ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 42–49 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 42–49

УДК 546:548.736.4

ПОТРІЙНА СИСТЕМА Ег-Си-Ge ПРИ 870 К

М. Коник, А. Горинь, Р. Серкіз

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: m_konyk@franko.lviv.ua

Методами рентгенівського фазового та частково локального рентгеноспектрального аналізів досліджено взаємодію компонентів у системі Ег–Си–Ge, для якої побудовано ізотермічний переріз діаграми стану при 870 К. Підтверджено існування шести тернарних сполук: ErCu₂Ge₂ (структурний тип (СТ) CeGa₂Al₂, просторова група (ПГ) *14/mmm*), Er₂CuGe₆ (СТ Ce₂CuGe₆, ПГ *Amm2*), Er₆Cu₈Ge₈ (СТ Gd₆Cu₈Ge₈, ПГ *Immm*), ErCu_{0,39}Ge₂ (СТ CeNiSi₂, ПГ *Cmcm*), ErCuGe (СТ Caln₂, ПГ *P6₃/mmc*), ErCu_{0,67}Ge_{1,33} (СТ AlB₂, ПГ *P6/mmm*). На основі бінарного германіду Er₅Ge₃ (СТ Mn₅Si₃) виявлено існування твердого розчину заміщення з розчинністю Купруму до 0,1 ат. частки. Виміряно електричні властивості сполук ErCuGe і ErCu₂Ge₂ в інтервалі температури свідчать про металічний тип електропровідності цих сполук.

Ключові слова: потрійна система, кристалічна структура, питомий електроопір, диференціальна термо-е.р.с.

Систематичні дослідження взаємодії германію з рідкісноземельними (P3M) та перехідними металами четвертого періоду є теоретичною основою для пошуку і створення нових матеріалів на основі інтерметалевих сполук з цінними властивостями. Особливий інтерес становлять системи за участю 3*d*-елементів тріади феруму, манґану і купруму. Ізотермічні перерізи діаграм стану потрійних систем Er-{Fe,Co,Ni}-Ge при 1 070 K та Er-Mn-Ge при 870 K побудовано раніше [1, 2], діаграму фазових рівноваг системи Er-Cu-Ge систематично не досліджували.

Аналіз літературних даних засвідчив, що потрійні системи {Y, La, Gd, Ho, Er, Lu}–Cu–Ge досліджували лише стосовно утворення інтерметалевих сполук. Низка праць присвячена визначенню кристалічної структури і деяких фізичних характеристик (переважно магнітних) таких серій ізотипних германідів: RCu_2Ge_2 (R = Y, La, Ce–Yb) (CT CeGa₂Al₂) [3, 4], RCuGe (R = Y, Ce, Tb–Lu) (CT CaIn₂) [5, 6], R_2CuGe_6 (R = Y, La, Ce–Sm, Gd–Yb) (CT Ce₂CuGe₆) [7, 8], $RCu_{1-x}Ge_2$ (R = Y, La, Ce–Lu) (CT CeNiSi₂) [9, 10], $R_6Cu_8Ge_8$ (R = Y, Pr, Nd, Sm, Gd–Lu) (CT Gd₆Cu₈Ge₈) [11], $R(Cu,Ge)_2$ (R = Y, La, Ce–Sm, Gd–Tm, Lu) (CT AlB₂) [12], серед яких є шість сполук Ербію ErCu₂Ge₂, ErCuGe, Er₂CuGe₆, ErCu_{0,39}Ge₂, Er₆Cu₈Ge₈, ErCu_{0,67}Ge_{1,33}. Зазначимо, що гомогенізацію їх проводили за різних температур.

Наша мета – побудувати ізотермічний переріз діаграми стану системи Ег–Си–Ge при 870 К з використанням літературних даних і результатів експериментальних досліджень.

