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We introduce and study some generalizations of regular spaces which were
motivated by studying continuity properties of functions between (regular)
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In this paper we introduce and study some generalizations of regular spaces which
were motivated by continuity properties of functions between (regular) topological spaces.
First we introduce the necessary de�nitions.

A subset U of a topological space X is called θ-open if each point x ∈ U has a
neighborhood Ox ⊂ X such that Ōx ⊂ U . It is clear that each θ-open set is open.
Moreover, a topological space is regular if and only if each open subset of X is θ-open.

Lemma 1. Let U be a θ-open subset of a topological space X and V be a θ-open subset
of U . Then V is θ-open in X.

Proof. For each point x ∈ V , the θ-openness of U in X yields an open neighborhood
Ux ⊂ X such that clX(Ux) ⊂ U . The θ-openness of V in U yields an open neughborhood
Vx ⊂ U such that clU (Vx) ⊂ U . Now consider the open neighborhood Ox = Vx ∩ Ux and
observe that clX(Ox) ⊂ clX(Vx) ∩ clX(Ux) ⊂ clX(Vx) ∩ U = clU (Vx) ⊂ V . �
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For a function f : X → Y between topological spaces by C(f) we denote the set of
continuity points of f .

De�nition 1. A function f : X → Y beween topological spaces is called

• scatteredly continuous if for any non-empty subset A ⊂ X the set C(f |A) is not
empty;

• weakly discontinuous if if for any non-empty subset A ⊂ X the set C(f |A) has
non-empty interior in A;

• θ-weakly discontinuous if if for any non-empty subset A ⊂ X the set C(f |A)
contains a non-empty θ-open subset of A.

So, we have the implications:

θ-weakly discontinuous ⇒ weakly discontinuous ⇒ scatteredly continuous.

The �rst and last implications can be reversed for functions with regular domain
and range, respectively.

Theorem 1 (trivial). A function f : X → Y from a regular topological space X to a
topological space Y is weakly discontinuous if and only if it is θ-weakly discontinuous.

Theorem 2 (Bokalo). A function f : X → Y from a topological space X to a regular
space Y is scatteredly continuous if and only if it is weakly discontinuous.

A proof the Theorem 2 can be found in [1], [8]. More information on various sorts
of generalized continuity can be found in [2]�[12].

Motivated by Theorems 1 and 2, let us introduce the following de�nition.

De�nition 2. A topological space X is called

• sw-regular if any scatteredly continuous function f : Z → X de�ned on a
topological space Z is weakly discontinuous;

• wθ-regular if any weakly discontinuous function f : X → Y to any topological
space Y is θ-weakly discontinuous.

Theorems 1 and 2 imply that each regular space is sw-regular and wθ-regular.
The following theorem characterizes wθ-regular spaces.

Theorem 3. A topological space X is wθ-regular if and only if for each subspace A ⊂ X,
each non-empty open subset U ⊂ A contains a non-empty θ-open subset of A.

Proof. To prove the �if� part, assume that for each subspace A ⊂ X, every non-empty
open subset U ⊂ A contains a non-empty θ-open subset of A. To show that the space X
is wθ-regular, �x any weakly discontinuous map f : X → Y . To show that f is θ-weakly
discontinuous, take any non-empty subset A ⊂ X. Since f is weakly discontinuous, there
exists a non-empty open subset U ⊂ A such that f |U is continuous. By our assumption,
U contains a θ-open subspace V of A. Since f |V is continuous, the function f is θ-weakly
discontinuous.

Now we prove the �only if� part. Assume that the space X is wθ-regular. Given
any subset A ⊂ X and a non-empty open subset U ⊂ A, consider the closures Ā and
A \ U of the sets A and A \ U in X. Observe that Ũ := Ā \ A \ U is an open set in

Ā with Ũ ∩ A = U and Ũ ⊂ U . Consider the topological sum Y = Ũ ⊕ (X \ Ũ) and
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observe that the identity map f : X → Y is weakly discontinuous. The wθ-regularity
of the space X ensures that f is θ-weakly discontinuous. Consequently, the closure Ū of
U in Ā contains a non-empty θ-open subset V ⊂ Ū such that f |V is continuous. The

continuity of f |V ensures that V ⊂ Ũ . We claim that V is θ-open in Ā. Since V is θ-open
in Ū , for any x ∈ V there exists a neighborhood Ox of x such that Ox is open in Ū and
Ox ⊂ Ox ⊂ V ⊂ Ũ . So, Ox is open in Ũ and hence is open in Ā.

