ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 79–84 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 79–84

УДК 548.736: 546.571: 546.183

НЕКОВАЛЕНТНІ ВЗАЄМОДІЇ В КРИСТАЛІЧНІЙ СТРУКТУРІ БІС(АЛІЛТРИФЕНІЛФОСФОНІЙ) ТЕТРАБРОМОКУПРАТУ (II)

Н. Салівон, Т. Ленківська, Г. Нощенко

Національний лісотехнічний університет України, вул. Ген. Чупринки, 103, 79044 Львів, Україна e-mail: nf-25@mail.ru

Безпосередньою взаємодією алілтрифенілфосфоній броміду та купрум (II) броміду в водно-етанольному розчині отримано комплекс $[CH_2=CHCH_2(C_6H_5)_3P]_2[CuBr_4]$ та проведено його рентгеноструктурне дослідження: просторова група $P\overline{1}$, a = 10,7779(3) Å, b = 11,7516(3) Å, c = 17,8317(5) Å, $\alpha = 73,247(2)^\circ$, $\beta = 86,178(2)^\circ$, $\gamma = 67,806(2)^\circ$, V = 2000,16(9) Å³, Z = 2, $\rho_{posp} = 1,644$ г/см³. Катіони алілтрифенілфосфонію завдяки π - π стекінг взаємодії фенільних груп та алільної і фенільної груп формують одно- та двовимірні надмолекулярні утворення, у порожнинах яких містяться аніони $CuBr_4^{2-}$, зафіксовані за допомогою системи водневих зв'язків C–H…Br та аніон- π взаємодії Br…фенільна група.

Ключові слова: тетрабромокупрат, алілтрифенілфосфоній, феніл-фенільна взаємодія, аліл-фенільна взаємодія, аніон-*я* взаємодія.

Комплекси типу A₂[CuX₄], де X= Cl, Br, привертають увагу дослідників з огляду на їхні оптичні властивості, термохромізм, а особливо – магнітні властивості [1]. Взаємозв'язок будови таких комплексів та магнітних (антиферомагнітних) властивостей доцільно досліджувати в бромовмісних комплексах A₂[CuBr₄], магнітні властивості яких майже не залежать від геометрії аніона, а визначені винятково параметрами нековалентної Сu-Br...Br-Сu взаємодії [1], яка, відповідно, пов'язана з природою катіона та надмолекулярною будовою сполуки. У цьому разі основну увагу приділяють комплексам з нітрогеновмісними гетероциклічними основами або їхніми галогенопохідними [2], надмолекулярні мотиви в яких реалізуються за участю як класичних водневих зв'язків, так і нековалентної взаємодії: Х...Х (де Х – галоген [3]), *X*- π [4], C-H... π [5] та π - π стекінгу [6]. Поряд з цим зроблено лише спорадичні спроби синтезувати комплекси за участю тетрафеніл- та алкілтрифенілфосфонію [7, 8], архітектурні параметри яких формуються за допомогою багатократної фенілфенільної взаємодії (енергія якої сягає 80 кДж/моль [9], що незначно менше від енергії електростатичного притягання). Причому структурна лабільність катіонів тетрафеніл- та алкіл-трифенілфосфонію забезпечує значну різноманітність сполук цього класу [10]. Серед солей алкілтрифенілфосфонію саме алілтрифенілфосфоній привертає до себе увагу з огляду на можливість формування в його сполуках надмолекулярних мотивів завдяки як багатократній феніл-фенільній, так і алілфенільній взаємодії, що є цікавим з погляду кристалічної інженерії. Однак комплексні сполуки з алілтрифенілфосфонієм сьогодні практично не досліджені, визначено кристалічні структури лише чотирьох сполук [11]. Відтак, нижче розглянуто синтез, рентгеноструктурний та кристалохімічний аналізи комплексу $[CH_2=CHCH_2(C_6H_5)_3P]_2[CuBr_4]$ (I).

[©] Салівон Н., Ленківська Т., Нощенко Г., 2012

Для отримання придатних для рентгеноструктурного аналізу кристалів комплексу I змішали 2 мл 0,2 М етанольного розчину алілтрифенілфосфоній броміду та 1 мл 0,2 М водно-етанольного розчину CuBr₂. Отриманий розчин помістили в ексикатор над CaCl_{2(безв)}. Через дві доби, після упарювання близько ³/₄ об'єму розчину, утворились коричневі призми кристалів комплексу I.

