ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 28–35 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 28–35

УДК 548.736.4, 546.3-19'11

ВЗАЄМОДІЯ КОМПОНЕНТІВ У СИСТЕМІ Ho-Hf-Fe ТА ВОДНЕСОРБЦІЙНА ЗДАТНІСТЬ СПЛАВІВ ТВЕРДОГО РОЗЧИНУ $Ho_{2,x}Hf_xFe_2$ ($0 \le x \le 0,51$)

А. Лук'янова¹, В. Левицький¹, В. Бабіжецький¹, О. Мякуш², Б. Котур¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: kotur@franko.lviv.ua

²Національний лісотехнічний університет України, вул. Чупринки, 103, 79057 Львів, Україна

На підставі рентгенофазового, рентгеноструктурного аналізів та енергодисперсійної рентгенівської спектроскопії побудовано ізотермічний переріз діаграми стану системи Ho-Hf-Fe при 800 °C. Виявлено існування трьох твердих розчинів заміщення на основі бінарних сполук Ho₂Fe₁₇ (Ho_{2-x}Hf_xFe₁₇, $0 \le x \le 1,14$; CT Th₂Ni₁₇; CП *hP*38; ПГ *P*6₃/*mmc*; *a* = 0,8431(4)– 0,8443(4) нм; *c*= 0,8302(5)–0,8204(7) нм); HoFe₃ (Ho_{1-x}Hf_xFe₃, $0 \le x \le 0,48$; CT PuNi₃; CП *hR*36; ПГ *R*3*m*; *a* = 0,5098(3)–0,5051(1) нм; *c* = 2,446(3)–2,422(1) нм); HoFe₂ (Ho_{1-x}Hf_xFe₂, $0 \le x \le 0,51$; CT MgCu₂; CП *cF*24; ПГ *Fd*3*m*; *a* = 0,7315(2)–0,7185(3) нм).

Досліджено воднесорбційні властивості чотирьох сплавів твердого розчину $Ho_{1-x}H_xFe_2$ (x = 0; 0,1; 0,2; 0,4). Гідрування бінарної сполуки HoFe₂ зумовлює зниження симетрії її структури (HoFe₂ – кубічна, CT MgCu₂; HoFe₂H_{4,39} – тригональна, CT TbFe₂). Гідриди сплавів Ho_{1-x}Hf_xFe₂ (x = 0,1; 0,2) зберігають структуру відповідних негідрованих зразків. Заміщення Гольмію на Гафній суттєво знижує воднесорбційну ємність сплавів. Зразки Ho_{0,6}Hf_{0,4}Fe₂ та Hf_{1-x}Ho_xFe₂ (x = 0; 0,1; 0,2; 0,4) за кімнатної температури та тиску H₂ 0,1 МПа водню не поглинають.

Ключові слова: потрійна система, фазові рівноваги, твердий розчин, металогідриди.

Дослідження характеру взаємодії компонентів у системі Ho–Hf–Fe є частиною систематичного вивчення систем R–{Ti, Zr, Hf}–Fe (R – рідкісноземельний метал) для пошуку нових інтерметалічних сполук, які можна використовувати як ефективні акумулятори водню.

Серед потрійних систем R-{Ti, Zr, Hf}-Fe діаграми фазових рівноваг побудовані в повному концентраційному інтервалі лише для систем Y-Ti-Fe при 600 °C [1], Y-Hf-Fe при 800 °C [2], Er-Ti-Fe при 700 °C [3], Gd-Zr-Fe при 800 °C [4] та для системи Gd-Ti-Fe при 1100 °C в області 70-100 ат. % Fe [5]. В інших системах досліджували лише структуру і фізичні властивості сплавів $R_{1-x}T_x$ Fe₂ (R – рідкісноземельний метал, T – гідридотвірний метал (Zr, Hf)) та їхніх гідридів [6–9].

