ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 36–41 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 36–41

УДК 546. 831. 882. 181.1

УТОЧНЕННЯ ВЗАЄМОДІЇ КОМПОНЕНТІВ У СИСТЕМІ Zr-Nb-P

Я. Ломницька, А. Олійник

Львівський національний університет імені Івана Франка вул. Кирила і Мефодія, 6, 79005 Львів, Україна

Методами рентгенофазового та рентгеноспектрального аналізів уточнено взаємодію компонентів у системі Zr–Nb–P, побудовано ізотермічний переріз діаграми стану при 1 070 К в інтервалі до 0,67 мол. частки Р. Підтверджено існування сполук ZrNbP (структурний тип TiNiSi) та Zr₆Nb₄P₄ (власний тип). З'ясовано, що область гомогенності сполуки ZrNbP є в межах складів Zr_{0,4-1,2}Nb_{1,4-0,8}P, а сполуки Zr₆Nb₄P₄ – незначна. Виявлено, що розчинність фосфору в твердому розчині (Nb, Zr) досягає 0,05 мол. частки. Проаналізовано характер взаємодії компонентів у системі Zr–Nb–P та інших системах двох перехідних металів з фосфором.

Ключові слова: фосфіди, твердий розчин, діаграма фазових рівноваг.

У системі Zr–Nb–P раніше досліджено фазові рівноваги, які, однак, потребували уточнення в інтервалі 0,25–0,35 мол. частки Р [1]. Визначено, що на основі бінарних фосфідів зі структурою типу Ti₃P утворюються тверді розчини заміщення до граничних складів Nb_{2,0}Zr_{1,0}P та Zr_{2,0}Nb_{1,0}P. У працях [2, 3] виявлено існування двох тернарних сполук ZrNbP (TiNiSi*) та Zr₆Nb₄P₄ (власний). Нашим завданням було дослідження ділянки системи Zr–Nb–P з вмістом 0,25–0,35 мол. частки Р для уточнення фазових рівноваг при 1 070 К.

Для уточнення взаємодії компонентів у системі Zr–Nb–P готували зразки масою 1,0 г із порошків цирконію, ніобію та червоного фосфору високої чистоти (вміст основного компонента не менше за 0,997 мас. частки). Однорідну суміш із порошків компонентів пресували у брикети. Синтезували зразки у два етапи. Спочатку брикети спікали в запаяних під вакуумом кварцових ампулах при 1 070 К (150 год), потім їх сплавляли в електродуговій печі з вольфрамовим електродом на мідному, охолодженому водою поді в атмосфері очищеного аргону. Лише ті зразки, які містили понад 0,35 мол. частки P, після спікання перетирали та повторно спікали при 1 070 К. Одержані сплави та спечені зразки відпалювали в запаяних під вакуумом кварцових ампулах при 1 070 К (800 год), а після відпалу гартували в холодній воді. Для дослідження використовували зразки, маса яких відрізнялася від маси наважки не більше ніж на 0,02 мас. частки. Дослідження проводили методом рентгенофазового аналізу за дифрактограмами (дифрактометр ДРОН-3, Си κ_{α} -випромінювання, режим сканування кута 2 θ з кроком 0,05° і часом експозиції у кожній точці 10-20 с). Періоди гратки уточнювали методом найменших квадратів за допомогою комплексу програм CSD [4].

У подвійній системі Zr–Nb бінарні сполуки при 1 070 К не утворюються [5,6], Nb (α -Fe) розчиняє Zr до граничного складу Nb_{0,87}Zr_{0,17}, а α -Zr (Mg) розчиняє Nb до граничного складу Zr_{0,67}Nb_{0,33}. У подвійних фосфідних системах при 1 070 К підтверджено такі фази: Nb₃P (Ti₃P), Nb₂P, Nb₇P₄, Nb₅P₃, Nb₈P₅ (власні), NbP (NbAs), який

[©] Ломницька Я., Олійник А., 2012

^{*} Тут і надалі в дужках зазначено тип структури сполуки.

