ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 20–27 Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 20–27

УДК 546.882

ОСОБЛИВОСТІ ВЗАЄМОДІЇ КОМПОНЕНТІВ У СИСТЕМІ Gd–Ag–Sn ПРИ 670 І 870 К

І. Лотоцька¹, В. Ромака², Л. Ромака¹, Ю. Стадник¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна

²Національний університет "Львівська політехніка", вул. Устияновича, 5, 79013 Львів, Україна e-mail:romakav@yahoo.com

Методами рентгенофазового і мікроструктурного аналізів побудовано ізотермічні перерізи діаграми стану потрійної системи Gd–Ag–Sn при 670 та 870 К у повному концентраційному інтервалі та досліджено вплив температури на характер взаємодії компонентів.

Ключові слова: потрійна система, фазові рівноваги, кристалічна структура.

У досліджених потрійних системах R–Ag–Sn (R = La, Ce, Pr, Nd) [1–4] існують три проміжні фази складів RAgSn (структурний тип (CT) LiGaGe), $R_3Ag_4Sn_4$ (CT Gd₃Cu₄Ge₄) і R_5AgSn_3 (CT Ti₅Ga₄). Для систем з рідкісноземельними елементами підгрупи Ітрію відомо про утворення сполук RAgSn (CT LiGaGe для R = Y, Gd-Er [5], CT ZrNiAl для R = Tm, Lu [6]) та $R_3Ag_4Sn_4$ (CT Gd₃Cu₄Ge₄, R = Y, Gd-Ho [7]). Виняток становить система Yb–Ag–Sn, для якої характерне утворення п'яти проміжних фаз [8], з яких тільки сполука зі стехіометрією YbAgSn подібна до інших систем. У ході дослідження потрійної системи Dy–Ag–Sn [9], окрім двох відомих сполук DyAgSn і Dy₃Ag₄Sn₄, виявлено існування нової сполуки DyAgSn₂ зі структурою типу Cu₃Au. Надалі ізоструктурні сполуки знайдені з Y, Gd, Tb, Ho і Er [10]. Утворення кубічної тернарної фази ErAgSn₂ також підтверджено під час дослідження системи Er–Ag–Sn при 670 K [11]. Однак деякі суперечності щодо утворення тернарної сполуки зі структурою типу Cu₃Au в системі Gd–Ag–Sn наведено в [12]. Ми подаємо результати вивчення впливу температури відпалювання на характер фазових рівноваг та утворення сполук у системі Gd–Ag–Sn.

Зразки для дослідження виготовляли методом електродугового сплавлення шихти вихідних компонентів з подальшим гомогенізувальним відпалюванням при 870 та 670 К протягом 720 год. Рентгенофазовий аналіз проводили з використанням дифрактометра ДРОН-2.0М (Fe K_{α} -випромінювання). Склад фаз контролювали за допомогою металографічного аналізу (електронний мікроскоп Carl Zeiss DSM 962). Для розрахунку кристалографічних параметрів використовували комплекс програм WinPLOTR [13].

Подвійні системи Gd–Ag, Gd–Sn і Ag–Sn, які обмежують досліджувану потрійну, вивчені достатньо повно, відомості про них зібрано в довідниках [14, 15]. Рентгенофазовий аналіз підтвердив утворення всіх бінарних сполук, що існують за

[©] Лотоцька I., Ромака В., Ромака Л. та ін., 2012

температур відпалювання. Зазначимо, що, згідно з рентгенофазовим аналізом, твердий розчин заміщення на основі бінарної сполуки GdAg (CT CsCl) протяжністю до 5 ат. % Sn утворюється за обох температур дослідження. Для перевірки літературних даних щодо системи Gd–Sn виготовлено зразки всіх складів згідно з відомостями [14, 16]. Рентгенофазовий аналіз відповідних зразків підтвердив утворення бінарних сполук Gd₅Sn₃, Gd₅Sn₄, Gd₁₁Sn₁₀, GdSn₂ і Gd₃Sn₇ за умов дослідження. Для зразка стехіометричного складу Gd₂₅Sn₇₅ гомогенізувальне відпалювання проводили за різних температур (670, 870, 1070 К). Фазовий склад зразка Gd₂₅Sn₇₅ за відповідних температурних режимів наведено в табл. 1.

