ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1. С. 148–156 Visnyk of the Lviv University. Series Chemistry. 2018. Issue 59. Pt. 1. P. 148–156

УДК 547.789.11+548.315

СИНТЕЗ ТА ОСОБЛИВОСТІ КРИСТАЛІЧНОЇ СТРУКТУРИ 2-АМІНО-3-АЛІЛ-БЕНЗОТІАЗОЛІЙ БРОМІДУ

О. Павлюк*, Ю. Сливка

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: pavalex@gmail.com

У взаємодії 2-амінобензотіазолу з алілом бромистим отримано та рентгеноструктурно досліджено безбарвні кристали 2-аміно-3-аліл-бензотіазолій броміду $[C_7H_4SNH_2N(C_3H_5)]Br$ (I): просторова група $P\overline{1}$, a = 8,611(3), b = 9,379(3), c = 15,273(5) Å, $\alpha = 97,73(3)$, $\beta = 100,51(3)$, $\gamma = 114,84(3)^\circ$, V = 1069,3(7) Å³, Z = 4, $D_{064} = 1,68$ г/см³, $\mu(MoK_{\alpha}) = 4,00$ мм⁻¹, $\theta_{max} = 29^\circ$, 8337 виміряних рефлексів, 4883 використано, $R(F^2) = 0,056$, S = 1,05.

Кристалічну структуру сполуки побудовано із катіонів 2-аміно-3-аліл-бензотіазолію та бромід аніонів, додатково з'єднаних водневими зв'язками N-H...Br та C-H...Br.

Квантово-хімічні обчислення щодо оптимізації геометрії, обчислення енергій орбіталей НОМО і LUMO для нейтральної молекули 2-іміно-3-аліл-1,3-бензотіазолу та катіону 2-аміно-3-аліл-1,3-бензотіазолію у газовій фазі проведено за допомогою DFT-розрахунків з використанням функціонала B3LYP та базису 6-31+G(d,p).

Ключові слова: 2-аміно-3-аліл-бензотіазолій, кристалічна структура, DFT розрахунки.

DOI: https://doi.org/10.30970/vch.5901.148

Віддавна відома важлива роль купрум(І)-олефінових комплексів як в біохімічних процесах, так і в сучасній металоорганічній хімії, наприклад як каталізаторів [1–4]. Разом з тим, комплекси купруму все частіше використовують у нетрадиційних для цього класу сполук галузях: фотовольтаїки [5], виробництві джерел світла [6], електропровідних покриттів [7] тощо.

Теоретичні та прикладні дослідження, пов'язані з координаційними сполуками купруму, часто стикаються з явищем таутомеризації [8] чи навіть купрокаталітичного перетворення ліганду в процесі кристалізації комплексу [9]. Зокрема, описано отримання купрохлоридного молекулярного комплексу [C₁H₄SNHN(C₃H₅)CuCl] з 2-іміно-3-аліл-бензотіазолом [10] та сполук [C₁₀H₁₁SN₂⁺]₂[Cu₂Cl₄]²⁻ та [C₁₀H₁₁SN₂⁺]₂[Cu₂Cl₄]²⁻, що містять катіон 2-аміно-3-аліл-бензотіазолію.

У такому контексті цікаво визначити кристалічну будову вихідного 2-аміно-3аліл-бензотіазолій броміду та обговорити особливості побудови його кристалічної структури.

[©] Павлюк О., Сливка Ю., 2018

2-Аміно-З-аліл-бензотіазолій бромід отримували під час кип'ятіння зі зворотним холодильником впродовж 14 днів (з перервами на нічний період) суміші 0,05 моль (7,30 г) 2-амінобензотіазолу та 0,054 моль (3,0 мл) свіжоперегнаного алілу бромистого в 35 мл хлороформу [11]. Після відгонки розчинника отримано сухий 2-аміно-З-аліл-бензотіазолій бромід з 95 % виходом.

