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Abstract. In this study, we apply self-organizing map (SOM), also referred to as the Kohonen
map, clustering to monthly forward curves of crude oil futures prices and ending stock of
crude oil at Cushing, OK, for the period from November 2011 to June 2022 in order to
investigate the contango-backwardation patterns and their relationship to seasonality and
stock levels. In particular, we suggest two approaches to shape-based clustering of forward
curves, namely numerical and topological. Our results show that SOM clustering can reveal
distinct patterns of futures price term structure across different months, with some months,

i.e., January to June, exhibiting precise and others, i.e., July to December, showing somewhat
ambiguous behavior. Moreover, we suggest an approach to the comparative analysis of
seasonal patterns and underlying fundamentals, namely commercial ending stock levels. In

particular, we prove that periods of very low to modest ending stock levels are more likely
to exhibit backwardation, whilst periods of high to very high ending stock levels are more
likely to exhibit contango. Overall, our study suggests new methods and approaches to
analyzing the behavior of crude oil futures prices, namely their term aspect manifested by
the configuration of forward curves, highlighting the importance of monthly patterns and
seasonal regimes, as well as proves the validity of using machine learning methods and
comparative cluster analysis to obtain insights on the dynamics of crude oil futures prices.

Keywords: term structure of crude oil futures prices, contango, backwardation, forward
curve, shape-based cluster analysis, price clustering, time series, self-organizing map (SOM),

Kohonen map, machine learning, artificial neural networks (ANNs), dynamic time warping
(DTW), commercial ending stocks of crude oil.

Introduction. Despite the high pace of the fourth energy transition — rapid growth in the
role of alternative energy sources — crude oil remains one of the most critical energy resources,
with numerous applications in transportation, heating, and electricity generation, as well as a
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benchmark for the pricing of other petroleum products, being a key factor in determining the
profitability of companies in the energy sector and related industries. Crude oil futures prices
are one of the most closely monitored and analyzed indicators in the global energy markets.
As a key source of energy, crude oil plays a critical role in the global economy, affecting
the prices of other commodities and influencing consumer behavior. Moreover, oil futures
prices can affect inflation, trade balances, and geopolitical stability. Hence, they serve as a
key indicator of global economic health, influencing decision-making across a wide range of
industries and policy areas. Given its importance, understanding the fundamentals of crude
oil futures pricing is vital for policymakers, industry leaders, and investors, as it can provide
insights into market trends, inform investment decisions, and help mitigate risks associated
with price volatility.

The behavior of crude oil futures prices is complex, with various factors influencing
their movements. Supply and demand, shifts in technology, global upheavals, and market
structure all play a role in shaping crude oil prices. The term structure of oil prices, which
describes the relationship between the current and futures prices of crude oil futures contracts,
is a critical factor in determining the behavior of crude oil futures prices. Generally, when
the futures price is higher than the current price, the market is said to be in contango. On the
other hand, when the futures price is lower than the current price, the market is said to be in
backwardation. Hereinafter, we refer to these two contrasting extremes of price term structure
as the contango-backwardation dichotomy.

In this study, we explore the relationship between monthly seasonality, contango-
backwardation futures market structure, commercial ending stocks of oil, and the behavior
of crude oil futures prices. Specifically, we apply self-organizing map (SOM) clustering
to monthly seasonal forward curves of crude oil futures prices and ending stock levels to
investigate how the contango-backwardation dichotomy varies across different months of the
year. Our analysis provides insight into the dynamics of crude oil futures prices, suggesting
new approaches to analyzing futures prices, such as SOM cluster analysis of forward curves
shape and configuration.

Review of related research and publications. The functioning of futures commodity
markets as well as relationships between current and future prices, have been a subject of
study by such prominent economists as J. M. Keynes, H. Hotelling, H. Working, N. Kaldor,
F. H. Weymar, S. J. Turnovsky, and R. S. Pindyck. The peculiarities of the crude oil and other
commodity derivatives markets have been examined by B. Simkins, R. Simkins, J. Haubrich,
E. S. Shwartz, M. Ludkovski, R. Karmona, J. Kakeu, J. I. Considine, L. H. Ederington and
many others.

