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Functional representations of the capacity monad based on the max and min
operations were considered in [I0] and [7]. Nykyforchyn considered in [§] some
alternative monad structure for the possibility capacity functor based on the
max and usual multiplication operations. We show that such a capacity monad
(which we call the capacity multiplication monad) has a functional representati-
on, i.e. the space of capacities on a compactum X can be naturally embedded
(with preservation of the monad structure) in some space of functionals on
C(X,I). We also describe this space of functionals in terms of properties of
functionals.
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1. INTRODUCTION

Functional representations of monads (i.e. natural embeddings into RC(¥>%) which
preserves a monad structure where S is a subset of R) were considered in [I1I] and [12].
Some functional representations of hyperspace monad were constructed in [I3] and [14].

Capacities (non-additive measures, fuzzy measures) were introduced by Choquet
in [I] as a natural generalization of additive measures. They found numerous appli-
cations (see for example [2],[4],[16]). Categorical and topological properties of spaces of
upper-semicontinuous capacities on compact Hausdorff spaces were investigated in [9].
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In particular, the capacity functor was constructed. This functor is a functorial part of
a capacity monad M based on the max and min operations.

The space of capacities MX can be naturally embedded in REX) by means
of the Choquet integral. In other words, the Choquet integral provides some functi-
onal representation of the functor M. However, this representation does not preserve
the monad structure. Nykyforchyn using the Sugeno integral provided a functional
representation of capacities as functionals on the space C(X,I) which preserves the
monad structure [7]. Some modification of the Sugeno integral yields a functional
representation of capacities as functionals on the space C(X) [10].

Let us remark that the min operation is a triangular norm on the unit interval
I. Another important triangular norm is the multiplication operation. Nykyforchyn
constructed a capacity monad based on the max and multiplication operations [8]. (Let
us remark that recently Zarichnyi proposed to use triangular norms to construct monads
[20]). The main aim of this paper is to find a representation of the monad from [§]. We
use a fuzzy integral based on the max and multiplication operations for this purpose.

2. CAPACITIES AND MONADS

By Comp we denote the category of compact Hausdorff spaces (compacta) and
continuous maps. For each compactum X we denote by C(X) the Banach space of all
continuous functions ¢ : X — R with the usual sup-norm: ||¢| = sup{|¢(x)| | z € X}.
We also consider on C'(X) the natural partial order.

In what follows, all spaces and maps are assumed to be in Comp except for R, the
spaces C(X) and functionals defined on C(X) with X compact Hausdorff.

We recall some categorical notions (see [15] and [I7] for more details). We define
them only for the category Comp. The central notion is the notion of monad (or triple)
in the sense of S.Eilenberg and J.Moore.

A monad [3] T = (T,n,u) in the category Comp consists of an endofunctor 7' :
Comp — Comp and natural transformations 7 : Idcomp — 7' (unity), p : 7% — T
(multiplication) satisfying the relations poTn = ponT =17 and po puT = poTu. (By
Idcomp we denote the identity functor on the category Comp and T? is the superposition
ToTofT.)

Let T = (T,n, ) be a monad in the category Comp. The pair (X, ) where £ : TX —
X is amap is called a T-algebra if EonX = idy and EouX = EoTE. Let (X&), (Y, &) be
two T-algebras. A map f: X — Y is called a morphism of T-algebras if £’ o T'f = f o &.

A natural transformation ¢ : T — T’ is called a morphism from a monad T =
(T,n, ) into a monad T = (T", 0/, /) if Ypon =1n" and Y o pu = p' onT" o Te. If all of
the components of ¥ are monomorphisms then the monad T is called a submonad of T’
and v is called a monad embedding.

Let A be a subset of X. By F(X) we denote the family of all closed subsets of X.
Put I =[0,1].

We follow a terminology from [9]. A function v : F(X) — I is called an upper-
semicontinuous capacity on X if the following three properties hold for each closed subsets
F and G of X:

(1) v(X)=1,v(0) =0,

(2) if F C G, then v(F) < v(Q),
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(3) if ¥(F') < a, then there exists an open set O D F' such that v(B) < a for each
compactum B C O.