Безбарвні призматичні кристали сполуки І відібрано з твердого залишку після випаровування розчинника та використано для рентгеноструктурних досліджень. Якість кристалів, приблизні параметри гратки та дифракційний клас сполуки визначили з рентгенограм обертання та вайсенбергограм. Масив інтенсивностей для монокристалу солі І одержано на дифрактометрі Xcalibur, при 100 К, з використанням МоКα-випромінювання, графітового монохроматора, ω сканування (умови рентгенівського експерименту наведено в табл. 1). Інтенсивності відбиттів виправлено на фактори Лоренца та поляризації. Дані рентгенівського експерименту опрацьовано за допомогою пакета програм CrysAlisPro [12]. Параметри гратки уточнено МНК за 2 910 найбільш інтенсивними рефлексами у межах кута дифракції 3-28°. Структуру сполуки розв'язано прямими методами з наступним застосуванням послідовних синтезів Фур'є. Атоми Гідрогену знайдено з різницевих синтезів Фур'є та уточнено в моделі "вершника" разом з неводневими атомами. Усі обчислення проводили за допомогою пакета програм Olex² [13]. Координати атомів і параметри теплового зміщення наведено в табл. 2, основні довжини зв'язків та валентні кути – у табл. 3.

Кристалічну структуру сполуки $[C_7H_6N_2S(C_3H_5)]$ Вг побудовано з катіонів 2аміно-3-аліл-бенотіазолію та бромід-аніонів (рис. 1). В обидвох кристалографічно відмінних органічних катіонах бензенове та гетероциклічні ядра перебувають в одній площині, що разом з аналізом гомо- та гетероатомних міжатомних віддалей, підтверджує існування аміно-, а не іміно- функціональної групи.

Рис. 1. Проекція асиметричних одиниць у комплексі **I** Fig.1. Asymmetric unit projection in the crystal structure of compound **I**

Кристалографічні параметри та умови рентгенівського експерименту для $[C_7H_6N_2S(C_3H_5)]Br \left(I \right)$

Table 1

Crystal and structural determination of [C7H6N2S(C3H5)]Br compound								
Параметр	I*							
Брутто формула	$C_{10}H_{11}N_2SBr$							
М, ат. од.	271,18							
Т, К	100							
Колір, форма	безбарвні призми							
Дифрактометр	Xcalibur							
Просторова група	PĪ							
<i>a</i> , Å	8,611(3)							
b, Å	9,379(3)							
<i>c</i> , Å	15,273(5)							
α, °	97,73(3)							
β, °	100,51(3)							
γ, °	114,84(3)							
$V, Å^3$	1069,3(7)							
Z	4							
робч., г/см ³	1,684							
F(000)	544							
λ, Å	0,71073							
μМо, мм ⁻¹	4,00							
	-11 < h < 10							
hkl	-12 < k < 12							
	-20 < 1 < 20							
Число відбить:								
виміряних	8337							
використано при уточненні	4843							
20 макс, град,	58							
Число уточнених параметрів	253							
Вагова схема**	$[\sigma^2(F_{BUM}^2) + (0,063P)^2 + 5,924P]^{-1}$							
R(F)	0,056							
$R_w(F)$	0,157							
Goof	1,05							

*Основні характеристики структури депоновано у Кембриджську базу структурних даних під номером 1825399. Доступ https://www.ccdc.cam.ac.uk/structures/ ** $P = (F_{\text{BHM.}}^2 + 2F_{\text{ofg.}}^2)$.

Таблиця 2

Координати атомів та їхні параметри теплових зміщень у структурі $[C_7H_6N_2S(C_3H_5)]Br$ (I) *Table 2*

Fra	ctional	atomic	coordinates	and the	hermal	displ	acement	parameters	in	$[C_7H_6]$	$N_2S($	(C_3H_5))]B	r structur	e
-----	---------	--------	-------------	---------	--------	-------	---------	------------	----	------------	---------	------------	-----	------------	---

Атом	ПСТ	x/a	y/b	z/c	U _{екв} /U _{ізо} , Å ² *
Br(1)	2i	0,30766(8)	0,76866(7)	0,67691(4)	0,0217(2)
Br(2)	2i	0,62538(8)	0,43834(7)	0,85989(4)	0,0212(2)
S(1)	2i	0,7258(2)	0,8479(1)	0,81294(8)	0,0098(3)
S(2)	2i	0,3904(2)	0,1700(1)	0,62766(8)	0,0108(3)