In this paper, we employ methods of time-series clustering, which is a rather new field
of scientific research. Nonetheless, it has been of great use in multiple domains and research
areas over the past decades. E. A. Maharaj, P. D’Urso, and J. Caiado, in particular, suggest a
profound study of time series clustering and classification, covering the methodology of most
common supervised and unsupervised clustering approaches and techniques that are widely
used in economics, finance, and other fields such as medicine, astronomy, and environmental
science [15]. S. Aghabozorgi et al. [1], as well as T. W. Liao [14], in their turn, provide a broad
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review of approaches to time-series clustering and discuss most recent developments in time-
series clustering across various scientific domains. Interestingly, Y. Huhtala, J. Karkkainen,
and H. Toivonen discuss the discovery of non-obvious relationships between financial time
series using wavelets and feature-driven clustering [11], while H. Izakian and W. Pedrycz
suggest a fuzzy-clustering framework for detecting shape and amplitude anomalies within
temporal data [12].

When it comes to SOM clustering in economic and financial analysis, this approach has
been mainly used to predict the behavior of time series. In particular, G. A. Barreto discusses
applications of SOMs to time series prediction, arguing that SOM-based models possess
multiple advantages, e.g., easy incorporation of new knowledge in the initialized SOM-driven
model [3, p. 135]. S. Dablemont et al. suggest a general method for forecasting financial time
series using SOMs, applying it to the DAX30 index prediction [9]. The approach has also
found application in banking, as M. Nordlinder proposes using SOM clustering for assessing
operational deposit levels on bank accounts, identifying different types of such accounts, and
consumer behavior related thereto [16]. J. A. Lee and M. Verleysen justly demonstrate that
the SOM algorithm is a flexible tool capable of achieving interesting properties once new
parameters, such as neighborhood adaptations, are incorporated [13]. A. Blazejewski and R.
Coggins prove that SOMs are a valuable tool for clustering high-frequency financial data,
which might be a complicated task even if using sophisticated stochastic models [5].

Of particular interest is an article by J. Barunik and B. Malinska, in which they propose a
neural-network-based approach to forecasting the term structure of crude oil prices, rightly noting
the rarity of scientific literature devoted to this particular topic [4]. In our study, we contribute to
the scarce developments in this area by suggesting a new framework of neural-network-driven
analysis of the term structure of crude oil prices, namely SOM clustering of forward curves by
their shape and, moreover, comparative cluster analysis with underlying fundamentals.

Rationale and objectives of the research. In this research, we aim to discover the monthly
seasonality patterns of crude oil futures prices using the SOM clustering technique to identify
patterns in the crude oil futures prices behavior over different periods, as well as analyze the
relationship of such patterns with the contango-backwardation dichotomy, applying our findings
to the study of oil market fundamentals, namely levels of commercial stocks.

Methods of the research. In this study, we use general scientific and special research
methods on financial and economic phenomena and processes in their continuous development
and interrelationship. The methods used to accomplish the objectives of the study are as
follows: historical — to assess pricing trends formed in the past; induction and deduction — to
study individual components and factors of futures pricing processes and to determine cause
and effect linkages; abstract and logical analysis and synthesis — to identify and summarize
the criteria for clustering forward curves; descriptive analysis and observation — to build and
explain tables, graphs, and charts; machine learning (in particular, unsupervised learning)
— to determine the dimensionality and construct SOMs; and economic, mathematical,
statistical methods as well as algorithmization and programming — to perform calculations
and computations, including data normalization, dynamic time warping (DTW), grouping,
clustering, and other mathematical transformations.
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Main research material. While SOM clustering has found multiple applications across
various domains, there has been little to no evidence of previous usage of SOM cluster analysis
to study term structures of commodity prices and their dynamics, i.e., forward curves. Such
models as the cost of carry model, the convenience yield model, the expectations theory, and their
variations, as well as many other deterministic and stochastic models, have been widely used to
discover the peculiarities of the futures prices and their behavior. We believe that introducing new
approaches and combinations thereof, as well as improved visualization techniques, such as SOM
clustering of forward curves and comparative cluster analysis, will benefit the understanding of
futures market functioning and contribute to further research of crude oil prices term structure.

Building a SOM for forward curve clustering. In this study, the SOM was implemented
using the MiniSOM library [17] in Python 3.9.12. The input data were prices of futures
contracts for WTI crude oil on the NYMEX/CME exchange from November 2011 to June
2022, namely observations for 128 months and 12 maturities (see Figure 1). The data were
obtained from the market price aggregator Barchart [7]. Descriptive statistics of the input
data are presented in Table 1.