Наша мета – побудувати ізотермічний переріз діаграми стану системи Но-Hf-Fe в повному концентраційному інтервалі при 800 °C та дослідити вплив заміщення рідкісноземельного металу (Но) іншим гідридотвірним металом (Hf) на кристалічну структуру та воднесорбційні властивості сплавів *R*Fe₂.

[©] Лук'янова А., Левицький В., Бабіжецький В. та ін., 2012

Для уточнення і перевірки літературних відомостей і проведення фазового аналізу синтезовано 35 сплавів, з них 10 подвійних та 25 потрійних. Зразки готували сплавлянням шихти з вихідних компонентів високої чистоти (≥ 99,9 мас.% основного компонента) в електродуговій печі на мідному охолоджуваному водою поді з вольфрамовим електродом в атмосфері очищеного аргону. Втрати в ході сплавляння не перевищували 1 % від маси вихідної шихти. Для гомогенізації сплавів їх відпалювали у вакуумованих кварцових ампулах за температури 800 °С протягом 720 год з подальшим гартуванням ампул у холодній воді.

Гідриди синтезували за кімнатної температури під тиском водню 120 кПа в автоклаві після попередньої активації зразків у вакуумі при 350–400 °C. Характеристики абсорбції водню синтезованими сплавами визначали стандартним манометричним методом за сталого об'єму.

Фазовий аналіз сплавів виконували за масивом даних дифракції рентгенівського випромінювання, одержаних за допомогою дифрактометра ДРОН-2,0М (Fe K_{α} -випромінювання). Кристалічну структуру сполук уточнювали методом порошку з використанням пакета програм WinCSD [10]. Для підтвердження меж областей гомогенності твердих розчинів разом з результатами рентгенівської дифракції враховували дані енергодисперсійної рентгенівської спектроскопії (ЕДРС). Точність вимірювань ЕДРС аналізу становить 1 ат. % визначуваного елемента.

За результатами рентгенофазового та ЕДРС аналізу сплавів побудовано ізотермічний переріз діаграми стану системи Ho–Hf–Fe при 800 °C, зображений на рис. 1.

Рис. 1. Ізотермічний переріз діаграми стану системи Но-Нf-Fe при 800 °C

За температури відпалу підтверджено існування бінарних сполук – HoFe₂ (структурний тип (СТ) MgCu₂), HoFe₃ (СТ PuNi₃), Ho₆Fe₂₃ (СТ Th₆Mn₂₃), Ho₂Fe₁₇ (СТ Th₂Ni₁₇) [11], Hf₂Fe (СТ Ti₂Ni) [12]. Для фази HfFe₂ характерний концентраційний поліморфізм [13, 14]. За температури відпалу ми підтвердили існування кубічної HfFe₂ (СТ MgCu₂, ПГ *Fd*3*m*) та гексагональної Hf_{0,93+x}Fe₂ (СТ MgZn₂, ПГ *P*6₃/*mmc*) фаз Лавеса. З'ясовано, що інтерметаліди Ho₂Fe₁₇, HoFe₃ та HoFe₂ розчиняють до ~6, 12 та 17 ат. % Hf, відповідно. Інші бінарні сполуки не розчиняють помітних кількостей третього компонента.

На рис. 2 показано фотографії мікроструктур сплавів, одержаних за допомогою електронного мікроскопа системи для проведення ЕДРС, результати якісного та кількісного аналізу якої враховували в ході побудови фазових рівноваг у трикомпонентній системі Ho–Hf–Fe.

Рис. 2. Фотографії мікроструктур зразків Hf₅₅Fe₄₅ (*a*), Ho₉Hf₂₅Fe₆₆ (*б*), Ho₁₂Hf₁₀Fe₇₈ (*в*), Ho₃Hf₁₀Fe₈₇ (*г*). Фазовий склад наведено за результатами ЕДРС

На рис. 3, 4 зображено графіки зміни періодів та об'ємів елементарної комірки в області гомогенності твердих розчинів $Ho_{1-x}Hf_xFe_2$ ($0 \le x \le 0,51$) та $Ho_{1-x}Hf_xFe_3$ ($0 \le x \le 0,48$) за результатами рентгеноструктурного та ЕДРС аналізів. Межі областей гомогенності твердих розчинів $Ho_{2-x}Hf_xFe_{17}$ ($0 \le x \le 1,14$) та $Hf_{0,93+x}(Hf, Ho)_xFe_2$ ($0 \le x \le 0,07$) визначено на основі результатів ЕДРС аналізу.

