ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 127–132 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 127–132

УДК 548.736.4:539.26

R_{11} Со₄In₉ (R = Gd, Tb, Dy, Ho, Er) – ПЕРШІ ПРЕДСТАВНИКИ СТРУКТУРНОГО ТИПУ Nd₁₁Pd₄In₉ У СИСТЕМАХ *РЗМ*-Со-In

Ю. Тиванчук, М. Дзевенко, Я. Каличак

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: yutyv@franko.lviv.ua

Рентгеноструктурним методом порошку досліджено кристалічну структуру сполуки $Ho_{11}Co_4In_9$ (просторова група *Cmmm*) та уточнено параметри елементарних комірок ізоструктурних сполук: a = 1,4468(1), b = 2,1760(2), c = 0,36559(2) нм для $Gd_{11}Co_4In_9$; a = 1,4423(2), b = 2,1606(3), c = 0,36216(4) нм для $Tb_{11}Co_4In_9$; a = 1,4346(2), b = 2,1507(3), c = 0,35930(7) нм для $Dy_{11}Co_4In_9$; a = 1,4307(1), b = 2,1442(1), c = 0,35947(2) нм для $Ho_{11}Co_4In_9$; a = 1,4257(5), b = 2,1400(8), c = 0,3568(1) нм для $Er_{11}Co_4In_9$. Сполуки $R_{11}Co_4In_9$ належать до структурного типу $Nd_{11}Pd_4In_9$, який є членом гомологічної серії структур із загальною формулою $R_{m+n}T_{2n}X_m$ (*T* i *X*, відповідно, є атомами перехідного металу та Індію чи Бору), побудованих з фрагментів типів AlB_2 i CsCl.

Ключові слова: рідкісноземельні елементи, Кобальт, Індій, тернарна сполука, кристалічна структура.

Системи *РЗМ*–Со–Іп є доволі багатими на потрійні сполуки з цікавою кристалохімією та унікальними фізичними властивостями [1]. Як приклад, можна навести сполуки CeCoIn₅ і Ce₂CoIn₈ [2, 3], у яких за низьких температур простежується надпровідність у поєднанні з магнітним впорядкуванням [4]. Поряд з цим для значної кількості сполук систем Кобальту кристалічна структура є невідомою.

Під час дослідження систем *P3M*–Со–Іп (*P3M* = Gd, Tb, Dy Ho, Er) за температури 870 К виявлено тернарні сполуки приблизного складу R_{46} Со₁₇Іп₃₇. Спроби індексування порошкограм цих сполук по моделях близьких за хімічним складом структурних типів Lu₅Ni₂In₄ (Lu_{45,5}Ni_{18,2}In_{36,3}, просторова група *Pbam*, a = 1,7568 нм, b = 0,7798 нм, c = 0,3522 нм) [4] і Nd₁₁Pd₄In₉ (Nd_{45,8}Pd_{16,7}In_{37,5}, просторова група *Cmmm*, a = 1,4843, b = 2,2284, c = 0,37857 нм) [5] засвідчили можливу належність їхньої структури до типу Nd₁₁Pd₄In₉.

Зразки виготовлено сплавлянням шихти, яка складалась із наважок компактних металів (із вмістом *P3M* не менше 0,998, кобальту – 0,9992, індію – 0,9999 масових часток основного компонента), в електродуговій печі з вольфрамовим електродом в атмосфері очищеного аргону (як гетер використовували губчастий титан). Склад зразків контролювали, порівнюючи масу сплаву та масу вихідної шихти, причому допускали різницю не більше 1 %. Сплави, запаяні в попередньо вакуумовані кварцові ампули, відпалювали при 870 К протягом 720 год. Кристалічну структуру сполук досліджували методом порошку за даними, отриманими на дифрактометрах STOE STADI Р (Си $K_{\alpha I}$ -випромінювання, зігнутий Ge-монохроматор [111] типу Іоганна; інтервал кутів 4 $\leq 20 \leq 100^\circ$ з кроком 0,015°, час сканування в точці – 450 с;

[©] Тиванчук Ю., Дзевенко М., Каличак Я., 2012

знято в міжфакультетській науково-навчальній лабораторії рентгеноструктурного аналізу Львівського національного університету імені Івана Франка, зразки з Gd, Tb, Dy, Ho) та Seiffert XRD7 (Cu K_{α} -випромінювання, графітовий монохроматор; інтервал кутів $20 \le 20 \le 130^{\circ}$ з кроком 0,06°, час сканування в точці – 15 с; знято в лабораторії рентгеноструктурного аналізу Карлового університету, м. Прага, зразок з Er). Розрахунки кристалічної структури виконували за допомогою програми FullProf [6].

