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A function f : X → Y between topological spaces is called scatteredly conti-
nuous (barely continuous) if for each non-empty (closed) subspace A ⊂ X
the restriction f |A has a point of continuity. We show that if f : X → Y
is a scatteredly continuous (barely continuous) surjective function between
topological spaces, then for each natural number n we have hl(Y n) 6 hl(Xn)
(l(Y ) 6 hl(X), respectively).
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1. Introduction

By de�nition, a function f : X → Y between topological spaces is scatteredly conti-

nuous if for each non-empty subspace A ⊂ X the restriction f |A has a point of continuity.
We recall that a function f : X → Y is called barely continuous if for each non-empty

closed subspace A ⊂ X the restriction f |A has a point of continuity.
Following [19] we de�ne a function f : X → Y to be weakly discontinuous if for each

subspace A ⊂ X the set D(f |A) of discontinuity points of the restriction f |A is nowhere
dense in A.

Obviously, every weakly discontinuous function is scatteredly continuous and each
scatteredly continuous function is barely continuous.

As an example of scatteredly continuous, not a weakly discontinuous function one
can take an identity function f : R→ RQ from the real line equipped with the standard
topology τ to the real line endowed with the topology generated by the subbase τ ∪{Q}.
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In [2] it is proved, in particular, that any scatteredly continuous function f : X → Y into
a regular space Y is weakly discontinuous.

Recall that the Riemann function is a function R : [0, 1]→ [0, 1] de�ned as follows

R(x) =

{
1
n , if x = m

n is a rational number;
0, if x is irrational.

Obviously, the Riemann function is an example of a barely continuous, but not scatteredly
continuous function.

These discontinuous functions arose naturally and were studied in various �elds of
mathematics under di�erent names (see also [12, 4, 9, 10, 11, 5, 6, 8, 13, 15, 3, 17]).

Some topological properties preserved by weakly discontinuous functions were
detected in [7]. In particular, it was shown that if f : X → Y is a weakly discontinuous
surjective map between topological spaces, then

(1) nw(Y ) 6 nw(X);
(2) hl(Y ) ≤ hl(X);
(3) hd(Y ) ≤ max{hd(X), hl(X)}.
In this paper we analyze the behavior of the Lindel�of number under scatteredly

continuous and barely continuous functions. We show that if f : X → Y is a scatteredly
continuous (barely continuous) surjective function between topological spaces, then for
each natural number n we have hl(Y n) 6 hl(Xn) (l(Y ) 6 hl(X), respectively).

1.1. Terminology and notations. Our terminology and notation are standard and
follow [1] and [14]. A �space� always means a �topological space�. Maps between topologi-
cal spaces can be discontinuous.

For a subset A of a topological space X by clX(A) or A we denote the closure of A
in X while Int(A) stands for the interior of A in X. For a function f : X → Y between
topological spaces by C(f) and D(f) = X \ C(f) we denote the sets of continuity and
discontinuity points of f , respectively.

Suppose that we are given a family {Xs : s ∈ S} of topological spaces. We consider

the Cartesian product X =
∏
s∈S

Xs of the sets {Xs : s ∈ S} with Tychono� topology.

Suppose that we are given two families {Xα}α∈S and {Yα}α∈S of topological spaces
and a family of maps {fα}α∈S , where fα : Xα → Yα. The map assigning to the point

x = {xα}α∈S ∈
∏
α∈S

Xα the point {fα(xα)}α∈S ∈
∏
α∈S

Yα is called the Cartesian product

of the maps {fα}α∈S and is denoted by
∏
α∈S

fα or f1 × f2 × · · · × fk if S = {1, 2, . . . , k}.

By R and Q we denote the spaces of real and rational numbers, respectively; ω
stands for the space of �nite ordinals (= non-negative integers) endowed with the discrete
topology. We shall identify cardinals with the smallest ordinals of the given cardinality.

All spaces encountered in this paper (unless stated otherwise) are assumed to be
Hausdor�.
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2. Some useful properties

In this section we recall some de�nitions and statements which will be used in the
following sections.

Theorem 1 ([10]). Let F = {fα}α∈S be a family of functions fα of a topological space Xα

into a topological space Yα respectively. The Cartesian product
∏
α∈S

fα :
∏
α∈S

Xα →
∏
α∈S

Yα

is a scatteredly continuous function if and only if the following conditions hold:

(i) all the functions fα are scatteredly continuous;

(ii) all the functions fα, except maybe one, are weakly discontinuous;

(iii) all the functions fα, except maybe �nite number, are continuous.

Recall that the Lindel�of number l(X) of a space X is the smallest in�nite cardinal κ
for which every open cover has a subcover of cardinality at most κ. The hereditary Lindel�of
number hl(X) of X is the supremum of the cardinals l(Y ) ranging over subspaces Y of
X.

Also we need some other important result known as a theorem of Juh�asz. Firstly,
recall that a space X is called right separated (respectively left separated) if there is a well
ordering < of X such that {y ∈ X : y < x} is open (respectively closed) for any x ∈ X.