30

Рис. 3. Зміна параметра та об'єму елементарної комірки твердого розчину Ho_{1-x}Hf_xFe₂

Рис. 4. Зміна параметрів та об'єму елементарної комірки твердого розчину Ho_{1-x}Hf_xFe₃

Кристалографічні характеристики вихідних компонентів, бінарних сполук і твердих розчинів системи Ho–Hf–Fe при 800 °C наведено у табл. 1.

Таблиця 1

Фаза	СТ	СП	ПГ	Параметри	Лiт-	
				а	С	pa
Но	Mg	hP2	P6 ₃ /mmc	0,35744	0,56389	11
αHf	Mg	hP2	$P6_3/mmc$	0,31883	0,50422	11
αFe	W	cI2	Im3m	0,28665		11
Ho ₂ Fe ₁₇				0,8431(4)-	0,8302(5)-	*
Ho _{2_r} Hf _r Fe ₁₇	Th ₂ Ni ₁₇	hP38	$P6_3/mmc$			
$0 \le x \le 1.14$				0,8443(4)	0,8204(7)	**
Ho_6Fe_{23}	Th ₆ Mn ₂₃	<i>cF</i> 116	Fm3m	1,2012(2)		*
HoFe ₃				0,5098(3)-	2,446(3)-	*
$Ho_{1-x}Hf_xFe_3$,	PuNi ₃	hR36	R3m	0.5051(1)	0.400(1)	. te . te
0≤ <i>x</i> ≤0,48				0,5051(1)	2,422(1)	**
HoFe ₂				0,7315(2)-		*
$Ho_{1-x}Hf_xFe_2$,	MgCu ₂	cF24	$Fd\overline{3}m$	0.7185(3)		**
0≤ <i>x</i> ≤0,51				0,7105(5)		
HfFe ₂ (λ)				0,49464–	0,80518-	2
IIF (IIF	Mg7n.	hP12	P6./mmc			
$\Pi_{0,93+x}(\Pi),$ Ho) Fea	wigzny	11 12	1 Oynane	0.4961(1)	0.8113(2)	**
$0 \le x \le 0.07$				0,701(1)	0,0113(2)	
α HfFe ₂	MgCu ₂	cF24	Fd3m	0.7022(1)		*
Hf ₂ Fe	Ti ₂ Ni	cF96	Fd3m	1,20434		2

Кристалографічні характеристики вихідних компонентів, бінарних сполук і твердих розчинів системи Но-Нf-Fe при 800 °С

* Дані авторів, уточнені методом порошку.

** Дані авторів - межа області гомогенності твердого розчину.

Для вивчення впливу заміщення рідкісноземельного металу Но іншим гідридоутворювальним *d*-металом Hf на кристалічну структуру та воднесорбційні властивості сполук зі структурами фаз Лавеса в системі Ho–Hf–Fe прогідровано сплави Ho_{1-x}Hf_xFe₂ (x = 0; 0,1; 0,2; 0,4) та Hf_{1-x}Ho_xFe₂ (x = 0; 0,1; 0,2) на основі бінарних сполук HoFe₂ та HfFe₂.

Наводнення зразків Ho_{1-x}Hf_xFe₂ (x = 0; 0,1; 0,2; 0,4) за кімнатної температури та тиску водню 0,1 МПа привело до утворення кристалічних гідридів з досить високим вмістом Гідрогену. Гідрування бінарної сполуки HoFe₂ супроводжується зниженням симетрії структури з кубічної (СТ MgCu₂) до тригональної (СТ TbFe₂) для гідриду HoFe₂H_{4,39}, що добре узгоджується з результатами нейтронографічних досліджень дейтериду HoFe₂D_{3,8} [15].