гомогенний за складів Nb_{1,11-1,00}P_{0,89-1,00}, a NbP₂ за температури понад 923 К у вакуумі розкладається на NbP і пари фосфору. У системі Zr–P підтверджено фосфіди Zr₃P (Ti₃P), Zr₂P (власний), Zr₇P₄ (Nb₇P₄), Zr₁₄P₉ (власний), α -ZrP (NaCl), β -ZrP (TiAs), Zr₂P (PbCl₂) [7]. Результати фазового аналізу синтезованих нами зразків системи Zr–Nb–P наведено у табл. 1.

Таблиця 🛛	l
-----------	---

Фазовий склад досліджених зразків системи Zr-Nb-P								
Номер	2	Фазовий	Періоди гратки, нм×10					
за пор.	Зразок	склад	а	С				
1	$Zr_5Nb_{67}P_{28}$	Nb ₂ P	18,180(6)	3,413(1)	13,91(1)			
		(Nb,Zr) ₃ P	10,128(4)	_	5,108(2)			
2	Zr ₁₀ Nb _{56,7} P _{33,3}	(Zr,Nb) ₂ P	6,867(2)	3,559(1)	8,301(3)			
		Nb ₂ P	18,126(3)	3,460(2)	14,077(6)			
		$(Nb,Zr)_{3}P$	10,202(5)		5,024(7)			
3	Zr ₁₀ Nb ₅₅ P ₃₅	(Zr,Nb) ₂ P	6,871(5)	3,560(3)	8,299(6)			
		Nb ₇ P ₄	14,915(9)	3,469(4) β=106,36(7)°	13,701(8)			
		сліди Nb ₅ P ₃	25,40(1)	3,460(5)	11,46(3)			
4	Zr ₂₀ Nb _{46.7} P _{33.3}	(Zr,Nb) ₂ P	6,874(3)	3,564(2)	8,312(6)			
		$Zr_6Nb_4P_4$	15,875(7)	9,654(6)	3,571(3)			
		(Nb,Zr) ₃ P	10,115(4)	_	5,143(5)			
5	Zr ₂₃ Nb ₄₄ P ₃₃	(Zr,Nb) ₂ P	6,873(3)	3,569(2)	8,340(3)			
6	$Zr_{23}Nb_{49}P_{28}$	(Zr,Nb) ₂ P	6,868(6)	3,573(3)	8,348(6)			
		мало Zr ₆ Nb ₄ P ₄	15,812(9)	9,542(6)	3,570(3)			
		(Nb,Zr) ₃ P	10,178(6)	_	5,108(5)			
7	$Zr_{33,3}Nb_{33,3}P_{33,3}$	ZrNbP	6,870(3)	3,565(3)	8,325(4)			
		мало Zr ₆ Nb ₄ P ₄	15,834(9)	9,532(5)	3,586(4)			
8	Zr ₄₀ Nb _{26,7} P _{33,3}	(Zr,Nb) ₂ P	6,884(4)	3,569(2)	8,374(1)			
9	Zr ₅₀ Nb _{16,7} P _{33,3}	(Zr,Nb) ₂ P	6,884(3)	3,571(2)	8,372(5)			
		$\mathrm{Zr}_{7}\mathrm{P}_{4}$	15,788(2)	3,607(1) β=105,06(2)°	14,741(3)			
		мало $Zr_{14}P_9$	16,70(2)	27,58(1)	3,677(3)			
10	$Zr_{45}Nb_{27}P_{28}$	$Zr_6Nb_4P_4$	15,.913(8)	9,574(5)	3,597(4)			
		мало Zr ₂ P	18,71(5)	29,46(2)	3,630(4)			
11	$Zr_{30}Nb_{30}P_{40}$	β-ZrP	3,679(1)	_	12,528(5)			
		ZrNbP	6,889(4)	3,565(2)	8,387(5)			
12	$Zr_{40}Nb_{10}P_{50}$	β-ZrP	3,6845(9)	_	12,510(6)			
		сліди NbP	3,3040(8)	-	11,80(1)			
13	$Zr_{45}Nb_{10}P_{45}$	β-ZrP	3,690(2)	_	12,508(7)			
		ZrNbP	7,090(8)	3,590(3)	8,180(8)			
14	$Zr_{35}Nb_{10}P_{55}$	β-ZrP	3,670(2)	_	12,525(8)			
		ZrP_2	6,484(4)	3,491(2)	8,728(3)			
		NbP	3,338(3)	_	11,384(9)			