Taking into account that V is a non-empty θ-open subset of Ā, we conclude that
V ∩A ⊂ Ũ ∩A = U is a non-empty θ-open subset of A, contained in the set U . �

Problem 1. Characterize topological spaces which are sw-regular.

We shall prove that sw-regular and wθ-regular spaces are preserved by θ-weak
homeomorphisms.

De�nition 3. A bijective function f : X → Y between topological spaces is called a
(θ-)weak homeomorphism if both functions f and f−1 are (θ-)weakly discontinuous.

We shall need the following proposition describing the continuity properties of
compositions of scatteredly continuous, weakly discontinuous and θ-weakly discontinuous
functions.

Proposition 1. Let f : X → Y and g : Y → Z be two functions between topological
spaces.

(1) If f, g are weakly discontinuous, then g ◦ f is weakly discontinuous.
(2) If f, g are θ-weakly discontinuous, then g ◦ f is θ-weakly discontinuous.
(3) If f is weakly discontinuous and g is scatteredly continuous, then g ◦ f is

scatteredly continuous.
(4) If f is scatteredly continuous and g is θ-weakly discontinuous, then g ◦ f is

scatteredly continuous.

Proof. 1. Assume that f, g are weakly discontinuous. To prove that g ◦ f is weakly
discontinuous, we need to show that for any non-empty subset A ⊂ X the set C(g ◦ f |A)
has non-empty interior in A. By the weak discontinuity of f , the set C(f |A) contains a
non-empty open subset U ⊂ A. By the weak discontinuity of g, the set C(g|f(U)) contains
a non-empty open set V ⊂ f(U). By the continuity of f |U , the set W = (f |U)−1(V ) is
open in U and hence open in A. Since f(W ) ⊂ V , the continuity of the restrictions f |W
and g|V implies the continuity of the restriction g ◦ f |W . So, W ⊂ C(g ◦ f |A).

2. Assume that f, g are θ-weakly discontinuous. To prove that g ◦ f is θ-weakly
discontinuous, we need to show that for any non-empty subset A ⊂ X the set C(g ◦ f |A)
contains a non-empty θ-open subset W ⊂ A. By the θ-weak discontinuity of f , the set
C(f |A) contains a non-empty θ-open subset U ⊂ A. By the θ-weak discontinuity of g,
the set C(g|f(U)) contains a non-empty θ-open set V ⊂ f(U). By the continuity of f |U ,
the set W = (f |U)−1(V ) is θ-open in U and hence θ-open in A, by Lemma 1. Since
f(W ) ⊂ V , the continuity of the restrictions f |W and g|V implies the continuity of the
restriction g ◦ f |W . Now we see that the set C(g ◦ f |A) contains the non-empty θ-open
subset W of A, witnessing that g ◦ f is θ-weakly discontinuous.

3. Assume that f is weakly discontinuous and g is scatteredly continuous. To prove
that g ◦ f is scatteredly continuous, we need to show that for any non-empty subset
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A ⊂ X the function g ◦ f |A has a continuity point. By the weak discontinuity of f , the
set C(f |A) contains a non-empty open subset U ⊂ A. By the scattered continuity of
g, the function g|f(U) has a continuity point y. Then any point x ∈ U ∩ f−1(y) is a
continuity point of the restriction g ◦ f |A.

4. Assume that f is scatteredly continuous and g is θ-weakly discontinuous. Given
a non-empty subset A ⊂ X, we need to show that the restriction g ◦f |A has a continuity
point. Let A0 := A and Aα :=

⋂
β<αAβ \ C(f |Aβ) for any non-zero ordinal α. In

particular, Aα+1 = Aα \ C(f |Aα) for any ordinal α.
Let δ be the smallest ordinal such that Aδ is not dense in A and let W = A \Aδ. It

follows that W =
⋃
α<δW ∩ C(f |Aα) and each set W ∩ C(f |Aα) is dense in W (by the

scattered continuity of f).
Since the function g is θ-weakly discontinuous, the set C(g|f(W )) contains a non-

empty θ-open subset V ⊂ f(W ). Since W =
⋃
α<δW ∩ C(f |Aα), we can choose the

smallest ordinal γ < δ such that W ∩ C(f |Aγ) ∩ f−1(V ) 6= ∅. Choose a point x ∈
W∩C(f |Aγ)∩f−1(V ). Since the set V is θ-open in f(W ), the point f(x) ∈ V has a closed
neighborhood Ōf(x) ⊂ f(W ) such that Ōf(x) ⊂ V . By the continuity of the map f |Aγ at

x, there exists an open neighborhood Ox ⊂W of x such that f(Ox ∩Aγ) ⊂ Ōf(x) ⊂ V .
We claim that γ = 0. To derive a contradiction, assume that γ > 0. In this case