Заміщення Гольмію на Гафній приводить до суттєвого зниження воднесорбційної ємності від 4,39 ат. H/ϕ . о. для $HoFe_2$ до 3,72 ат. H/ϕ . о. для $Ho_{0,9}Hf_{0,1}Fe_2H_{3,72}$ і 1,1 ат. H/ϕ . о. для $Ho_{0,8}Hf_{0,2}Fe_2H_{1,1}$ (табл. 2). Це можна пояснити тим, що заміщення більшого за розміром атома Но меншим за розміром атомом Нf приводить до зменшення розміру тетраедричних пустот, які заповнює водень. У разі наводнення заміщених Гафнієм сплавів зберігається структура вихідних інтерметалідів. Параметри елементарної комірки сплавів $Ho_{1-x}Hf_xFe_2$ (x = 0; 0,1; 0,2; 0,4) та їхніх гідридів наведено в табл. 2. А. Лук'янова, В. Левицький, В. Бабіжецький та ін.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

Таблиця 2

33

Параметри елементарної комірки сплавів $Ho_{1-x}Hf_xFe_2$ (x = 0; 0,1; 0,2; 0,4)
та їхніх гілпилів

Сплави та їхні	СТ	Параметри комірки				
гідриди	CI	а, нм	С, НМ	<i>V</i> , нм ³	$\Delta V/V^*$, %	n/m
HoFe ₂	MgCu ₂	0,7302(1)		0,3893	•	
HoFe ₂ H _{4,39}	TbFe ₂	0,5632(3)	1,3268(8)	0,3645	6,37	1,46
$Ho_{0,9}Hf_{0,1}Fe_2$	MgCu ₂	0,7191(1)		0,3719		
Ho _{0,9} Hf _{0,1} Fe ₂ H _{3,72}	MgCu ₂	0,7681(4)		0,4532	21,86	1,24
$Ho_{0,8}Hf_{0,2}Fe_2$	MgCu ₂	0,7079(1)		0,3547		
Ho _{0,8} Hf _{0,2} Fe ₂ H _{1,1}	MgCu ₂	0,7183(1)		0,3706	4,48	0,43
${\rm Ho}_{0.6}{\rm Hf}_{0.4}{\rm Fe}_2^{\ \#}$	MgCu ₂	0,6951(1)		0,3358		

 $\Delta V/V^* = (V(гідриду) - V(вихідного сплаву))/V(вихідного сплаву)) \cdot 100\%;$

H/M^{**} – кількість атомів Н, що припадають на один атом металу;

[#] – сплав водню не поглинає.

За кімнатної температури та тиску водню 0,1 МПа сплави $Hf_{1-x}Ho_xFe_2$ (x = 0; 0,1; 0,2; 0,4) водню не поглинають.

