ∈ (0, 1]} =

= max{µ•X(A)(B), µ•X(A)(C)}.
�

We will use the notation µ•X also for the restriction µ•X|M2
∪X

.
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Theorem 1. The triple M•∪ = (M∪, η, µ
•) is a monad.

Proof. It is easy to check that η and µ• are well-de�ned natural transformations of the
corresponding functors. Let us check two monad properties.

Take any compactum X, ν ∈M∪X and A ∈ F(X). Then we have

µ•X ◦ ηM∪X(ν)(A) = max{ηM∪X(ν)(At) · t | t ∈ (0, 1]} =

= ν(A) and µ•X ◦M∪(ηX)(ν)(A) =

= max{M∪(ηX)(ν)(At) · t | t ∈ (0, 1]} =

= max{ν((ηX)−1(At)) · t | t ∈ (0, 1]} =

= max{ν(A) · t | t ∈ (0, 1]} = ν(A).

We obtain the equality µ• ◦M∪η = µ• ◦ ηM∪ =1M∪ .
Now, consider any ג ∈M3

∪(X) and A ∈ F(X). Put

a = µ•X ◦M∪(µ•X)(ג)(A) = max{ג((µ•X)−1(At)) · t | t ∈ (0, 1]}

and

b = µ•X ◦ µ•M∪X(ג)({a}) =

= max{µ•M∪X(ג)(At)) · t | t ∈ (0, 1]} =

= max{max{ג((At)s) · s | s ∈ (0, 1]} · t | t ∈ (0, 1]}.

There exists t0 ∈ (0, 1] such that a = (1(At0)−(µ•X))ג · t0. We have

(µ•X)−1(At0) =
{
A ∈M2

∪(X) | µ•X(A) ≥ t0
}

=

=
{
A ∈M2

∪(X) | there exists c ∈ (0, 1] such that A(Ac) · c ≥ t0
}

=

=

{
A ∈M2

∪(X) | there exists c ∈ (0, 1] such that A(Ac) ≥
t0
c

}
.

Since ג is a possibility capacity, there exists A0 ∈ M2
∪(X) and c0 ∈ (0, 1] such that

A0(Ac0) ≥ t0
c0

and (1(At0)−(µ•X))ג = .({A0})ג But then we have

a ≤ (Ac0))ג t0
c0

) · t0 = (Ac0))ג t0
c0

) · t0
c0
· c0 ≤ b.

On the other hand choose p0, z0 ∈ (0, 1] such that b = (z0(Ap0))ג · p0 · z0. Since ג is
a possibility capacity, there exists B0 ∈ (Ap0)z0 such that (z0(Ap0))ג = .({B0})ג We have
B0(Ap0) ≥ z0, hence µ•X(B0)(A) ≥ z0 · p0. Then we obtain

b = ({B0})ג · p0 · z0 ≤ (1(Ap0·z0)−(µ•X))ג · p0 · z0 ≤ a.
�

3. Functional representation of the monad M•∪
A monad F = (F, η, µ) is called an IL-monad if there exists a map ξ : FI → I such

that the pair (I, ξ) is an F-algebra and for each X ∈ Comp there exists a point-separating
family of F -algebras morphisms {fα : (FX,µX)→ (I, ξ) | α ∈ A} [12].

There was de�ned a monad VI in [12], which is universal in the class of IL-monads.
By VIX we denote the power IC(X,I). For a map φ ∈ C(X, I) we denote by πφ or π(φ)
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the corresponding projection πφ : VIX → I. For each map f : X → Y we de�ne the map
VIf : VIX → VIY by the formula πφ ◦ VIf = πφ◦f for φ ∈ C(Y, I). For a compactum
X, we de�ne components hX and mX of natural transformations by πφ ◦ hX = φ and
πφ ◦mX = π(πφ) for all φ ∈ C(X, I)). The triple VI = (VI , h,m) forms a monad in the
category Comp and for each monad F there exists a monad embedding l : F → VI if and
only if F is IL-monad [12]. Moreover, for a compactum X the map lX : FX → VIX is
de�ned by the conditions πφ ◦ lX = ξ ◦ Fφ for each ψ ∈ C(X, I).

Theorem 2. The monad M•∪ is an IL-monad.

Proof. De�ne the map ξ : M∪I → I by the formula ξ(ν) = max{ν([t, 1] · t | t ∈ (0, 1]}.
We can check that the pair (I, ξ) is an M•∪-algebra by the same but simpler arguments
as in the proof of Theorem 1.