Theorem 2 ([16]). For any topological space X we have

hd(X) = sup {|Y | : Y is a left separated subspace of X}

and

hl(X) = sup {|Y | : Y is a right separated subspace of X} .

Recall that a topological space X is called scattered if each non-empty subspace H
of X contains at least one point which is isolated in H.

Proposition 1. A space X is right separated if and only if X is scattered.

Lemma 1. Let f : X → Y be a scatteredly continuous function. Then for each non-empty

subspace A ⊂ X the set C(f |A) is dense in A.

Proof. Without loss of generality we can assume that A = X. If f : X → Y is scatteredly
continuous, then for each non-empty open set U ⊂ X the restriction f |U has a continuity
point x ∈ U which remains a continuity point of f . Therefore, C(f) is dense in X. �

Proposition 2. Let f be an injective scatteredly continuous function from a topological

space X onto a scattered topological space Y . Then X is also scattered.

Proof. Let us prove that the space X contains an isolated point. Denote by C(f) the set
of continuity points of the function f . Since the space f(C(f)) ⊂ Y is scattered, there
is some y0 ∈ f(C(f)) which is an isolated point in f(C(f)). And since the restriction
f |C(f) : C(f) → Y is continuous, the point x0 = f−1(y0) is an isolated point in C(f).
Since f : X → Y is scatteredly continuous, due to Lemma 1 the set C(f) is dense in X,
and hence the point x0 is an isolated point in X.

Similarly, one can prove that each non-empty subspace A ⊂ X contains an isolated
point. �
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3. The main results

From Theorem 1 it follows that the Cartesian product of two scatteredly continuous
functions is not necessarily scatteredly continuous. It is also known that the hereditary
Lindel�of number hl is not saved by �nite products. That is, the Cartesian product of
two hereditary Lindel�of spaces is not necessarily a Lindel�of space. However, the following
statement is true

Theorem 3. Let f be a scatteredly continuous surjective function from a topological space

X onto a topological space Y . Then for each natural number n we have hl(Y n) 6 hl(Xn).

Proof. Suppose that f is a scatteredly continuous surjective function from a topological
space X onto a topological space Y . And let idX : X → X and idY : Y → Y be the
identity functions. We put Xn ×X0 = Xn and Y n × Y 0 = Y n.

For each i ∈ {1, . . . , n} we consider the function

idn−iX × f × idi−1Y : Xn−i ×X × Y i−1 → Xn−i × Y i.
Since the functions idX and idY are continuous and the function f is scatteredly

continuous, due to Theorem 1, the function idn−iX × f × idi−1Y is scatteredly continuous.
Let us prove that hl(Xn−i × Y i) 6 hl(Xn−i+1 × Y i−1) for each i ∈ {1, . . . , n}.

Suppose that there is k ∈ {1, . . . , n} such that hl(Xn−k × Y k) > hl(Xn−k+1 × Y k−1).
Applying Theorem 2 and Proposition 1 �nd a scattered subspace Z ⊂ Xn−k × Y k such
that |Z| = hl(Xn−k × Y k). For an arbitrary z ∈ Z let us �x some point xz ∈ (idn−kX ×
f × idk−1Y )−1(z). Put A = {xz : z ∈ Z}. The restriction map idn−kX × f × idk−1Y |A : A→ Z
is bijective and scatteredly continuous. Using Proposition 2 we get that subspace A is
scattered and |A| = |Z| = hl(Xn−k×Y k) > hl(Xn−k+1×Y k−1) which is a contradiction
to Theorem 2. Therefore hl(Xn−i × Y i) 6 hl(Xn−i+1 × Y i−1) for each i ∈ {1, . . . , n}.

Consequently,

hl(Y n) 6 hl(X × Y n−1) 6 hl(X2 × Y n−2) 6 . . . 6 hl(Xn).

�

Recall that spaces X and Y are scatteredly homeomorphic if there is a bijective map
f : X → Y such that both f and f−1 are scatteredly continuous.

Proposition 3. Each topological space is scatteredly homeomorphic to a left separated

space.

Proof. Let (X, τ) be a topological space with the topology τ . Fix some well ordering
< of the set X. Choose the family τ ∪ {{a 6 x : x ∈ X} : a ∈ X} to be a subbase of
a new topology τ ′ on X. Obviously, the space (X, τ ′) is left separated. Consider the
identity function i : (X, τ) → (X, τ ′). Note that for an arbitrary non-empty subset A of
X, the smallest element of the set A in the well ordering < is a point of continuity of
the restriction i|A. Hence the identity function i is scatteredly continuous. Obviously, the
function i−1 : (X, τ ′)→ (X, τ) is continuous. �

Example 1. Consider the real line R equipped with the standard topology. Proposition 3
implies that there is a bijective scatteredly continuous function from R onto some left
separated space Y . The real line R equipped with the standard topology is a separable
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metrizable space. However, since space Y is left separated, according to Theorem 2, we
have the following

hd(Y ) = |Y | = |R| > ℵ0.

Theorem 4. Let f : X → Y be a barely continuous surjective function between topological

spaces. Then l(Y ) 6 hl(X).