37

Ми підтвердили, що розчинність на основі Nb₃P та Zr₃P досягає граничних складів Nb_{2,0}Zr_{1,0}P та Zr_{2,0}Nb_{1,0}P відповідно. Періоди ґраток усіх фаз системи Zr–Nb–P наведені в табл. 2. З огляду на незначне зменшення періодів ґратки сполуки NbP у дво- і трифазових зразках можна вважати, що на її основі існує невеликий твердий розчин заміщення, однак граничний склад його містить не більше 0,10 мол. частки Zr.

У системі при 1 070 К існують дві тернарні сполуки: $Zr_6Nb_4P_4$ зі структурою власного типу та ZrNbP зі структурою типу TiNiSi.

Сполука $Zr_6Nb_4P_4$ у зразках з більшим вмістом ніобію та в зразках з більшим вмістом цирконію має дещо відмінні періоди гратки (див. табл. 1). Це свідчить про наявність у неї невеликої області гомогенності, однак, як випливає з фазового складу зразків, її протяжність не перевищує 0,05 мол. частки від стехіометричного складу.

Періоди гратки сполуки ZrNbP змінюються значно більше і зразки на розрізі 0,33 мол. частки Р є практично однофазовими (табл. 1, зразки 5, 7, 8). Це дало підстави припустити, що сполука ZrNbP має помітну область гомогенності. За періодами гратки сполуки ZrNbP ми побудували графік зміни (рис. 1) і з'ясували, що область гомогенності цієї сполуки обмежена складами $Zr_{0,4-1,2}Nb_{1,6-0,8}P$. Отже, на розрізі 0,33 мол. частки Р існує сполука (Nb,Zr)₂P зі структурою типу Co₂Si, а склад ZrNbP має впорядковану структуру типу TiNiSi.

Рис. 1. Зміна періодів гратки сполуки (Nb,Zr)₂P зі структурою типу Co₂Si; 1, 2 – одно-, трифазові зразки

Зразок складу $Zr_{20}Nb_{65}P_{15}$ (за наважкою) проаналізували методом енергодисперсійної рентгенівської спектроскопії (ЕДРС) на електронному мікроскопі РЭММА 102-02 і визначили, що він двофазовий: одна із фаз – твердий розчин (Nb,Zr)₃P складу Nb₅₀Zr₂₅P₂₅, а інша – розчин цирконію і фосфору в ніобії складу ~Zr₂₀Nb₇₄P₅. Отже, ніобій розчиняє цирконій і фосфор до граничного складу ~Nb₇₄Zr₂₀P₅, крім того, методом ЕДРС підтверджено, що твердий розчин (Nb,Zr)₃P простягається до складу Nb₂₀Zr₁₀P.

