ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 72–78 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 72–78

УДК 546.736.4

БОРОКАРБІДИ РІДКІСНОЗЕМЕЛЬНИХ МЕТАЛІВ З БОР-КАРБОНОВИМИ ГРУПАМИ ВС₂: КРИСТАЛІЧНА СТРУКТУРА Уb₁₅B₄C₁₄

В. Бабіжецький¹, Б. Котур¹, А. Сімон²

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: v.babizhetskyy@googlemail.com

²Інститут досліджень твердого тіла Макса Планка, Гайзенбертирассе, 1, 70569 Штутгарт, Німеччина,

Рентгенівським методом монокристала досліджено кристалічну структуру сполуки $Yb_{15}B_4C_{14}$. Сполука кристалізується в тетрагональній сингонії, просторова група *P4/mnc* з параметрами гратки: a = 7,8601(5) Å, c = 15,504(1) Å, Z=2, $R_1 = 0,038$ ($wR_2 = 0,085$) для 478 рефлексів з $I_0 > 2\sigma(I_0)$. У кристалічній структурі окремі атоми Карбону розміщені у октаедрах з атомів Ітербію, а групи BC₂ займають деформовані тетрагональні антипризми. Сполуку можна описати ізоелектронно формулою (Yb^{3+})₁₅(C^{4-})₆(CBC⁵⁻)₄•e⁻.

Ключові слова: борокарбіди рідкісноземельних металів, кристалічна структура.

Бінарні карбіди рідкісноземельних металів (R) кристалізуються у структурних типах, які містять як ізольовані атоми Карбону, пари C₂ так і групи з трьох атомів Карбону (C₃). Наприклад, бінарні сполуки R_3 C, R_2 C та R_4 C₅ кристалізуються на основі структурного типу NaCl. Ізольовані атоми Карбону у сполуках R_3 C займають октаедричні порожнини, утворені атомами R. У сполуках R_2 C та R_4 C₅ поряд з ізольованими атомами Карбону, розміщеними в октаедрах з атомів металів, існують також пари C₂ [1, 2]. Сполуки ряду R_3 C₄ кристалізуються у структурному типі Sc₃C₄. У цих структурах існують три типи заповнень атомами Карбону поліедрів, утворених атомами R: *a*) ізольовані атоми Карбону; *б*) пари C₂ та *b*) групи C₃ [3]. В інших бінарних карбідах складу R_4 C₇ (R = Y, Ho, Er, Tm, Lu) ізольовані атоми Карбону та групи C₃ також оточені поліедрами з атомів R [4, 5]. У структурах сполук R_2 C₃ та RC_2 атоми Карбону утворюють тільки пари C₂.

У структурах тернарних борокарбідів $R_x B_y C_z$ також відомі групи з трьох атомів неметалу – CBC, що розміщені у деформованих тетрагональних антипризмах. Групи CBC можуть бути лінійні та вигнуті. Раніше повідомляли про утворення тернарних сполук складу $Y_3 C_{4-x} B_x$, $Gd_3 C_{4-x} B_x$ та $Ho_3 C_{4-x} B_x$, структури яких було зачислено без дослідження їхньої кристалічної структури до структурного типу $Sc_3 C_4$ [3, 6, 7]. Однак проведене дослідження кристалічної структури методом монокристала сполуки $Er_{15} B_4 C_{16} \approx Er_3 C_{4-x} B_x$ (x = 0.8) засвідчило, що вона також кристалізується у структурному типі $Sc_3 C_4$. У структурі сполуки $Er_{15} B_4 C_{16}$ атоми Ег утворюють ряди октаедрів уздовж [001], які заповнені почергово атомами Карбону та парами C_2 . Групи BC₂ розміщені у деформованих тетрагональних антипризмах. Виконані пізніше дослідження кристалічних структур сполук, синтезованих за складів Tb₁₅ $B_4 C_{16}$ та

[©] Бабіжецький В., Котур Б., Сімон А., 2012

Ег₁₅В₄С₁₆, не виявили існування групи С₂ у структурі цих сполук [8], що привело до незначного зміщення стехіометричного складу обох сполук. Для уточнення складу та кристалічної структури цього ряду сполук $R_{15}B_4C_{16}\approx R_3(B,C)_4\approx R_{15}B_4C_{14}$ ми також дослідили методом монокристала кристалічну структуру сполуки Yb₁₅B₄C₁₄, яка належить до цього ізоструктурного ряду.

