МЕТОДИ ОДЕРЖАННЯ ТА МОЖЛИВІ НАПРЯМИ ХІМІЧНОЇ МОДИФІКАЦІЇ ПОХІДНИХ 1,3,4-ОКСАДІАЗОЛУ (огляд)
Анотація
Проведено огляд літературних джерел, на основі якого систематизовано дані про методи одержання та можливі напрями хімічної модифікації гетероциклічних систем на основі 1,3,4-оксадіазолу. З’ясовано, що зазначений скафолд є одним із важливих гетероциклічних фрагментів, які розглядають як перспективні структурні матриці для конструювання нових лікоподібних молекул.
Ключові слова: методи одержання, похідні 1,3,4-оксадіазолу, хімічна модифікація реакція циклодегідратації, окисна циклізація.
Повний текст:
PDFПосилання
Rajak H., Agarawal A., Parmar P. et al. 2,5-Disubstituted-1,3,4-oxadiazoles / thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors // Bioorg. Med. Chem. Lett. 2011. Vol. 21. P. 5735–5738. DOI: https://doi.org/10.1016/j.bmcl.2011.08.022
Zhang Y.-B., Wang X.-L., Liu W. et al. Design, synthesis and biological evaluation of heterocyclic azoles derivatives containing pyrazine moiety as potential telomerase inhibitors // Bioorg. Med. Chem. 2012. Vol. 20. P. 6356–6365. DOI: https://doi.org/10.1016/j.bmc.2012.08.059
Zhang S., Luo Y., He L.-Q. et al. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possesing benzotriazole moiety as FAK inhibitors with anticancer activity // Bioorg. Med. Chem. 2013. Vol. 21. P. 3723–3729. DOI: https://doi.org/10.1016/j.bmc.2013.04.043
Kamal A., Dastagiri D., Ramaiah M. J. et al. Synthesis, anticancer activity and mitochondrial mediated apoptosis inducing ability of 2,5-diaryloxadiazole-pyrrolobenzodiazepine conjugates // Bioorg. Med. Chem. 2010. Vol. 18. P. 6666–6677. DOI: https://doi.org/10.1016/j.bmc.2010.07.067
Kashtoh H., Hussain S., Khan A. et al. Oxadiazoles and thiadiazoles: Novel α-glucosidase inhibitors // Bioorg. Med. Chem. 2014. Vol. 22. P. 5454–5465. DOI: https://doi.org/10.1016/j.bmc.2014.07.032
Palmer J. T., Hirschbein B. L., Cheung H. et al. Keto-1,3,4-oxadiazoles as cathepsin K inhibitors // Bioorg. Med. Chem. Lett. 2006. Vol. 16. P. 2909–2914. DOI: https://doi.org/10.1016/j.bmcl.2006.03.001
Khan M. T. H., Choudhary M. I., Khan K. M. et al. Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues // Bioorg. Med. Chem. 2005. Vol. 13. P. 3385–3395. DOI: https://doi.org/10.1016/j.bmc.2005.03.012
Khan K. M., Fatima N., Rasheed M. et al. 1,3,4-Oxadiazole-2(3H)-thione and its analogues: A new class of non-competitive nucleotide pyrophosphatases/ phosphodiesterases 1 inhibitors // Bioorg. Med. Chem. 2009. Vol. 17. P. 7816–7822. DOI: https://doi.org/10.1016/j.bmc.2009.09.011
Boschelli D. H., Connor D. T., Bornemeier D. A. et al. 1,3,4-Oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole analogs of the fenamates: in vitro inhibition of cyclooxygenase and 5-lipoxygenase activities // J. Med. Chem. 1993. Vol. 36, Iss. 13. P. 1802–1810. DOI: https://doi.org/10.1021/jm00065a002
Cahn P., Sued O. Raltegravir: A new antiretroviral class for salvage therapy // The Lancet. 2007. Vol. 369. Iss. 9569. P. 1235–1236. DOI: https://doi.org/10.1016/S0140-6736(07)60571-6
Grinsztejn B., Nguyen B.-Y., Katlama C. et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: A phase II randomised controlled trial // The Lancet. 2007. Vol. 369, Iss. 9569. P. 1261–1269. DOI: https://doi.org/10.1016/S0140-6736(07)60597-2