A capacity v is extended in [9] to all open subsets U C X by the formula
v(U) = sup{v(K) | K is a closed subset of X such that K C U}.

It was proved in [9] that the space M X of all upper-semicontinuous capacities on a
compactum X is a compactum as well, if a topology on M X is defined by a subbase that
consists of all sets of the form O_(F,a) = {¢c € MX | ¢(F) < a}, where F is a closed
subset of X, a € [0,1], and O4(U,a) = {c € MX | ¢(U) > a}, where U is an open subset
of X, a € [0,1]. Since all capacities under consideration here are upper-semicontinuous,
in the following we call the elements of M X simply capacities.

A capacity v € M X for a compactum X is called a necessity (possibility) capacity
if for each family {A¢}se7 of closed subsets of X (such that (J,., A is a closed subset of
X) we have v((,cp At) = infier v(Ar) (V(Uer At) = supier v(Ar)). (See [19] for more
details.) We denote by MnX (MyX) the subspace of M X consisting of all necessity
(possibility) capacities. Since X is compact and v is upper-semicontinuous, v € My X if
and only if v satisfies the simpler requirement that v(A N B) = min{r(A),v(B)}.

If v is a capacity on a compactum X, then the function X (v) defined on the
family F(X) by the formula X (v)(F) =1 —v(X \ F), is a capacity as well. It is called
the dual capacity (or conjugate capacity ) to v. The mapping kX : MX — MX is a
homeomorphism and an involution [9]. Moreover, v is a necessity capacity if and only if
kX (v) is a possibility capacity. This implies in particular that v € My X if and only if v
satisfies the simpler requirement that v(A U B) = max{v(A),v(B)}. It is easy to check
that M~X and M_X are closed subsets of M X.

The assignment M extends to the capacity functor M in the category of compacta,
if themap M f: MX — MY for a continuous map of compacta f : X — Y is defined by
the formula M f(c)(F) = ¢(f~!(F)) where c € M X and F is a closed subset of X. This
functor was completed to the monad M = (M, n, ) [9], where the components of the
natural transformations are defined as follows: nX (z)(F) = 1ifx € F and nX (z)(F) =0
ifx ¢ F;

pX(C)(F) =sup{t € [0,1] [C({c € MX | c(F) = t}) = t},
where x € X, F is a closed subset of X and C € M?(X) (see [9] for more details).

It was shown in [5] that M, and Mn are subfunctors of M and if we take the
corresponding restrictions of the functions pX, we obtain submonads M, and M, of the
monad M.

The semicontinuity of capacities yields that we can change sup for max in the
definition of the map pX. More precisely, existing of max follows from Lemma 3.7 [9].
For a closed set ' C X and for t € I put Fy = {c € MX | ¢(F) > t}. We can rewrite the
definition of the map pX as follows

uX(C)(F) = max{C(F;) At |t e (0,1]}.

Let us remark that the operation A is a triangular norm. It seems natural to consider
another triangular norm instead of A. Define the map p*X : M2X — M X by the formula

p* X (C)(F) =max{C(F;) -t |t e (0,1]}.

(Existence of max also follows from Lemma 3.7 [9].)
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Proposition 1. The natural transformation p® does not satisfy the property p®ou® M =
M. o Ml,l/..

Proof. Consider X = {a, b}, where {a, b} is a two-point discrete space. Define A; € M2X
as follows A; (o) = 1 if and only if a D {a}, and A;(a) = 0 otherwise for o € F(MX).
Define Ay € M?X as follows As(a) = 1 if and only if o = MX, A>(a) = 1 if and only

if @« D {a}; and A;(a) = 0 otherwise for a € F(MX). Now, define J € M3(X) by the

formula
3(A) = SMX(A(A) + SnMX (As)(A)

for A € F(M?X).

We have

ptX o M(p*X)(3)({a}) = max{I((*X) " ({a}e)) -t | t € (0, 1]}.

It is easy to see that p* X (A1)({a}) = p* X (A2)({a}) = 3. Then I((u*X)~'({a}1)) 3 =
1-1 =1 Hence we obtain p*X o p*MX(J)({a}) > 1.