To perform cluster analysis, we normalized the data using the feature scaling method,
i.e., we scaled the input data so that their values were in the [0, 1] range. Next, we determined
the dimensionality of the SOM grid by obtaining a square matrix with (4 x 4) dimensions
using the following formula:

som, = som, = [{/len(data) | (D

where som _is the width of the SOM grid, som is the height of the SOM grid, and len(data)
is the number of observations.

Table 1
Descriptive Statistics of Input Data

M Count Mean Std Min 25% 50% 75% Max

1 128 65.92 20.42 10.01 50.42 61.97 86.38 120.93
2 128 66 20 18.84 50.25 61.82 86.05 118.25
3 128 66.01 19.38 21.85 50.77 61.83 85.75 115.31
4 128 65.97 18.82 24.37 51.22 62.14 85.47 112.62
5 128 65.9 18.36 26.37 51.56 62.4 85.18 110.25
6 128 65.8 17.99 27.67 51.46 62.57 84.93 108.1

7 128 65.67 17.67 28.72 51.45 62.8 84.61 106.16
8 128 65.53 17.42 29.62 51.38 62.44 843 104.43
9 128 65.41 17.2 30.38 51.56 62.07 84.04 102.9
10 128 65.28 17.01 31.07 51.59 62.04 83.89 101.51
11 128 65.17 16.85 31.66 51.81 61.97 83.78 100.25
12 128 65.06 16.71 32.17 51.76 61.58 83.7 99.07

Source: calculated by the author based on the input data

Note: M — expiration, months; Count — number of data points; Mean — arithmetic average; Std —
standard deviation; Min — minimal value; 25% — first quartile; 50% — median or second quartile;
75% — third quartile; Max — maximal value.
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Figure 1. WTI Forward Curves, November 2011 — June 2022
Source: constructed by the author based on the input data

Next, we set the SOM grid parameters:

SOM = SOM(som,, som,, len(data),c = 1,a = 2,60 ='Gauss',s = 0) (2)

where som_is the width of the SOM grid, som, is the height of the SOM grid, len(data) is
the number of observations, o is the spread parameter of the neighborhood function, « is the
learning coefficient, 4 is the type of neighborhood function, and s is the value of the random
seed.

After obtaining the SOM grid, we set the number of training iterations over the
input data to be 100,000. The initial weights of the grid nodes for the input dataset were
identified randomly. The map of neural distances obtained after all training iterations, i.e.,
the transformation of a set of one-dimensional input vectors into a two-dimensional set of
neurons, is shown in Figure 2. The activation map of the SOM network (transposed) and the
corresponding degrees of neuronal activation are shown in Figure 3.

In this study, we performed shape-based clustering of the input data using two criteria:
quantitative and topological. Both clustering variants are based on the same SOM, so the
distribution of clusters across neurons is identical in both cases (Figure 4). It should be noted
that according to the features of the input data and the parameters of the constructed SOM,
one cluster appeared to be empty. The clustering of the input data is obviously different for
the two criteria. To group the forward curves and calculate the relative distances, we used the
DTW method to avoid possible inaccuracies in constructing typical curves for each cluster
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compared to Euclidean distances. We determined the degree of similarity of the curves by
comparing the DTW distances between them.

SOM Distance Map SOM Activation Map, T
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Figure 2 (left). SOM Distance Map Figure 3 (right). SOM Activation Map,
Transposed

Source: developed by the author
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Figure 4. SOM Distance Map and Respective Clusters
Source: developed by the author
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Quantitative clustering of forward curves. To cluster the normalized forward curves
by the quantitative criterion, we grouped the curves by the degree of similarity of their shapes
and sorted them in descending order of observation frequency. Accordingly, Cluster 1 has
the largest number of observations (26 observations), and Cluster 15 has the lowest number
(1 observation). The result of quantitative shape-based clustering is shown in Figures 5-6.

