ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1. С. 27–33 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 1. P. 27–33

УДК 548.736.4

Взаємодія компонентів у системі Y-Co-Sn при 770 К

Л. Ромака, Ю. Стадник, Р. Серкіз

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: romakal@lnu.edu.ua

Методами рентгенофазового та мікроструктурного аналізів досліджено взаємодію компонентів у системі Y–Co–Sn та побудовано діаграму фазових рівноваг за температури 770 К в повному концентраційному інтервалі. За температури дослідження в системі Y–Co–Sn утворюється вісім тернарних сполук: Y₆Co₂Sn (структурний тип (СТ) Ho₆Ni₂Ga), Y₃Co₈Sn₄ (СТ Lu₃Co_{7,77}Sn₄), YCoSn (СТ TiNiSi), Y₃Co₆Sn₅ (СТ Dy₃Co₆Sn₅), Y₁₁₇Co₅₇Sn₁₁₂ (СТ Dy₁₁₇Co₅₇Sn₁₁₂), YCo₆Sn₆ (СТ YCo₆Ge₆), Y₄Co₆Sn₁₉ (СТ Er₄Rh₆Sn₁₉), Y₇Co₆Sn₂₃ (СТ Ho₇Co₆Sn₂₃).

Ключові слова: потрійна система, фазові рівноваги, мікроструктурний аналіз.

Інтерметаліди, які містять рідкісноземельний та перехідний метали, викликають особливу увагу науковців як джерело матеріалів з унікальними властивостями. Значна кількість сполук рідкісноземельних металів (R) володіє рекордними магнітними характеристиками, тому інтенсивно вивчають магнітні властивості сполук, що містять як магнітні R, так і магнітні 3d-елементи (Ферум, Кобальт, Манган). У системах R–Со–Sn (R = Gd, Tb, Dy, Er) високі температури магнітного впорядкування (близько 100 K) властиві сполукам складу R_3 Со $_8$ Sn₄ [1–3]. Станід Yb₃Co_{4,3}Sn_{12,7} проявляє надпровідність [4], а сполука Се₃Co₄Sn₁₃ є важко-ферміонною системою [5]. Взаємодію компонентів у потрійних системах R–Со–Sn вивчено повною мірою з Nd, Sm, Gd, Dy і Er [6–10], для інших рідкісноземельних металів вивчали кристалографічні та фізичні характеристики окремих сполук. У цій праці наведено результати вивчення взаємодії компонентів у системі Y–Со–Sn при 770 К.

Зразки для дослідження виготовляли методом електродугового плавлення шихти вихідних компонентів (вміст основного компонента до 99,9 мас. %) з наступним гомогенізуючим відпалюванням за температури 770 К впродовж 1 440 год. Рентгенофазовий аналіз проводили з використанням дифрактометра ДРОН–2.0 М, FeK_{α} -випромінювання). Склад фаз контролювали за допомогою рентгеноспектрального аналізу (електронний мікроскоп РЕММА 102-02). Для обчислення періодів гратки використовували комплекс програм CSD [11].

Для уточнення і перевірки літературних даних та для вивчення фазових рівноваг системи Y-Co-Sn виготовлено 49 потрійних і подвійних сплавів. Контроль сплавів після відпалу проводився методами рентгенівського фазового і, частково, мікроструктурного аналізів. Діаграму фазових рівноваг системи Y-Co-Sn при 770 К показано на рис. 1, а мікроструктури окремих сплавів – на рис. 2.