Таблиця 1

Фазовий склад зразка Gd₂₅Sn₇₅ за різних температур відпалювання

Температура	Фаза 1	Фаза 2	Фаза З
Без відпалу	Sn	GdSn ₃ (куб., <i>a</i> =0,4657(9) нм)	GdSn ₂
670 K	GdSn ₃ (орторомб.)	Sn	
	<i>а</i> =0,4343(2) нм <i>b</i> =0,4401(1) нм		
	с=2,1986(9) нм		
870 K	GdSn ₃ (куб.) <i>a</i> =0,46532(1) нм	Sn	
1070 K	Sn	GdSn ₃ (куб., <i>a</i> =0,4658(7) нм)	Gd_3Sn_7

Згідно з отриманими результатами, бінарний станід $GdSn_3$ при 670 К має ромбічну структуру типу $GdSn_{2,75}$, тоді як при 870 К кристалізується в структурному типі Cu_3Au , що добре узгоджується з даними про наявність поліморфного переходу від ромбічної до кубічної структури при 665 К для сполуки $GdSn_3$ [16].

Унаслідок дослідження взаємодії компонентів у системі Gd–Ag–Sn за температур відпалювання 670 і 870 К підтверджено існування сполук GdAgSn і Gd₃Ag₄Sn₄. Детальне дослідження системи Gd–Ag–Sn виконано вздовж ізоконцентрати 25 ат. % Gd від складу 1:1:2 до бінарної сполуки GdSn₃. При 670 К у системі Gd–Ag–Sn за результатами фазового і мікроструктурного аналізів потрійних зразків уздовж ізоконцентрати 25 ат. % Gd виявлено утворення тернарної сполуки Gd(Ag,Sn)₃ зі структурою типу Cu₃Au, яка має область гомогенності в межах 3–17 ат. % Ag. Ізотермічний переріз діаграми стану системи при 670 К зображено на рис. 1. Фазовий склад окремих сплавів наведено в табл. 2, фотографії мікроструктур деяких сплавів показано на рис. 2.

Як зазначено вище, сполука GdSn₃ при 870 К кристалізується в структурному типі Cu₃Au. Фазовий і мікроструктурний аналіз потрійних зразків, відпалених при 870 К, уздовж ізоконцентрати 25 ат. % Gd і аналіз періодів гратки засвідчив утворення твердого розчину заміщення $GdAg_xSn_{3-x}$ на основі бінарного станіду $GdSn_3$ зі структурою типу Cu₃Au до складу $Gd_{25}Ag_{16}Sn_{59}$ (табл. 3). Ізотермічний переріз діаграми стану системи при 870 К зображено на рис. 3, фотографії мікроструктур деяких сплавів показано на рис. 4.

Кристалографічні характеристики тернарних сполук системи Gd–Ag–Sn наведено в табл. 4.

Рис. 1. Ізотермічний переріз діаграми стану системи Gd–Ag–Sn при 670 К

Рис. 2. Мікроструктури сплавів (670 К): $a - Gd_{25}Ag_{10}Sn_{65}$ (Gd(Ag,Sn)₃ (Gd_{25,70}Ag_{8.67}Sn_{65,63}) – сіра фаза, Ag₃Sn – темносіра фаза); $\delta - Gd_{25}Ag_{12}Sn_{63}$ (Gd(Ag,Sn)₃ (Gd_{24,85}Ag_{11,33}Sn_{63,82})).