Having divided the curves into clusters, we calculated the probability of the i-th cluster being
the most typical forward curve configuration for the j-th month. Based on these indicators, we
constructed a heatmap of the probability distributions by month and cluster number (Figure 7).
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Figure 5. Graphical representation of forward curve distribution by clusters,
quantitative approach
Source: developed by the author

Cluster Distribution for SOM, Numerical
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Figure 6. Distribution of forward curves by clusters, quantitative approach
Source: developed by the author
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From the configuration of typical curves for the clusters (Figure 5) and the scattering
characteristics on the heatmap (Figure 7), we can see that pure contango and backwardation
are most typical for the studied period (Clusters 1-5). Interestingly, the backwardation is
stronger in the first half of the year (Clusters 1, 3, 5), while both contango and backwardation
characterize the second half. Cases of «humped» contango and backwardation (Clusters
6-15) are less likely scenarios for all months except for mid-summer (July) and the end of
the year (December). For July, the most likely scenarios are backwardation and «humped»
contango — short-end backwardation with long-end contango. For December, on the contrary,
it’s short-end contango with long-end backwardation.
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Figure 7. Heatmap of cluster probability distribution by month, quantitative approach
Source: developed by the author

Topological clustering of forward curves. To perform shape-based clustering of the
normalized forward curves by the topological criterion, we grouped and sorted the curves
by the degree of similarity of their configurations in descending order: from the most to the
least similar. Accordingly, Cluster 1 is the benchmark (26 observations), and Cluster 15 is
the least similar cluster to it, having the reverse configuration (13 observations). We can see
that Cluster 1 represents backwardation, and Cluster 15 represents contango. The result of
topological shape-based clustering is shown in Figures 8-9.
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Source: developed by the author
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Figure 9. Distribution of forward curves by clusters, topological approach
Source: developed by the author

Similarly to the quantitative approach, we calculated the probability with which the i-th

cluster is the most typical forward curve configuration for the j-th month. Based on this, we
determined which cluster type is the most (least) typical for a given month (see Table 2).
Additionally, we generated a heatmap of the probability distribution by month and cluster
number (see Figure 10).
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Table 2
Most to Least Common Clusters for Each Month
Month | Most Common Cluster » —» — — — — — — — — — — Least Common Cluster
Jan 1 14 15 4 6 3 - - -
Feb 1 15 4 14 6 - - - -
Mar 1 14 13 4 7 3 5 - -
Apr 1 2 15 4 14 12 3 - -
May 1 2 15 14 10 5 6 8 -
Jun 1 14 2 15 8 9 10 - -
Jul 2 12 11 14 13 5 9 8 -
Aug 14 2 1 12 8 3 9 - -
Sep 2 14 1 15 13 9 5 8 -
Oct 1 2 11 14 12 13 6 4 10
Nov 14 6 11 1 2 15 4 3 13
Dec 9 1 14 2 15 12 4 - -
Source: developed by the author
Probabilities for each cluster and each month
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Figure 10. Heatmap of cluster probability distribution by month, topological approach
Source: developed by the author

From the configuration of typical curves for the clusters (Figure 8) and the scatterplots
in the heatmap (Figure 10), we can see that for January — June, the most likely market
scenario is pure backwardation (Clusters 1-6). At the same time, for July — December, the
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prevalence of backwardation (Clusters 1-6) or contango (Clusters 13-15) is rather unclear,
as intermediate options such as «humped» contango and backwardation (Clusters 7-12) also
have a relatively high probability. The intermediate pattern has the highest probability in
December when short-end contango with long-end backwardation is most common. In July,
intermediate variations — namely, «humped» contango — are also more typical.

The results indicate that the prevalence of a particular market situation in a given month in
the mid-term is seasonal, and thus follows specific periodic patterns. The predominance of pure
backwardation in the first half of the year, as well as relatively high probabilities of «humped»
contango in July and «humped» backwardation in December, in our opinion, are the result
of'a combination of several factors, namely changes in weather and temperature conditions,
expectations of industrial oil consumers about the demand for their products, as well as the
cyclical accumulation and consumption of commercial ending stock of oil and the peculiarities
of production processes. Our assumption is consistent with the commonly accepted view of the
factors determining the crude oil market conditions, including their seasonal components, such
as supply and demand balances, physical production considerations, and regional temperatures
(e.g., see [2]). In the next part of the study, we will analyze the cluster relationship between
the prevalence of market situations and the cyclicality of accumulation and consumption of
commercial oil stock to assess our assumption.

