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In this paper we introduce and study some generalizations of regular spaces which
were motivated by continuity properties of functions between (regular) topological spaces.
First we introduce the necessary definitions.

A subset U of a topological space X is called 6-open if each point z € U has a
neighborhood O, C X such that O, C U. It is clear that each #-open set is open.
Moreover, a topological space is regular if and only if each open subset of X is 6-open.

Lemma 1. Let U be a 6-open subset of a topological space X and V be a 0-open subset
of U. Then V is 0-open in X.

Proof. For each point z € V, the #-openness of U in X yields an open neighborhood
U, C X such that clx (U,) C U. The f-openness of V in U yields an open neughborhood
V.. C U such that cly(V,) C U. Now consider the open neighborhood O, =V, N U, and
observe that clx(0;) C clx(V;) Nelx (Uz) Celx(Vy) NU =cly(Vy) C V. O
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For a function f: X — Y between topological spaces by C(f) we denote the set of
continuity points of f.

Definition 1. A function f: X — Y beween topological spaces is called

e scatteredly continuous if for any non-empty subset A C X the set C(f]A) is not
empty;

o weakly discontinuous if if for any non-empty subset A C X the set C(f|A) has
non-empty interior in A;

o f-weakly discontinuous if if for any non-empty subset A C X the set C(f|A)
contains a non-empty 6-open subset of A.

So, we have the implications:
f-weakly discontinuous = weakly discontinuous = scatteredly continuous.

The first and last implications can be reversed for functions with regular domain
and range, respectively.

Theorem 1 (trivial). A function f : X — Y from a regular topological space X to a
topological space Y is weakly discontinuous if and only if it is 0-weakly discontinuous.

Theorem 2 (Bokalo). A function f : X — Y from a topological space X to a regular
space Y is scatteredly continuous if and only if it is weakly discontinuous.

A proof the Theorem [2| can be found in [1], [8]. More information on various sorts
of generalized continuity can be found in [2]-12].
Motivated by Theorems [I] and [2] let us introduce the following definition.

Definition 2. A topological space X is called

e sw-regular if any scatteredly continuous function f : Z — X defined on a
topological space Z is weakly discontinuous;

o wh-regular if any weakly discontinuous function f : X — Y to any topological
space Y is f-weakly discontinuous.

Theorems [If and [2| imply that each regular space is sw-regular and w6-regular.
The following theorem characterizes wé-regular spaces.

Theorem 3. A topological space X is wO-regular if and only if for each subspace A C X,
each non-empty open subset U C A contains a non-empty 0-open subset of A.

Proof. To prove the “if” part, assume that for each subspace A C X, every non-empty
open subset U C A contains a non-empty 6-open subset of A. To show that the space X
is wh-regular, fix any weakly discontinuous map f : X — Y. To show that f is §-weakly
discontinuous, take any non-empty subset A C X. Since f is weakly discontinuous, there
exists a non-empty open subset U C A such that f|U is continuous. By our assumption,
U contains a 6-open subspace V of A. Since f|V is continuous, the function f is 6-weakly
discontinuous.

Now we prove the “only if” part. Assume that the space X is w6-regular. Given
any subset A C X and a non-empty open subset U C A, consider the closures A and
A\ U of the sets A and A\ U in X. Observe that U := A\ A\ U is an open set in
A with UN A = U and U C U. Consider the topological sum ¥ = U @ (X \ U) and
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observe that the identity map f : X — Y is weakly discontinuous. The wé-regularity
of the space X ensures that f is §-weakly discontinuous. Consequently, the closure U of
U in A contains a non-empty 6- open subset V' C U such that f|V is continuous. The
continuity of f|V" ensures that V' C U. We claim that V is 6-open in A. Since V is 6-open
in U, for any = € V there exists a neighborhood O, of x such that O, is open in U and
0, c 0, CcV cU.So, O, is open in U and hence is open in A.

Taking into account that V is a non-empty #-open subset of A, we conclude that
VNACUNA=U is a non-empty f-open subset of A, contained in the set U. O

Problem 1. Characterize topological spaces which are sw-regular.

We shall prove that sw-regular and w6-regular spaces are preserved by 6-weak
homeomorphisms.

Definition 3. A bijective function f : X — Y between topological spaces is called a
(6-)weak homeomorphism if both functions f and f~! are (6-)weakly discontinuous.

We shall need the following proposition describing the continuity properties of
compositions of scatteredly continuous, weakly discontinuous and #-weakly discontinuous
functions.

Proposition 1. Let f: X =Y and g : Y — Z be two functions between topological
spaces.

(1) If f,g are weakly discontinuous, then g o f is weakly discontinuous.

(2) If f,g are 0-weakly discontinuous, then go f is -weakly discontinuous.