Зразки складу $Yb_{15}B_4C_{16}$ для дослідження кристалічної структури сполуки синтезовано сплавлянням чистих елементів: ітербій (Alfa-Aesar, Johnson Matthey Company, чистотою \geq 99,99 мас. %), графітовий порошок (Aldrich, \geq 99,999 мас. %), кристалічний бор (H.C. Starck, Germany, чистотою \geq 99,9 мас. %) при 1 270 К та тиску р < 10^{-5} мбар. Стружку рідкісноземельних металів перемішували з порошками бору та графіту, узятими в стехіометричному співвідношенні 15:4:16, і пресували у сталевій пресформі. Спресовані таблетки масою 1 г сплавляли у високочастотній печі (30 хв при 1 970 К) в атмосфері очищеного аргону. Гомогенізувальний відпал сплавів, загорнутих у молібденову фольгу, проводили при 1 370 К упродовж 1000 год у вакуумованих кварцових ампулах. Відпалені зразки гартували в холодній воді, не розбиваючи ампул. Оскільки зразки легко гідролізують на повітрі, їх готували та досліджували в атмосфері очищеного аргону [9].

Кристал неправильної форми відібрали з подрібненого зразка складу $Yb_{15}B_4C_{16}$. На етапі попереднього дослідження методами Лауе та коливання (камера Бюргера, CuK_{α} випромінювання) визначили тетрагональну симетрію кристала та приблизні значення періодів гратки. Масив експериментальних даних отримано на автоматичному монокристальному дифрактометрі STOE IPDS II. Кристалохімічні характеристики сполуки та деталі знімання наведені в табл. 1.

Модель структури визначено прямими методами з використанням програми SIR97 [10] та уточнено в анізотропному наближенні теплових коливань для атомів Ітербію за допомогою програми SHELX-97 [11] у комплексі програм WinGX [12]. У ході уточнення положення атомів Ітербію у правильній системі точок (ПСТ) 4*e* в анізотропному наближенні виявлено їхні підвищені значення анізотропних теплових параметрів уздовж напряму *c*. Отже, уточнення позиції Yb2 виконано шляхом розщеплення її на дві Yb2/Yb5 із заповненням позицій 0,903(7)/0,097(7), відповідно. Кінцеві значення координат і теплових параметрів атомів кристалічної структури складу Yb₁₅B₄C₁₄ наведені у табл. 2, 3.

Кристалічна структура сполуки Yb₁₅B₄C₁₄ (рис. 1) близькоспоріднена до структурного типу Sc₃C₄. Як і структура сполуки Tb₁₅B₄C₁₄, вона утворена двома різними типами шарів, сформованих атомами Ітербію. Порожнини у шарах заповнені атомами неметалів. У порожнинах одного шару містяться нелінійні CBC групи та окремі атоми Карбону, а другий шар містить лише октаедрично координовані окремі атоми Карбону. Частина октаедричних порожнин у другому типі шарів сполуки Yb₁₅B₄C₁₄ не зайнята, тоді як у структурах типу Sc₃C₄ та її тернарному аналогу Er₁₅B₄C₁₆ вони заповнені групами C₂. Нелінійні CBC групи розміщені у деформованих тетрагональних антипризмах, сформованих десятьма атомами Ітербію. Кут нелінійної групи C-B-C становить 161,7(6)°, а відстань C3-B дорівнює 1,520(9) Å (табл. 4). Групи C-B-C у структурі Yb₁₅B₄C₁₄ мають таке ж оточення з атомів металу, як і групи C₃ у структурі Sc₃C₄. Для порівняння відстані C-C у групі C₃ структури Sc₃C₄ становлять 1,34 Å, а кут C-C-C – 175,8°. Зазначимо, що відмінністю між структурами Sc₃C₄ та уструктурі C₂.

Таблиця 1

Кристалохімічні характеристики, деталі знімання та уточнення структури сполуки Yb₁₅B₄C₁₄