150

О. Павлюк, Ю. Сливка	
ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1	151
Закінчення 1	пабл. 2

					Закінчення т
N(23)	2i	0,2147(6)	0,2849(5)	0,5304(3)	0,0097(8)
N(13)	2i	0,9203(5)	1,1486(5)	0,8928(3)	0,0083(8)
N(22)	2i	0,3759(6)	0,4477(5)	0,6788(3)	0,0137(9)
H(22A)	2i	0,3383	0,5198	0,6697	0,016*
H(22B)	2i	0,4481	0,4621	0,7317	0,016*
N(12)	2i	0,6224(6)	1,0813(5)	0,8248(3)	0,0135(9)
H(12A)	2i	0,6403	1,1813	0,8432	0,016*
H(12B)	2i	0,5163	1,0058	0,7929	0,016*
C(14)	2i	1,0369(6)	1,0789(6)	0,9032(3)	0,0078(9)
C(6)	2i	0,1414(6)	0,3922(6)	0,4998(3)	0,009(1)
H(6A)	2i	0,1413	0,4634	0,5539	0,011*
H(6B)	2i	0,0173	0,3263	0,4623	0,011*
C(19)	2i	0,9495(7)	0,9133(6)	0,8640(3)	0,0092(9)
C(3)	2i	0,9815(7)	1,3231(6)	0,9283(3)	0,010(1)
H(3A)	2i	1,0754	1,3622	0,9865	0,012*
H(3B)	2i	0,8812	1,3400	0,9414	0,012*
C(18)	2i	1,0413(7)	0,8216(6)	0,8678(3)	0,012(1)
H(18)	2i	0,9819	0,7081	0,8427	0,014*
C(22)	2i	0,3244(7)	0,3190(6)	0,6136(3)	0,011(1)
C(24)	2i	0,1819(6)	0,1400(6)	0,4724(3)	0,009(1)
C(15)	2i	1,2179(7)	1,1591(6)	0,9454(3)	0,011(1)
H(15)	2i	1,2771	1,2722	0,9716	0,013*
C(2)	2i	1,0517(8)	1,4183(6)	0,8622(4)	0,015(1)
H(2)	2i	0,9694	1,4053	0,8073	0,018*
C(29)	2i	0,2699(7)	0,0612(6)	0,5147(3)	0,011(1)
C(28)	2i	0,2535(7)	-0,0837(6)	0,4696(3)	0,013(1)
H(28)	2i	0,3150	-0,1359	0,4982	0,016*
C(16)	2i	1,3084(7)	1,0669(6)	0,9476(4)	0,013(1)
H(16)	2i	1,4324	1,1183	0,9758	0,016*
C(25)	2i	0,0699(7)	0,0720(6)	0,3843(3)	0,011(1)
H(25)	2i	0,0081	0,1240	0,3557	0,014*
C(12)	2i	0,7546(7)	1,0445(6)	0,8450(3)	0,010(1)
C(4)	2i	0,1869(7)	0,4809(6)	0,3569(4)	0,016(1)
H(4A)	2i	0,0674	0,4052	0,3263	0,019*
H(4B)	2i	0,2604	0,5474	0,3244	0,019*
C(27)	2i	0,1435(7)	-0,1513(6)	0,3805(4)	0,013(1)
H(27)	2i	0,1310	-0,2505	0,3474	0,016*
C(5)	2i	0,2505(7)	0,4937(6)	0,4444(4)	0,013(1)
H(5)	2i	0,3703	0,5702	0,4736	0,016*
C(17)	2i	1,2227(7)	0,9015(6)	0,9096(4)	0,013(1)
H(17)	21	1,2889	0,8420	0,9122	0,015*
C(26)	21	0,0521(7)	-0,0759(6)	0,3395(3)	0,013(1)
H(26)	21	-0,0246	-0,1262	0,2794	0,015*
C(1)	2i	1,2192(8)	1,5192(6)	0,8736(4)	0,021(1)
H(1A)	2i	1,3055	1,5354	0,9276	0,025*
H(1B)	2i	1,2541	1,5760	0,8280	0,025*

<u>H(1B)</u> <u>21</u> 1,2541 1,5700 0,0200 0,020 * Для негідрогенових атомів $U_{e\kappa\sigma} = 1/3 \sum_{i} U_{ij} a_i^* a_j^* (\vec{a}_i \vec{a}_j)$, для $H - U_{iso}$.