[©] Коник М., Горинь А., Серкіз Р., 2012

Сплави виготовляли в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону з використанням губчастого титану як гетера. Втрати шихти під час плавлення контролювали повторним зважуванням і, якщо маса зразка не відхилялась від маси шихти більше ніж на 1–2 %, склад сплаву вважали таким, що дорівнює складу шихти. Для надання сплавам рівноважного стану проводили гомогенізувальний відпал при 870 К протягом 720 год з гартуванням у холодній воді без попереднього розбивання ампул. Рентгенофазовий аналіз виконували за дифрактограмами зразків (дифрактометр ДРОН-2,0М, Fe K_{α} -випромінювання, Mn-фільтр). Хімічний склад фаз у синтезованих зразках контролювали за допомогою растрового електронного мікроскопа-мікро-аналізатора РЕММА-102-02. Для дослідження зразки заплавляли в алюмінієві кільця сплавом Вуда та полірували за допомогою абразивного матеріалу. Розрахунки та індексування порошкових дифрактограм проводили з використанням програми РоwderCell [13] (розрахунок теоретичних дифрактограм) та пакета програм WinCSD [14] (уточнення періодів гратки).

Диференціальну термоелектрорушійну силу (щодо міді) і питомий електроопір вимірювали в інтервалі температур 80–380 К [15].

Подвійні системи Ег–Ge, Cu–Ge, Er–Cu достатньо добре вивчені, для них побудовано діаграми стану та визначено кристалічні структури сполук [16–21].

Для уточнення і перевірки літературних даних та вивчення фазових рівноваг у системі Ег-Си-Ge було виготовлено 42 потрійні і 4 подвійні сплави. Для всіх зразків отримано дифрактограми, на підставі яких виконано фазовий аналіз. З метою визначення якісного і кількісного складу сплавів досліджено мікроструктури деяких зразків. Фотографії мікрошліфів чотирьох сплавів і їхній фазовий склад показані на рис. 1, 2. Дані рентгенофазового та металографічного досліджень добре узгоджуються між собою. Згідно з цими відомостями, за температури відпалу 870 К у подвійних системах виявлено існування таких бінарних сполук: ErCu₅ (СТ Be₅Au), ErCu₂ (СТ КНg₂), ErCu (CT CsCl), Cu₃Ge (моноклінна), ErGe_{2.83} (CT DyGe₃), Er₂Ge₅ (CT Er₂Ge₅), ErGe_{1.83} (CT DyGe_{1.85}), ErGe_{1.5} (CT AlB₂), Er₃Ge₄ (CT Er₃Ge₄), ErGe (CT CrB), Er₁₁Ge₁₀ (СТ Ho₁₁Ge₁₀), Er₅Ge₄ (СТ Sm₅Ge₄), Er₅Ge₃ (СТ Mn₅Si₃). Ізотермічний переріз діаграми стану системи Ег-Си-Ge при 870 К зображено на рис. 3. Для системи Ег-Си-Ge характерне утворення шести тернарних германідів, кристалографічні характеристики яких наведено в табл. 1. На основі бінарного германіду Er₅Ge₃ (СТ Mn₅Si₃) виявлено існування твердого розчину заміщення до 0,1 ат. частки Купруму. Склади сплавів і уточнені періоди ґратки в межах твердого розчину наведено в табл. 2.

Таблиця	1
---------	---

Сполука	СТ	СП	ПГ	Періоди ґратки, нм			
				а	b	С	
1. ErCu ₂ Ge ₂	CeGa ₂ Al ₂	<i>tI</i> 10	I4/mmn	0,4003(1)	-	1,0317(2)	
2. Er ₂ CuGe ₆	Ce ₂ CuGe ₆	oS18	Amm2	0,3977(2)	0,4080(6)	2,0837(3)	
3. Er ₆ Cu ₈ Ge ₈	Gd ₆ Cu ₈ Ge ₈	oI22	Immm	1,3790(1)	0,6617(2)	0,4153(1)	
4. ErCu _{0,39} Ge ₂	CeNiSi ₂	oS16	Cmcm	0,4066(3)	1,602(1)	0,3941(6)	
5. ErCu _{0,67} Ge _{1,33}	AlB_2	hP3	P6/mmc	0,4001(1)	_	0,4003(2)	
6. ErCuGe	Caln ₂	hP6	$P6_3/mmm$	0,4227(1)	_	0,7108(2)	