(3) If [ is weakly discontinuous and g is scatteredly continuous, then g o f is
scatteredly continuous.

(4) If f is scatteredly continuous and g is O-weakly discontinuous, then g o f is
scatteredly continuous.

Proof. 1. Assume that f,g are weakly discontinuous. To prove that g o f is weakly
discontinuous, we need to show that for any non-empty subset A C X the set C(go f|A)
has non-empty interior in A. By the weak discontinuity of f, the set C(f|A) contains a
non-empty open subset U C A. By the weak discontinuity of g, the set C(g|f(U)) contains
a non-empty open set V C f(U). By the continuity of f|U, the set W = (f|U)~1(V) is
open in U and hence open in A. Since f(W) C V, the continuity of the restrictions f|W
and g|V implies the continuity of the restriction g o f|W. So, W C C(g o f|A).

2. Assume that f,g are f-weakly discontinuous. To prove that g o f is O-weakly
discontinuous, we need to show that for any non-empty subset A C X the set C(go f|A)
contains a non-empty #-open subset W C A. By the #-weak discontinuity of f, the set
C(f]A) contains a non-empty #-open subset U C A. By the #-weak discontinuity of g,
the set C(g|f(U)) contains a non-empty 6-open set V C f(U). By the continuity of f|U,
the set W = (f|U)~(V) is f-open in U and hence f-open in A, by Lemma [1| Since
f(W) C V, the continuity of the restrictions f|W and g|V implies the continuity of the
restriction g o f|TW. Now we see that the set C(g o f|A) contains the non-empty 6-open
subset W of A, witnessing that g o f is #-weakly discontinuous.

3. Assume that f is weakly discontinuous and ¢ is scatteredly continuous. To prove
that g o f is scatteredly continuous, we need to show that for any non-empty subset
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A C X the function g o f|A has a continuity point. By the weak discontinuity of f, the
set C'(f|A) contains a non-empty open subset U C A. By the scattered continuity of
g, the function g|f(U) has a continuity point y. Then any point z € U N f~1(y) is a
continuity point of the restriction g o f|A.

4. Assume that f is scatteredly continuous and ¢ is #-weakly discontinuous. Given
a non-empty subset A C X, we need to show that the restriction go f|A has a continuity
point. Let Ag := A and A, := (3., As \ C(f|Ap) for any non-zero ordinal a. In
particular, Ay+1 = Ay \ C(f|A,) for any ordinal a.

Let & be the smallest ordinal such that As is not dense in A and let W = A\ A;. It
follows that W = (J,.s W N C(f|As) and each set W N C(f|Ay) is dense in W (by the
scattered continuity of f).

Since the function g is #-weakly discontinuous, the set C(g|f(W)) contains a non-
empty 6-open subset V' C f(W). Since W = |J,.s W N C(f|As), we can choose the
smallest ordinal v < § such that W N C(f|A,) N f~1(V) # 0. Choose a point = €
WNC(f|A,)NF~1(V). Since the set V is -open in f(W), the point f(z) € V has a closed
neighborhood Of(z) C f(W) such that Of(z) C V. By the continuity of the map f|A, at
x, there exists an open neighborhood O, C W of « such that f(O, N A,) C Of(m) cV.

We claim that v = 0. To derive a contradiction, assume that v > 0. In this case
WNC(flA))N f~1(V) =0 and hence = ¢ C(f|A¢) = C(f|A). By the density of C(f|A)
in A, there exists a point z € O, N C(f|A). It follows that f(z) € W\ V C W \ O(a).
By the continuity of f|W at z, there exists an open neighborhood O, C O, such that
f(Oz) C f(W)\ Oy (s). Then

fO.NA) = f(0.N0,NA)) C F(O)NF(O:NAY) C(fFW)\ Op(z)) NOp(zy =0

and hence O, N A, = (), which contradicts the density of A, in A. This contradiction
shows that v = 0 and hence € C(f|4,) = C(f|A) is a continuity point of f|A with
f(O,) C V. The continuity of the restriction g|V implies that go f|A is continuous at x.
So, g o f|A has a continuity point. O

Theorem 4. A topological space X is sw-reqular if there exists a 0-weakly disconti-
nuous bijective function h : X — Y to an sw-regular space Y such that h™' is weakly
discontinuous.

Proof. To show that X is sw-regular, we need to show that each scatteredly continuous
function f : Z — X is weakly discontinuous. By Proposition (4), the composition
hof: Z — Y is scatteredly continuous. Since Y is sw-regular, the function h o f is
weakly discontinuous. By Proposition (1), the composition h™' o ho f = f is weakly
discontinuous. O

Theorem 5. A topological space X is wO-reqular if there exists a 0-weakly disconti-
nuous bijective function h : X — Y to a wh-reqular space Y such that h™' is weakly
discontinuous.