- 1. *Liu Zh., Jin Zh., Xia Ch.* 873 K Isothermal section of phase diagram for Y–Fe–Ti ternary system // Scripta Materialia. 1997. Vol. 37. P. 1129–1134.
- Левицький В., Бабіжецький В., Мякуш О., Котур Б. СистемаY–Hf–Fe // Тринадцята наукова конференція "Львівські хімічні читання-2011". Львів, 2011. С. H35.
- Мякуш О., Мартинюк Г., Вербовицький Ю., Котур Б. Фазові рівноваги в системі Ег-Fe-Ti та воденьсорбційні властивості сплавів ErFe_{2-x}M_x (M = Ti, V, Cr, Mn, Co, Ni, Cu, Mo) // Вісн. Львів. ун-ту. Сер. хім. 2006. Вип. 47. С. 25–30.
- 4. Zinkevich M., Mattern N., Bacher I. Experimental and thermodynamic assessment of the Fe–Gd–Zr system // Z. Metallkd. 2002. Bd. 93. S. 186–198.
- 5. *Huo G.Y.* Phase relations in the Fe-rich region of the Gd–Fe–Ti system at 1373 K // J. Alloys Compd. 1998. Vol. 268. P. 152–154.
- 6. *Al-Omari I.A., Aich S.* Magnetic and structural studies of GdFe_{2-x}Hf_x alloys // J. Alloys Compd. 2004. Vol. 375. P. 31–33.
- Kobayashi K., Kanematsu K. Magnetic properties and crystal structure of Laves phase (Y_xZr_{1-x})Fe₂ and their hydrides // J. Phys. Soc. Jpn. 1986. Vol. 55. P. 1336–1340.
- Kesavan T.R., Ramaprabhu S., Rama Rao K.V.S., Das T.P. Hydrogen absorption and kinetic studies in Zr_{0.2}Ho_{0.8}Fe₂ // J. Alloys Compd. 1996. Vol. 244. P. 164–169.
- Myakush O., Babizhetskyy V., Levytskyy V. et. al. The hydrides of intermetallic compounds based on the rare earth metals, Zr and Hf: synthesis and crystal structure // XVII International Seminar on Physics and Chemistry of Solids. Bystre, Poland. 2011. P.74.
- Akselrud L.G., Zavalii P.Yu., Grin Yu.N. et al. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133–136. P. 335–340.
- 11. Villars P. Pearson's Handbook, Desk Edition: Crystallographic Data of Intermetallic Phases // ASM. Materials Park, OH44073. 1997. Vol. 2.

- 12. *Cekic B., Prelesnik B., Koicki S.* et al. Refinement of the crystal structure of Hf₂Fe // J. Less-Common Metals. 1991. Vol. 171. P. 9–15.
- 13. Elliot R. P. Laves type phases of Hafnium // Trans. ASM. 1961. Vol. 53. P. 321-329.
- 14. *Keitz A., Sauthoff G., Neumann P.* Laves phases for high temperatures structure, stability and constitution // Z. Metallkd. 1998. Bd. 89. S. 803.
- Itoh K., Miyajima Y., Aoki K., Fukunara T. Structural analysis for crystalline and amorphous RFe₂D_x (R: Ho, Tb) by X-ray/neutron diffraction and reverse Monte Carlo modelling // J. Alloys Compd. 2004. Vol. 376. P. 9–16.

INTERACTION OF THE COMPONENTS IN Ho-Hf-Fe SYSTEM AND HYDROGEN-STORAGE ABILITY OF THE SOLID SOLUTION ALLOYS Ho_{2-x}Hf_xFe₂ (0≤x≤0.51)

A. Lukyanova¹, V. Levytskyy¹, V. Babizhetskyy¹, O. Myakush², B. Kotur¹

¹Ivan Franko National University of Lviv, Kyryla& Mefodiya Str., 6, 79005 Lviv, Ukraine, e-mail: kotur@franko.lviv.ua

²National University of Forest and Wood Technology of Ukraine, Chuprynky Str., 103, 79057 Lviv, Ukraine

800°C isothermal section of the phase diagram for Ho–Hf–Fe system was built by means of X-ray phase and structural analyses, and energy-dispersive X-ray spectroscopy. The existence of three substitutional solid solutions based on binary compounds Ho₂Fe₁₇ (Ho_{2-x}Hf_xFe₁₇, $0 \le x \le 1.14$, Th₂Ni₁₇ type, Pearson symbol *hP38*, SG *P6₃/mmc*, *a* = 0.8431(4)–0.8443(4) nm, *c* = 0.8302(5) – 0.8204(7) nm), HoFe₃ (Ho_{1-x}Hf_xFe₃, $0 \le x \le 0.48$, PuNi₃ type, Pearson symbol *hR36*, SG *R* $\overline{3}$, *a* = 0.5098(3)– 0.5051(1) Å, *c* = 2.446(3)–2.422(1) nm), HoFe₂ (Ho_{1-x}Hf_xFe₂, $0 \le x \le 0.51$, MgCu₂ type, Pearson symbol *cF24*, SG *Fd* $\overline{3}m$, *a* = 0.7315(2)–0.7185(3) nm) was established.