[©] Ромака Л., Стадник Ю., Серкіз Р., 2017

Рис.1. Ізотермічний переріз діаграми стану системи Y-Co-Sn при 770 К

З метою перевірки літературних відомостей про сполуки подвійних систем Y-Co, Co-Sn i Y-Sn було виготовлено сплави, склади яких відповідають описаним у літературі бінарним сполукам. За температури відпалювання 770 К в системі Co-Sn підтверджено існування сполук Co₃Sn₂ (структурний тип (CT) Ni₂In), CoSn (CT CoSn) і CoSn₂ (CT CuAl₂). В системі Y-Sn за температури 770 К підтверджено існування сполук Y₅Sn₃ (CT Mn₅Si₃), Y₅Sn₄ (CT Sm₅Ge₄), Y₁₁Sn₁₀ (CT Ho₁₁Ge₁₀), YSn₂ (CT ZrSi₂) i (СТ Er₂Ge₅). Сполука YSn₃ структурного типу GdSn_{2,75} при 770 К не Y_2Sn_5 утворюється, що узгоджується з дослідженням системи Y-Sn в області високого вмісту Sn [12], згідно з яким сполука YSn₃ існує до температури 700 К. За умов дослідження зразок складу Y25Sn75 містить дві фази – сполуку Y2Sn5 і Sn. В подвійній системі У-Со підтверджено існування всіх сполук, наведених у літературі [13] (рис. 1), крім сполуки У₂Со₃. Фазовий аналіз зразка У₄₀Со₆₀ свідчить про присутність двох бінарних сполук – YCo і YCo₂. Згідно з результатами рентгеноспектрального аналізу зразок складу $Y_{50}Co_{35}Sn_{15}$ містить у рівновазі бінарні сполуки YCo, YCo₂ та Y₅Sn₃ (див. рис. 2, в).

За результатами рентгенофазового та рентгеноспектрального аналізів у системі Y–Co–Sn за температури 770 К підтверджено існування восьми раніше досліджених сполук [14–17], кристалографічні характеристики яких наведено в табл. 1.

<u>2</u>8

Рис. 2. Мікроструктури сплавів системи Y–Co–Sn при 770 К: *a*) $Y_{20}Co_{60}Sn_{20}$ (YCoSn – світла фаза, Y₃Co₈Sn₄ (Y_{21,46}Co_{55,48}Sn_{23,06}) – світло-сіра, YCo₅ – сіра); *б*) $Y_{20}Co_{53}Sn_{27}$ (Y₃Co₈Sn₄, Y_{20,62}Co_{52,37}Sn_{27,01}); *в*) Y₅₀Co₃₅Sn₁₅ (YCo₂ – сіра фаза, YCo – світла, Y₅Sn₃ – темно-сіра); *г*) Y₃₀Co₅₀Sn₁₀ (YCoSn – сіра фаза, YCo₂ – світла, YCo₃ – темно-сіра)

Під час аналізу сплавів уздовж ізоконцентрати Y 20 ат. % для сполуки $Y_3Co_8Sn_4$ визначено існування невеликої області гомогенності до 4 ат. % Sn (табл. 2). Межі області гомогенності підтверджено результатами рентгеноспектрального аналізу (рис. 2, *a*, *б*).

Згідно з даними праці [18] на основі бінарних станідів RSn₂ структурного типу ZrSi₂ утворюються тверді розчини включення. Під час дослідження системи Y–Co–Sn виявлено утворення твердого розчину включення на основі бінарної сполуки YSn₂ (CT ZrSi₂), що відповідає формулі YCo_xSn₂. Включення Co відбувається до вмісту 6 ат. %, а періоди ґратки змінюються від a = 0,4396(2), b =1,6349(5), c = 0,4307(2) нм (для YSn₂) до a = 0,4423(1), b = 1,6409(6), c = 0,4363(1) нм для зразка складу Y₃₁Co₆Sn₆₃.