Consider any compactum X and two distinct capacities ν, β ∈ M∪X. Then there
exists A ∈ F(X) such that ν(A) 6= β(A). We can suppose that ν(A) < β(A). Since
ν and β are possibility capacities, there exist a, b ∈ A such that ν({a}) = ν(A) and
β({b}) = β(A). Choose a point t ∈ (ν(A), β(A)). Put B = {x ∈ X | ν({x}) ≥ t}. Since ν
is a possibility capacity and ν(X) = 1, B is not empty. Since ν is upper semicontinuous,
B is closed. Evidently, B ∩A = ∅. Choose a function ϕ ∈ C(X, I) such that ϕ(B) ⊂ {0}
and ϕ(A) ⊂ {1}. Then

πϕ ◦ lX(ν) = ξ ◦M∪ϕ(ν) =

= max{M∪ϕ(ν)([s, 1] · s | s ∈ (0, 1]} =

= max{ν(ϕ−1[s, 1]) · s | s ∈ (0, 1]} ≤
≤ t < β(A) ≤ β(ϕ−1{1}) · 1 ≤
≤ πϕ ◦ lX(β)

It is easy to check that

πφ ◦ lX = ξ ◦M∪φ : M∪X → I

is a morphism of M•∪-algebras . �

Hence we obtain a monad embedding l : M•∪ → VI such that

πϕ ◦ lX(ν) = max{ν(ϕ−1[s, 1]) · s | s ∈ (0, 1]}

for each compactum X, ν ∈M∪X and ϕ ∈ C(X, I).
Let X be any compactum. For any c ∈ I we will denote by cX the constant function

on X taking the value c. Following the notations of idempotent mathematics (see e.g.,
[6]) we use the notation ⊕ in I and C(X, I) as an alternative for max. We will use the
notation ν(ϕ) = πϕ ◦ lX(ν) for ν ∈ VIX and ϕ ∈ C(X, I).

Consider the subset SX ⊂ VIX consisting of all functionals ν satisfying the following
conditions

(1) ν(1X) = 1;
(2) ν(λ · ϕ) = λ · ν(ϕ) for each λ ∈ I and ϕ ∈ C(X, I);
(3) ν(ψ ⊕ ϕ) = ν(ψ)⊕ ν(ϕ) for each ψ, ϕ ∈ C(X, I).

Let us remark that properties 1 and 2 yield that ν(cX) = c for each ν ∈ SX and
c ∈ I.
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Theorem 3. lX(M∪X) = SX.

Proof. Consider any ν ∈M∪X. Put υ = lX(ν). Then we have

υ(1X) = max{ν((1X)−1[s, 1]) · s | s ∈ (0, 1]} = max{ν(X) · s | s ∈ (0, 1]} = 1.

Take any c ∈ I and ϕ ∈ C(X, I). For c = 0, Property 2 is trivial. For c > 0 we have

υ(cϕ) = max
{
ν((cϕ)−1[s, 1]) · s | s ∈ (0, 1]

}
=

= max
{
ν(ϕ−1

[
s
c , 1
]
) · sc | s ∈ (0, 1]

}
· c =

= c · υ(ϕ).

Consider any ψ and ϕ ∈ C(X, I). We have

υ(ψ ⊕ ϕ) = max
{
ν((ψ ⊕ ϕ)−1[s, 1]) · s | s ∈ (0, 1]

}
=

= max
{
ν(ψ−1[s, 1] ∪ ϕ−1[s, 1]) · s | s ∈ (0, 1]

}
=

= max
{

(ν(ψ−1[s, 1])⊕ ν(ϕ−1[s, 1])) · s | s ∈ (0, 1]
}

=

= υ(ψ)⊕ υ(ϕ).

We obtained lX(M∪X) ⊂ SX.
Take any υ ∈ SX. For A ∈ F(X) put

ΥA = {ϕ ∈ C(X, I) | ϕ(a) = 1 for each a ∈ A}.

De�ne ν : F(X) → I as follows ν(A) = inf{υ(ϕ) | ϕ ∈ ΥA} if A 6= ∅ and ν(∅) = 0. It is
easy to see that ν satis�es Conditions 1 and 2 from the de�nition of capacity.