Кристалографічні характеристики тернарних сполук системи Er-Cu-Ge*

*Номер у таблиці відповідає номеру сполуки на рис. 3

Рис. 1. Фотографії мікрошліфів сплавів: а – Er₂₀Cu₆₀Ge₂₀ (світла (основна) фаза – ErCuGe, темна фаза – Cu); ×600; б – Er₂₀Cu₃₀Ge₅₀ (світло-сіра (основна) фаза – Er₆Cu₈Ge₈, сіра ϕ аза – ErCu₂Ge₂, темна ϕ аза – Ge); \times 500

Рис. 2. Фотографії мікрошліфів сплавів: a – Er₂₁Cu₁₉Ge₆₀ (світло-сіра (основна) фаза Er₆Cu₈Ge₈, сіра фаза – Er₂CuGe₆, темна фаза – Ge); збільшення ×500; δ – Er_{22,7}Cu_{42,3}Ge₃₅ (світло-сіра (основна) фаза – Er₆Cu₈Ge₈, сіра фаза – ErCu₂Ge₂, темна фаза – Cu₃Ge), ×800.

Рис. 3. Ізотермічний переріз системи Er – Cu – Ge при 870 К

44

	~
Таблиия	2

Склад оплари	Періоди	$V_{\rm III}$		
Склад сплаву	а	С	<i>v</i> , HM	
Er ₅ Ge ₃	0,835	0,627	0,3803	
Er _{62,5} Cu _{2,5} Ge ₃₅	0,8317(3)	0,6297(3)	0,3789	
Er _{62,5} Cu ₅ Ge _{32,5}	0,8339(3)	0,6246(1)	0,3778	
Er _{62,5} Cu ₇ Ge _{30,5}	0,8321(2)	0,62305(1)	0,3753	
Er _{62,5} Cu ₁₀ Ge _{27,5}	0,8298(9)	0,62166(2)	0,3724	
Er _{62,5} Cu ₁₂ Ge _{25,5}	0,8292(5)	0,62154(2)	0,3718	

Склад і періоди гратки сплавів твердого розчину Er₅Cu_xGe_{3-x}

Для сполук ErCuGe та ErCu₂Ge₂ досліджено електричні властивості. Залежність питомого електроопору від температури вимірювали в інтервалі 80–380 К. Для германіду ErCuGe питомий електроопір змінюється в межах 0,965–2,796 мкОм·м, а для диференціальної термо-е.р.с. характерні невеликі від'ємні значення від –4,9 до –15,7 мкВ/К. Диференціальна термо-е.р.с. для ErCu₂Ge₂ в інтервалі температури 140–380К змінюється від –0,02 до –1,37 мкВ/К. Питомий електроопір для цієї сполуки виміряний за кімнатної температури і становить 9,27 мкОм·м.

Рис. 4. Залежність питомого електроопору від температури для сполуки ErCuGe

Рис. 5. Залежність диференціальної термое.р.с. від температури для сполук ErCuGe (1) та ErCu₂Ge₂ (2)

Температурні залежності питомого електроопору (рис. 4) та малі від'ємні значення диференціальної термо-е.р.с. (рис. 5) сполук ErCuGe і ErCu₂Ge₂ свідчать про те, що для них характерний металічний тип провідності.

З метою виявлення особливостей взаємодії Ербію з Купрумом і Германієм ми виконали порівняльний аналіз результатів систематичного вивчення потрійних систем P3M–Cu–Ge і P3M–M–Ge (M – перехідний метал: Mn, Fe, Co, Ni, Cu) щодо впливу на характер взаємодії як R-, так і M- компонента. На сьогодні ізотермічні перерізи діаграм стану побудовані для десяти систем P3M – Cu – Ge (P3M = Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, Tm та Yb), у тім числі з нашим дослідженням (табл. 3).