Основні довжини зв'язків (d) та валентні (ω) кути у структурі [C₇H₆N₂S(C₃H₅)]Br (I) *Table 3*

Зв'язок	<i>d</i> , A	Кут	<i>w</i> ,°	1
S(1)–C(19)	1,745(5)	C(12)–S(1)–C(19)	90,0(2)	
S(1)-C(12)	1,739(5)	C(22)-S(2)-C(29)	90,4(2)	
S(2)–C(22)	1,740(5)	C(22)–N(23)–C(6)	123,9(4)	
S(2)-C(29)	1,755(5)	C(22)–N(23)–C(24)	113,8(4)	
N(23)–C(6)	1,477(6)	C(24)–N(23)–C(6)	122,3(4)	
N(23)–C(22)	1,345(6)	C(14)–N(13)–C(3)	122,0(4)	
N(23)–C(24)	1,405(6)	C(12)–N(13)–C(14)	113,9(4)	
N(13)–C(14)	1,407(6)	C(12)–N(13)–C(3)	124,1(4)	
N(13)–C(3)	1,478(6)	C(19)–C(14)–N(13)	111,7(4)	
N(13)–C(12)	1,334(6)	C(15)-C(14)-N(13)	126,5(4)	
N(22)–C(22)	1,308(6)	C(15)-C(14)-C(19)	121,7(4)	
N(12)–C(12)	1,319(7)	N(23)-C(6)-C(5)	110,4(4)	
C(14)-C(19)	1,393(7)	C(14)-C(19)-S(1)	111,4(4)	
C(14) - C(15)	1,389(7)	C(18)-C(19)-S(1)	127,9(4)	
C(6) - C(5)	1,504(7)	C(18)–C(19)–C(14)	120,7(5)	
C(19)–C(18)	1,391(7)	N(13)-C(3)-C(2)	111,8(4)	
C(3) - C(2)	1,481(7)	C(17)–C(18)–C(19)	117,8(5)	
C(18)–C(17)	1,391(7)	N(23)-C(22)-S(2)	112,7(4)	
C(24)–C(29)	1,399(7)	N(22)-C(22)-S(2)	122,4(4)	
C(24)–C(25)	1,389(7)	N(22)-C(22)-N(23)	125,0(5)	
C(15)–C(16)	1,386(7)	C(29)-C(24)-N(23)	112,4(4)	
C(2)-C(1)	1,312(8)	C(25)-C(24)-N(23)	126,4(4)	
C(29)–C(28)	1,376(7)	C(25)–C(24)–C(29)	121,1(4)	
C(28)–C(27)	1,395(7)	C(16)–C(15)–C(14)	117,1(4)	
C(16)–C(17)	1,388(7)	C(1)-C(2)-C(3)	125,0(5)	
C(25)–C(26)	1,393(7)	C(24)–C(29)–S(2)	110,7(4)	
C(4) - C(5)	1,317(7)	C(28)-C(29)-S(2)	127,9(4)	
C(27)-C(26)	1.384(7)	C(28)-C(29)-C(24)	121.4(5)	1

Main bond distances (d) and valence angle (ω) in the [C₇H₆N₂S(C₃H₅)]Br structure Br (I)