Puthiyapurayil P., Poojary B., Chikkanna C. et al. Design, synthesis and biological evaluation of a novel series of 1,3,4-oxadiazole bearing N-methyl-4-(trifluoromethyl)phenyl pyrazole moiety as cytotoxic agents // Eur. J. Med. Chem. 2012. Vol. 53. P. 203–210. DOI: https://doi.org/10.1016/j.ejmech.2012.03.056
Kotaiah Y., Harikrishna N., Nagaraju K. et al. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives // Euro. J. Med. Chem. 2012. Vol. 58. P. 340–345. DOI: https://doi.org/10.1016/j.ejmech.2012.10.007
Padmavathi V., Reddy G. D., Reddy S.N. et al. Synthesis and biological activity of 2-(bis((1,3,4-oxadiazolyl/1,3,4-thiadiazolyl)methylthio)methylene)-malononitriles // Eur. J. Med. Chem. 2011. Vol. 46. P. 1367–1373. DOI: https://doi.org/10.1016/j.ejmech.2011.01.063
Ahsan M. J., Samy J. G., Khalilullah H. et al. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents // Bioorg. Med. Chem. Lett. 2011. Vol. 21. P. 7246–7250. DOI: https://doi.org/10.1016/j.bmcl.2011.10.057
Guimarães C. R. W., Boger D. L., Jorgensen W. L. Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations // J. Am. Chem. Soc. 2005. Vol. 127, No. 49. P. 17377–17384. DOI: https://doi.org/10.1021/ja055438j
Hayes F. N., Rogers B. S., Ott D. G. 2,5-Diaryloxazoles and 2,5-diaryl-1,3,4-oxadiazoles // J. Am. Chem. Soc. 1955. Vol. 77. P. 1850–1852. DOI: https://doi.org/10.1021/ja01612a041
Al-Talib M., Tashtoush H., Odeh N. A convenient synthesis of alkyl and aryl substituted bis-1,3,4-oxadiazoles // Synth. Commun. 1990. Vol. 20, No. 12. P. 1811–1817. DOI: https://doi.org/10.1080/00397919008053105
Zheng X., Li Z., Wang Y. et al. Synthesis and insecticidal activities of novel
,5-disubstituted 1,3,4-oxadiazoles // J. Fluorine Chem. 2003. Vol. 123. P. 163–169. DOI: https://doi.org/10.1016/S0022-1139(03)00168-4
Ono K., Ito H., Nakashima A. et al. Synthesis and properties of naphthalene trimers linked by 1,3,4-oxadiazole spacers // Tetrahedron Lett. 2008. Vol. 49. P. 5816–5819. DOI: https://doi.org/10.1016/j.tetlet.2008.07.122
Rigo B., Cauliez P., Fasseur D. et al. Reaction of hexamethyldisilazane with diacylhydrazines: An easy 1,3,4-oxadiazole synthesis // Synth. Commun. 1986. Vol. 16, No. 13. P. 1665–1669. DOI: http://dx.doi.org/10.1080/00397918608056425
Sharma G. V. M., Begum A., Rakesh et al. Zirconium (IV) chloride mediated cyclodehydration of 1,2-diacylhydrazines: A convenient synthesis of 2,5-diaryl 1,3,4-oxadiazoles // Synth. Commun. 2004. Vol. 34, No. 13. P. 2387–2391. DOI: https://doi.org/10.1081/SCC-120039492
Hall A., Brown S. H., Chowdhury A. et al. Identification and optimization of novel 1,3,4-oxadiazole EP1 receptor antagonist // Bioorg. Med. Chem. Lett. 2007. Vol. 17. P. 4450–4455. DOI: https://doi.org/10.1016/j.bmcl.2007.06.014
Gurupadaswamy H. D., Girish V., Kavitha C. V. et al. Synthesis and evaluation of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazole as anticancer agents // Eur. J. Med. Chem. 2013. Vol. 63. P. 536–543.DOI: https://doi.org/10.1016/j.ejmech.2013.02.040
Kadi A. A., El-Brollosy N. R., Al-Deeb O. A. et al. Synthesis, antimicrobial and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles // Eur. J. Med. Chem. 2007. Vol. 42. P. 235–242. DOI: https://doi.org/10.1016/j.ejmech.2006.10.003