Як уже наголошено, значення періодів комірки, сингонія, характер розташування відбить на дифрактограмах зразків $R_{45,8}$ Co_{16,7}In_{37,5} та їхня інтенсивність засвідчили можливу ізоструктурність сполук до типу Nd₁₁Pd₄In₉. Детальне дослідження кристалічної структури виконували на прикладі сполуки Ho₁₁Co₄In₉, оскільки відповідний зразок містив найменше домішок. Прийнятні значення факторів достовірності уточнення структури підтверджують належність сполуки Ho₁₁Co₄In₉ (склад сполуки наведений за результатами уточнення) до структурного типу Nd₁₁Pd₄In₉. Деталі експерименту та кристалографічні характеристики сполуки Ho₁₁Co₄In₉ наведені в табл. 1, а дифрактограма показана на рис. 1.

Рис. 1. Експериментальна (+), розрахована (-) та різницева дифрактограми сполуки Ho₁₁Co₄In₉

Досліджена структура, подібно до інших структур з великим вмістом рідкісноземельних металів, має порівняно невеликі значення координаційних чисел атомів *P3M*. Координаційні багатогранники атомів Гольмію – пентагональні та тетрагональні призми з центрованими гранями (КЧ від 12 до 16), атомів Со – тригональні призми із атомів Гольмію з бічними гранями, центрованими атомами Індію (КЧ=9), атомів Іп – тетрагональні призми з центрованими гранями та тетрагексаедр (КЧ=12–14). Міжатомні віддалі добре узгоджуються з розмірами атомів. Найкоротші віддалі такі: d(Co–In2) = 0,290(1) нм, d(Ho4–Co) = 0,273(1) нм, d(Ho1–In1) = 0,2804(7) нм, d(Ho1–Ho1) = 0,307(1) нм та d(In2–In2) = 0,2895(9) нм.

Ю. Тиванчук, М. Дзевенко, Я. Калича	ак	
ISSN 2078-5615. Вісник Львівського	університету. Серія 🛛	кімічна. 2012. Випуск 53

			Таблиця 1	
Деталі е	ксперименту та рез	зультати уточнення стру	уктури сполуки Ho ₁₁ Co ₄ In ₉	
Сполука			$Ho_{11}Co_4In_9$	
Структурн	ий тип		$Nd_{11}Pd_4In_9$	
Просторов	Просторова група		Cmmm	
Z, символ Пірсона		2, 0548		
Розрахована густина, $D_{\rm X}$, г/см ³		9,285(2)		
Параметри	комірки, нм:			
	<u>^</u>	а	1,4307(1)	
		b	2,1442(1)	
		С	0,35947(2)	
Об'єм <i>V</i> , нм ³		1,1028(1)		
$B_{3ar}, 10^2 \text{ HM}^2$			0,34(4)	
Координат	и атомів			
Ho1	8p	<i>x y</i> 0	x = 0,2622(3);	
			y = 0,1788(4)	
Ho2	4i	0 y 0	y = 0,1566(4)	
Ho3	4i	0 y 0	y = 0,3702(4)	
Ho4	4g	<i>x</i> 0 0	x = 0,3096(6)	
Ho5	2a	0 0 0		
Co	8q	x y 1/2	x = 0,3418(9);	
			y = 0,0934(7)	
In1	8q	x y 1/2	x = 0,1123(4);	
			y = 0,2659(3)	
In2	8q	x y 1/2	x = 0,1428(6);	
			y = 0,0675(2)	
In3	2c	1/2 0 1/2		
Параметр асиметрії		0,0067(5)		
Параметри	ширини піків:			
		U,	0,63(4)	
		<i>V</i> ,	-0,14(1)	
W		0,01893(3)		
Фактори достовірності, %:				
		$R_{ m P}$	3,69	
		$R_{ m WP}$	4,99	
		$R_{ m Bragg}$	7,58	
			•	

Ізоструктурні сполуки знайдені в системах з Гадолінієм, Тербієм, Диспрозієм та Ербієм. Розрахунок структури методом порошку цих зразків ускладнювала наявність на дифракційній картині відбить невідомої фази. Визначені періоди комірки сполук наведені в табл. 2.