W ∩C(f |A0)∩ f−1(V ) = ∅ and hence x /∈ C(f |A0) = C(f |A). By the density of C(f |A)
in A, there exists a point z ∈ Ox ∩ C(f |A). It follows that f(z) ∈ W \ V ⊂ W \ Ōf(x).
By the continuity of f |W at z, there exists an open neighborhood Oz ⊂ Ox such that
f(Oz) ⊂ f(W ) \ Ōf(x). Then

f(Oz ∩Aγ) = f(Oz ∩Ox ∩Aγ) ⊂ f(Oz) ∩ f(Ox ∩Aγ) ⊂ (f(W ) \ Ōf(x)) ∩ Ōf(x) = ∅

and hence Oz ∩ Aγ = ∅, which contradicts the density of Aγ in A. This contradiction
shows that γ = 0 and hence x ∈ C(f |Aγ) = C(f |A) is a continuity point of f |A with
f(Ox) ⊂ V . The continuity of the restriction g|V implies that g ◦ f |A is continuous at x.
So, g ◦ f |A has a continuity point. �

Theorem 4. A topological space X is sw-regular if there exists a θ-weakly disconti-
nuous bijective function h : X → Y to an sw-regular space Y such that h−1 is weakly
discontinuous.

Proof. To show that X is sw-regular, we need to show that each scatteredly continuous
function f : Z → X is weakly discontinuous. By Proposition 1(4), the composition
h ◦ f : Z → Y is scatteredly continuous. Since Y is sw-regular, the function h ◦ f is
weakly discontinuous. By Proposition 1(1), the composition h−1 ◦ h ◦ f = f is weakly
discontinuous. �

Theorem 5. A topological space X is wθ-regular if there exists a θ-weakly disconti-
nuous bijective function h : X → Y to a wθ-regular space Y such that h−1 is weakly
discontinuous.

Proof. To see that X is wθ-regular, we need to show that each weakly discontinuous
function f : X → Z is θ-weakly discontinuous. By Proposition 1(1), the composition
f ◦ h−1 : Y → Z is weakly discontinuous. Since Y is wθ-regular, the function f ◦ h−1 is
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θ-weakly discontinuous. By Proposition 1(2), the composition f ◦h−1 ◦h = f is θ-weakly
discontinuous. �

Corollary 1. The classes of sw-regular and wθ-regular spaces are preserved by θ-weak
homeomorphisms.

De�nition 4. A topological space X is called (θ-)weakly regular if it is (θ-)weakly
homeomorphic to a regular topological space.

Example 1. Consider the real line R endowed with the second-countable topology τ
generated by the subbase

{Q} ∪ {(−∞, a), (a,+∞) : a ∈ R}.

It can be shown that the topological space X = (R, τ) is weakly regular. The identity
map R→ X is scatteredly continuous but not weakly discontinuous, which implies that
the space X is not sw-regular. On the other hand, the function χ : X → {0, 1} ⊂ R
de�ned by

χ(x) =

{
1 if x ∈ Q;

0 if x ∈ R \Q;
is weakly discontinuous but not θ-weakly discontinuous, witnessing that the space X is
not wθ-regular. Theorem 6 implies that the space X is not θ-weakly regular.

Theorem 1, 2 and Corollary 1 imply:

Theorem 6. Each θ-weakly regular space is sw-regular and wθ-regular.

Theorem 7. A topological space X is θ-weakly regular if and only if each non-empty
(closed) subspace A ⊂ X contains a non-empty θ-open regular subspace.

Proof. First assume that X is θ-weakly regular and �x any θ-weak homeomorphism
h : X → Y to a regular topological space Y .

Given any subspace A ⊂ X, we need to �nd a non-empty θ-open regular subspace
W ⊂ A. Since the map h is θ-weakly discontinuous, there exists a non-empty θ-open
subset U ⊂ A such that h|U is continuous. Since h−1 is θ-weakly discontinuous, the non-
empty subspace h(U) of Y contains a non-empty θ-open subspace V such that h−1|V
is continuous. The continuity of the map h|U implies that the set W := (h|U)−1(V ) is
θ-open in U and hence θ-open in A (by Lemma 1). The continuity of maps h|W and
h−1|h(W ) implies that h|W : W → h(W ) is a homeomorphism. The regularity of the
topological space Y implies the regularity of its subspace h(W ) and the regularity of
the topological copy W of h(W ). Therefore, W is a required non-empty θ-open regular
subspace of A.

