ЗРУЧНИЙ ВАРІАНТ СИНТЕЗУ 5-ОКСО-4,5-ДИГІДРО-1Н-[1,2,3]-ТРИАЗОЛО[4,5-b]ПІРИДИН-6-КАРБОНОВОЇ КИСЛОТИ

N. Syrota, S. Kemskii, M. Vovk

Анотація


З’ясовано, що N-Boc-4-аміно-1,2,3-триазол-5-карбальдегіди в умовах реакції Фрідлендера піддаються циклоконденсації із малоновою кислотою або кислотою Мельдрума з утворенням 5-оксо-4,5-дигідро-1Н-[1,2,3]триазоло[4,5-b]піридин-6-карбонових кислот, та виявлено більшу ефективність у такому процесі кислоти Мельдрума.

 

Ключові слова: 4-аміно-1,2,3-триазол-5-карбальдегіди, малонова кислота, кислота Мельдрума, [1,2,3]триазоло[4,5-b]піридин-6-карбонові кислоти, реакція Фрідлендера.


Повний текст:

PDF

Посилання


Vegi S. R., Boovanaholli S. K., Patro B. et al. SPF3269A and SPF3269B: enantioselective synthesis, determination of absolute configuration, cytotoxity and antibacterial evaluation // Eur. J. Med. Chem. 2011. Vol. 46, Iss. 5. P. 1803−1812. DOI: https://doi.org/10.1016/j.ejmech.2011.02.039

Chicca A., Arena C., Bertini S. et al. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system // Eur. J. Med. Chem. 2018. Vol. 154. P. 155−171. DOI: https://doi.org/10.1016/j.ejmech.2018.05.019

Pathuri G., Li Q., Mohammed A. et al. Synthesis and in vivo evaluation of N-ethylamino-2-oxo-1,2-dihydro-quinoline-3-carboxamide for inhibition of intestinal tumorigenesis in APCMin/+ mice // Bioorg. Med. Chem. Lett. 2014. Vol. 24, Iss. 5. P. 1380−1382. DOI: https://doi.org/10.1016/j.bmcl.2014.01.042

Pudlo M., Luzet V., Ismaïli L. et al. Quinolone–benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer Disease // Bioorg. Med. Chem. 2014. Vol. 22, Iss. 8. P. 2496−2507. DOI: https://doi.org/10.1016/j.bmc.2014.02.046

Turkman N., Shavrin A., Ivanov R. A. et al. Fluorinated cannabinoid CB2 receptor ligands: synthesis and in vitro binding characteristics of 2-oxoquinoline derivatives // Bioorg. Med. Chem. 2011. Vol. 19, Iss. 18. P. 5698−5707. DOI: https://doi.org/10.1016/j.bmc.2011.07.062

Banu S., Bollu R., Bantu R. et al. Design, synthesis and docking studies of novel 1,2-dihydro-4-hydroxy-2-oxoquinoline-3-carboxamide derivatives as a potential anti-proliferative agents // Eur. J. Med. Chem. 2017. Vol. 125. P. 400−410. DOI: https://doi.org/10.1016/j.ejmech.2016.09.062

Shi J., Xiao Z., Ihnat M. et al. Structure activity relationship studies of the anti-angiogenic activities of limonide // Bioorg. Med. Chem. Lett. 2003. Vol. 13, Iss. 6. P. 1187−1189. https://doi.org/10.1016/S0960-894X(03)00047-7

Elias R., Benhamou R. I., Jaber Q. Z. et al. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles // Eur. J. Med. Chem. 2019. Vol. 179. P. 779−790. DOI: https://doi.org/10.1016/j.ejmech.2019.07.003

Anderson K., Chen Y., Chen Z. et al. Pyrido[2,3-d]pyrimidines: Discovery and preliminary SAR of a novel series of DYRK1B and DYRK1A inhibitors // Bioorg. Med. Chem. Lett. 2013. Vol. 23, Iss. 24. P. 6610−6615. DOI: https://doi.org/10.1016/j.bmcl.2013.10.055

Nohara A., Ishiguro T., Ukawa K. et al. Studies on Antianaphylactic Agents. 7. Synthesis of Antiallergic 5-Oxo-5H-[1]benzopyrano[2,3-b]pyridines // J. Med. Chem. 1985. Vol. 28, Iss. 5. P. 559−568. DOI: https://doi.org/10.1021/jm50001a005

Deb M. L., Bhuyan P. J. Synthesis of novel classes of pyrido[2,3‐d]‐pyrimidines, pyrano[2,3‐d]pyrimidines, and pteridines // Synt. Commun. 2006. Vol. 36, Iss. 20. P. 3085−3090. DOI: https://doi.org/10.1080/00397910600775622