45

Таблиця З

P3M	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
n	5	6	<u>8</u>	<u>8</u>	<u>6</u>	<u>6</u>	<u>4</u>	5
P3M	Tb	Dy	Но	Er	Tm	Yb	Lu	
n	4	6	6	<u>6</u>	4	4	4	

Ступінь дослідженості потрійних систем РЗМ-Си-Ge

<u>n</u> – ізотермічний переріз діаграми стану побудовано.

n – ізотермічний переріз діаграми стану не побудовано.

Системи РЗМ-Си-Ge вирізняються утворенням значної кількості тернарних сполук, невеликою вибірковою розчинністю третього компонента в бінарних сполуках подвійних систем, що обмежують потрійні. Найпротяжніші тверді розчини ~0,1 ат. частки третього компонента виявлені в системах Ce-Cu-Ge і Tb-Cu-Ge на основі сполук CeGe_{2-x} (CT α-ThSi₂) і TbCu₂ (CT KHg₂) [22, 24]. Твердий розчин Cu в TbGe_{1.5} (СТ AlB₂) складної форми утворюється частково по типу включення атомів Купруму у дефекти вихідної структури типу AlB2, переходячи у твердий розчин заміщення атомів Ge на Cu [24]. Переважна більшість тернарних германідів у системах РЗМ-Си-Ge утворюється в разі точкового складу. Області гомогенності різної протяжності мають у більшості систем інтерметаліди зі структурою типу AlB₂ [29]. У випадку з Європієм значна область гомогенності властива і сполуці зі структурою типу CeGa₂Al₂ [27]. Щодо концентраційного складу тернарних сполук, які виявлені в досліджених системах, то головно вони утворюються за вмісту 0,20-0,33 ат. частки РЗМ. Стосовно складів і типів кристалічних структур тернарних германідів, то найповніше представлені ізоструктурні ряди RCu₂Ge₂, RCu_{1-x}Ge₂, R₂CuGe₆. Сполуки зі структурою типу AlB₂ виявлені практично для всіх РЗМ, крім Європію та Ітербію [12]. Причому у системах з РЗМ церієвої підгрупи Церієм, Празеодимом, Неодимом і Самарієм на квазібінарному розрізі RCu₂-RGe₂ утворюються по два тернарні інтерметаліди, які кристалізуються у СТ AlB₂ [23, 29]. Перехід до ітрієвої підгрупи приводить спочатку до утворення фази TbCu_{1.0-1.2}Ge_{1.0-0.8}, яка включає і еквіатомний склад [25]. У системах Dy-Cu-Ge i Er-Cu-Ge простежується утворення дефектних фаз DyCu_{0,31-0,13}Ge_{1,,31-1,49} і ErCu_{0,67}Ge_{1,33}, бідніших на Купрум, а в системах {Tm,Yb}-Си-Ge [26, 23] сполука зі СТ AlB2 зникає. Германіди DyCu1.24Ge0.76, ErCuGe, TmCu_{1.24}Ge_{0.76} (при 870 К) і УbCuGe (при 670 К) кристалізуються у CT CaIn₂ [29, 23]. Одночасне існування германідів зі структурами обох типів у випадку Dy і Er свідчить про морфотропний структурний перехід AlB₂→CaIn₂. Водночас у літературі є відомості про реалізацію СТ СаІn₂ для сполук СеСиGe, EuCuGe, які виявлені за іншої температури, ніж температура відпалу відповідних потрійних систем, а саме – при 1 173 К [30]. Тому можна зробити висновок, що область утворення сполук складів R(Cu,Ge)₂ і RCuGe залежить не тільки від природи рідкісноземельних металів, а й від температури гомогенізації. З виконаного аналізу випливає, що досліджена система Er-Си-Ge найбільш подібна до системи Dy-Си-Ge.