Proof. Let f : X → Y be a barely continuous surjective function and hl(X) 6 τ . Suppose
that l(Y ) > τ . Without loss of generality, we can assume that the function f is bijecti-
ve. Since l(Y ) > τ , there is a τ -centered family F of closed subsets of Y such that⋂
F =

⋂
{F : F ∈ F} = ∅. We can assume that the family F contains the intersecti-

ons of its τ -element subfamilies. Let A =
⋂{

clX(f−1(F )) : F ∈ F
}
. Since the family{

clX(f−1(F )) : F ∈ F
}
is τ -centered and hl(X) 6 τ , the set A is not empty. The τ -

centeredness means that
⋂
E 6= ∅ for any subfamily E ⊂ F having cardinality |E| ≤ τ .

Let us show that there is a set F0 ∈ F such that f−1(F0) ⊂ A. Assume that for all F ∈ F
we have f−1(F ) \ A 6= ∅. Then

{
clX\A(f

−1(F ) \A) : F ∈ F
}
is a τ -centered family of

sets closed in X\A and⋂{
clX\A(f

−1(F ) \A) : F ∈ F
}
⊂
⋂{

clX(f−1(F )) : F ∈ F
}
∩X \A =

= A ∩X \A = ∅.

This contradicts with the fact that l(X\A) 6 τ . Since f is barely continuous and A is
a non empty closed subset of X, there is a continuity point x ∈ A of the restriction
f |A : A→ Y . Since

⋂
F = ∅, there is F ∗ ∈ F such that f(x∗) /∈ F ∗. Let F ∗∗ = F ∗ ∩F0.

Since x∗ ∈ A, we have that x∗ ∈ clX(f−1(F ∗∗)). And from the continuity of the restriction
f |A at the point x∗ we have f(x∗) ∈ clY (f(f

−1(F ∗∗))) = F ∗∗. The resulting contradiction
proves that l(Y ) 6 τ . �

The following example shows that the fact that Y is a barely continuous image of
the space X does not imply that hl(Y ) 6 hl(X).

Example 2. Let space X be the closed interval [0, 1] with the usual topology and let
M be a Bernstein subset of X, that is, a subspace of space X of cardinality continuum
that contains no uncountable compact subsets.

It is easy to check that the family of all sets of the form U ∪ K, where U is an
open set in X and K ⊂ M , forms a topology base on the set X. We denote by Y the
set X with this topology. Let us show that the identity function id : X → Y is barely
continuous.

Let F be a closed subset of X. If F ∩(X \M) 6= ∅, then each point of F ∩(X \M) is
a continuity point of the restriction idF : F → Y . If F ∩(X \M) = ∅, then F ⊂M . Since
F is a closed subset of the segment [0, 1] with the usual topology, F is compact. Since F
is a subset of the space M , F is countable, and hence has isolated points. These points
will be continuity points of the restriction idF : F → Y . Consequently, the function id
is barely continuous. Since X has a countable base, hl(X) 6 ℵ0. By the construction,
|M | = 2ℵ0 and M is a discrete subspace of the space Y . Then hl(Y ) = 2ℵ0 > ℵ0.

Corollary 1. For the metrizable spaces, separability is invariant with respect to the barely

continuous functions.
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Proof. Let X be a metrizable separable space. Then hl(X) 6 ℵ0. According to the
Theorem 4 l(Y ) 6 ℵ0. And since Y is metrizable, it is also separable. �

Corollary 2. The Cartesian product of two barely continuous maps need not be a barely

continuous map.

Proof. Consider the space X = [0; 1). Let τS be the Sorgenfrey topology on X and τ be
the usual topology on X, respectively. Consider also the identity function i : (X, τ) →
(X, τS). The function i is barely continuous. However since the product (X, τ) × (X, τ)
is metrizable separable and l((X, τS)× (X, τS)) > ℵ0, the Cartesian product i× i is not
barely continuous. �
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Âiäîáðàæåííÿ f : X → Y ìiæ òîïîëîãi÷íèìè ïðîñòîðàìè íàçèâàþòü
ðîçðiäæåíî íåïåðåðâíèì (íàñè÷åíî íåïåðåðâíèì), ÿêùî äëÿ êîæíîãî íå-
ïîðîæíüîãî (çàìêíåíîãî) ïiäïðîñòîðó A ⊂ X çâóæåííÿ f |A ìà¹ òî÷êó íå-
ïåðåðâíîñòi. Äîâåäåíî òàêå: ÿêùî âiäîáðàæåííÿ f : X → Y ¹ ñþð'¹êòèâíèì
ðîçðiäæåíî íåïåðåðâíèì (íàñè÷åíî íåïåðåðâíèì), òî äëÿ äîâiëüíîãî íàòó-
ðàëüíîãî ÷èñëà n ìà¹ìî hl(Y n) 6 hl(Xn) (l(Y ) 6 hl(X), âiäïîâiäíî).

Êëþ÷îâi ñëîâà: ðîçðiäæåíî íåïåðåðâíå âiäîáðàæåííÿ, ñëàáêî ðîçðèâíå
âiäîáðàæåííÿ, íàñè÷åíî íåïåðåðâíå âiäîáðàæåííÿ, ÷èñëî Ëiíäåëüîôà.
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