Dabaeva V. V., Pilosyan S. G., Noravyan A. S. Synthesis of substituted dihydro-5H-pyrano[4,-3-b]pyridin-3-carboxamides and -3-carboxylic acids // Chem. Heterocycl. Compd. 1994. Vol. 30. P. 863−866. DOI: https://doi.org/10.1007/bf01169648

Maiti S., Panja S. K., Bandyopadhyay C. A one-pot synthesis of the 1-benzopyrano[2,3-b]pyridine moiety from 2-(alkyl/arylamino)-4-oxo-4H-1-benzopyran-3-carbaldehyde // J. Heterocycl. Chem. 2010. Vol. 47, Iss. 4. P. 973−981. DOI: https://doi.org/10.1002/jhet.397

Siddiqui Z. N. One pot synthesis of new benzopyranopyridines via Friedlander condensation // Tetrahedron Lett. 2012. Vol. 53, Iss. 37. P. 4974−4978. DOI: https://doi.org/10.1016/j.tetlet.2012.07.013

Siddiqui Z. N., Khan K. Friedlander synthesis of novel benzopyranopyridines in the presence of chitosan as heterogeneous, efficient and biodegradable catalyst under solvent-free conditions // New J. Chem. 2013. Vol. 37, Iss. 5. P. 1595−1602. DOI:https://doi.org/10.1039/c3nj00069a

Yakovenko G. G., Lukianov O. А., Bol’but A. V. et al. A convenient synthesis method of 5-oxopyrazolo[4,3-b]pyridine-6-carboxylic acids and their nitriles // Chem. Heterocycl. Compd. 2019. Vol. 55, Iss. 15. P. 1211−1216 (in Russian). DOI: https://doi.org/10.1007/s10593-019-02603-5

Bozorov K., Zhao J., Aisa H. A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview // Bioorg. Med. Chem. 2019. Vol. 27, Iss. 16. P. 3511−3531. DOI: https://doi.org/10.1016/j.bmc.2019.07.005

Agalave S. G., Maujan S. R., Pore V. S. Click chemistry: 1,2,3-triazoles as pharmacophores // Chem. Asian J. 2011. Vol. 6, Iss. 10. P. 2696−2718. DOI: https://doi.org/10.1002/asia.201100432

Lal K., Yadav P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents // Anti-Cancer Agents Med. Chem. 2018. Vol. 18, Iss. 1. P. 21−37. DOI: https://doi.org/10.2174/1871520616666160811113531

Dheer D., Singh V., Shankar R. Medicinal attributes of 1,2,3-triazoles: current developments // Bioorg. Chem. 2017. Vol. 71. P. 30−54. DOI: https://doi.org/10.1016/j.bioorg.2017.01.010

Syrota N., Kemskiy S., Bol’but A. et al. An efficient method for accessing carboannulated and functionalized [1,2,3]triazolo[4,5-b]pyridines // Chem. Heterocycl. Compd. 2020. Vol. 56, Iss. 8. P. 1048−1053. DOI: https://doi.org/10.1007/s10593-020-02771-9

Friedlander P., Göhring C. F. Zur kenntniss des ortoamidobenzaldehydes // Chem. Ber. 1884. Vol. 17, Iss. 1. P. 456−461. DOI: https://doi.org/10.1002/cber.188401701131

Tröger J., Gerö St. Beiträge zur Kenntnis des 2-Amino-3-methoxy-benzaldehyds // J. Prakt. Chem. 1926. Vol. 113, Iss. 1. P. 293−308. DOI: https://doi.org/10.1002/prac.19261130123

Blanco M. M., Avendaño C., Cabezas N. et al. A Friedländer approach to 3-substituted 2,5,8-(1H)-quinolinetriones // Heterocycles. 1933. Vol. 36, Iss. 6. P. 1387−1398. DOI: https://doi.org/10.3987/com-93-6341

Suzuki M., Kaneko T., Kamiyama H. et al. A practical procedure for preparation of N-(endo-8-(3-hydroxy)propyl-8-azabicyclo[3.2.1]oct-3-yl)-1-isopropyl-2-oxo-1,2-dihydro-3-quinolinecarboxamide (TS-951) // Heterocycles. 2000. Vol. 53, Iss. 11. P. 2471−2485. DOI: https://doi.org/10.3987/com-00-9026

Suzuki M., Ohuchi Y., Asanuma H. et al. Synthesis and evaluation of novel 2-oxo-1,2-dihydro-3-quinolinecarboxamide derivatives as potent and selective serotonin 5-HT4 receptor agonists // Chem. Pharm. Bull. 2001. Vol. 49, Iss. 1. P. 29−39. DOI: https://doi.org/10.1248/cpb.49.29




DOI: http://dx.doi.org/10.30970/vch.6201.191

Посилання

  • Поки немає зовнішніх посилань.