Як відомо, структура Nd₁₁Pd₄In₉ тісно споріднена з іншим типом інтерметалідів індію Lu₅Ni₂In₄, що також є двошаровою ромбічною структурою (просторова група *Pbam*) [4]. Ці структури разом із структурами типів Mo₂FeB₂ (сполуки R_2 Cu₂In, R_2 Ni₂In, R_2 Pd₂In, R_2 Pt₂In) [1], Mn₂AlB₂ (R_2 Ni₂In) [1], Cr₃AlB₄ [7], or-La₂Ni₂In [8] та TbCuMg₄ [9] утворюють гомологічну серію, засновану на типах AlB₂ та CsCl. Сполук типу Lu₅Ni₂In₄ у системах з кобальтом поки що не виявлено, проте вони поширені в системах *P3M*–Ni–In [4, 10], *P3M*–Pd–In [11] та *P3M*–Pt–In [12]. Сполуки зі структурою типу Nd₁₁Pd₄In₉ існують також у системах *P3M*–Ni–In [13] та *P3M*–Pd–In [14, 15]. У споріднених системах за участю Платини сполук зі структурою цього типу ще не виявлено. Цікавим є той факт, що для систем з Нікелем і Паладієм тип Lu₅Ni₂In₄

129

швидше властивий малим за розмірами атомам P3M, а тип Nd₁₁Pd₄In₉ – легким і більшим за розмірами P3M церієвої підгрупи. Зміна параметра (V/N) (де V – об'єм елементарної комірки, N – кількість атомів в елементарній комірці) залежно від розміру R^{3+} іона, згідно з Шенноном [16], для ряду ізоструктурних сполук показана на рис. 2. Ця зміна узгоджується з ефектом лантаноїдного стиснення.

Параметри елементарної комірки сполук R_{11} Со₄In₉

	1 1	1 1	5 11 4 5	
Сполука	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³
Gd ₁₁ Co ₄ In ₉	1,4468(1)	2,1760(2)	0,36559(2)	1,1510(3)
Tb ₁₁ Co ₄ In ₉	1,4423(2)	2,1606(3)	0,36216(4)	1,1286(4)
Dy11Co4In9	1,4346(2)	2,1507(3)	0,35930(7)	1,1086(5)
Ho11Co4In9	1,4307(1)	2,1442(1)	0,35947(2)	1,1028(1)
Er11Co4In9	1,4257(5)	2,1400(8)	0,3568(1)	1,0886(7)

Рис. 2. Залежність *V/N* сполук R_5 Ni₂In₄ та $R_{11}M_4$ In₉ від розмірів іонів R^{3+} [16]

Отже, виявлено ще один ряд ізоструктурних сполук у додаток до відомих раніше R_{11} Ni₄In₉ (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Y) [13] і R_{11} Pd₄In₉ (R = La, Ce, Pr, Nd, Sm, Gd, Dy) [5, 14, 15].

- Kalychak Ya.M., Zaremba V.I., Pöttgen R. et al. Rare Earth-Transition Metal-Indides // K.A. Gschneider Jr., J.-C. Bünzli, V.K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam. 2005. Vol. 34. Ch. 218. P. 1–133.
- 2. Каличак Я.М. Система Се-Со-In // Вісн. Львів. ун-ту. Сер. хім. 1999. Вип. 38. С. 70-73.
- Thalmeier P., Zwicknagl G. Unconventional superconductivity and magnetism in lanthanide and actinide intermetallic compounds // K.A. Gschneider Jr., J.-C. Bünzli, V.K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam. 2005. Vol. 34. Ch. 219. P. 135–287.

Ю. Тиванчук, М. Дзевенко, Я. Каличак ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

- Заремба В.И., Калычак Я.М., Завалий П.Ю., Брусков В.А. Кристаллическая структура соединений R₅Ni₂In₄ (R = Ho, Er, Tm, Lu) // Кристаллография. 1991. Т. 36. С. 1415–1418.
- Sojka L., Manyako M., Cerny R. et al. Nd₁₁Pd₄In₉ compound a new member of the homological series based on AlB₂ and CsCl – types // Intermetallics. 2008. Vol. 16. N 5. P. 625–628.
- 6. *Rodriguez-Carvajal J.* Program Fullprof, Laboratoire Leon Brillouin (CEACNRS), 2000.
- 7. Кузьма Ю.Б. Кристаллохимия боридов. Львів: Вища школа, 1983.
- Пустовойченко М., Світлик В., Каличак Я.М. Кристалічна структура β-модифікації La₂Ni₂In // Всеукр. конф. молодих вчених "Фізика і хімія твердого тіла. Стан, досягнення і перспективи". Луцьк: ЛНТУ, 2010. С. 115–116.
- Solokha P., De Negri S., Pavlyuk V. et al. Crystallochemistry of the novel two-layer RECuMg₄ (RE = La, Tb) ternary compounds // J. Solid State Chem. 2007. Vol. 180. P. 3066–3075.
- Tyvanchuk Yu.B., Rodewald U.Ch., Kalychak Ya.M, Pöttgen R. Rare earth-nickelindides Dy₅Ni₂In₄ and RE₄Ni₁₁In₂₀ (RE = Gd, Tb, Dy) // J. Solid State Chem. 2008. Vol. 181. P. 878–883.
- 11. *Сойка Л.Д.*, *Дашкевич М.*, *Белан Б.Д*. та ін. Кристалічна структура сполук R₅Pd₂In₄ (R = Y, Tb, Dy, Ho, Er, Tm, Lu) // Укр. хим. журн. 2008. Т. 74. № 6. Р. 90–94.
- 12. *Tursina A.I., Kurenbaeva Z.M., Shtepa D.V.* et al. New ternary indide Ce₅Pt₂In₄ with the Lu₅Ni₂In₄ structure type // Acta Crystallogr. 2006. Vol. E62. P. i80–i82.
- Pustovoychenko M., Tyvanchuk Yu., Hayduk I., Kalychak Ya. Crystal structure of the RE₁₁Ni₄In₉ compounds (RE = La, Ce, Pr, Nd, Sm, Gd, Tb and Y) // Intermetallics. 2010. Vol. 18. P. 929–932.
- 14. Сойка Л.Д., Белан Б.Д., Іваник М.Є. та ін. Нові представники структурного типу Nd₁₁Pd₄In₉ // 17-та Укр. конф. з неорган. хімії: Тези доп. Львів: ЛНУ ім. Івана Франка, 2008. С. 250.
- Сойка Л.Д., Белан Б.Д., Маняко М.Б., Каличак Я.М. Нові сполуки зі структурою типу Nd₁₁Pd₄In₉ в системах *R*-Pd-In // "Львівські хімічні читання-2011": Львів: ЛНУ ім. Івана Франка, 2011. С. Н70.
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr. 1976. Vol. A32. P. 751– 766.