29

Таблиця 1

№	Сполуки	Структурний	Просторова	Періоди ґратки, нм		
		тип	група	а	b	С
1	Y ₆ Co ₂ Sn	Ho ₆ Ni ₂ Ga	Immm	0,9457(4)	0,9461(4)	0,9906(4)
2	Y ₃ Co ₈ Sn ₄	Lu ₃ Co _{7,77} Sn ₄	<i>P</i> 6 ₃ <i>mc</i>	0,8887(5)	-	0,7465(4)
3	YCoSn	TiNiSi	Pnma	0,7201(4)	0,4517(4)	0,7525(6)
4	Y ₃ Co ₆ Sn ₅	Dy ₃ Co ₆ Sn ₅	Immm	0,4308(3)	1,2366(6)	0,9705(5)
5	Y ₁₁₇ Co ₅₇ Sn ₁₁₂	Dy ₁₁₇ Co ₅₇ Sn ₁₁₂	Fm-3m	2,9869(5)	-	-
6	YCo ₆ Sn ₆	YCo ₆ Ge ₆	P6/mmm	0,53841(9)	1	0,4279(1)
7	$Y_4Co_6Sn_{19}$	Er ₄ Rh ₆ Sn ₁₉	$I4_1/acd$	1,3572(5)	-	1,3572(5)
8	$Y_7Co_6Sn_{23}$	Ho ₇ Co ₆ Sn ₂₃	<i>P</i> -3 <i>m</i> 1	0,9651(3)	-	0,9871(3)

Кристалографічні характеристики тернарних сполук системи Y-Co-Sn

Таблиця 2

Склад зразків і періоди ґратки сполуки Y₃Co₈Sn₄ в межах області гомогенності

Склад зразка	Періоди ґратки, нм		<i>V</i> , нм ³
	а	С	
Y ₂₀ Co ₅₇ Sn ₂₃	0,8875(2)	0,7459(4)	0,5111(3)
Y ₂₀ Co ₅₅ Sn ₂₅	0,8880(2)	0,7465(5)	0,5121(2)
Y ₂₀ Co ₅₃ Sn ₂₇	0,8887(5)	0,7465(4)	0,5129(2)
*Y ₂₀ Co ₅₀ Sn ₃₀	0,8887(6)	0,7463(4)	0,5129(4)

* – Двофазний зразок

Для сполук Y₄Co₆Sn₁₉ і Y₃Co₆Sn₅ проведено методом Фарадея вимірювання магнітної сприйнятливості χ за кімнатної температури і значеннях магнітного поля H від 0,5 до 1,0 Тл (табл. 3). Сполука Y₄Co₆Sn₁₉ характеризується невеликими значеннями χ , які не залежать від величини магнітного поля, що свідчить про парамагнетизм Паулі цього станіду. Значення χ для сполуки Y₃Co₆Sn₅ також не залежать від величини магнітного поля, що свідчить про парамагнетизм Паулі цього станіду. Значення χ для сполуки Y₃Co₆Sn₅ також не залежать від величини магнітного поля, проте є значно вищими, ніж для сполуки Y₄Co₆Sn₁₉ (табл. 3). Оскільки атоми Y і Sn не володіють магнітним моментом, вищі значення магнітної сприйнятливості сполуки Y₃Co₆Sn₅ пов'язані зі значно більшим вмістом Со, який, володіючи магнітним моментом, впливає на магнітні характеристики сполуки.

Габлиия	3

Y ₄ Co	$0_6 Sn_{19}$	Y ₃ Co ₆ Sn ₅		
χ·10 ⁻⁶ см ³ /г	Н, Тл	χ·10 ⁻⁶ см ³ /г	Н, Тл	
0,264	1,0	5,103	1,0	
0,267	0,9	5,099	0,9	
0,271	0,8	5,149	0,8	
0,278	0,7	5,224	0,7	
0,292	0,5	5,331	0,5	