Let ν(A) < η for some η ∈ I and A ∈ F(X). Then there exists ϕ ∈ ΥA such that
υ(ϕ) = χ < η. Choose ε > 0 such that (1 + ε)χ < η. Put δ = 1

1+ε and ψ = min{δX , ϕ}.
Then υ(ψ) ≤ υ(ϕ) = χ and υ((1 + ε)ψ) ≤ (1 + ε)χ < η. Put U = ϕ−1(δ, 1]. Evidently, U
is an open set and U ⊃ A. But for each compact K ⊂ U we have (1 + ε)ψ ∈ ΥK . Hence
ν(K) < η.

Finally take any A, B ∈ F(X). Evidently, ν(A ∪ B) ≥ ν(A) ⊕ ν(B). Suppose
that ν(A ∪ B) > ν(A) ⊕ ν(B). Then there exists ϕ ∈ ΥA and ψ ∈ ΥB such that
ν(A∪B) > υ(ϕ)⊕υ(ψ) = υ(ϕ⊕ψ). However, ϕ⊕ψ ∈ ΥA∪B and we obtain a contradiction.
Hence ν ∈M∪X.

Let us show that lX(ν) = υ. Take any ϕ ∈ C(X, I). Denote ϕt = ϕ−1[t, 1]. Then

lX(ν)(ϕ) = max {inf{υ(χ) | χ ∈ Υϕt} · t | t ∈ (0, 1]} =

= max {inf{υ(tχ) | χ ∈ Υϕt
} | t ∈ (0, 1]} .

For each t ∈ (0, 1] put χt = min{ 1tϕ, 1X} ∈ Υϕt
. We have tχ ≤ ϕ, hence υ(tχ) ≤ υ(ϕ).

Then we have inf{υ(tχ) | χ ∈ Υϕt
} ≤ υ(ϕ) for each t ∈ (0, 1], hence lX(ν)(ϕ) ≤ υ(ϕ).

Suppose that lX(ν)(ϕ) < υ(ϕ). Choose any a ∈ (lX(ν)(ϕ), υ(ϕ)). Then for each t ∈
(0, 1] there exists χt ∈ Υϕt

such that υ(tχt) < a. Choose ε > 0 such that (1+ε)a < υ(ϕ).
Put δ = 1

1+ε . Choose n ∈ N such that δn < υ(ϕ). Put ψn+1 = δnX and ψi = δi−1χδi for

i ∈ {1, . . . , n}. We have υ(ψi) < υ(ϕ) for each i ∈ {1, . . . , n+1}. Put ψ =
⊕n+1

i=1 ψi. Then

υ(ψ) =
⊕n+1

i=1 υ(ψi) < υ(ϕ). On the other hand ϕ ≤ ψ and we obtain a contradiction. �
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Hence we obtain, in fact, that the monad M•∪ is isomorphic to a submonad of VI
with functorial part acting on compactum X as SX. Let us remark that this monad
is one of monads generated by t-norms considered by Zarichnyi [20]. Thus the following
question seems to be natural: can we generalize the results of this paper to any continuous
t-norms?
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Ôóíêöiîíàëüíå çîáðàæåííÿ ìîíàäè ¹ìíîñòåé ðîçãëÿäàëîñü â [10] i [7].
Íèêèôîð÷èí ðîçãëÿíóâ â [8] àëüòåðíàòèâíó ñòðóêòóðó ìîíàäè äëÿ ïåâ-
íîãî ïiäôóíêòîðà ôóíêòîðà ¹ìíîñòåé, áàçîâàíó íà îïåðàöiÿõ ìàêñèìóìó
òà çâèêëîãî ìíîæåííÿ. Ìè ïîêàçó¹ìî, ùî öÿ ìîíàäà ìà¹ ôóíêöiîíàëüíå
çîáðàæåííÿ, òîáòî ïðîñòið ¹ìíîñòåé íà êîìïàêòi X ìîæå áóòè ïðèðîäíî
âêëàäåíèì (çi çáåðåæåííÿì ñòðóêòóðè ìîíàäè) â äåÿêèé ïðîñòið ôóíêöiî-
íàëiâ íà C(X, I). Ìè òàêîæ îïèñó¹ìî öåé ïðîñòið ôóíêöiîíàëiâ â òåðìiíàõ
âëàñòèâîñòåé ôóíêöiîíàëiâ.

Êëþ÷îâi ñëîâà: ìîíàäà, ¹ìíiñòü, íå÷iòêèé iíòåãðàë, òðèêóòíà íîðìà.
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