ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 103–108 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 103–108

УДК 546:548.736.5

КРИСТАЛІЧНА СТРУКТУРА СПОЛУКИ La5Si2.29In0.71

Г. Ничипорук, Я. Галаджун, З. Шпирка, Я. Каличак, В. Заремба

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: galka_n@franko.lviv.ua

Синтезовано монокристали нової сполуки La₅Si_{2,29}In_{0,71} та методом рентгенівської дифракції визначено її кристалічну структуру. Структура сполуки належить до типу Mo₅B₂Si (ПГ *14/mcm*, СП *tI*32, a = 0.8101(1), c = 1,4498(3) нм, $R_1 = 0.0378$ для 396 відбить *hkl*).

Ключові слова: індій, кристалічна структура, метод монокристала.

Під час дослідження взаємодії компонентів у системі La–Si–In при 870 К [1] ми виявили існування тернарного індиду складу ~La₃SiIn. Складна дифракційна картина, отримана за порошковими даними, не дала змоги уточнити кристалічну структуру нової сполуки методом порошку, а якісних, придатних для рентгенівського дослідження монокристалів не було. Метою подальшого дослідження був синтез монокристалів для вивчення кристалічної структури названої сполуки.

Монокристали синтезували двома способами – тривалим гомогенізувальним відпалом сплаву складу $La_{60,0}Si_{20,0}In_{20,0}$ у вакуумованій кварцовій ампулі при 600 °С протягом трьох місяців (I) та нагріванням в інертній атмосфері (газ Ar) спресованої таблетки з порошку сплаву такого самого складу в запаяному танталовому контейнері до 1050 °С з подальшим повільним охолодженням до кімнатної температури (II). Якісний та кількісний EDX аналіз монокристалів (електронний сканувальний мікроскоп Philips 515-PV9800, Інститут низьких температур та структурних досліджень ПАН, м. Вроцлав, Польща), отриманих в обох випадках, привів до таких результатів – $La_{58,9}Si_{21,6}In_{19,5}$ (I) та $La_{63,1}Si_{26,2}In_{10,7}$ (II). Ці дані, а також аналіз порошкограм синтезованих зразків засвідчили можливе існування двох різних тернарних сполук у системі La_{-Si-In} . Нижче наведено результати дослідження кристалічної структури сполуки $La_{63,1}Si_{26,2}In_{10,7}$ (II), вивчення кристалічної структури сполуки $La_{63,1}Si_{26,2}In_{10,7}$ (II).

Методом Лауе (камера РКВ-86, Мо*К*-випромінювання) визначено належність кристала сполуки II до тетрагональної сингонії. Подальше дослідження проведено на підставі рентгенівських даних, одержаних за допомогою монокристального автоматичного дифрактометра КМ-4 ССD Кита Diffraction (Мо K_{α} -випромінювання). Аналізом дифракційних даних з монокристала сполуки II встановлено об'ємноцентровану тетрагональну елементарну комірку та можливі просторові групи *I4/mcm*, *I4cm* та *I4c2*. Структуру розшифровано в просторовій групі *I4/mcm* прямими методами й уточнено в анізотропному наближенні (комплекс програм SHELX-97 [2]). Під час уточнення структури значення ізотропних теплових параметрів у правильних системах точок (ПСТ) 4*c*, зайнятій атомами лантану, та 4*a*, зайнятій атомами індію,

[©] Ничипорук Г., Галаджун Я., Шпирка З. та ін., 2012

виявились завеликими. Це може свідчити про бажане менше розсіяння рентгенівських променів електронами атомів у цих положеннях. Статистичне розміщення атомів La/In у положенні 4*c*, подібно до Tm/In у структурі сполуки Tm_{4,83}Ni₂In_{1,17} [3], призвело до появи надлишку електронної густини та погіршення показників достовірності структури. Тоді як заповнення положення 4*a* атомами статистичної суміші індію та силіцію суттєво поліпшило модель. Деталі експерименту та результати розрахунків наведено в табл. 1. Сполука уточненого складу La₅Si_{2,29}In_{0,71} належить до структурного типу Mo₅B₂Si [4]. Координати та параметри теплового коливання атомів у структурі сполуки наведено в табл. 2, міжатомні віддалі та координаційні числа атомів – у табл. 3.