Значення магнітної сприйнятливості сполук Y₄Co₆Sn₁₉ і Y₃Co₆Sn₅

Порівняльний аналіз дослідженої потрійної системи Y-Co-Sn з раніше вивченими {Nd, Sm, Gd, Dy, Er}-Co-Sn показав, що для всіх систем характерно утворення значної кількості тернарних сполук, які утворюються як в області зі значним вмістом Кобальту, так і в областях з високим вмістом Стануму та рідкісноземельних металів. Подібність електронної будови атомів рідкісноземельних елементів приводить до утворення сполук, що кристалізуються в однакових структурних типах. За високого вмісту Sn ряд рідкісноземельних металів від La до Lu включно утворює з Со та Sn сполуки, які кристалізуються у СТ Yb₃Rh₄Sn₁₃ (просторова група Pm3n) для R = La-Tb, а для сполук, де R = Dy-Lu, структуру описують як тетрагональну з псевдокубічною ґраткою (СТ Er₄Rh₆Sn₁₉, просторова група I4₁/acd). За винятком Eu i Yb, решта рідкісноземельних металів утворюють сполуки R₁₁₇Co_{54+x}Sn_{112+y} з кубічною структурою типу Dy₁₁₇Co₅₇Sn₁₁₂ з гігантською коміркою (a = -3,0 нм) [15]. Найбільш характерними для систем R-Co-Sn є також сполуки R₃Co₆Sn₅ (CT Dy₃Co₆Sn₅) та R₃Co₈Sn₄ (CT Lu₃Co_{7.77}Sn₄). Станіди еквіатомного складу RCoSn (CT TiNiSi) утворюються тільки в системах з рідкісноземельними металами підгрупи Ітрію, а сполуки зі структурою типу CeNiSi₂ – тільки в системах з рідкісноземельними елементами церієвої підгрупи.

Canepa F., Napoletano M., Manfrinetti P., Cirafici S. Magnetism in R₃Co₈Sn₄ compounds (R=Pr, Nd, Sm) // J. Alloys Compd. 2001. Vol. 314. P. 29–36.

^{2.} *Canepa F., Manfrinetti P., Napoletano M., Cirafici S.* Ferrimagnetism in Tb₃Co₈Sn₄ intermetallic compound // J. Alloys Compd. 2001. Vol. 317–318. P. 556–559.

^{3.} *Canepa F., Napoletano M.* Magnetic properties of Dy₃Co₈Sn₄ // J. Alloys Compd. 2001. Vol. 325. P. L4–L6.

Mudryk Ya., Grytsiv A., Rogl P., Dusek C., Galatunu A. et al. Physical properties and superconductivity of skutterudite-related Yb₃Co_{4.3}Sn_{12.7} and Yb₃Co₄Ge₁₃ // J. Phys.: Condens. Matter. 2001. Vol. 13. P. 7391–7402.

Israel C., Bittar E. M., Aguero O. E. et. al. Crystal structure and low-temperature physical properties of R₃M₄Sn₁₃ (R=Ce, La; M=Ir, Co) intermetallics // Physica B. 2005. Vol. 359–361. P. 251–253.

6. Babyuk V., O. Bodak O., Romaka L., Tkachuk A., Gorelenko Yu. Isothermal crosssections of the Nd–Co–Sn ternary system at 670 K and 770 K // J. Alloys Compd. 2007. Vol. 441. P. 107–110.