У потрійних системах Er-{Mn, Fe, Co, Ni, Cu}-Ge у разі заміни *M*-компонента зі зростанням протонного числа 3*d*-металу кількість тернарних германідів при переході Mn \rightarrow Fe \rightarrow Co \rightarrow Ni \rightarrow Cu спочатку значно зростає, а потім дещо зменшується $4\rightarrow 8\rightarrow 16\rightarrow 14\rightarrow 6$. Такий вплив перехідних металів на характер взаємодії зумовлений, найімовірніше, відмінностями в електронній будові перехідних металів, а саме – заповненістю 3*d*-електронного підрівня. Зазначимо, що стехіометричні склади сполук ErM_2Ge_2 (Mn, Fe, Co, Ni) зі структурою типу CeGa₂Al₂, ErM_xGe_{2-x} (M = Mn, Fe, Co) і ErNiGe₂ (CT CeNiSi₂) та ErMGe (M = Mn,Co,Ni) (CT TiNiSi) утворюються і в цих системах. Область існування тернарних сполук, особливо у системі Er–Ni–Ge, зміщується в бік збільшення вмісту Ербію до 0,5 ат. частки. На основі бінарного германіду Er₅Ge₃ простежується розчинність Нікелю до 0,1 ат. частки.

З виконаного аналізу можна зробити висновок, що заміна РЗМ у системах РЗМ-*М*-Ge менше впливає на характер взаємодії компонентів, ніж заміна перехідного металу.

- 1. *Salamakha P.S., Sologub O.L., Bodak O.I.* Ternary rare-earth germanium systems. In: Gschneidner K.A. et al. (eds.). Handbook on the Physics and Chemistry of Rare Earths. Amsterdam. Elsevier, 1999. Vol. 27. P. 1–223.
- Коник М.Б., Ромака Л.П., Гореленко Ю.К., Корда В.Б. Ізотермічний переріз діаграми стану Ег–Мп–Ge при 870 К // XII наук. конф. "Львівські хімічні читання – 2009". Львів, 2009. С. H27.
- 3. *Rieger W., Parthe E. Rieger W., Parthe E.* Ternäre alkali- und Seltene Erd-Silicide und Germanide mit ThCr₂Si₂-Structur // Monatsch. Chem. 1969. Bd. 100. N 2. S. 439–443.
- 4. *Kotsanidis P.A.*, *Yakinthos J. K* Susceptibilite magnetique des composes ternaires *R*Cu₂Ge₂ (*R* = Gd, Tb, Dy, Ho, Er, Tm) // Solid State Comm. Vol. 40. P. 1041–1043.
- Iandelli A. Structure of RCuGe compounds // J. Alloys Compd. 1993. Vol. 198. P. 141–142.
- Baran S., Szytula A., Leciejewicz J. et al. Magnetic structures of RCuGe (R = Pr, Nd, Tb, Dy, Ho and Er) compounds from neutron diffraction and magnetic measurements // J. Alloys Compd. 1996. Vol. 243. P. 112–119.
- 7. Конык М.Б. Саламаха П.С., Бодак О.И., Печарский В.К. Кристаллическая структура Ce₂CuGe₆ // Кристаллография. 1988. Т. 33. Вып. 4. С. 838–840.
- Konyk M.B, Romaka L.P., Gorelenko Yu.K., Bodak O.I. Magnetic and electrical properties of R₂CuGe₆ compounds (R = Y, Ce, Nd, Gd, Tb, Dy, Ho, Er, Yb) // J. Alloys Compd. 2000. Vol. 311. P. 120–123.
- Francois M., Venturini G., Malaman B., Rogues B. Noveaux isotypes de CeNiSi₂ dans les systemes R-M-X (R = La-Lu, M = metaux des groupes 7 a 11 et X = Ge, Sn). I. Compositions et parameters cristallins // J. Less-Common Met. 1990. Vol. 160. P. 197-213.
- 10. *Gil A., Kaczorowski D., Hernandez-Velasko J.* et al. Magnetic structures of RCu_xGe_2 (R = Ho, Er) compounds // J. Alloys Compd. 2004. Vol. 384. L4–L6.
- 11. *Rieger W.* Die Kristallstruktur von Gd₆Gu₈Ge₈ und isotypes Phases // Monatsch. Chem. 1970. Bd. 101. S. 449–462.
- 12. *Rieger W., Parthe E.* Ternare Erdalkali und Seltene Erd Silicide und Germanide mit AlB₂-Structur // Monatsch. Chem. 1969. Bd. 100. S. 439–443.
- 13. *Kraus W., Nolze G.* POWDER CELL a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns // J. Appl. Crystallogr. 1996. Vol. 29. P. 301–304.
- Akselrud L.G., Zavalij P.Yu., Gryn Yu.N. et al. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133–136. P. 335–340.