Now assume that each non-empty closed subspace A ⊂ X contains a non-empty θ-
open regular subspace. Let Aθ be the union of all θ-open regular subspaces of A. It is clear
that the subspace Aθ is θ-open in A and regular. Let X0 := X and Xα =

⋂
β<αXβ \Xθ

β

for each ordinal α. It follows that for any ordinal α with Xα 6= ∅ the set Xα+1 = Xα \Xθ
α

is closed in Xα and has non-empty complement Xα+1 \Xα = Xθ
α. Consequently, Xγ = ∅

for some γ and hence X =
⋃
α<γ X

θ
γ .
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Let Y :=
⊕

α<γ X
θ
α be the topological sum of the regular spaces Xθ

α for α < γ. It is
clear that the space Y is regular and the identity map i : Y → X is continuous. We claim
that the identity map i−1 : X → Y is θ-weakly discontinuous. Given any non-empty
subset A ⊂ X, �nd the smallest ordinal β ≤ γ such that A 6⊂ Xβ . Then A ⊂ Xα for
all α < β, which implies that β is a successor ordinal. Write β = α + 1 for some α and
observe that U = A ∩Xθ

α = A ∩ (Xα \Xα+1) is a non-empty θ-open subspace of A such
that i−1|U is continuous. This means that i−1 is θ-weakly discontinuous and i : X → Y
is a θ-weak homeomorphism of X onto the regular space Y . �

By analogy we can prove a characterization of weakly regular spaces.

Theorem 8. A topological space X is weakly regular if and only if each (closed) subspace
A ⊂ X contains a non-empty open regular subspace.

A topological space X is called

• quasi-regular if each non-empty open subset of X contains the closure of some
non-empty open set in X;

• hereditarily quesi-regular if each subspace of X is quesi-regular.

Theorem 3 implies

Corollary 2. Each wθ-regular space is hereditarily quasi-regular.

Theorems 7 and 6 imply:

Corollary 3. Each scattered T1-space is θ-weakly regular and hence is sw-regular and
wθ-regular.

The T1-requirement in Corollary 3 is essential as shown by the following example.

Example 2. Consider the connected doubleton D = {0, 1} endowed with the topology{
∅, {0}, {0, 1}

}
. It is clear that D is a scattered space. The function f : R → D de�ned

by

f(x) =

{
1 if x ∈ Q;

0 if x /∈ Q
is scatteredly continuous but not weakly discontinuous as C(f) = Q has empty interior
in R. Consequently, D is not sw-regular and hence not θ-weakly regular.

The identity map i : D → {0, 1} to the discrete doubleton is weakly discontinuous
but not θ-weakly discontinuous. This means that D is not wθ-regular.

De�nition 5. A topological space X is locally regular if X admits an open cover by
regular subspaces.

Theorem 8 implies that each locally regular space is weakly regular.

Theorem 9. Each locally regular topological space Y is sw-regular.

Proof. Given a scatteredly continuous map f : X → Y and a non-empty subset A ⊂ X,
we should show that the set C(f |A) has non-empty interior in A.

By the scattered continuity of f , the map f |A has a continuity point a ∈ A. By
our assumption, the point f(a) is contained in an open regular subspace U ⊂ Y . By
the continuity of f at a, there exists an open neighborhood Oa ⊂ A of a such that
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f(Oa) ⊂ U . Since U is regular, the set C(f |Oa) has non-empty interior in Oa and then
the set C(f) ⊃ C(f |Oa) has non-empty interior in A. �

Example 3. On the real line R consider the Euclidean topology τE and the topology τ
generated by the subbase

τE ∪ {Wn : n ∈ ω} where Wn = R \
{

1
2k3m

: m ∈ ω, k ≥ n
}
.

It can be shown that the space X = (R, τ) is θ-weakly regular but not locally regular.

A topological space X is called regular at a point x ∈ X if any neighborhoodof x
in X contains a closed neighborhood of x in X. A topological space X is called nowhere
regular if X is not regular at each point x ∈ X.

Example 4. Let τE be the Euclidean topology of the real line and τ be the topology
generated by the subbase

{(U ∩Q) ∪ {x} : x ∈ U ∈ τE}.
The space (R, τ) is locally regular and hence sw-regular. On the other hand, it is nowhere
regular, not quasi-regular and not wθ-regular.