Hydrogen-storage properties of four alloys of the $Ho_{1-x}Hf_xFe_2$ (x = 0, 0.1, 0.2, 0.4) solid solution were investigated. The hydrogenation of the binary compound HoFe₂ reduses the symmetry (HoFe₂ – cubic, MgCu₂ type; HoFe₂H_{4.39} – trygonal, TbFe₂ type). Hydrides of alloys Ho_{1-x}Hf_xFe₂ (x = 0.1, 0.2) keep the crystal structure of corresponding parent samples. Substitution Holmium by Hafnium reduces hydrogen-storage capacity. The samples Ho_{0.6}Hf_{0.4}Fe₂ and Hf_{1-x}Ho_xFe₂ (x = 0, 0.1, 0.2, 0.4) don't absorb hydrogen at room temperature and hydrogen pressure of 0.1 MPa.

Key words: ternary system, phase equilibria, solid solution, metal hydrides.

ВЗАИМОДЕЙСТВИЕ КОМПОНЕНТОВ В СИСТЕМЕ Но-Hf-Fe И ВОДОРОДСОРБЦИОННАЯ СПОСОБНОСТЬ СПЛАВОВ ТВЕРДОГО РАСТВОРА H02_xHfxFe2 (0≤x≤0,51)

А. Лукьянова¹, В. Левицкий¹, В. Бабижецкий¹, О. Мякуш², Б. Котур¹

¹Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005, Львов, e-mail: kotur@franko.lviv.ua

²Национальный лесотехнический университет Украины, ул. Чупрынки, 103, 79057 Львов, Украина

На основании рентгенофазового, рентгеноструктурного анализов и енергодисперсионной спектроскопии построено изотермическое сечение диаграммы состояния системы Ho– Hf–Fe при 800°C. Установлено существование трех твердых растворов замещения на основе бинарных соединений Ho₂Fe₁₇ (Ho_{2-x}Hf_xFe₁₇, $0 \le x \le 1,14$; CT Th₂Ni₁₇; CП *hP*38; ПГ *P*6₃/*mmc*; a = 0,8431(4)-0,8443(4) нм; c = 0,8302(5)-0,8204(7) нм); HoFe₃ (Ho_{1-x}Hf_xFe₃, $0 \le x \le 0,48$; CT PuNi₃; CП *hR*12; ПГ *R*3*m*; a = 0,5098(3) - 0,5051(1) нм; c = 2,446(3) - 2,422(1) нм); HoFe₂ (Ho_{1-x}Hf_xFe₂, $0 \le x \le 0,51$; CT MgCu₂;CП *cF*24; ПГ *Fd*3*m*; a = 0,7315(2) - 0,7185(3) нм).

Исследовано водородсорбционные свойства четырех сплавов твердого раствора $Ho_{1-x}Hf_xFe_2$ (x = 0; 0,1; 0,2; 0,4). Гидрирование бинарного соединения $HoFe_2$ вызывает понижение симметрии его структуры ($HoFe_2 - кубическая$, CT $MgCu_2$; $HoFe_2H_{4,39} - тригональная$, CT $TbFe_2$). Гидриды сплавов $Ho_{1-x}Hf_xFe_2$ (x = 0,1; 0,2) сохраняют структуру соответствующих негидрированых образцов. Замещение гольмия на гафний существенно понижает водородсорбционную ёмкость сплавов. Образцы $Ho_{0,6}Hf_{0,4}Fe_2$ и $Hf_{1-x}Ho_xFe_2(x = 0; 0,1; 0,2; 0,4)$ при комнатной температуре и давлении H_2 0,1 МПа водорода не поглощают.

Ключевые слова: тройная система, фазовые равновесия, твердый раствор, металлогидриды.

> Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011