Формула	$Yb_{15}B_4C_{14}$
Просторова група	$P4_2/mnc$
Символ Пірсона, Z	<i>tP</i> 66, 2
Параметри комірки	
a, Å	7,8601(5)
c, Å	15,504(1)
Об'єм елементарної комірки, Å ³	957,8(1)
Обчислена густина, г/см ³	9,73
Коефіцієнт адсорбції, 1/см	72,38
Розмір кристала / мм ³	0,12 x 0,09 x 0,03
Випромінювання і довжина хвилі, Å	Mo <i>K</i> α, 0,71069
Дифрактометр	STOE IPDS II
Кількість уточнюваних параметрів	26
Уточнення	F^2
$2\theta_{\text{max}}$ τα $(\sin\theta/\lambda)_{\text{max}}$	72,96; 0,762
h, k, l	-13 < h < 13
	-13 < k < 13
	-19 < <i>l</i> <1 9
Загальна кількість відбить	5867
Кількість незалежних відбить	$587(R_{\rm int} = 0.095)$
Кількість відбить з $I_0 \ge 2\sigma(I_0)$	$478 \ (R_{\sigma} = 0.026)$
Φ актор розбіжності R_1 (R_1 всі відбиття) ^а	0,038 (0,059)
wR_2 (wR_2 всі відбиття) ^b	0,085 (0,097)
$S \mod F^2$:	1,13
$\Delta \rho_{\text{max}}$ τα $\Delta \rho_{\text{min}}$ (e Å ⁻³)	2,49/-2,73

^a $R_1(F) = [\Sigma(|F_o|-|F_c|)]/\Sigma|F_o|.$ ^b $wR_2(F^2) = [\Sigma[w(F_o^2-F_c^2)^2/\Sigma[w(F_o^2)^2]]^{1/2}; [w^{-1} = \sigma^2(F_o)^2 + (0.053)^2 + 0.000P],$ $\mu e P = (F_o^2 + 2F_c^2)/3.$

Таблиця 2 Координати та ізотропні теплові параметри атомів у структурі Yb₁₅B₄C₁₄, Å²

	•	<u>^</u>		1 2	10 01	
Атом	ПСТ	КЗП	x	У	z	$U_{\rm eq}/U_{\rm iso}$
Yb1	2a	1	0	0	0	0,009(1)
Yb2	4e	0,903(7)	0	0	0,3197(1)	0,016(1)
Yb3	8h	1	0,40446(6)	0,20323(6)	0	0,010(1)
Yb4	16 <i>i</i>	1	0,10047(5)	0,29219(5)	0,14682(2)	0,009(1)
Yb5	4e	0,097(7)	0	0	0,3434(1)	0,016(1)
C1	4e	1	0	0	0,149(1)	0,011(3)
C2	8h	1	0,704(1)	0,084(1)	0	0,007(2)
C3	16 <i>i</i>	1	0,421(1)	0,198(1)	0,1626(5)	0,008(1)
В	8g	1	0,343(1)	0,156(1)	1/4	0,006(1)

Таблиця З

Анізотропні теплові параметри атомів у структурі $Yb_{15}B_4C_{14}$, Å ²						1 405111191
Атом	U_{11}	U ₂₂	U_{33}	U_{23}	U_{13}	U_{12}
Yb1	0,0005(2)	0,0005(2)	0,0006(3)	0	0	0
Yb2	0,0016(1)	0,0016(1)	0,0024(8)	0	0	0
Yb3	0,0006(2)	0,0055(2)	0,0015(2)	0	0	0,0006(1)
Yb4	0,0003(1)	0,0014(1)	0,0015(1)	-0,0003(1)	-0,0001(1)	0,0004(1)
Yb5	0,0016(1)	0,0016(1)	0,0024(8)	0	0	0

Рис. 1. Проекція кристалічної структури сполуки Yb₁₅B₄C₁₄ у напрямі [010]

Таблиця 4

Атом δ	Атом б	Атом б
Yb1 2C1 2,31(2)	Yb3 2Yb5 3,438(1)	C1 Yb1 2,31(2)
4C2 2,40(1)	2Yb3 3,5060(8)	4Yb4 2,4122(5)
8Yb4 3,3165(5)		Yb5 2,65(2)
4Yb3 3,5334(6)	Yb4 C2 2,2801(8)	
	C1 2,412(1)	C2 2Yb4 2,2801(8)
Yb2 C1 2,65(2)	C3 2,377(9)	Yb3 2,40(1)
4C3 2,452(9)	C3 2,549(9)	Yb1 2,40(1)
B 2,80(1)	C3 2,619(8)	Yb3 2,52(1)
4Yb4 3,5535(5)	B 2,599(7)	
4Yb4 3,606(1)	Yb1 3,3165(4)	C3 B1 1,520(9)
4Yb3 3,706(1)	Yb3 3,3608(6)	1Yb4 2,37(1)
	Yb3 3,3812(6)	Yb5 2,439(9)
Yb3 2C2 2,40(1)	Yb3 3,4011(6)	Yb2 2,452(9)
C2 2,52(1)	2Yb4 3,4110(6)	Yb3 2,525(9)
2C3 2,53(1)	Yb4 3,412(1)	Yb4 2,549(9)
2Yb4 3,6608(6)	Yb5 3,5187(5)	
2Yb4 3,3812(6)		B 2C3 1,520(9)
2Yb4 3,4014(6)	Yb5 4C3 2,439(9)	2Yb4 2,599(7)
Yb3 3,4418(8)	C1 3,01(2)	2Yb4 2,694(7)
Yb1 3,5334(6)		