Now, we describe the smallest non-regular �rst-countable Hausdor� space, which is
called the Gutik hedgehog. The Gutik hedgehog is the space N≤2 = N0∪N1∪N2 endowed
with the topology generated by the base{

{x} : x ∈ N2
}
∪ {Un : n ∈ N} ∪ {Un,m : n,m ∈ N}

where

Un = {∅} ∪
{

(i, j) ∈ N2 : i ≥ n
}

and Un,m = {(n)} ∪ {(n, j) : j ≥ m} ⊂ N1 ∪ N2

for n,m ∈ ω. Here ∅ is the unique element of the set N0. For the �rst time, the Gutik
hedgehog has appeared in the paper [9] of Gutik and Pavlyk.

The following properties of the Gutik hedgehog can be derived from its de�nition.

Lemma 2. The Gutik hedgehog is �rst-countable, scattered and locally regular, but not
regular.

Moreover, the following theorem shows that the Gutik hedgehog is the smallest
space among non-regular �rst-countable spaces.

Theorem 10. A �rst-countable Hausdor� space X is not regular if and only if X contai-
ns a topological copy of the Gutik hedgehog.

Proof. The �if� part follows from the non-regularity of the Gutik hedgehog.

To prove the �only if� part, assume that a �rst-countable Hausdor� space X is not
regular at some point x. Then we can �nd a neighborhood U0 ⊂ X of x that does not
contain the closure of any neighborhood V of x. Fix a neighborhood base {Un}n∈N at
x such that Un ⊂ Un−1 for all n ∈ N. Let k1 = 0, choose any point x1 ∈ Uk1 \ U0, and
using the Hausdor� property of X, �nd a neighborhood V1 of x1 such that V1 ∩ Uk2 = ∅
for some number k2 > k1.

Proceeding by induction, we can choose an increasing number sequence (kn)n∈ω and
a sequence (xn)n∈N of points in X such that for every n ∈ N, the point xn belongs to
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Ukn \ U0 and has an open neighborhood Vn, disjoint with the neighborhood Ukn+1 of x.
Observe that for every i < n, we have

xn ∈ Ukn ⊂ Uki ⊂ X \ Vi ⊂ X \ {xi},

which implies that xn /∈ {xi}i<n. Replacing Vn by a smaller neighborhood of xn, we can
assume that its closure V n does not contain the points x1, . . . , xn−1.

Since X is �rst-countable, for every n ∈ N we can choose a sequence {xn,i}i∈N of
pairwise distinct points in Vn ∩ Ukn that converges to xn. Observe that for any n < m
the sets Ukn+1

⊃ Ukm ⊃ {xm,i}i∈N and Vn ⊃ {xn,i}i∈N are disjoint, which implies that

the points xn,i, n, i ∈ N, are pairwise disjoint. Consider the subspace H̃ := {x} ∪ {xn :

n ∈ N} ∪ {xn,i : n, i ∈ N} and observe that the map h : H → H̃, de�ned by h(∅) = x,
h(n) = xn and h(n,m) = xn,m for n,m ∈ N, is a homeomorphism. �

Finally let us draw a diagram of all provable implications between various regularity
properties.

regular

��
sw-regular θ-weakly regularks

��

+3 wθ-regular

��

locally regular +3

KS

weakly regular
hereditarily
quasi-regular

Examples 1, 3 and 4 show that none of the implications

weakly regular ⇒ sw-regular,

θ-weakly regular ⇒ locally regular,

locally regular ⇒ wθ-regular

holds in general.

Problem 2. Is each sw-regular space weakly regular? quasi-regular?

Problem 3. Which properties in the diagram are preserved by products?
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Íà îñíîâi âèâ÷åííÿ òî÷îê íåïåðåðâíîñòi ôóíêöié ìiæ ðåãóëÿðíèìè ïðîñ-
òîðàìè, îçíà÷åíî i äîñëiäæåíî äåÿêi óçàãàëüíåííÿ ðåãóëÿðíèõ òîïîëîãi÷-
íèõ ïðîñòîðiâ. Çîêðåìà, äîâåäåíî, ùî ãàóñäîðôîâèé ïðîñòið ç ïåðøîþ àêñi-
îìîþ çëi÷åííîñòi ¹ ðåãóëÿðíèì òîäi i ëèøå òîäi, êîëè âií íå ìiñòèòü òîïî-
ëîãi÷íî¨ êîïi¨ ¨æà÷êà Ãóòiêà.
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