On the other hand

X 0 pt MX ()({a}) = mas{us MX(3)({a})) - ¢ | ¢ € (0,1]} =
= max{max{I(({a}:)s) - s|s € (0,1]} -t | ¢t € (0,1]}.

The function d(s,t) = I(({a}:)s) is nonincreasing on both variables. We have d(s,¢) =0
for each (s,t) such that s > 1 and ¢ > %. Moreover 6(1,3) = 6(3,1) = 1. Hence

WX o p* MX()({a)) = maxfmax(I(({a})s) s | s € 0.1} 1€ 0,1} = 1.
O

Remark 1. Since the triple M* = (M,n, u*) does not form a monad, the problem of
uniqueness of the monad M stated in [9] is still open.

But things may turn out differently if we restrict the map p®X to the set
My(MyX) ¢ M(MX). It is easy to see that for such restriction we can consider
the sets A; in the definition of the map p®X as subsets of My X. It was deduced from
some general facts that the triple M, = (My,n, x*) is a monad [8]. For the sake of
completeness we give here a direct proof.

Lemma 1. We have p* X (My(MyX)) C MyuX for each compactum X.

Proof. Consider any A € M(MyX) and B, C € F(X). Since B; and C; are subsets of
MyX, we have (CU B); = Cy U B;. Then
p*X(A)(BUC) =max{A((CUB);) -t|te(0,1]} =
=max{A(C, UBy)-t|te (0,1} =
= max{max{A(Cy) -t | t € (0,1]}, max{A(B;) -t |t € (0,1]} =
= max{u* X (A)(B), u* X (A)(C)}.

We will use the notation p*X also for the restriction ,u'X|M5X.
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Theorem 1. The triple M?, = (My,n, u®) is a monad.

Proof. Tt is easy to check that n and p® are well-defined natural transformations of the
corresponding functors. Let us check two monad properties.
Take any compactum X, v € M X and A € F(X). Then we have

p*X onMyX (v)(A) = max{nMyX (v)(Ay) -t |t € (0,1]} =
=v(A) and p*X o My(nX)(v)(4) =
= max{Mu(nX)(W)(A) 1| £ € (0,1]} =
= max{v((nX) ™ (A)) -t t € (0,1]} =
=max{v(A) -t |t € (0,1} = v(A).

We obtain the equality p® o Myn = p® onMy =1y,
Now, consider any J € M3(X) and A € F(X). Put

a=p*X o My(p®X)(3)(A) = max{I((u*X) 7 (Ar)) -t [ ¢ € (0,1]}
and

b= *X o u* MyX (3)({a}) =
= max{p* MuX(3)(Ar)) -t |t e (0,1]} =
= max{max{J((A;)s) -s|s € (0,1]} -t | t € (0,1]}.

There exists ¢y € (0,1] such that a = I((u*X)"1(Ay,)) - to- We have
(1 X) " (Aiy) = {A € ME(X) | 4" X(A) > o} =
={A € MZ(X) | there exists c € (0,1] such that A(A.)-c>ty} =

t
= {.A € M3(X) | there exists ¢ € (0,1] such that A(A.) > CO} .

Since J is a possibility capacity, there exists Ay € M3(X) and ¢y € (0,1] such that
Ao(Acy) > 2 and I((p*X) ™" (As,)) = I({Ao}). But then we have
@ <I(Ae) ) to = (Acg) ) - 2o < b,
) o Co
On the other hand choose pg, zp € (0, 1] such that b = 3((A4,,)z,) - Po - 20. Since 7T is
a possibility capacity, there exists By € (Ap, )., such that I((4,,)z,) = I({Bo}). We have
Bo(Ap,) > 20, hence p® X (By)(A) > 2o - po. Then we obtain

b=1({Bo}) - po- 20 < I((1*X) ™ (Apg.2)) - P0 - 20 < a.