Структуру розв'язано прямими методами з подальшим застосуванням послідовних синтезів Фур'є. Атоми Гідрогену знайдено з різницевих синтезів Фур'є та уточнено в моделі "вершника" разом з неводневими атомами. Повноматричне уточнення для координат та ізотропних теплових параметрів атомів виконано на основі масиву $F^2(hkl)$. Усі обчислення зроблено за допомогою пакета програм SHELX-97 [12]: C₄₂H₄₀P₂CuBr₄, M = 989,86 г/моль, триклінна сингонія, просторова група $P\bar{1}$, a = 10,7779(3) Å, b = 11,7516(3) Å, c = 17,8317(5) Å, $\alpha = 73,247(2)^{\circ}$, $\beta = 86,178(2)^{\circ}$, $\gamma = 67,806(2)^{\circ}$, V = 2000,16(9) Å³, Z = 2, T = 113,1 K, $\mu_{Mo} = 4,65$ мм⁻¹, $2\theta_{max} = 53,0^{\circ}$, F(000) = 982, 9 186 виміряних рефлексів, 6 546 незалежних, 442 уточнювальні параметри, вагова схема – $w=1/[\sigma^2(F_o^2)+(0,0307P)^2+1,0369P]$, де $P = (F_o^2+2F_c^2)/3$, R(F) = 0,0364, $R(F_w) = 0,0782$, S = 1,031. Координати атомів і їхні теплові параметри депоновані до Кембріджського банку структурних даних – ССDC 849330 (ССDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax, +44-(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk).

Асиметрична одиниця в I утворена аніоном $CuBr_4^{2-}$ та двома кристалографічно незалежними катіонами $CH_2=CHCH_2(C_6H_5)_3P^+(L^+)$.

В аніоні CuBr₄²⁻ атом Купруму (II) має деформоване тетраедричне оточення, довжини зв'язків Cu–Br у якому становлять 2,3449(5)–2,4270(5) Å, а валентні кути: 98,02(2)–131,45(2)° (див. таблицю). Атоми Брому CuBr₄²⁻ формують розгалужену систему водневих зв'язків з атомами Гідрогену метиленових та α-вуглецевих атомів фенільних груп, найкоротші з яких становлять 2,817(2)–2,904(5) Å. Отже, геометрія аніона є проміжна між тетраедричною (T_d) та квадратно-планальною (D_{4h}), що є наслідком сумісного впливу ефекту Яна-Телера та міжмолекулярної взаємодії.

Зв'язок	$d, \mathrm{\AA}$	Кут	ω, град.
Cu–Br(1)	2,4270(5)	Br(1)– Cu – $Br(2)$	102,19(2)
Cu–Br(2)	2,3885(5)	Br(1)– Cu – $Br(3)$	98,02(2)
Cu–Br(3)	2,3449(5)	Br(1)– Cu – $Br(4)$	130,14(2)
Cu–Br(4)	2,3934(5)	Br(2) – Cu – $Br(3)$	131,45(2)
P(1)P(1)'	6,273(4)	Br(2)– Cu – $Br(4)$	100,03(2)
P(1)P(1)''	6,540(6)	Br(3)– Cu – $Br(4)$	99,62(2)
P(2)P(2)'	7,899(6)	P(1)P(1)'P(1)''	133,03(2)
P(2)P(2)''	7,74(1)	P(2)''P(2)P(2)'	97,40(1)
P(2)'P(2)'''	7,85(1)	P(2)P(2)'P(2)'''	86,35(1)
		P(2)'P(2)''P(2)	107,69(1)

Деякі довжини зв'язків та валентні кути в структурі І

У структурі І іони L1⁺ завдяки π - π стекінгу фенільних груп об'єднуються в димери (L1⁺)₂ (див. рис. 1, *a*). У димерах три фенільні групи одного катіона взаємодіють з трьома фенільними групами іншого, формуючи надмолекулярну систему з шести феніл-фенільних взаємодій Т-типу (*edge-to-face (ef)*). Такий тип взаємодії отримав назву *six-fold phenyl embrace (6PE)* [13]. Зручною для обчислення характеристикою ефективності π - π стекінгу фенільних груп сусідніх іонів феніл-