Міжатомні віддалі (δ , Å) у структурі сполуки Yb₁₅B₄C₁₄

Шари, сформовані з атомів металів і заповнені нелінійними групами CBC та окремими атомами КАрбону, є характерними для борокарбідів P3M, що належать до структурного типу $Gd_5B_2C_5$ (B/C віддаль – 1,46 Å) [13] та $Tb_{10}B_7C_{10}$ (B/C віддалі – від 1,46 до 1,50 Å) [14]. Лінійні групи CBC трапляються також у типах $Gd_4B_3C_4$, Sc_2BC_2 та Lu_3BC_3 [15].

Результати уточнення кристалічної структури Yb₁₅B₄C₁₄ не відрізняються від результатів, наведених у [8] для Tb₁₅B₄C₁₄ та Er₁₅B₄C₁₄. Цим підтверджено склад ізоструктурного ряду тернарних сполук $R_{15}B_4C_{14}$, що раніше наведений як $R_3C_{4.x}B_x$ і віднесений до структурного типу Sc₃C₄ [3]. У структурі сполуки Yb₁₅B₄C₁₄ октаедри, сформовані атомами Yb4 (екваторіальні) та Yb1, Yb2 (Yb5), розташовані на вершинах октаедра, заповнені атомами C1. Розщеплення позиції 4*e* на дві Yb2/Yb5 свідчить про можливість часткового заміщення атомів C1 на пари C–C. Таке заміщення, проте, не можна уточнити цим методом.

Рис. 2. Зміна об'єму елементарної комірки залежно від РЗМ (R) для сполук $R_{15}B_4C_{14}$

Розраховані у [8] ефективні магнітні моменти для атомів Tb, Dy, Er у сполуках ряду $R_{15}B_4C_{14}$ свідчать про їхній ступінь окиснення +3. Як бачимо з рис. 2, для ряду $R_{15}B_4C_{14}$ об'єм елементарної комірки сполуки Yb₁₅B₄C₁₄ не відхиляється від лінійної залежності об'єму елементарної комірки від типу P3M, що свідчить про ступінь окиснення атомів Ітербію +3. Отже, враховуючи ступені окиснення Ітербію, груп BC₂ та ізольованих атомів Карбону [16], склад сполуки Yb₁₅B₄C₁₄ можна ідеалізовано описати формулою (Yb³⁺)₁₅(C⁴⁻)₆ (CBC⁵⁻)₄•e⁻.

^{1.} *Adachi G.-Y., Imanaka N., Fuzhong Z.* Rare earth carbides // Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science B.V. 1991. P. 61–189.

^{2.} *Czekalla R., Hüfken T., Jeitschko W.* et al. The Rare Earth Carbides R_4C_5 with R = Y, Gd, Tb, Dy, and Ho // J. Solid State Chem. 1997. Vol. 132 . P. 294–299.

^{3.} *Pöttgen R., Jeitschko W.* Sc₃C₄, a carbide with C₃ units derived from propadiene // Inorg. Chem. 1991. Vol. 30. P. 427–431.