Chandrakantha B., Shetty P., Nambiyar V. et al. Synthesis, characterization and biological activity of some new 1,3,4-oxadiazole bearing 2-fluoro-4-methoxy phenyl moiety // Eur. J. Med. Chem. 2010. Vol. 45. P. 1206–1210. DOI: https://doi.org/10.1016/j.ejmech.2009.11.046
Bakht M. A., Yar M. S., Abdel-Hamid S. G. et al. Molecular properties prediction, synthesis and antimicrobial activity of some newer oxadiazole derivatives // Eur. J. Med. Chem. 2010. Vol. 45. P. 5862–5869. DOI: https://doi.org/10.1016/j.ejmech.2010.07.069
Akhter M., Husain A., Azad B. et al. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: Synthesis and their anti-inflammatory and analgesic activities // Eur. J. Med. Chem. 2009. Vol. 44. P. 2372–2378. DOI: https://doi.org/10.1016/j.ejmech.2008.09.005
Khan K. M., Zia-Ullah, Rani M. et al. Microwawe-Assisted Synthesis of 2,5-Disubstituted-1,3,4-Oxadiazoles // Lett. Org. Chem. 2004. Vol. 1. P. 50–52. DOI: https://doi.org/10.2174/1570178043488608
Masharaqui S. H., Ghadigaonkar S. G., Kenny R. S. An expeditious and convenient one pot synthesis of 2,5-disubstituted-1,3,4-oxadiazoles // Synth. Commun. 2003. Vol. 33, No. 14. P. 2541–2545. DOI: https://doi.org/10.1081/SCC-120021845
Rashid M., Husain A., Mishra R. Synthesis of benzimidazole bearing oxadiazole nucleus as anticancer agents // Eur. J. Med. Chem. 2012. Vol. 54. P. 855–866. DOI: https://doi.org/10.1016/j.ejmech.2012.04.027
Navarrete-Vazquez G., Molina-Salinas G. M., Duarte-Fajardo Z. V. et al. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines // Bioorg. Med. Chem. 2007. Vol. 15. P. 5502–5508. DOI: https://doi.org/10.1016/j.bmc.2007.05.053
Jin L., Chen J., Song B. et al. Synthesis, structure, and bioactivity of N'-substituted benzylidene-3,4,5-trimethoxybenzohydrazide and 3-acetyl-2-substituted phenyl-5-(3,4,5-trimethixyphenyl)-2,3-dihydro-1,3,4-oxadiazole derivatives // Bioorg. Med. Chem. Lett. 2006. Vol. 16. P. 5036–5040. DOI: https://doi.org/10.1016/j.bmcl.2006.07.048
Kumar D., Sundaree S., Johnson E. O. et al. An efficient synthesis and biological study of novel indolyl-1,3,4-oxadiazoles as potent anticancer agents // Bioorg. Med. Chem. Lett. 2009. Vol. 19. P. 4492–4494. DOI: https://doi.org/10.1016/j.bmcl.2009.03.172
Jayashankar B., Lokanath Rai K. M., Baskaran N. et al. Synthesis and pharmacological evaluation of 1,3,4-oxadiazole bearing bis(heterocycle) derivatives as anti-inflammatory and analgesic agents // Eur. J. Med. Chem. 2009. Vol. 44. P. 3898–3902. DOI: https://doi.org/10.1016/j.ejmech.2009.04.006
Bansal S., Bala M., Suthar S. K. et al. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity // Eur. J. Med. Chem. 2014. Vol. 80. P. 167–174. DOI: https://doi.org/10.1016/j.ejmech.2014.04.045
Koparir M., Cetin A., Cansiz A. 5-Furan-2-yl-1,3,4-oxadiazole-2-thiol, 5-furan-2-yl-4H-1,2,4-triazole-3-thiol and their thiol-thione tautomerism // Molecules. 2005. Vol. 10. P. 475–480. DOI: https://doi.org/10.3390/10020475
Feng C. T., Wang L. D., Yan Y. G. et al. Synthesis and antitumor evaluation of some 1,3,4-oxadiazole-2(3H)-thione and 1,2,4-triazole-5(1H)-thione derivatives // Med. Chem. Res. 2012. Vol. 21. P. 315–320. DOI: https://doi.org/10.1007/s00044-010-9544-6
Hashem A. I., Youssef A. S. A., Kandel K. A. et al. Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity // Eur. J. Med. Chem. 2007. Vol. 42. P. 934–939. DOI: https://doi.org/10.1016/j.ejmech.2006.12.032