Proof. To see that X is wf-regular, we need to show that each weakly discontinuous
function f : X — Z is 6-weakly discontinuous. By Proposition 1), the composition
foh™l:Y — Z is weakly discontinuous. Since Y is wf-regular, the function f o h=! is
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f-weakly discontinuous. By Proposition (2), the composition foh™loh = f is f-weakly
discontinuous. (]

Corollary 1. The classes of sw-reqular and w6-reqular spaces are preserved by 0-weak
homeomorphisms.

Definition 4. A topological space X is called (6-)weakly regular if it is (0-)weakly
homeomorphic to a regular topological space.

Example 1. Consider the real line R endowed with the second-countable topology T
generated by the subbase

{Q} U {(~00,0a), (a,+0) : a € R}.

It can be shown that the topological space X = (R, 7) is weakly regular. The identity
map R — X is scatteredly continuous but not weakly discontinuous, which implies that
the space X is not sw-regular. On the other hand, the function x : X — {0,1} C R

defined by
() 1 ifze@
€Tr) =
X 0 ifzeR\Q;

is weakly discontinuous but not §-weakly discontinuous, witnessing that the space X is
not wh-regular. Theorem [6] implies that the space X is not f-weakly regular.

Theorem [T} 2] and Corollary [I] imply:
Theorem 6. Fach 0-weakly regular space is sw-reqular and wl-regular.

Theorem 7. A topological space X is O-weakly reqular if and only if each non-empty
(closed) subspace A C X contains a non-empty 0-open regular subspace.

Proof. First assume that X is f-weakly regular and fix any #-weak homeomorphism
h: X — Y to aregular topological space Y.

Given any subspace A C X, we need to find a non-empty 6-open regular subspace
W C A. Since the map h is #-weakly discontinuous, there exists a non-empty #-open
subset U C A such that h|U is continuous. Since h~! is -weakly discontinuous, the non-
empty subspace h(U) of Y contains a non-empty f-open subspace V such that h=1[V
is continuous. The continuity of the map h|U implies that the set W := (h|U)~1(V) is
¢-open in U and hence 6-open in A (by Lemma [I). The continuity of maps h|W and
h=L|h(W) implies that h|W : W — h(W) is a homeomorphism. The regularity of the
topological space Y implies the regularity of its subspace h(W) and the regularity of
the topological copy W of h(W). Therefore, W is a required non-empty 6-open regular
subspace of A.

Now assume that each non-empty closed subspace A C X contains a non-empty 6-
open regular subspace. Let A? be the union of all #-open regular subspaces of A. It is clear
that the subspace A? is f-open in A and regular. Let X, := X and X, = ﬂ5<a X\ Xg
for each ordinal a. It follows that for any ordinal o with X,, # ) the set X411 = X, \ X?
is closed in X, and has non-empty complement X1\ X, = X?. Consequently, X, =0

for some v and hence X = Ua<,y Xg.
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Let Y := ®a<v X? be the topological sum of the regular spaces X? for a < 7. It is
clear that the space Y is regular and the identity map ¢ : Y — X is continuous. We claim
that the identity map i~' : X — Y is f-weakly discontinuous. Given any non-empty
subset A C X, find the smallest ordinal 3 < v such that A ¢ Xg. Then A C X, for
all a < B, which implies that [ is a successor ordinal. Write 8 = a + 1 for some « and
observe that U = AN X% = AN (X, \ Xoyt1) is a non-empty f-open subspace of A such
that ~!|U is continuous. This means that i~! is §-weakly discontinuous and i : X — Y
is a 8-weak homeomorphism of X onto the regular space Y. O

By analogy we can prove a characterization of weakly regular spaces.

Theorem 8. A topological space X is weakly reqular if and only if each (closed) subspace
A C X contains a non-empty open reqular subspace.

A topological space X is called

e quasi-regular if each non-empty open subset of X contains the closure of some
non-empty open set in X;
o hereditarily quesi-regular if each subspace of X is quesi-regular.
Theorem [3] implies

Corollary 2. Fach w@-regular space is hereditarily quasi-regular.

Theorems [7] and [6] imply:
Corollary 3. Each scattered Ty -space is 0-weakly reqular and hence is sw-reqular and
wh-reqular.

The Ti-requirement in Corollary [3|is essential as shown by the following example.

Example 2. Consider the connected doubleton D = {0,1} endowed with the topology
{@,{0},{0,1}}. It is clear that D is a scattered space. The function f: R — D defined

by
1 ifr ey
f(x)_{o itz ¢Q

is scatteredly continuous but not weakly discontinuous as C(f) = Q has empty interior
in R. Consequently, D is not sw-regular and hence not 6-weakly regular.

The identity map ¢ : D — {0,1} to the discrete doubleton is weakly discontinuous
but not f-weakly discontinuous. This means that D is not wf-regular.