3. FUNCTIONAL REPRESENTATION OF THE MONAD M

A monad F = (F,n, ) is called an IL-monad if there exists a map & : FI — I such
that the pair (I,£) is an F-algebra and for each X € Comp there exists a point-separating
family of F-algebras morphisms {f, : (FX,uX) — (I,¢) |« € A} [12].

There was defined a monad V; in [12], which is universal in the class of IL-monads.
By V;X we denote the power 1D For a map ¢ € C(X,I) we denote by Ty or T(P)
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the corresponding projection 7y : V;.X — I. For each map f : X — Y we define the map
Vif : ViX — V1Y by the formula 7y o Vi f = mgoy for ¢ € C(Y,I). For a compactum
X, we define components hX and mX of natural transformations by 74 o hX = ¢ and
7wy omX = m(my) for all ¢ € C(X,I)). The triple V; = (V, h,m) forms a monad in the
category Comp and for each monad F there exists a monad embedding [ : 7 — V7 if and
only if F is IL-monad [I2]. Moreover, for a compactum X the map [X : FX — V; X is
defined by the conditions 74 o [X = £ o F'¢ for each ¢ € C(X,I).

Theorem 2. The monad M, is an IL-monad.

Proof. Define the map & : Myl — I by the formula ¢(v) = max{v([t,1] -t | t € (0, 1]}.
We can check that the pair (I,€) is an M -algebra by the same but simpler arguments
as in the proof of Theorem

Consider any compactum X and two distinct capacities v, f € MyX. Then there
exists A € F(X) such that v(A) # B(A). We can suppose that v(A) < S(A). Since
v and ( are possibility capacities, there exist a, b € A such that v({a}) = v(A) and
B({b}) = B(A). Choose a point ¢ € (v(A), (A4)). Put B={x € X |v({z}) > t}. Since v
is a possibility capacity and v(X) = 1, B is not empty. Since v is upper semicontinuous,
B is closed. Evidently, BN A = (). Choose a function ¢ € C(X,I) such that ¢(B) C {0}
and p(A) C {1}. Then

Ty 0lX(v) = {0 Myup(v) =
= max{Mup(v)([s,1] - s | s € (0,1]} =
s, 1]) - s | s €(0,1]} <
St<BA) <BleT 1Y) 1<
<m,olX(B)

= max{v(p

It is easy to check that
mpolX =EoMygp: MuX — 1

is a morphism of M -algebras . U

Hence we obtain a monad embedding [ : M, — V such that
Ty 0lX (v) = max{v(p '[s,1]) - s | s € (0,1]}

for each compactum X, v € MyX and ¢ € C(X, I).

Let X be any compactum. For any ¢ € I we will denote by cx the constant function
on X taking the value c. Following the notations of idempotent mathematics (see e.g.,
[6]) we use the notation @ in I and C(X,I) as an alternative for max. We will use the
notation v(y¢) = m, o X (v) for v € Vi X and ¢ € C(X,I).

Consider the subset SX C V;X consisting of all functionals v satisfying the following
conditions

(1) v(lx) =1

(2) v(A @) =X v(p) for each A € I and ¢ € C(X,I);

(3) v(¥ ® ) =v(¥) ®v(p) for each v, p € C(X, ).

Let us remark that properties 1 and 2 yield that v(cx) = ¢ for each v € SX and
cel.
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Theorem 3. [X(MyX) =S5X.
Proof. Consider any v € My X. Put v =X (v). Then we have
v(lx) = max{r((1x) *[s,1]) - s | s € (0,1]} = max{v(X)-s|s € (0,1]} = 1.
Take any ¢ € I and ¢ € C(X,I). For ¢ = 0, Property 2 is trivial. For ¢ > 0 we have

v(ep) = max {y((cga)_l[s, 1]) - s| s € (0, 1]} =
= max{l/(go_l [£,1])-2|s€(0,1]}-c=
=c-v(p).
Consider any ¢ and ¢ € C(X,I). We have

v ® 9) = max {v(6® ) s, 1) -5 | 5 € (0, 1]} =
=max {v(¢y '[s,1] Uy '[s,1]) - s | s € (0,1]} =
= max {(v(¢ s, 1) @ v(p~'[s,1])) - s | s € (0,1]} =
= v(¥) © v(p).