32

- Romaka L., Romaka V. V., Konyk M., Melnychenko-Koblyuk N. Phase equilibria in the Sm-Co-Sn ternary system at 870 K and 770 K // Chem. Met. Alloys. 2008. Vol. 1(2). P. 198–203.
- 8. *Ромака Л., Мельниченко Н.* Взаємодія компонентів у системі Gd-Co-Sn при 770 К // Вісник Львів. ун-ту. Сер. хім. 2009. Вип. 50. С. 66–71.
- Ромака В., Гладишевський Р., Гореленко Ю. Взаємодія компонентів у системі Dy-Co-Sn при 870 К (0-0,55 ат. % Sn) і 770 К (вище 55 ат. % Sn) // Вісник Львів. ун-ту. Сер. хім. 2008. Вип. 49. С. 21–25.
- Skolozdra R. V., Mudryk Ya. S., Romaka L. P. The ternary Er–Co–Sn system // J. Alloys Compd. 2000. Vol. 296. P. 290–292.
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Cryst. 2014. Vol. 47. P. 803–805.
- Palenzona A., Manfrinetti P. The tin-rich side of the rare earth-tin systems (R=Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) // J. Alloys Compd. 1993. Vol. 201. P. 43–47.
- 13. *Massalski T. B.* Binary Alloy Diagrams // American Society for Metals. Metals Park Ohio. 1990.
- 14. *Skolozdra R. V.* in: K.A. Gschneidner, Jr., L.Eyring (eds.). Handbook on the Physics and Chemistry of Rare-Earths // North-Holland, Amsterdam, 1997. Vol. 24.
- 15. *Mudryk Y., Manfrinetti P., Smetana V.* et al. Structural disorder and magnetism in rare-earth (R) R₁₁₇Co_{54±x}Sn_{112±y} // J. Alloys Compd. 2013. Vol. 557. P. 252–260.
- Canepa F., Cirafici S., Fornasini M. L. et al. Crystal structure of R₃Co₈Sn₄ compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) // J. Alloys Compd. 2000. Vol. 297. P. 109–113.
- 17. *Pottgen R*. The stannides RE₃Co₆Sn₅ (RE=Y, Nd, Sm, Gd, Tb, Ho-Tm) with Dy₃Co₆Sn₅-type structure // J. Alloys Compd. 1995. Vol. 224. P. 14–17.
- Francois M., Venturini G., Malaman B., Roques B. Nouveaux isotypes de CeNiSi2 dans les systems R–M–X (R=La-Lu, M=metaux des groupes 7 a 11 et X=Ge, Sn) // J. less-Common Met. 1990. P.197–213.

INTERACTION OF THE COMPONENTS IN THE Y–CO–SN SYSTEM AT 770 K

L. Romaka, Yu. Stadnyk, R. Serkiz

Ivan Franko National University of Lviv, Kyryla and Mephodiya Str., 6, 79005 Lviv, Ukraine e-mail: romakal@lnu.edu.ua

The interaction of the components in the Y–Co–Sn ternary system was studied using the methods of X-ray and microstructure analyses, in the whole concentration range. The phase diagram of the Y–Co–Sn was constructed at 770 K. The samples were prepared by arc melting the stoichiometric amounts of the constituent elements under high purity Ti-gettered argon atmosphere on a water-cooled copper hearth. The alloys were then annealed at 770 K in evacuated quartz glass tubes for 8 weeks followed by quenching in cold water.

At the temperature of investigation the Y-Co-Sn system is characterized by existence of eight ternary compounds: Y_6Co_2Sn (Ho₆Ni₂Ga-type), $Y_3Co_8Sn_4$ (Lu₃Co_{7.77}Sn₄-type), YCoSn (TiNiSi-type), $Y_3Co_6Sn_5$ (Dy₃Co₆Sn₅-type), $Y_{117}Co_{57}Sn_{112}$ (Dy₁₁₇Co₅₇Sn₁₁₂-type), YCo₆Sn₆ (YCo₆Ge₆-type), $Y_4Co_6Sn_{19}$ (Er₄Rh₆Sn₁₉-type), $Y_7Co_6Sn_{23}$ (Ho₇Co₆Sn₂₃-type). The $Y_3Co_8Sn_4$ compound is characterized by small homogeneity range along isoconcentrate of Y up to 4 at. % Sn. The formation of the interstitial solid solution based on YSn₂ (ZrSi₂-type) binary compound was found up to 6 at. % Co.

Magnetic susceptibility measurements of $Y_4Co_6Sn_{19}$ and $Y_3Co_6Sn_5$ compounds showed that they are Pauli paramagnets.

Key words: ternary system, phase equilibria, microstructure analysis.

Стаття надійшла до редколегії 27.10.2016 Прийнята до друку 04.01.2017