Clustering of commercial ending stock levels. To analyze the processes of accumulation
and consumption of commercial oil stocks, we used monthly data on commercial crude
oil ending stocks at the Cushing hub in OK, US, from November 2011 to June 2022, in
thousand barrels, obtained from the EIA database [8]. Commercial stocks at the Cushing,
OK, hub are «the nexus of oil fundamentalsy, as fairly described by D. Brusstar and R. Karas
[6], that serves as the core element of the global market for the benchmark NYMEX WTI
contracts, providing the delivery mechanism for such contracts and offering large storage
and transporting facilities for oil producers, refiners, traders, and other market participants.
Descriptive statistics of the input data are presented in Table 3.

Table 3
Descriptive Statistics of Input Data

Count Mean Std Min 25% 50% 75% Max

Value | 128.00 | 45,225.98 | 13,805.39 | 17,946.00 | 35,230.75 | 46,163.00 | 56,928.50 {69,414.00
Source: developed by the author

To perform the cluster analysis of the commercial stock levels, we normalized the data
using the feature scaling method, i.e., we scaled the input data so that their values were in
the range [0, 1]. To obtain a more accurate clustering result, we artificially increased the
dimensionality of the SOM grid so that som, = som,, = 5. Next, we set the SOM grid
parameters by increasing the learning factor to 5 (see Formula 3), which is a purely empirical
adjustment. The number of training iterations was left unchanged, i.e., 100,000. The resulting
SOM neuron distance map and graphical interpretation of clustering are shown in Figures
11 and 12, respectively.
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The commercial oil ending stock levels were distributed into 5 clusters. Normalization
of the input data allows us to nominally characterize the clusters as follows: Cluster 1 — very
high level of stocks, Cluster 2 — high level of stocks, Cluster 3 — moderate level of stocks,
Cluster 4 — low level of stocks, Cluster 5 — very low level of stocks (see Table 4).

Table 4
Descriptive Statistics of Commercial Oil Ending Stock Clustering Results
Cluster | Count | Mean Std Min 25% 50% 75% Max
1 21 0.92 0.04 0.85 0.90 0.91 0.95 1.00
2 19 0.76 0.05 0.68 0.74 0.76 0.80 0.83
3 35 0.58 0.05 0.47 0.54 0.58 0.61 0.67
4 31 0.36 0.07 0.24 0.33 0.36 0.43 0.46
5 22 0.12 0.07 0.00 0.07 0.13 0.17 0.22

Source: developed by the author

To evaluate the relationship between the results of shape-based clustering of forward
curves (using the topological approach) and commercial ending stock levels, we calculated
the value of the determination coefficient, R, between the corresponding cluster numbers
for each date within the studied period. The value of the coefficient is 0.67, which indicates
a rather significant interdependence of the variables. When constructing heatmaps using the
two clustered indicators, we see that for periods with very low, low, and moderate levels of
ending stocks (Clusters 3-5), a situation of backwardation (Clusters 1-6) is more typical,
while for periods with high and very high levels of ending stocks (Clusters 1-2), a situation
of «humped» contango (Cluster 12) or pure contango (Clusters 13-15) is rather typical. The
results confirm the existence of a considerable interdependence between the studied variables.
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Source: developed by the author
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Figure 14. Forward Curve and Ending Stock Cluster Analysis Comparison
Source: developed by the author

Conclusions and prospects for further research. Our study suggests a new approach to
the analysis of the crude oil prices term structure, namely cluster analysis of forward curves based
on machine learning. In this study, we identified seasonal features of term pricing in the crude
oil market using SOM-based cluster analysis. Using two approaches to shape-based clustering,
namely quantitative and topological, we demonstrated the existence of cyclical patterns in the
term structure of oil futures prices and traced their dependence on commercial ending stock levels.

The application of cluster analysis using artificial neural networks (ANNs) provides
a wide range of opportunities to study the basic patterns and phenomena of term pricing,
particularly for crude oil and other commodities. Identification of cyclical, seasonal patterns
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of futures price behavior and assessment of fundamental market interdependencies allows
applying new and improving existing predictive models to make rational and effective
investment and management decisions, explaining the behavior of consumers and producers
in the crude oil and petroleum products market. Moreover, we believe that our approach
to comparative clustering can be used in further examination of terms structures of other
commodity and financial markets in relation to the peculiarities of interest rates, stock indices,
exchange rate dynamics, and pricing of alternative investment assets.