Таблиця 1

кристалтног структури сполуки Laso12,29110,71					
Емпірична формула	$La_5Si_{2,29(1)}In_{0,71(1)}$				
Температура	293 K				
Випромінювання	Мо <i>K</i> _α , 0,071073 нм				
Просторова група, Z	<i>I</i> 4/ <i>mcm</i> (№ 140), 4				
Параметри комірки, нм	a = 0,8101(1)				
	c = 1,4498(3)				
Об'єм комірки, нм ³	V = 0,9514(3)				
Розрахована густина, г/см ³	6,042				
Коефіцієнт поглинання, мм ⁻¹	24,49				
<i>F</i> (000)	1448				
Межі θ під час знімання кристала	3,5° до 30,0°				
Межі <i>hkl</i>	$-11 \le h \le 9; -11 \le k \le 10; -18 \le l \le 20$				
Загальна кількість рефлексів	5347				
Незалежні рефлекси	$396 (R_{int} = 0,0623)$				
Рефлекси з <i>I</i> > 2 <i>о</i> (<i>I</i>)	$378 (R_{\sigma} = 0.0229)$				
Дані / параметри	396 / 17				
Goodness-of-fit no F^2	1,228				
Кінцеві <i>R</i> -фактори [<i>I</i> > 2 <i>σ</i> (<i>I</i>)]	$R_1 = 0,0378, wR_2 = 0,0880$				
<i>R</i> -фактори (всі дані)	$R_1 = 0,0415, wR_2 = 0,0902$				
Коефіцієнт загасання	0,00028(12)				
Найбільші пік і яма на кінцевому					
різницевому синтезі Фур'є, $e/10^3$ нм ³	3,412 та -3,514				

Деталі експерименту та результати розрахунку кристалічної структури сполуки La₅Si_{2 29}In_{0 71}

Таблиця 2

Координати та параметри теплового коливання атомів у структурі сполуки La₅Si_{2.29}In_{0.71}

Атом	ПСТ	x	у	z	$U_{e \kappa B} \times 10$) ² , нм ²
La ¹	16 <i>l</i>	0,17023(5)	0,67023(5)	0,14412(4)	0,018	5(3)
La ²	4c	0	0	0	0,040	2(5)
Si	8h	0,6160(4)	0,1160(4)	0	0,014	4(8)
M^*	4a	0	0	1/4	0,015	4(6)
Атом	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
La ¹	0,0172(3)	0,0172(3)	0,0211(4)	-0,0010(2)	-0,0010(2)	-0,0008(2)
La ²	0,0141(4)	0,0141(4)	0,092(2)	0	0	0
Si	0,013(1)	0,013(1)	0,018(2)	0	0	0,003(2)
M^*	0,0124(7)	0,0124(7)	0,0213(9)	0	0	0

 $M = In_{0,71(1)}Si_{0,29(1)}$.

Г. Ничипорук, Я. Галаджун, З. Шпирка та ін.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

Міжатомні віддалі та координаційні числа атомів у структурі La ₅ Si _{2,29} ln _{0,71}							
Атс	ОМ	δ, нм	КЧ	Ато	М	δ, нм	КЧ
La ¹ –	2Si	0,3152(2)		La ² –	4Si	0,3250(2)	
	1Si	0,3219(3)			2M	0,3625(1)	14
	2M	0,3376(1)			8La ¹	0,3661(1)	
	$1La^1$	0,3573(2)		Si–	1Si	0,2658(8)	
	$2La^2$	0,3661(1)	16		$4La^1$	0,3152(2)	0
	$1La^1$	0,3901(2)			$2La^1$	0,3219(3)	9
	$2La^1$	0,4127(2)			$2La^2$	0,3250(2)	
	$1La^1$	0,4179(2)		М—	$8La^1$	0,3376(1)	10
	4La ¹	0,4251(1)			$2La^2$	0,3625(1)	10

.

У структурі сполуки La₅Si_{2,29}In_{0,71} (рис. 1) атоми лантану утворюють навколо атомів статистичної суміші М тетрагональні антипризми з двома додатковими атомами напроти основ (КЧ = 10), тоді як типовим координаційним багатогранником для атомів Si є тригональна призма з центрованими бічними гранями (КЧ = 9). Для атомів La поліедрами є тетрагональні призми з усіма центрованими гранями (КЧ = 14) та шістнадцятивершинники (КЧ = 16).

Рис. 1. Проекція кристалічної структури сполуки La₅Si_{2.29}In_{0.71} на площину YZ та координаційні багатогранники атомів: a, δ – La, e – Si, r – M

Структури сполук Cr₅B₃ [5], La₅Si_{2.29}In_{0.71} (структурний тип Mo₅B₂Si, надструктура до Cr₅B₃) і Ce₃GeIn₄ [6] (структурний тип La₃GeIn₄ [7], упорядкований антитип до Cr₅B₃) можна розглядати як укладки фрагментів уздовж осі Z. Атоми, що займають положення 8h, утворюють чотирикутні сітки з ромбів та квадратів, квадрати центровані атомами у положеннях 4c. Атоми в положеннях 16l утворюють тетрагональні антипризми навколо атомів, що займають положення 4*a* (див. табл. 4, рис. 2). Шари антипризм чергуються з плоскими сітками.