- Czekalla R., Jeitschko W., Hoffmann R.-D., Rabeneck H. Preparation, Crystal Structure, and Properties of the Lanthanoid Carbides Ln₄C₇ with Ln: Ho, Er, Tm, and Lu // Z. Naturforsch. 1996. Vol. 51b. P. 646–654.
- Mattausch Hj., Gulden T., Kremer R. K. et al. Ho₄C₇, Y₄C₇: Carbides with C₃⁴⁻ and C⁴⁻ Ions // Z. Naturforsch. 1994. Vol. 49b. P. 1439–1443.
- Vomhof T., Pöttgen R., Jeitschko W. Magnetic Properties of the Carbides Ln₃C₄ (Ln: Ho–Lu) and Y₃B_{0.2}C_{3.8} with Sc₃C₄-Type Structure // J. Less-Common Met. 1991. Vol. 171. P. 95–99.
- Bidaud E., Hiebl K., Bauer J. Magnetic properties of the borocarbides R₃B_xC_{4-x} (R = Gd, Ho; x < 1) with Sc₃C₄ -type structure // J. Alloys Compd. 1998. Vol. 279. P. 97–101.
- 8. *Babizhetskyy V., Simon A., Mattausch Hj.* et al. New ternary rare-earth metal boride carbides $R_{15}B_4C_{14}$ (R = Y, Gd–Lu) containing BC₂ units: Crystal and electronic structures, magnetic properties // J. Solid State Chem. 2010. Vol. 183. P. 2343–2351.
- Krauss H. L., Stack H. Reaktionen reduzierter Philips-Kontakte // Z. Anorg. Allg. Chem. 1969. Vol. 366. P. 34–42.
- 10. Altomare A.,. Burla M. C, Camalli M. et al. SIR97: A new program for solving and refining crystal structures // J. Appl. Crystallogr. 1999. Vol. 32. P. 115–119.
- 11. *M.Sheldrick G.* SHELXL-97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- 12. Farrugia L. J. WinGX suite for small molecule single-crystal crystallography // J. Appl. Crystallogr. 1999. Vol. 32. P. 837–838.
- 13. *Bidaud E., Hiebl K., Hoffman R.-D.* et al. Structural, electronic, and magnetic properties of ternary rare-earth metal borocarbides $R_5B_2C_5$ (R = Y, Ce–Tm) containing BC₂ "molecules" // J. Solid State Chem. 2000. Vol. 154. P. 286–295.
- Babizhetskyy V., Mattausch Hj., Simon A. Infinite and finite boron carbon branched chains: the crystal structures of new ternary boride carbides RE₁₀B₇C₁₀ and RE₄B₃C₄ // Z. Anorg. Allg. Chem. 2009. Vol. 635. P. 737–742.
- Oeckler O., Jardin C., Mattausch Hj. et al. Synthesis characterization, structural and theoretical analysis of a new rare-earth boride carbide Lu₃BC₃ // Z. Anorg. Allg. Chem. 2001. Vol. 627. P. 1389–1394.
- 16. Ansel J. B. D., Bonhomme F., Boucekkine G. et al. Boron-carbon chains stabilized in rare earth metallic frameworks // Angew. Chem. Int. Ed. Engl. 1996. Vol. 35. P. 2098–2101.

RARE-EARTH BORIDE CARBIDES CONTAINING BC₂ UNITS: THE CRYSTAL STRUCTURE OF $Yb_{15}B_4C_{14}$

V. Babizhetskyy¹, B. Kotur¹, A. Simon²

¹ Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine, e-mail: v.babizhetskyy@googlemail.com

²Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse, 1, D-70569 Stuttgart, Germany

The crystal structure of Yb₁₅B₄C₁₄ has been refined using single crystal X-ray diffraction data. It crystallizes in the teragonal space group *P4/mnc*, Pearson symbol *tP*66, *a* = 7.8601(5) Å, c = 15.504(1) Å, Z = 2, $R_1 = 0.038$ (w $R_2 = 0.085$) for 478 reflections with $I_0 > 2\sigma(I_0)$. The structure contains discrete carbon atoms and bent CBC units in octahedral and distorted bicapped antiprisms, respectively. The electron partition of Yb₁₅B₄C₁₄ can be written as (Yb³⁺)₁₅(C⁴⁻)₆(CBC⁵⁻)₄•e⁻.

Key words: rare-earth metal borocarbide, crystal structure.

БОРОКАРБИДЫ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ С БОР-УГЛЕРОДНЫМИ ГРУППАМИ ВС₂: КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Уb₁₅B₄C₁₄

В. Бабижецкий¹, Б. Котур¹, А. Симон²

¹Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия 6, 79005 Львов, Украина, e-mail: v.babizhetskyy@googlemail.com

²Институт исследований твёрдого тела Макса Планка, Гайзенбергшрассе, 1, 70569 Штутгарт, Германия

Рентгеновским методом монокристалла исследовано кристаллическую структуру соединения Yb₁₅B₄C₁₄. Соединение кристаллизируется в тетрагональной сингонии, пространственная группа *P4/mnc*, символ Пирсона *tP*66 с параметрами решетки: a = 7,8601(5) Å, c = 15,504(1) Å, Z = 2, $R_1 = 0,038$ (w $R_2 = 0,085$) для 478 рефлексов з $I_0 > 2\sigma(I_0)$. В кристаллической структуре отдельные атомы углерода занимают пустоты в октаэдрах из атомов иттербия, а групы ВСВ – пустоты в деформованных тетрагональных антипризмах. Соединение можно описать изоелектронно формулой (Yb³⁺)₁₅(C^{4–})₆(CBC^{5–})₄•e⁻.

Ключевые слова: борокарбиды редкоземельных металлов, кристаллическая структура.

Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011