We are of the opinion that further research should focus on the changes in seasonal
patterns and patterns over time to trace the evolution of pricing trends in the oil futures market
in the context of the contango-backwardation dichotomy, as well as to better understand the
fundamental drivers of such changes.
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AHoTauis. Y 1p0My JOCTIHKEHHI MU 3aCTOCOBYEMO KJIACTEPHU3AIlil0 HA OCHOBI CaMOOpraHi3aliitHol
kapt (SOM), Takox BioMoi sk kapTa KoxoHeHa, 10 moMicsiaHuX (hopBapIHUX KPUBHX ()’FOUepCHUX IIiH Ha
cupy Ha(Ty Ta 3aJIMIIKOBHUX 3amaciB cupoi Hadtu Ha xabi B Kymmary, mrrar OxiraxoMa, 3a epiof 3 IMCTONana
2011 poky no uepsens 2022 poxy, abu JOCIiIUTH MAOIOHH PEKUMIB KOHTAaHTO-OeKBOpAaii Ta IXHil 3BSI30K i3
CE30HHICTIO Ta PIBHSAMH 3ar1aciB. 30KpeMa, MU IIPOIIOHYEMO JIBa TTiIXOH 10 KJIacTepr3artii (hopBapIHIX KPUBHX
3aJIeXKHO BiJl X (hOpMHU, a caMe YMCeNbHHH 1 TorooriyHui. Hamri pe3ynsTaTs moKas3yoTh, IO 33 TOOMOTO0
knacrepuzanii MmetonaMu SOM MO)KHA BHSIBUTH XapaKTEePHi 0COOIMBOCTI CTPOKOBOT CTPYKTYPH () FOUEPCHUX
IiH y pO3pi3i MiCALIB, TPHIOMY ACSKI MICSII, HAPUKIIA, 3 CIYHS 10 YePBEHb, IEMOHCTPYIOTh iTKY IIOBEIIHKY,
a 1HIII, HATPUKJIAJ, 3 JIUIHS 10 TPYAeHb, — JOCUTh HEOJHO3HauHy. KpiM TOro, Mu mponoHyeMo HiIXix A0
MOPIBHSUTLHOTO aHAITI3y CE30HHUX TeHACHLIH Ta (QyHIaMEeHTaIbHUX YMHHHUKIB, 1110 JIS)KATh B IX OCHOBI, a came
PIBHIB KiHIIEBUX 3amaciB. 30KpeMa, MU JIOBOJIMMO, IO ISt [IepiojiiB, KOJIM KOMEpLIiiHi 3amacu rnepeyBaroTh
Ha Jly’Ke HU3bKOMY ab0 MOMIpHOMY DPiBHI XapaKTEepHIILOK € CHTYyallis OeKBOpAawil, TOi sIK UL epiofiB i3
BHCOKHMH a00 JIy’Ke BUCOKHMH 3ariacaMM XapaKTePHIILIOIO € CUTYaLlisl KOHTAHTO. B 11ijioMy, Halle oCiiKeHHs
HPOIIOHYE HOBI METOJIM Ta ITIAXO/H JI0 aHaNi3y IMOBEIHKY ()’ I04epCHUX IIiH Ha HadTy, a came IX CTPOKOBOTO
ACIIeKTY, IO MPOSIBISIETHCST B KOHDIryparii GopBapIHUX KPHBUX, HATOJIOIIYIOYH HAa BAXKIMBOCTI MICSIHHX
1abJIOHIB Ta CE30HHUX PEXKUMIB, @ TAKOK JJOBOJUTH OOTPYHTOBAHICTh BUKOPHCTAHHS METO/IB MAIlIHHHOTO
HABYaHHS Ta MOPIBHAIIBHOTO KJIACTEPHOTO aHAII3Y JJIsl PO3YMiHHS IMHAMIKH ()’ FOYepCHHX IIiH Ha CHPY Ha(Ty.

KurouoBi cioBa: cTpokoBa cTpykTypa ()’10uepcHUX I[iH Ha cupy HadTy, KOHTAHT0, OEKBOpIALis,
(hopBapiHa KpHBa, KIACTEPHUI aHAJi3 HA OCHOBI FeOMETPUYHUX (opM, KilacTepusalis IiH, YacoBi pAaH,
camoopranizaniiina kapra Koxonena (SOM), MammmHHe HaBYaHHS, IITY4YHI HelipoHHi Mepexi (LLIHM),
JquHaMivHa TpaHchopmaris yacosoi mwkanu (DTW), kiHuesi komepuiiini 3amacu HaTH.
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