I. Лотоцька, В. Ромака, Л. Ромака та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

Таблиця 2

Склад сплавів, ат. %		ів, ат. %	Фазовий склад			
Gd	Ag	Sn	фаза 1	фаза 2	фаза З	
25		75	$GdSn_3$ a = 0,4345(2) нм b = 0,4401(1) нм c = 2,1986(9) нм	Sn		
25	2	73	$Gd(Ag,Sn)_3$ a = 0,4652(2) нм	Sn	Gd_3Sn_7	
25	3	72	$Gd(Ag,Sn)_3$ a = 0,46466(1) нм	Sn a = 0,5800(2) нм c = 0,3181(3) нм		
25	5	70	$Gd(Ag,Sn)_3$ a = 0,46413(1) нм	Sn		
25	8	67	$Gd(Ag,Sn)_3$ a = 0,4635(1) нм			
25	10	65	$Gd(Ag,Sn)_3$ a = 0,46217(1) нм	Ag ₃ Sn (сліди)		
25	12	63	$Gd(Ag,Sn)_3$ a = 0,4619(1) нм			
25	15	60	$Gd(Ag,Sn)_3$ a = 0,46069(2) нм			
25	17	58	$Gd(Ag,Sn)_3$ a = 0,46039(2) нм			
25	20	55	Gd(Ag,Sn) ₃ <i>a</i> = 0,4604(2) нм	$Gd_3Ag_4Sn_4$ a = 0,4563(2) нм b = 0,73047(1) нм c = 1,5224(8) нм	Ag ₃ Sn	
15	30	55	Gd(Ag,Sn) ₃ <i>a</i> = 0,46038(2) нм	Ag_3Sn a = 0,5966(2) нм b = 0,4778(1) нм c = 0,5181(4) нм	Sn a = 0,5810(2) нм c = 0,3181(1) нм	
32	13	55	$GdSn_2$ a = 0,4431(2) нм b = 1,6408(1) нм c = 0,4325(4) нм	GdAgSn a = 0,4711(5) нм c = 0,7424(2) нм	Gd ₃ Ag ₄ Sn ₄ (сліди)	
20	65	15	GdAgSn a = 0,4710(2) нм c = 0,7422(3) нм	Ад <i>a</i> = 0,4083(2) нм	$Gd_{14}Ag_{51}$	
30	65	5	GdAg ₂ <i>a</i> = 0,3739(2) нм <i>c</i> = 0,9283(3) нм	Gd ₁₄ Ag ₅₁ <i>a</i> = 1,2678(2) нм <i>c</i> = 0,9330(3) нм	GdAgSn (сліди)	

Фазовий склад окремих сплавів системи Gd–Ag–Sn при 670 К

23

Рис. 3. Ізотермічний переріз діаграми стану системи Gd–Ag–Sn при 870 К

Рис. 4. Мікроструктури сплавів (870 К): $a - Gd_{25}Ag_{20}Sn_{55}$ ($Gd_3Ag_4Sn_4$ – основна фаза, $GdAg_xSn_{3-x}$ ($Gd_{25,09}Ag_{15,93}Sn_{58,98}$) – сіра фаза, $Ag_{0,8}Sn_{0,2}$ – темносіра фаза); $\delta - Gd_{25}Ag_8Sn_{67} - GdAg_xSn_{3-x}$ ($Gd_{24,94}Ag_{7,85}Sn_{67,21}$)

I. Лотоцька, В. Ромака, Л. Ромака та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

Таблиця З

25

Склад сплавів, ат. %		Фазовий склад			
Gd	Ag	Sn	фаза 1	фаза 2	фаза З
25		75	GdSn ₃ <i>a</i> = 0,46570(9) нм	Sn	
25	2	73	$GdAg_xSn_{3-x}$ a = 0,46561(1) нм	Sn	
25	5	70	$GdAg_xSn_{3-x}$ a = 0,46367(1) нм	Sn	
25	8	67	$GdAg_xSn_{3-x}$ a = 0,46261(2) нм		
25	10	65	$GdAg_xSn_{3-x}$ a = 0,4623(4) нм		
25	12	63	$GdAg_xSn_{3-x}$ a = 0,4610(4) нм		
25	15	60	$GdAg_xSn_{3-x}$ a = 0,4591(3) нм		
25	17	58	$GdAg_xSn_{3-x}$ a = 0,45874(4) нм		
25	20	55	$GdAg_xSn_{3-x}$ a = 0,45836(3) нм	$Gd_{3}Ag_{4}Sn_{4} \\$	
25	25	50	$GdAg_xSn_{3-x}$ a = 0,45826(2) нм	$Gd_{3}Ag_{4}Sn_{4} \\$	
15	30	55	$GdAg_xSn_{3-x}$ a = 0,45893(3) нм	Sn a = 0,5828(2) нм c = 0,3181(1) нм	Аg _{0,8} Sn _{0,2} (сліди)
25	30	45	$Gd_3Ag_4Sn_4$ a = 0,4564(2) нм b = 0,73063(1) нм c = 1,5222(8) нм	$GdAg_xSn_{3-x}$ a = 0,4582(3) нм	Аg _{0,8} Sn _{0,2} (сліди)
12	55	33	Gd_5Sn_3 a = 0,8999(2) нм c = 0,6558(3) нм	GdAgSn a = 0,4710(2) нм c = 0,7422(3) нм	GdAg ₂ <i>a</i> = 0,3735(2) нм <i>c</i> = 0,9279(3) нм