105

Таблиця З

1 donup							
Положення атомів у структурі Cr ₅ B ₃ та похідних від неї (ПГ І4/тст)							
]	ПСТ	Cr ₅ B ₃		La ₅ Si _{2,29} In	n _{0,71}	La ₃ GeIn ₄	
		<i>a</i> = 0,537	HM	a = 0,810	1 нм	a = 0,851	7 нм
		<i>c</i> = 1,0188	3 нм	<i>c</i> = 1,4498	8 нм	<i>c</i> = 1,190	2 нм
	х	Cr ¹	0,164	La ¹	0,1702	In	0,1428
16 <i>l</i>	x + 1/2		0,664		0,6700		0,6428
	z		0,146		0,1441		0,1863
	х	Cr ²	0	La ²	0	Ge	0
4c	у		0		0		0
	z		0		0		0
	х	B^1	0,618	Si	0,6160	La ²	0,8354
8h	x + 1/2		0,118		0,1160		0,3354
	0		0		0		0
	х	B^2	0	М	0	La ¹	0
4a	у		0		0		0
	Ζ.		1/4		1/4		1/4

Рис. 2. Укладки фрагментів: чотирикутних сіток і тетрагональних антипризм у структурах сполук: $a - Cr_5B_3$; $\delta - La_5Si_{2,29}In_{0,71}$; $s - La_3GeIn_4$

Незважаючи на відмінні значення висот (h) та основ (s) тетрагональних антипризм у структурах сполук Cr₅B₃ та La₅Si_{2,29}In_{0,71} (табл. 5), їхні співвідношення близькі до співвідношення h/s ідеальної антипризми (0,866). У структурі сполуки La₃GeIn₄ положення 16l зайняті атомами In. Співвідношення h/s антипризм сполуки La₃GeIn₄ майже вдвічі менше. У цьому випадку простежується певна взаємодія між плоскими сітками атомів In (основи тетрагональних антипризм) уздовж напряму Z.

таолиия э	1	аблиия	5
-----------	---	--------	---

Характеристика тетрагональних антипризм у різних структурах

Структура	Висота <i>h</i> , нм	Основа s, нм	h/s
Cr ₅ B ₃	0,2119	0,2839	0,746
La ₅ Si _{2,29} In _{0,71}	0,3070	0,4252	0,722
La ₃ GeIn ₄	0,1516	0,4633	0,327

Автори вдячні д-ру Ю. Стемпень-Дамм (Інститут низьких температур і структурних досліджень ПАН, Вроцлав, Польща) за допомогу в отриманні масиву експериментальних відбить *hkl* на монокристальному дифрактометрі.

- 1. Ничипорук Г., Заремба В., Каличак Я. Дослідження взаємодії компонентів у потрійних системах La-{Si,Ge}-In // Вісн. Львів. ун-ту. Сер. хім. 2002. Вип. 41. С. 49-54.
- 2. Sheldrick G.M. SHELX-97. Program for Crystal Structures Refinement, University of Göttingen. 1997.
- Lukachuk M., Kalychak Ya.M., Dzevenko M., Pöttgen R. On the Crystal Chemistry of Tm₂Ni_{1.896(4)}In, Tm_{2.22(2)}Ni_{1.81(1)}In_{0.78(2)}, Tm_{4.83(3)}Ni₂In_{1.17(3)}, and Er₅Ni₂In // J. Solid State Chem. 2005. Vol. 178. P. 1247–1253.
- Aronsson B. The Crystal Structure of Mo₅SiB₂ // Acta Chem. Scand. 1958. Vol. 12. P. 31–37.
- Bertaut F., Blum P. Etude des borures de chrome // C. R. Hebd. Seances Acad. Sci. 1953. Vol. 236. P. 1055–1056.
- 6. Zaremba V., Kaczorowski D., Nychyporuk G. et al. Structure and magnetic properties of Ce₃Ge_{0.66}In_{4.34} and Ce₁₁Ge_{4.74}In_{5.26} // Z. Anorg. Allg. Chem. 2006. Vol. 632. P. 975–980.
- Guloy A.M., Corbett J.D. Synthesis, Structure and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties // Inorg. Chem. 1996. Vol. 35. N 9. P. 2616–2622.

CRYSTAL STRUCTURE OF THE La₅Si_{2.29}In_{0.71} COMPOUND

G. Nychyporuk, Ya. Galadzhun, Z. Shpyrka, Ya. Kalychak, V. Zaremba

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e -mail: galka_n@franko.lviv.ua

The single crystals of new ternary compound La₅Si_{2.29}In_{0.71} were synthesized and its crystal structure was refined from single crystal X-ray data. La₅Si_{2.29}In_{0.71} crystallizes in the Mo₅B₂Si structure type (space group *I4/mcm*, Pearson code *tI*32, a = 0.8101(1), c = 1.4498(3) nm, $R_1 = 0.0378$, 396 F^2 values).

Key words: Indium, crystal structure, single crystal method.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СОЕДИНЕНИЯ La5Si2,29In0,71

Г. Ничипорук, Я. Галаджун, З. Шпырка, Я. Калычак, В.Заремба

Львовский национальный университет имени Ивана Франко, ул. Кирила и Мефодия, 6, 79005 Львов, Украина e -mail: galka_n@franko.lviv.ua

Синтезировано монокристаллы нового соединения La₅Si_{2,29}In_{0,71} и методом рентгеновской дифракции установлено его кристаллическую структуру. Структура соединения принадлежит к типу Mo₅B₂Si (ПГ *I4/mcm*, СП *tI*32, a = 0,8101(1), c = 1,4498(3) нм, $R_1 = 0,0378$ для 396 отражений *hkl*).

Ключевые слова: индий, кристаллическая структура, метод монокристалла.

Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011