фосфонію є відстань між їхніми атомами фосфору (Р...Р < 9 Å) [10] (для 6*PE*, зокрема, метилтрифенілфосфонію, відстань Р...Р є в межах 6,2–6,7 Å [9]). У структурі І відстань Р...Р у димерах становить 6,273(4) Å. Ще одним параметром, який характеризує 6*PE* є колінеарність С–Р та Р'–С зв'язків сусідніх іонів. У димері (L1⁺)₂ торсійний кут С–Р...Р'–С становить 180,17°. Відстань між центрами протилежних фенільних груп у 6*PE* є в межах 4,929–5,457 Å і близька до розрахованої оптимальної відстані (5 Å) між центрами двох молекул бензену [14], що взаємодіють *ef.* Кути (α) між площинами фенільних груп, залучених до 6*PE* є в межах 65,83–82,67°.

Рис. 1. Катіони L1⁺, об'єднані *п*-*п* стекінгом шести фенільних груп (*a*), та катіони L1⁺, об'єднані аліл-фенільною взаємодією (*б*)

Привертає увагу також взаємне розташування алільної та фенільної груп від двох катіонів L1⁺, що не взаємодіють 6PE (див. рис. 1, б). Зв'язок C=C алільної групи одного катіона L1⁺ практично паралельний ($\beta = 17,43^{\circ}$) до площини фенільної групи іншого катіона L1⁺. Відстань між центром зв'язку C=C алільної групи та площиною фенільної групи становить 3,338 Å (відстань між найближчими атомами фенільної та алільної груп – 3,526(5) та 3,929(6) Å), що дає підстави говорити про $\pi_{C=C} \leftrightarrow \pi_{Ph}$ взаємодію між алільною та фенільною групами катіонів L1⁺ [15]. У цьому разі варто розглянути конформаційні параметри алільної групи катіона L1⁺. Торсійний кут Р-С-C=C становить 100,1(4)°, для порівняння: у катіоні пропілтрифенілфосфонію відповідний торсійний кут Р-С-С-С дорівнює 150° [16]. Тобто алільна група в катіоні $L1^+$ розміщена так, що π -орбіталі групи C=C напрямлені у бік атома Фосфору для найефективнішої $\pi_{C=C} \rightarrow \sigma_P$ гіперкон'югації [17]. Однак той факт, що в іншому, кристалографічно незалежному катіоні L2⁺, де нема аліл-фенільної *π*-*π* взаємодії, відповідний торсійний кут набуває менше значення (-89,6(5)°), ніж в L1⁺, свідчить про те, що в катіоні L1⁺ конформація алільної групи є наслідком компромісу між $\pi_{C=C} \rightarrow \sigma_P$ гіперкон'югацією та $\pi_{C=C} \leftrightarrow \pi_{Ph}$ аліл-фенільною взаємодією.

Об'єднання йонів L2⁺ відбувається за допомогою взаємодії лише двох фенільних груп від кожного з катіонів, проте така взаємодія включає як offset face to face (off), так і ef стекінг фенільних груп. Такий тип взаємодії отримав назву parallel four fold phenyl embrace (P4PE) [18]. Завдяки P4PE взаємодії катіони L2⁺ об'єднуються в шестичленні цикли з конформацією крісла, а відтак і в гофровані сітки (101) (рис. 2). Довжини сторін Р...Р в шестикутниках є в межах 7,743–7,899 Å, а відповідні кути становлять Р...Р. 86,35–107,69° (див. таблицю). Відстань між центрами двох фенільних груп, що взаємодіють за типом ef, є дещо менша, ніж у 6PE, і становить 4,828–4,952 Å, кут $\alpha = 66,43-86,29^\circ$. У випадку взаємодії off відстань між площинами

фенільних груп, що взаємодіють, $d_{\perp} = 3,526-3,536$ Å, зміщення ж між їхніми центрами $d_{\leftrightarrow} = 1,221-1,250$ Å, тоді як розрахована оптимальна відстань між двома молекулами бензену, що взаємодіють *off*, $d_{\perp} = 3,6$ Å, $d_{\leftrightarrow} = 1,6$ Å [14]). Схожі сітки формують катіони алілтрифенілфосфонію і в структурах з комплексним аніоном три(μ_2 -бромо-біс(дибромо-трифенілфосфінородатом) [11].