Definition 5. A topological space X is locally regular if X admits an open cover by
regular subspaces.

Theorem |8 implies that each locally regular space is weakly regular.
Theorem 9. Fach locally reqular topological space Y is sw-regular.

Proof. Given a scatteredly continuous map f: X — Y and a non-empty subset A C X,
we should show that the set C(f|A) has non-empty interior in A.

By the scattered continuity of f, the map f|A has a continuity point a € A. By
our assumption, the point f(a) is contained in an open regular subspace U C Y. By
the continuity of f at a, there exists an open neighborhood O, C A of a such that
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f(O,) C U. Since U is regular, the set C(f|O,) has non-empty interior in O, and then
the set C(f) D C(f]O,) has non-empty interior in A. O

Example 3. On the real line R consider the Euclidean topology 7 and the topology 7
generated by the subbase

T U{W, :n € w} where Wn:R\{ﬁ:me, kzn}.
It can be shown that the space X = (R, 7) is 8-weakly regular but not locally regular.

A topological space X is called regular at a point x € X if any neighborhoodof z
in X contains a closed neighborhood of 2 in X. A topological space X is called nowhere
regular if X is not regular at each point z € X.

Example 4. Let 75 be the Euclidean topology of the real line and 7 be the topology
generated by the subbase

{(UNQ)U{z}:2 €U €15}

The space (R, 7) is locally regular and hence sw-regular. On the other hand, it is nowhere
regular, not quasi-regular and not wé-regular.

Now, we describe the smallest non-regular first-countable Hausdorff space, which is
called the Gutik hedgehog. The Gutik hedgehog is the space N2 = NC UN! UN? endowed
with the topology generated by the base

{{z} 12 e N*} U{U, :n € N} U{Upm : n,m € N}
where
U, ={0}U{(i,j) e N*:i>n} and Unm = {(n)} U{(n,j) : j > m} C N' UN?

for n,m € w. Here () is the unique element of the set N°. For the first time, the Gutik
hedgehog has appeared in the paper [9] of Gutik and Pavlyk.
The following properties of the Gutik hedgehog can be derived from its definition.

Lemma 2. The Gutik hedgehog is first-countable, scattered and locally reqular, but not
regqular.

Moreover, the following theorem shows that the Gutik hedgehog is the smallest
space among non-regular first-countable spaces.

Theorem 10. A first-countable Hausdorff space X is not reqular if and only if X contai-
ns a topological copy of the Gutik hedgehog.

Proof. The “if” part follows from the non-regularity of the Gutik hedgehog.

To prove the “only if” part, assume that a first-countable Hausdorff space X is not
regular at some point x. Then we can find a neighborhood Uy C X of x that does not
contain the closure of any neighborhood V' of x. Fix a neighborhood base {U, }nen at
x such that U, C U,_; for all n € N. Let k; = 0, choose any point z; € Ukl \ Up, and
using the Hausdorff property of X, find a neighborhood V; of x; such that Vi N Uy, =0
for some number ks > k.

Proceeding by induction, we can choose an increasing number sequence (k;,)ne. and
a sequence (z,)nen of points in X such that for every n € N, the point z,, belongs to



ON GENERALIZATIONS OF REGULARITY
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2018. Bumyck 86 123

Uk, \ Up and has an open neighborhood V,,, disjoint with the neighborhood Uk, .. of z.
Observe that for every i < n, we have

xn €Uy, CU, C X\ V; C X\ {a;},

which implies that z,, ¢ {z;};<n. Replacing V;, by a smaller neighborhood of z,,, we can
assume that its closure V,, does not contain the points z1,..., Zn_1.

Since X is first-countable, for every n € N we can choose a sequence {x,, ;};en of
pairwise distinct points in V,, N Uy, that converges to z,. Observe that for any n < m
the sets Uy, ,, D Uk,, D {@m,i}ien and V,, D {z,;}ien are disjoint, which implies that
the points x,,;, n,7 € N, are pairwise disjoint. Consider the subspace H:= {z} U{z, :
n € N} U {2, : n,i € N} and observe that the map h : H — H, defined by h(0)) = z,
h(n) = x, and h(n,m) = x, , for n,m € N, is a homeomorphism. O

Finally let us draw a diagram of all provable implications between various regularity
properties.

regular

sw-regular <—= #-weakly regular =———=> wf-regular

W H ﬂ

locally regular =———=> weakly regular q}:le;;(_iizg]lgr

Examples [T} 3] and [4] show that none of the implications
weakly regular = sw-regular,
f-weakly regular = locally regular,

locally regular = wf-regular

holds in general.
Problem 2. Is each sw-regular space weakly reqular? quasi-reqular?

Problem 3. Which properties in the diagram are preserved by products?
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