Важливу роль у побудові структури відіграють водневі зв'язки N-H...Br та С-Н...Вг довжиною 2,35(1)-2,45(2) та 2,81(1)-2,89(1) Å (табл. 4) (рис. 2, а), які, разом із силами електростатичної взаємодії з'єднують катіони та аніони у тривимірну структуру та обумовлюють кристалографічну несхожість катіонів (у структурі сполуки I наявні два кристалографічно відмінні типи іонів [C₇H₆N₂S(C₃H₅)]⁺ з практично ідентичною геометрією) та загальну симетрію елементарної комірки. Обидва атоми гідрогену аміно-груп катіонів з'єднані водневими контактами з кристалографічно відмінними іонами Br(1) та Br(2). Останні, своєю чергою, виконують місткову функцію та з'єднують між собою ізольовані катіони [C₇H₆N₂S(C₃H₅)]⁺ з утворенням нескінченних водневозв'язаних гофрованих ланцюгів ${[C_7H_6N_2S(C_3H_5)]Br}_n$, укладених у напрямку осі *b* елементарної комірки. Дещо слабші контакти С-Н...Вг додатково стабілізують згадані ланцюги, відповідаючи приблизно 11 % площі поверхні Гіршфельда [14]. π-π Взаємодія [15] між бензеновими та тіазольними ядрами сусідніх органічних катіонів з'єднує топологічні одиниці {[C₇H₆N₂S(C₃H₅)]Br}_n у тривимірний каркас (відстань між кільцями – 3,53 Å, кут між площинами ароматичних ядер катіонів $-1,6^{\circ}$).

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1

153

Γ	еометрія водневих зв	язків у структур		(27	H	5N	I_2	5((C_3)	H	;)	ļΒ	r (J))
---	----------------------	------------------	--	---	----	---	----	-------	----	---------	---	----	----	-----	----	---

Table 4

Hydrogen bonding in the $[C_7H_6N_2S(C_3H_5)]Br$ structure									
D–H···A	D–H, Å	H…A, Å	D…A, Å	D−H···A, °					
$N(12)-H(12A)Br(2)^{ii}$	0,88	2,45	3,3079	165					
$N(12)-H(12B)Br(1)^{i}$	0,88	2,39	3,2176	156					
$N(22)-H(22A)Br(1)^{iv}$	0,88	2,45	3,3036	165					
$N(22)-H(22B)Br(2)^{iv}$	0,88	2,35	3,2138	167					
$C(3)-H(3A)Br(2)^{iii}$	0,99	2,87	3,8249	164					
$C(3)-H(3B)Br(2)^{ii}$	0,99	2,88	3,6848	140					
$C(6)-H(6A)Br(1)^{iv}$	0,99	2,81	3,6881	148					
$C(6)-H(6B)Br(1)^{v}$	0,99	2,89	3,8359	159					

(*i*) 1+x, 1+y, z; (*ii*) 1+x, y, z; (*iii*) 1-x, 1-y, -z; (*iv*) 1-x, 1-y, 1-z; (*v*) -1+x, y, z

Рис. 2. Укладка топологічних одиниць та розподіл водневих контактів (*a*); поверхня Гіртшфельда (б) для структури І

Fig. 2. Topological units packing and hydrogen bonds (*a*); Hirshfeld surfaces (δ) in the $[C_7H_6N_2S(C_3H_5)]Br$ structure

Для підтвердження коректності моделі розподілу кратних зв'язків в органічному катіоні отриманої з даних рентгеноструктурного аналізу та розв'язання питання будови відповідної частинки в розчині ми провели квантово-хімічні обчислення щодо оптимізації геометрії нейтральної молекули 2-іміно-3-аліл-1,3-бензотіазолу (L) та катіона 2-аміно-3-аліл-1,3-бензотіазоліуму(L{H⁺}) у газовій фазі, а також симуляції орбіталей НОМО і LUMO з використанням програми Gamess(US) [16]. Під час відповідних DFT-розрахунків використано функціонал B3LYP та базис 6-31+G(d,p). Отримані результати підтверджують правильність запропонованої з даних рентгеноструктурного аналізу моделі катіона 2-аміно-3-аліл-1,3-бензотіазоліуму (табл. 5).