	1
Labring	
тиолиил	4

Фаза	Структур-	Просторо-	о- Періоди гратки, нм×10		×10	Піт
Ψa3a	ний тип	ва група	а	b	С	JIII.
Nb ₃ P	Ti ₃ P	$P4_2/n$	10,126		5,089	7
Nb _{2,0} Zr _{1,0} P**			10,279(5)		5,190(7)	1
Nb ₂ P	Nb ₂ P	Pmma	18,079	3,425	13,858	7
			18,126(3)	3,460(2)	14,077(6)	*
Nb_7P_4	Nb_7P_4	C2/m	14,9503	3,4398	13,848	7
				β=104,74°		
			14,915(4)	3,442(4)	13,855(9)	*
				β=105,1(2)°		
Nb ₅ P ₃	Nb ₅ P ₃	Pnma	25,384	3,433	11,483	7
			25,43(6)	3,435(4)	11,46(1)	*
Nb ₈ P ₅	Nb_8P_5	Pbam	26,200	9,465	3,464	7
			26,177(9)	9,463(3)	3,463(1)	*
NbP	NbAs	$I4_1md$	3,332		11,3705	7
			3,3329(4)		11,375(2)	*
~Nb _{0,9} Zr _{0,1} P**			3,338(3)		11,384(9)	
Zr ₃ P	Ti ₃ P	$P4_2/n$	10,799		5,355	7
Zr _{2,0} Nb _{1,0} P**			10,651(5)		5,306(5)	1
Zr_2P	Zr_2P	Cmmm	19,063	29,510	3,608	7
Zr_7P_4	Nb_7P_4	C2/m	15,814	3,6053	14,738	7
				β=104,843°		
			15,788(2)	3,607(1)	14,741(3)	*
				β=105,06(2)°		
$Zr_{14}P_9$	$Zr_{14}P_9$	Pnnm	16,715	27,572	3,6742	7
			16,705(9)	27,58(1)	3,677(4)	*
α -ZrPoo	NaCl	$Fm\overline{3}m$	5.268			7
0,9		1	5,268(3)			*
β-ZrP	TiAs	$P6_3/mmc$	3.684		12.532	7
P		- 5	3.679(5)		12.528(5)	*
$Zr_6Nb_4P_4$	$Zr_6Nb_4P_4$	Immm	15,917	9,5684	3,5892	2
	0 4 4		15,875(1)-	9,654(6)-	3,571(2)-	
			15,913(8)	9,574(5)	3,597(2)	*
ZrNbP	TiNiSi	Pnma	6,8861	3,5706	8,337	2
Zr _{0.4-1.2} Nb _{1.6-0.8} P	Co ₂ Si		6,863(1)-	3,561(1)-	8,297-	*
3,1 1,2 1,0 0,0	-		6.885(2)	3.570(1)	8.375(6)	

Кристалографічні характеристики фаз, наявних у системі Zr-Nb-P

* Результати нашого дослідження.

** Граничний склад твердого розчину.

За результатами дослідження зразків системи Zr–Nb–Р ми уточнили фазові рівноваги в ній в інтервалі 0,25–0,67 мол. частки Р. Уточнена діаграма фазових рівноваг системи Zr–Nb–P при 1 070 К показана на рис. 2.

Особливістю дослідженої нами системи ε утворення лише двох тернарних сполук, а також твердих розчинів заміщення значної протяжності на основі фосфідів M_3P зі структурою типу Ti₃P.

Кристалізація сполуки Zr₆Nb₄P₄ у власному структурному типі, можливо, зумовлена близькими електронегативностями атомів металів та їхньої електронної структури. Загалом у системах Zr–M'–P (M' – 3d-метал) кількість сполук зростає зі збільшенням різниці електронегативностей металів та зменшення розміру атома M'.

39

Рис. 2. Діаграма фазових рівноваг системи Zr-Nb-P при 1 070 К в інтервалі 0-0,67 мол. частки Р; 1, 2, 3 - одно-, дво-, трифазові зразки; штрихпунктиром позначено напрям конод

Для системи Zr-Nb-P та інших систем двох перехідних металів з фосфором спільним є утворення сполук складу ММ'Р зі структурою типу TiNiSi. Помітна область гомогенності сполуки ZrNbP зумовлена близьким значенням радіусів атомів металів, а також подібністю хімічних властивостей (Zr та Nb – елементи сусідніх груп). Одним із чинників, що впливає на утворення сполук структурного типу TiNiSi, ϵ відношення радіусів $r_{M'}r_{M'}$ [8]. Для металів групи IVa це значення змінюється в межах 1,10-1,27, а для металів групи Va – від 1,07 до 1,27. У випадку системи Zr–Nb–P значення $r_{Zr}/r_{Nb} = 1,10$. Однак в інших системах *M-M*'-P, у яких два метали належать до 4*d*-періоду, сполук зі структурою типу TiNiSi і типу $Zr_6Nb_4P_4$ нема, натомість існують сполуки зі структурою типу ZrNiAl (надструктура до типу Fe₂P), як, наприклад ZrMoP або HfMoP, або сполук узагалі нема, як, наприклад, у системі Nb-Mo-P.