Li Y., Liu J., Zhang H. et al. Stereoselective synthesis and fungicidal activities of (E)-α-(methoxyimino)-benzeneacetate derivatives containing 1,3,4-oxadiazole ring // Bioorg. Med. Chem. Lett. 2006. Vol. 16. P. 2278–2282. DOI: https://doi.org/10.1016/j.bmcl.2006.01.026
Zhang Z.-M., Zhang X.-W., Zhao Z.-Z. et al. Synthesis, biological evaluation and molecular docking studies of 1,3,4-oxadiazole derivatives as potent immunosuppressive agents // Bioorg. Med. Chem. 2012. Vol. 20. P. 3359–3367. DOI: https://doi.org/10.1016/j.bmc.2012.03.064
Jakubkiene V., Burbuliene M. M., Mekuskiene G. et al. Synthesis and anti-inflammatory activity of 5-(6-methyl-2-substituted 4-pyrimidinyloxymethyl)-1,3,4-oxadiazole-2-thiones and their 3-morpholinomethyl derivatives // Farmaco. 2003. Vol. 58. P. 323–328. DOI: https://doi.org/10.1016/S0014-827X(02)00022-8
Al-Omar M. A. Synthesis and antimicrobial activity of new 5-(2-thienyl)-1,2,4-triazoles and 5-(2-thienyl)-1,3,4-oxadiazoles and related derivatives // Molecules. 2010. Vol. 15. P. 502–514. DOI: https://doi.org/10.3390/molecules15010502
Zarghi A., Tabatabai S. A., Faizi M. et al. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles // Bioorg. Med. Chem. Lett. 2005. Vol. 15. P. 1863–1865. DOI: https://doi.org/10.1016/j.bmcl.2005.02.014
Zou X.-J., Lai L.-H., Jin G.-Y. et al. Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles // J. Agric. Food Chem. 2002. Vol. 50. P. 3757–3760. DOI: https://doi.org/10.1021/jf0201677
Kucukguzel S. G., Kucukguzel I., Tatar E. et al. Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents // Eur. J. Med. Chem. 2007. Vol. 42. P. 893–901. DOI: https://doi.org/10.1016/j.ejmech.2006.12.038
Bondock S., Adel S., Etman H. A. et al. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles // Eur. J. Med. Chem. 2012. Vol. 48. P. 192–199. DOI: https://doi.org/10.1016/j.ejmech.2011.12.013
Coppo F. T., Evans K. A., Graybill T. L. et al. Efficient one-pot preparation of 5-substituted-2-amino-1,3,4-oxadiazole using resin-bound reagents // Tetrahedron Lett. 2004. Vol. 45. P. 3257–3260. DOI: https://doi.org/10.1016/j.tetlet.2004.02.119
McCoull W., Addie M. S., Birch A. M. et al. Identification, optimisation and in vivo evaluation of oxadiazole DGAT-1 inhibitors for the treatment of obesity and diabetes // Bioorg. Med. Chem. Lett. 2012. Vol. 22. P. 3873–3878. DOI: https://doi.org/10.1016/j.bmcl.2012.04.117
Souldozi A., Ramazani A. The reaction of (N-isocyanimino)-triphenylphosphorane with benzoic acid derivatives: A novel synthesis of 2-aryl-1,3,4-oxadiazole derivatives // Tetrahedron Lett. 2007. Vol. 48. P. 1549–1551. DOI: https://doi.org/10.1016/j.tetlet.2007.01.021
Ramazani A., Rezaei A. Novel one-pot, four-component condensation reaction: An efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by Ugi-4CR/aza-Wittig sequence // Org. Lett. 2010. Vol. 12. P. 2852–2855. DOI: https://doi.org/10.1021/ol100931q
Ramazani A., Shajari N., Mahyari A. et al. A novel four-component reaction for the synthesis of disubstituted 1,3,4-oxadiazole derivatives // Mol. Diversity. 2011. Vol. 15. P. 521–527. DOI: https://doi.org/10.1007/s11030-010-9275-0
DOI: http://dx.doi.org/10.30970/vch.6002.256
Посилання
- Поки немає зовнішніх посилань.