We obtained I X (MyX) C SX.
Take any v € SX. For A € F(X) put

Ts={pecCX,I)|pa) =1 for each a € A}.

Define v : F(X) — I as follows v(A) = inf{v(p) | ¢ € Ta} if A# 0 and v(0) = 0. It is
easy to see that v satisfies Conditions 1 and 2 from the definition of capacity.

Let v(A) < n for some n € I and A € F(X). Then there exists ¢ € T 4 such that
v(p) = x < n. Choose € > 0 such that (1+¢)x <n. Put 6 = ﬁ and 1 = min{dx, p}.
Then v(¢)) < v(p) = x and v((1+¢€)y) < (1+¢)x < n. Put U = p=1(§,1]. Evidently, U
is an open set and U D A. But for each compact K C U we have (1 + )y € T g. Hence
v(K) <n.

Finally take any A, B € F(X). Evidently, v(A U B) > v(A) @ v(B). Suppose
that v(AU B) > v(A) @ v(B). Then there exists ¢ € T4 and ¢ € YTp such that
v(AUB) > v(p)@v(¢) = v(p®1). However, o@1y) € T 4up and we obtain a contradiction.
Hence v € M X.

Let us show that (X (v) = v. Take any ¢ € C(X,I). Denote ¢; = ¢ *[t,1]. Then

X (1)) = max (int{o(y) | x € T} |1 € (0,1]) =
= max {inf{v(tx) | x € Ty, } |t € (0,1]}.

For each ¢ € (0,1] put x¢ = min{}p,1x} € T,,. We have tx < ¢, hence v(tx) < v(¢p).
Then we have inf{v(tx) | x € Ty, } < v(p) for each t € (0,1], hence IX (v)(¢) < v(p).
Suppose that I X (v)(¢) < v(p). Choose any a € (IX(v)(¢),v(®)). Then for each t €
(0,1] there exists x; € T, such that v(tx:) < a. Choose ¢ > 0 such that (1+¢)a < v(p).
Put § = r1=. Choose n € N such that 6" < v(p). Put ¢, 11 = 0% and ¢); = 6" x4 for

1€ {1,...,n}. We have v(¢;) < v(p) foreachi € {1,...,n+1}. Put ¢ = @?:11 ;- Then
v(Y) = @?;11 v(1;) < v(p). On the other hand ¢ < 1) and we obtain a contradiction. O
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Hence we obtain, in fact, that the monad M, is isomorphic to a submonad of V;
with functorial part acting on compactum X as SX. Let us remark that this monad
is one of monads generated by t-norms considered by Zarichnyi [20]. Thus the following
question seems to be natural: can we generalize the results of this paper to any continuous
t-norms?
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and Casimirus the Great University of Bydgoszcz, Poland
e-mail: tarasradul@yahoo.co.uk

DyuknioHaIbHe 300paXKeHHsI MOHaAU €MHOCTel posrusaasnocs B [10] i [7].
Hukudopunn posrianays B [§| amprepHaTnBHY CTPYKTYPY MOHAIM [IJIsl TIE€B-
HOro TiApyHKTOpa PYHKTOPA EMHOCTEH, 6A30BaHy HA OMEPAIlTX MAKCUMYMY
Ta 3BUKJIOTO MHOXKeHHs. Mu mokasyemo, mo s MOHAJa Mae (PyHKI[iOHAIbHE
300parkeHHst, TOOTO TIPOCTIp €eMHOCTEN Ha KOMIAKTI X MOKe OyTH MIPUPOIHO
BKJIaZIEHNM (31 36€pEKEHHAM CTPYKTYPH MOHAIN) B JAESTKHil IPOCTIP DYHKIIO-
masis za C (X, I). Mu Takox onmcyemo 1ieii mpocTip byHKIIOHAIIB B TEPMIHAX
BJACTUBOCTEN (DYHKITIOHATIB.

Karonosi crosa: MoHAMA, EMHICTH, HEYITKHM IHTErpaJ, TPUKYTHA HOPMA.
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