Фазовий склад окремих сплавів системи Gd–Ag–Sn при 870 К

Таблиця 4

Кристалографічні характеристики	тернарних	сполук	системи	Gd–Ag–Sn

Сполука	Структурний	Просторова	а Періоди ґратки, нм		
	тип	група	а	b	С
GdAgSn	LiGaGe	P6/mmm	0,4711(5)	-	0,7424(2)
$Gd_3Ag_4Sn_4$	Gd ₃ Cu ₄ Ge ₄	Immm	0,45658(2)	0,73063(3)	1,52210(8)
*GdAg _{0,1-0,7} Sn _{2,9-2,3}	Cu ₃ Au	Pm3m	0,46466(1)– 0,46039(2)		

^{*}670 K.

Отже, виконані дослідження взаємодії компонентів у системі Gd–Ag–Sn при 670 і 870 К дають змогу зробити такі висновки:

a) при 670 К бінарний станід $GdSn_{2,75}$ кристалізується в структурному типі $GdSn_{2,75}$, а в потрійній області системи за вмісту Ag > 3 ат.% виявлено утворення тернарної сполуки $Gd(Ag,Sn)_3$ зі структурою типу Cu_3Au ;

 δ) при 870 K бінарна сполука GdSn₃ має кубічну структуру типу Cu₃Au, на основі якої визначено утворення твердого розчину заміщення GdAg_xSn_{3-x}.

Порівняно зі сполуками $RAgSn_2$ (R = Y, Tb–Er), які утворюються в разі стехіометрії 1:1:2, сполука з Gd утворюється за вищого вмісту Sn.

Отже, отримані нами результати дослідження бінарного станіду $GdSn_3$ за різних температурних режимів чітко свідчать про утворення сполуки з ромбічною структурою типу $GdSn_{2,75}$ при 670 К, що повністю узгоджується з даними праць [17, 18], у яких уперше знайдено сполуку $GdSn_{2,75}$ саме при 670 К та досліджено її кристалічну структуру. Тому результати дослідження системи Gd-Ag-Sn при 670 К авторами [12], які зазначають про утворення твердого розчину заміщення на основі $GdSn_3$ з кубічною структурою, свідчать про недостатню прецизійність вивчення цієї ділянки системи за менших концентрацій Ag уздовж ізоконцентрати 25 ат. % Gd.