131

Ю. Тиванчук, М. Дзевенко, Я. Каличак ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

R_{11} Co₄In₉ (R = Gd, Tb, Dy, Ho, Er) – THE FIRST REPRESENTATIVES OF Nd₁₁Pd₄In₉ STRUCTURE TYPE IN R-Co–In SYSTEMS

Yu. Tyvanchuk, M. Dzevenko, Ya. Kalychak

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine, e-mail: yutyv@franko.lviv.ua

The crystal structure of the Ho₁₁Co₄In₉ (space group *Cmmm*) compound has been investigated by means of X-ray powder diffraction. Cell parameters of the isostructural compounds have been refined: a = 1.4468(1), b = 2.1760(2), c = 0.36559(2) nm for Gd₁₁Co₄In₉; a = 1.4423(2), b = 2.1606(3), c = 0.36216(4) nm for Tb₁₁Co₄In₉; a = 1.4346(2), b = 2.1507(3), c = 0.35930(7) nm for Dy₁₁Co₄In₉; a = 1.4307(1), b = 2.1442(1), c = 0.35947(2) nm for Ho₁₁Co₄In₉; a = 1.4257(5), b = 2.1400(8), c = 0.3568(1) nm for Er₁₁Co₄In₉. The compounds have crystal structure of Nd₁₁Pd₄In₉ type, which is a member of homological series of compounds with total formula $R_{m+n}T_{2n}X_m$ (where the *T* and *X* atoms are transition metals and indium (boron)) and stacked of AlB₂ and CsCl fragments.

Key words: rare earth elements, cobalt, indium, ternary compound, crystal structure.

R_{11} Со₄In₉ (R = Gd, Tb, Dy, Ho, Er) – ПЕРВЫЕ ПРЕДСТАВИТЕЛИ СТРУКТУРНОГО ТИПА Nd₁₁Pd₄In₉ В СИСТЕМАХ *РЗМ*-Со-In

Ю. Тыванчук, М. Дзевенко, Я. Калычак

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия 6, 79005 Львов, Украина, e-mail: yutyv@franko.lviv.ua

Рентгеноструктурным методом порошка изучено кристаллическую структуру соединения $Ho_{11}Co_4In_9$ (пространственная группа *Cmmm*) и уточнено параметры элементарных ячеек для изоструктурных соединений: a = 1,4468(1), b = 2,1760(2), c = 0,36559(2) нм для $Gd_{11}Co_4In_9$; a = 1,4423(2), b = 2,1606(3), c = 0,36216(4) нм для $Tb_{11}Co_4In_9$; a = 1,4346(2), b = 2,1507(3), c = 0,35930(7) нм для $Dy_{11}Co_4In_9$; a = 1,4307(1), b = 2,1442(1), c = 0,35947(2) нм для $Ho_{11}Co_4In_9$; a = 1,4257(5), b = 2,1400(8), c = 0,3568(1) нм для $Er_{11}Co_4In_9$. Кристаллическая структура соединений принадлежит к типу $Nd_{11}Pd_4In_9$ – члену гомологической серии структур с общей формулой $R_{m+n}T_{2n}X_m$ (*T* и *X*, соответственно, атомы переходного металла и индия или бора), построенных из фрагментов типов AlB_2 и CsCl.

Ключевые слова: редкоземельные элементы, кобальт, индий, тернарное соединение, кристаллическая структура.

Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011

132