- 15. Гореленко Ю.К., Гладишевський Р.Є., Стадник Ю.В. та ін. Методичні вказівки до виконання лабораторних робіт із спецкурсу: "Електричні та магнітні властивості неорганічних матеріалів" і "Сучасні неорганічні матеріали". Львів, 2008.
- Massalski T.B. Binary Alloys Diagrams. American Society for Metals. Mttals Park OH 44073. 1986. Vol. 1, 2.
- 17. *Okamoto H.* Desk Handbook: Phase Diagrams for Binary Alloys // ASM International. 2000.
- 18. Buschow K.H.J. The Erbium–Copper system // Philips Res. Rep.1970. Vol. 25. P. 227–230.
- 19. *Gupta S.K., Gupta K.P.* Phase equilibria in the mangnese–germanium system // J. Less-Common Metals. 1970. Vol. 20. P. 1–6.
- 20. *Oleksyn O.Ya., Bodak O.I.* Crystal structure of *R*₃Ge₄ compounds (*R* = Er, Ho, Tm, Lu) // J. Alloys Compd. 1994. Vol. 210. P. 19–21.
- 21. Venturini G., Ijjaali I., Malaman B. Orthorhombic Er₂Ge₅ with ZrSi₂–DyGe₃ intergrowth structure // J. Alloys Compd. 1999. Vol. 288. P. 183–187.
- 22. Oleksyn O., Schobinger-Papamantellos P., Ritter C. et al. Structure and Magnetic Ordering in Defect Compound ErGe_{1.83}// J. Alloys Compd. 1997. Vol. 252. P. 53–58.
- 23. Salamakha P.S., Konyk M.B., Dzyanyi R. et al. Systematics of Rare Earth-Copper-Germanium Systems // Polish. J. Chem. 1996. Vol. 70. P. 270–274.
- 24. Федина Л.О. Взаємодія Празеодиму, Самарію, Диспрозію і Тулію з Купрумом та Германієм або Стибієм: Автореф. дис. ... канд. хім. наук: 02.00.01/ Львів. нац. ун-т. Львів, 2006.
- 25. *Starodub P.K.* Phase eguilibria, crystal structures and some physical properties of the ternary compounds in the systems Tb–{Fe, Co, Ni, Cu}–Ge, Ph.D. Chemistry Thesis Lviv State University. Lvov, 1988.
- Fedyna L.O., Bodak O.I., Tokaychuk Ya.O. et al. Ternary system Tm–Cu–Ge isothermal section of the phase diagram at 870 K and crystal structures of the compounds // J. Alloys Compd. 2004. Vol. 367. P. 70–75.
- 27. Белан Б.Д. Фазовые равновесия, кристаллические структуры и свойства соединений в тройных системах Eu-{Fe, Co, Ni, Cu}-{Si,Ge}: Автореф. дисс. ... канд. хим. наук. Львов. гос. ун-т. Львов, 1988.
- Олексин О.Я. Взаимодействие компонентов в системах Er-{Fe, Co, Ni}-Ge (Фазовые равновесия, кристаллическая структура и некоторые физико- химические свойства соединений): Автореф. дисс. ... канд. хим. наук. Львов. гос. ун-т. Львов, 1990.
- Федина М., Федина Л., Федорчук А. та ін. Тернарні сполуки зі структурою AlB₂ у системах *R*-Си-Ge // XII наук. конф. "Львівські хімічні читання 2009". Львів, 2009. С. Н13.
- 30. Yang F., Kuang J.P., Li J. et al. Magnetic properties of CeCuX compounds // J. Appl. Phys. 1991. Vol. 69. P. 4705–4707.