- 1. *Liang J., Liao C., Du Y.* et al. The isothermal section of the Ag–La–Sn ternary system at 400 °C // J. Alloys Compd. 2010. Vol. 493. P. 122–127.
- 2. Boulet P., Mazzone D., Noel H. et al. The system Ce–Ag–Sn: phase equilibria and magnetic properties // Intermetallics. 1999. Vol. 7. P. 931–935.
- 3. *Mazzone D., Riani P., Zanicchi G.* et al. The isothermal section at 400 °C of the Pr–Ag–Sn ternary system // Intermetallics. 2002. Vol. 10. P. 801–809.
- Salamakha P., Zaplatynsky O., Sologub O., Bodak O. Interaction behaviour of neodymium and silver with elements of group IVa at 600 °C // J. Alloys Compd. 1996. Vol. 239. P. 94–97.
- Mazzone D., Rossi D., Marazza R., Ferro R. A contribution to the crystal chemistry of ternary 1:1:1 alloys: RAgSn and RCuTl compounds (R = rare earth) // J. Less-Common Met. 1981. Vol. 80. P. 47–52.
- Sebastian C.P., Eckert H., Fehse C. et al. Structural, magnetic and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn // J. Solid State Chem. 2006. Vol. 179. P. 2376–2385.
- Romaka V.V., Davydov V., Gladyshevskii R., Melnychenko N. Crystal structure of the ternary R₃Ag₄Sn₄ stannides (R = Y, Gd, Tb, Dy, Ho) with Gd₃Cu₄Ge₄-type structure // J. Alloys Compd. 2007. Vol. 443. P. 68–70.
- 8. *Zanicchi G., Mazzone D., Riani P.* et al. The isothermal section at 400 ^oC of the Yb–Ag–Sn ternary system // J. Alloys Compd. 2001. Vol. 317–318. P. 513–520.
- 9. *Romaka V.V., Tkachuk A., Davydov V.* Interaction of the components in the Dy–Ag–Sn ternary system at 870 K // J. Alloys Compd. 2007. Vol. 439. P. 128–131.
- Romaka V.V., Davydov V., Romaka L., Stadnyk Yu. Crystal structure of new RAgSn₂ ternary compounds (R = Y, Gd, Tb, Dy, Ho, Er) //J. Alloys Compd. 2008. Vol. 457. P. 329–331.
- 11. *Liang J., Liao C., Tang Y.* et al. Interaction of the components in the Ag–Er–Sn system at 400 °C // J. Alloys Compd. 2010. Vol. 502. P. 68–73.
- 12. *Liang J.L., Du Y., Tang Y.Y.* et al. Phase equilibria of the Ag–Gd–Sn ternary system at 400 °C // J. Alloys Compd. 2009. Vol. 481. P. 264–269.

I. Лотоцька, В. Ромака, Л. Ромака та ін.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53

- 13. *Rodriguez-Carvajal J.* FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, version 3.5d; Laboratoire Léon Brillouin (CEA–CNRS): Saclay, France, 1998.
- 14. *Massalski T.B.* Binary Alloy Diagrams. American Society for Metals. Metals Park OH 44073. 1986. Vol. 1, 2.
- 15. *Villars P., Calvert J.D.* Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Metals Park OH 44073. 1997.
- Palenzona A., Manfrinetti P. The tin-rich side of the rare earth-tin systems (R = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) // J. Alloys Compd. 1993. Vol. 201. P. 43–47.
- 17. Сколоздра Р.В., Аксельруд Л.Г., Печарський В.К., Корецька О.Е. Нові сполуки в системі Gd–Sn і їх кристалічна структура // Доп. АН УРСР. Сер. Б. 1986. № 12. С. 48–52.
- Корецкая О.Э., Комаровская Л.П., Сколоздра Р.В. Свойства и структура новых тернарных станнидов редкоземельных металлов с высоким содержанием олова // Изв. АН СССР. Неорган. материалы. 1988. Т. 24. С. 1299–1302.

PECULIARITY OF COMPONENT INTERACTION IN Gd-Ag-Sn SYSTEM AT 670 AND 870 K

I. Lototska¹, V. Romaka², L. Romaka¹, Yu. Stadnyk¹

¹ Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine

²Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013, Lviv, Ukraine, e-mail:romakav@yahoo.com

The isothermal sections of the Gd–Ag–Sn ternary system were constructed at 670 and 870 K in the whole concentration range using X-ray and metallographic analyses and the influence of the temperature on component interaction was studied.

Keywords: ternary system, phase equilibria, crystal structure.

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ В СИСТЕМЕ Gd–Ag–Sn ПРИ 670 И 870 К

И. Лотоцкая¹, В. Ромака², Л. Ромака¹, Ю. Стаднык¹

¹Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина

²Национальный университет "Львовская политехника", ул. Устияновича, 5, 79013 Львов, Украина, e-mail:romakav@yahoo.com

Методами рентгенофазового и микроструктурного анализов построено изотермические сечения диаграммы состояния тройной системы Gd—Ag—Sn при 670 и 870 К в полном концентрационном интервале и исследовано влияние температуры на характер взаимодействия компонентов.

Ключевые слова: тройная система, фазовые равновесия, кристаллическая структура.

Стаття надійшла до редколегії 21.10.2011 Прийнята до друку 21.12.2011