Одна з фенільних груп катіона L2⁺, крім *P4PE*, взаємодіє ще з атомом галогену неорганічного аніона. Атом Br(3) знаходиться на відстані 3,604 Å від площини фенільної групи (рис. 3), а відхилення атома Брому від нормалі до площини фенільної групи – 8,5°, що дає підстави говорити про аніон- π взаємодію [4] між електронодефіцитною фенільною групою катіона L2⁺ та атомом Брому аніона CuBr₄²⁻.

Рис. 4. Фрагмент структури I. Для спрощення не зображені атоми Карбону та Гідрогену. Штрихові лінії показують найкоротші відстані між атомами Фосфору

Отже, структура I формується із гофрованих сіток катіонів L2⁺, об'єднаних за допомогою *P4PE*, та ланцюжків з катіонів L1⁺, сформованих *6PE* і $\pi_{C=C} \leftrightarrow \pi_{Ph}$ взаємодією. У порожнинах між структурними одиницями з катіонів алілтрифенілфосфонію завдяки силам електростатичного притягання, водневим зв'язкам та Br- π взаємодії утримуються аніони CuBr₄²⁻ (див. рис. 4).

- 1. *Turnbull M.M., Landee Ch.P., Wells B.M.* Magnetic exchange interactions in tetrabromocuprate compounds // Coord. Chem. Rev. 2005. Vol. 249. P. 2567–2576.
- AlDamen M.A., Haddad S.F. The nonclassical noncovalent interactions control: a case study of the crystal structure of 3,5-dibromo-2-amino-4,6-dimethylpyridinium tetrahalocuprate [3,5-DBr-2-A-4,6-DMPH]₂CuX₄ (X=Cl,and Br) // J. Mol. Struct. 2011. Vol. 985. P. 27–33.
- 3. *Awwadi F.F., Willett D.D., Twamley B.* The aryl chlorine–halide ion synthon and its role in the control of the crystal structures of tetrahalocuprate(II) ions // Cryst.Growth. Des. 2007. Vol. 7. N 4. P. 624–632.
- 4. *Estarellas C., Bauzá A., Frontera A.* et al. On the directionality of anion $-\pi$ interactions // Phys. Chem. Chem. Phys. 2011. N 13. P. 5696–5702.
- 5. Nishio M., Hirota M., Umezawa Y. The CH-pi interaction: evidence, nature, and consequences Wiley-VCH. 1998.
- 6. *Meyer E. A., Castellano R. K., Diederich F.* Interactions with aromatic rings in chemical and biological recognition // Angew. Chem. Int. Ed. 2003. Vol. 42. N 11. P. 1210–1250.
- 7. *Essawi M.M.El.* Synthesis and characterization of triphenylmethylphosphonium transition metal salts // Trans. Met.Chem. 1997. Vol. 22. N 2. P. 117–122.
- 8. Cambridge Structural Database, deposition number CCDC TPHTCC, XAGLEW.
- 9. *Hasselgren C., Dean Ph. A. W., Scudder M. L.* et al. Dominant cation–cation supramolecular motifs in crystals. Hexagonal arrays of sextuple phenyl embraces in halometalate salts of MePh₃P⁺ // J. Chem. Soc., Dalton Trans. 1997. P. 2019–2027.
- Dance I., Scudder M. Molecules embracing in crystals // Cryst. Eng. Comm. 2009. Vol. 11. P. 2233–2247.
- 11. Cambridge Structural Database, deposition number CCDC BEDSUY, BEDREH, 824413, 824259.
- 12. *Sheldrick G.M.* SHELXS-97 and SHELXL-97. Programs for the solution and refinement of crystal structures, University of Göttingen, Germany, 1997.
- 13. Dance I., Scudder M. Supramolecular motifs: concerted multiple phenyl embraces between Ph_4P^+ cations are attractive and ubiquitous // Chem. Eur. J. 1996. Vol. 2. P. 481–486.
- 14. *Sinnokrot M.O., Sherrill C.D.* High-accuracy quantum mechanical studies of π-interactions in benzene dimmers // J. Phys. Chem. A. 2006. Vol. 110. N 37. P. 10656–10668.
- 15. *Oliveira F. G., Esteves P. M.* Interaction of allylic carbocations with benzene: a theoretical model of carbocationic intermediates in terpene biosynthesis // J. Braz. Chem. Soc. 2011. Vol. 22. N 10. P. 1979–1986.
- 16. *Cherwinski E.W.* Triphenyl(propyl)phosphonium bromide // Acta. Cryst. 2004. Vol. E60. N 8. P. 01442–01443.
- 17. *Lambert J.B., Shawl C.E., Basso E.* Neutral hyperconjugation and one-bond couplings between heavy atoms // Can. J. Chem. 2000. Vol. 78. N 11. P. 1441–1444.