Порівняння експериментальних та DFT-оптимізованих геометричних параметрів у молекулі $C_7 H_5 N_2 S(C_3 H_5) \ (L)$ та катіоні $C_7 H_6 N_2 S(C_3 H_5)^+ \ (L\{H^+\})$

Table 5

Experimental and DFT-calculated geometry for $C_7H_5N_2S(C_3H_5)$ (L) molecule and $C_7H_6N_2S(C_3H_5)^+$ (L{H⁺}) cation

Дан	DFT-po3	раховані дані			
Зв'язок	<i>d</i> , Å	Зв'язок	<i>d</i> , Å	L	$L{\mathrm{H}^+}$
				<i>d</i> , Å	d, Å
C(12)-N(12)	1,334(6)	C(22)-N(22)	1,308(6)	1,279	1,339
C(12)-S(1)	1,739(5)	C(22)-S(2)	1,740(5)	1,806	1,742
C(12)-N(13)	1,334(6)	C(22)-N(23)	1,345(6)	1,390	1,340
C(14)-N(13)	1,407(6)	C(24)-N(23)	1,405(6)	1,395	1,417
C(3)-N(13)	1,478(6)	C(6)-N(23)	1,477(6)	1,468	1,487
C(3)-C(2)	1,481(7)	C(6)-C(5)	1,504(7)	1,508	1,508
C(2)-C(1)	1,312(8)	C(5)-C(4)	1,317(7)	1,335	1,335
N(12)-H(12a)	0,88	N(22)-H(22a)	0,88	1,018	1,010
N(12)-H(12b)	0,88	N(22)-H(22b)	0,88		1,011

Рис. 3. Орбіталі НОМО і LUMO для нейтральної частинки L та катіона L $\{H^+\}$ за результатами DFT-розрахунків Fig. 3. HOMO and LUMO for neutral particle L and cation L $\{H^+\}$ according DFT-calculation

- Wilkinson G. Comprehensive coordination chemistry. The synthesis, reactions & applications of coordination compounds. Vol. 5. Late transition elements. New York : Pergamon press, 1987. 1258 p.
- 2. *Huheey J.* Inorganic chemistry. Principles of structure and reactivity. Moscow : Chemistry, 1987. 696 p. (in Russian)
- 3. *Rokita S.* Copper-oxygen chemistry. Wiley, 2011. 462 p. DOI: 10.1002/9781118094365
- Hegedus L. S. Transition metals in organic synthesis: highlights for the year 1998 (25th Anniversary) // Coord. Chem. Rev. 2000. Vol. 204. No. 6. P. 199–307. DOI: 10.1016/S0010-8545(99)00172-1
- 5. *Magni M.*, *Biagini P.*, *Colombo A*. Versatile copper complexes as a convenient springboard for both dyes and redox mediators in dye sensitized solar cells // Coord. Chem. Rev. 2016. Vol. 322. No. 1. P. 69–93. DOI: 10.1016/j.ccr.2016.05.008
- Balzani V., Campagna S. Photochemistry and photophysics of coordination compounds I. Topics in current chemistry. Vol. 280. Springer: Berlin, Heidelberg. 2007. 237 p. DOI: 10.1007/978-3-540-73347-8
- Yonezawa T., Tsukamoto H., Yong Y. Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu²⁺-alkanolamine metallacycle compounds for electrically conductive layer formation // RSC Advances. 2016. Vol. 6. No. 15. P. 12048–12052. DOI: 10.1039/C5RA25058G
- Galić N., Cimerman Z., Tomišić V. Spectrometric study of tautometric and protonation equilibria of o-vanillin Schiff base derivatives and their complexes with Cu(II) // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008. Vol. 71. No. 4. P. 1274– 1280. DOI: 10.1016/j.saa.2008.03.029
- Pavlyuk O., Lis T., Mys'kiv M. G. Structural aspect of CuCN catalytic cyclodimerization of N-allylquinolinium halides // Z. Anorg. Allg. Chem. 2005. Vol. 631. No. 10. P. 1893–1897. DOI: 10.1002/zaac.200500057
- 10. *Goreshnik E. A.*, *Mys'kiv M. G.* 2-Imino-3-allyl-benzothiazole as a π -ligand: synthesis and crystal structure of [(CuCl)C₁₀H₁₀SN₂], [C₁₀H₁₁SN₂⁺]₂[Cu₂Cl₄]²⁻, and [C₁₀H₁₁SN₂⁺]₂[Cu₂Br₄]²⁻ π -compounds // Z. Anorg. Allg. Chem. 2007. Vol. 633. No. 10. P. 1723–1726. DOI: 10.1002/zaac.200700111
- 11. Capps D. B. (Parke, David and Co.) Thiazolium salts. Ger. Off 2204145, 23 Nov. 1972. US App. 111,094, 29 Jan 1971. P. 46.
- 12. CrysAlisPro 1.171.38.34a (Rigaku OD, 2015).
- Dolomanov O. V., Bourhis L. J., Gildea R. J. OLEX2: a complete structure solution, refinement and analysis program // J. Appl. Crystallogr. 2009. Vol. 42. No. 2. P. 339–341. DOI: 10.1107/S0021889808042726
- Mckinnon J. J., Spackman M. A., Mitchell A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals // Acta Cryst. B. 2004. Vol. 60. P. 627–668. DOI: 10.1107/S0108768104020300
- Tiekink E. R., Zukerman-Schpector J. The importance of pi-interactions in crystal engineering. Chichester, UK: John Wiley & Sons, Ltd, 2012. 424 p. DOI: 10.1002/9781119945888
- 16. Dykstra C. E., *Frenking G., Kim K. S., Scuseria G. E.* Theory and applications of computational chemistry: the first forty years. Elsevier : Amsterdam, 2005. 1308 p.