- 1. Ломницкая Я.Ф. Взаимодействие циркония и ниобия с фосфором // Порошковая металлургия. 1997. № 5/6. С. 90-92.
- 2. Marking G.A., Franzen H.F. Zr_{6.45}Nb_{4.55}P₄, a new mixed-transition-metal phosphide structure // Chem. Mater. 1993. N 5. P. 678-680.
- 3. Marking G.A., Franzen H.F. ZrNbP and HfNbP, new phases with the Co₂Si structure // J. Alloys Compd. 1994. N 204. P. 17-20.
- 4. Aksel'rud L.G., Grin Yu.N., Pecharsky V.K., Zavalij P.Yu. CSD 97-Universal program package for single crystal and powder data treatment. Version 7. 1997.
- 5. Okamoto H. Desk Handbook: Phase diagrams for binary alloys. American Society for metals. 2000.
- 6. Диаграммы состояния двойных металлических систем / Под ред. Н. П. Лякишева. М.: Машиностроение. 1996.

- 7. *Villars P.* Pearson's Handbook Desk Edition, Crystallographic Data for Intermetallic Phases. ASM International, Materials Park (OH 44073), 1997.
- Lomnytska Ya.F., Kuz'ma Yu.B. New phosphides of IVa and Va group metals with TiNiSi-type // J. Alloys Compd. 1998. Vol. 269. P. 133–137.
- 9. Lomnytska Ya.F., Kuz'ma Yu.B. Interaction between components in the systems Zr-Mo-P and Hf-Mo-P // J. Alloys Compd. 1999. Vol. 287. P. 163–166.
- 10. *Ломницкая Я.* Ф. Взаимодействие в системе Nb-Mo-P // Порошковая металлургия. 1992. № 4. С. 71–73.

THE REFINEMENT OF THE COMPONENTS INTERACTION IN THE SYSTEM Zr-Nb-P

Ya. Lomnytska, A. Oliynyk

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine

The components interaction in the system Zr–Nb–P at the range of 0.67 at % phosphorus has been investigated. The phase diagram at 1 070 K has been built using X-ray structure and EDS analyses. Existence of the ZrNbP (TiNiSi structure type) and $Zr_6Nb_4P_4$ (own structure type) ternary phosphides was confirmed. The compound ZrNbP has homogeneity range and its composition can be described by the formula $Zr_{0.4-1.2}Nb_{1.4-0.8}P$. The homogeneity range of the $Zr_6Nb_4P_4$ phase is rather slight. The solubility of phosphorus in the solid solution (Nb, Zr) reaches 0.05 at % of P. We analyzed the interaction character of phosphorus with other components in the system Zr–Nb–P as well as in other systems with two transition metals.

Key words: phosphides, solid solution, phase equilibria.

УТОЧНЕНИЕ ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ В СИСТЕМЕ Zr–Nb–P

Я. Ломницкая, А. Олейник

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина

Методами рентгенофазового и рентгеноспектрального анализов уточнено взаимодействие компонентов в системе Zr–Nb–P, построено изотермическое сечение диаграммы состояния при 1 070 К в области до 0,67 мол. доли P. Подтверждено существование соединений ZrNbP (структурный тип TiNiSi) и $Zr_6Nb_4P_4$ (собственный тип). Установлено, что область гомогенности соединения ZrNbP находится в пределах составов $Zr_{0,4-1,2}Nb_{1,4-0,8}P$, а соединения $Zr_6Nb_4P_4$ – незначительна. Выявлено, что растворимость фосфора в твердом растворе (Nb, Zr) достигает 0,05 мол. доли. Проанализировано характер взаимодействия компонентов в системе Zr–Nb–P и других системах двух переходных металлов с фосфором.

Ключевые слова: фосфиды, твердый раствор, диаграмма фазовых равновесий.

Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011