Scudder M., Dance I. Crystal supramolecular motifs. Ladders, layers and labyrinths of Ph₄P⁺ cations engaged in fourfold phenyl embraces // J. Chem. Soc., Dalton Trans. 1998. P. 3155–3165.

NONCOVALENT INTERACTION IN THE CRYSTAL STRUCTURE OF BIS(ALLYLTRIPHENYLPHOSPHONIUM) TETRABROMOCUPRATE (II)

N. Salivon, T. Lenkivs'ka, G. Noshchenko

Ukrainian National University of Forestry and Wood Technology, General Chuprynka Str., 103, 79044 Lviv, Ukraine e-mail: nf-25@mail.ru

By the reaction of aqueous-ethanol solutions of allyltriphenylphosphonium bromide and copper(II) bromide $[CH_2=CHCH_2(C_6H_5)_3P]_2[CuBr_4]$ (I) complex was obtained and X-ray structure characterized: space group $P\bar{1}$, a = 10,7779(3), b = 11,7516(3), c = 17,8317(5) Å, $\alpha = 73,247(2)^\circ$, $\beta = 86,178(2)^\circ$, $\gamma = 67,806(2)^\circ$, V = 2000,16(9) Å³, Z = 2, $\rho_{calc} = 1,644$ g/cm³. In the structure allyltriphenylphosphonium cations incorporates into 1D and 2D supramolecular assemblies through the phenyl-phenyl and allyl-phenyl π -interactions. Positions of $CuBr_4^-$ anions in the channels of cationic network are fixed through numerous weak C–H…Br hydrogen bonds and Br…phenyl group anion- π interactions.

Key words: tetrabromocuprate, allyltriphenylphosphonium, phenyl-phenyl interaction, allylphenyl interaction, anion- π interaction.

НЕКОВАЛЕНТНЫЕ ВЗАИМОДЕЙСТВИЯ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ *БИС*(АЛЛИЛТРИФЕНИЛФОСФОНИЙ) ТЕТРАБРОМОКУПРАТА (II)

Н. Саливон, Т. Ленкивская, Г. Нощенко

Национальный лесотехнический университет Украины, ул. Ген. Чупрынки, 103, 79044 Львов, Украина e-mail: nf-25@mail.ru

Непосредственным взаимодействием аллилтрифенилфосфоний бромида с бромидом меди (II) в водно-этанольном растворе синтезировано и рентгеноструктурно исследовано комплекс состава [CH₂=CHCH₂(C₆H₅)₃P]₂[CuBr₄]: пространственная группа $P\bar{1}$, a = 10,7779(3), b = 11,7516(3), c = 17,8317(5) Å, $\alpha = 73,247(2)^{\circ}$, $\beta = 86,178(2)^{\circ}$, $\gamma = 67,806(2)^{\circ}$, V = 2000,16(9) Å³, Z = 2, $\rho_{pacy} = 1,644$ г/см³. В кристаллической структуре комплекса катионы аллилтрифенилфосфония за счет π - π стекинг взаимодействий фенильных групп и аллильной и фенильной групп формируют одно- и двумерные надмолекулярные образования, в полостях которых находятся анионы CuBr₄^{2–}, зафиксированные с помощью системы водородных связей C–H…Br и анион- π взаимодействий Br…фенильная группа.

Ключевые слова: тетрабромокупрат, аллилтрифенилфосфоний, фенил-фенильное взаимодействие, алил-фенильное взаимодействие, анион-**π** взаимодействие.

Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011