48

TERNARY SYSTEM Er-Cu-Ge AT 870 K

M. Konyk, A. Horyn, R. Serkiz

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 79005 Lviv, Ukraine, e-mail: m_konyk@franko.lviv.ua

The ternary system Er–Cu–Ge was investigated and the isothermal section of the phase diagram was constructed at 870 K. The presence of six well-known ternary intermetallic compounds was confirmed: ErCu₂Ge₂ (ST CeGa₂Al₂, SG *14/mmm*), Er₂CuGe₆ (ST Ce₂CuGe₆, SG *Amm2*), Er₆Cu₈Ge₈ (ST Gd₆Cu₈Ge₈, SG *Immm*), ErCu_{0.39}Ge₂ (ST CeNiSi₂, SG *Cmcm*), ErCuGe (ST Caln₂, SG *P*6*/mmc*), ErCu_{0.67}Ge_{1.33} (ST AlB₂, SG *P*6*/mmm*). The formation of the Er₅Cu_xGe_{3-x} solid solution formed by substitution of the germanium atoms by copper in the Er₅Ge₃ compound (ST Mn₅Si₃) up to 10 at. % Cu was found. Electrokinetic properties of the ErCuGe and ErCu₂Ge₂ compounds were studied in the temperature range 80–380 K. Temperature dependencies of the electrical resistivity and differential thermopower indicated metallic type of conductivity of these compounds.

Key words: ternary system, crystal structure, germanides, resistivity, thermopower.

ТРОЙНАЯ СИСТЕМА Er – Cu – Ge ПРИ 870 K

М. Конык, А. Горынь, Р. Серкиз

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина, e-mail: m_konyk@franko.lviv.ua

Исследовано тройную систему Er–Cu–Ge, для которой построено изотермическое сечение диаграммы состояния при 870 К. Подтверждено существование шести тройных соединений: $ErCu_2Ge_2$ (структурный тип (CT) $CeGa_2Al_2$, пространственная группа (ПГ) *I4/mmm*), Er_2CuGe_6 (CT Ce_2CuGe_6 , ПГ *Amm2*), $Er_6Cu_8Ge_8$ (CT $Gd_6Cu_8Ge_8$, ПГ *Immm*), $ErCu_{0,39}Ge_2$ (CT CeNiSi₂, ПГ *Cmcm*), ErCuGe (CT Caln₂, ПГ *P6₃/mmc*), $ErCu_{0,67}Ge_{1,33}$ (CT AlB₂, ПГ *P6/mmm*). На основе бинарного германида Er_5Ge_3 (CT Mn_5Si_3) обнаружено существование твердого раствора замещения с растворимостью меди до 0,1 ат. доли. Измерение электрических свойств для соединений ErCuGe и $ErCu_2Ge_2$ проведено в интервале температур 80–380 К. Температурные зависимости удельного электросопротивления и дифференциальной термо-э.д.с. указывают на металлический тип проводимости.

Ключевые слова: тройная система, кристаллическая структура, германиды, удельное электросопротивление, дифференциальная термо-э.д.с.

Стаття надійшла до редколегії 24.10.2011 Прийнята до друку 21.12.2011