SYNTHESIS AND CRYSTALL STRUCTURE PECULIARITIES OF 2-AMINO-3-ALLYL-BENZOTHIAZOLIUM BROMIDE

156

O. Pavlyuk*, Yu. Slyvka

Ivan Franko National University of Lviv, Kyryla i Mefodiya, Str, 6, 79005 Lviv, Ukraine e-mail: pavalex@gmail.com

By means of a direct reaction in chloroform media between 2-aminobenzothiazole with allyl bromide colorless crystalline, 2-amino-3-allyl-benzothiazolium bromide has been obtained and structurally characterized by X-ray single crystal method: $[C_7H_4SNH_2N(C_3H_5)]Br$ (I), S.G. $P\overline{1}$, a = 8.611(3), b = 9.379(3), c = 15.273(5) Å, $\alpha = 97.73(3)$, $\beta = 100.51(3)$, $\gamma = 114.84(3)^\circ$, V = 1069.3(7) Å³, Z = 4, $D_c = 1.68$ g/cm³, 100 K, $\mu(MoK\alpha) = 4.00$ mm⁻¹, $\theta_{max.} = 29^\circ$, 8337 reflections measured, 4883 reflections used, direct methods for structure model solving, Fourier synthesis under full-matrix refinement by OLEX², $R(F^2) = 0.056$, $R_{\mu}(F^2) = 0.157$, S = 1.05.

The crystal structure of $[C_7H_4SNH_2N(C_3H_5)]Br$ is built of 2-amino-3-allyl-benzothiazolium cations and Br anions. In both crystallographically distinct organic cations, benzene and heterocyclic cores are laying in the same plane, which, together with the analysis of homo- and heteroatomic interatomic distances, confirms the existence of amino and not iminofunctional group.

An important role in **I** crystal structure binding is played by hydrogen bonds N–H...Br and C–H...Br (distance H–X 2.35(1)–2.45(2) and 2.81(1)–2.89(1) Å, respectively), which additionally connect the organic and inorganic topological units into { $[C_7H_6N_2S(C_3H_5)]Br_h$ chains, laying in axis *b* direction. π - π stacking between benzene and thiazole cores of the connected { $[C_7H_6N_2S(C_3H_5)]Br_h$ units forms a 3D skeleton (ring-ring distance – 3.53 Å, angle between planes – 1.6°).

Molecular geometry, HOMO and LUMO orbital energy for 2-amino-3-allyl-benzothiazole molecule and 2-amino-3-allyl-benzothiazolium cation have been DFT-calculated with B3LYP functional and 6-31+G(d,p) basis set. Obtained calculation results confirm correctness of the proposed 2-amino-3-allyl-1,3-benzothiazolium cation model based on X-ray structural analysis data.

Keywords: 2-amino-3-allyl-benzothiazolium, hydrogen bonds, crystal structure, DFT-calculations.

Стаття надійшла до редколегії 1.11.2017 Прийнята до друку 11.04.2018