ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2012. Випуск 53. С. 12–19 Visnyk of the Lviv University. Series Chemistry. 2011. Issue 53. P. 12–19

УДК 548.736.4

ФАЗОВІ РІВНОВАГИ В СИСТЕМАХ Gd-Fe-{Ga,Ge}-Sb ПРИ 500 °C. КРИСТАЛОГРАФІЧНІ ПАРАМЕТРИ СПОЛУК GdFe₂Ge₂ ТА GdFe_{0.52}Ge₂

В. Гвоздецький, Н. Герман, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія 6, 79005 Львів, Україна, e-mail: aaadddad@gmail.com

Досліджено фазові рівноваги у системах Gd–Fe–{Ga,Ge}–Sb в концентраційній області вмісту Gd \leq 33,3 ат.% при 500 °C та побудовано відповідні діаграми стану. Визначено кристалографічні параметри сполук GdFe₂Ge₂ та GdFe_{1-x}Ge₂. Параметри елементарної комірки для фази GdFe₂Ge₂ (структурний тип CeAl₂Ga₂, *t*/10, *I*4/*mmm*, *a* = 3,9867(2), *c* = 10,4798(7) Å) добре узгоджуються з літературними даними, тоді як вміст феруму та параметри комірки для фази GdFe_{1-x}Ge₂ (*x* = 0,48, структурний тип CeNiSi₂, *oS*16, *Cmcm*, *a* = 4,169(1), *b* = 16,055(5), *c* = 4,049(1) Å) є більшими, ніж повідомлено раніше.

Ключові слова: гадоліній, германід, фазові рівноваги, кристалічна структура.

У потрійній системі Gd-Fe-Sb [1] утворюється сполука GdFe_{1-x}Sb₂ (склад сплаву $Gd_{35}Fe_{10}Sb_{55}$, структурний тип (СТ) HfCuSi₂, символ Пірсона *tP*8, просторова група P4/nmm, a = 4,3080 c = 9,4125 Å). У системі Gd-Fe-Ga [2, 3] при 500°С визначено існування двох тернарних сполук: GdFe_{5.3}Ga_{6.7} (CT ScFe₆Ga₆, oI26, Immm, a = 5,0782, b = 8,5676, c = 8,6960 Å), GdFe_{5.0-4.3}Ga_{7.0-7.7} (CT ThMn₁₂, *tI*26, *I*4/*mmm*, a = 8,651, c = 5,0834 Å для GdFe₅Ga₇). Також у літературі є відомості щодо існування фази GdFe₁₁₋₁₀Ga₁₋₂ [3] (CT ThMn₁₂, *tI*26, *I*4/*mmm*, *a* = 8,5752, *c* = 4,7697 Å для GdFe_{10.5}Ga_{1.5}). На основі бінарної сполуки Gd₂Fe₁₇ утворюється твердий розчин заміщення Gd₂Fe_{17-x}Ga_x до x = 8,4 [3, 5, 6] (CT Th₂Zn₁₇, hR57, R $\bar{3}m$, a = 8,774, c = 12,67 Å для Gd₂Fe₁₀Ga₇). У системі Gd-Fe-Ge [7-11] при 500°С виявлено існування чотирьох тернарних сполук: GdFe₂Ge₂ (CT CeAl₂Ga₂, *tI*10, *I*4/*mmm*, *a* = 3,989, *c* = 10,48 Å), $Gd_{0.5}Fe_3Ge_3$ (CT Y_{0.5}Co₃Ge₃, hP8, P6/mmm, a = 5,118, c = 4,056 Å), $GdFe_{1-x}Ge_2$ $(0,64 \le x \le 0.75, \text{ CT CeNiSi}_2, oS16, Cmcm, a = 4.124-4.156, b = 16.06-16.08,$ c = 3,998-4,046 Å) ta Gd₁₁₇Fe₅₂Ge₁₁₂ (CT Tb₁₁₇Fe₅₂Ge₁₁₂, cF1124, $Fm\bar{3}m$, a = 8,711 Å). Відомостей про дослідження системи Gd-Ga-Sb ми не знайшли. В системі Gd-Ge-Sb [12] визначено існування однієї тернарної сполуки, Gd₆Ge_{4,3}Sb_{11,7} (CT власний $Gd_6Ge(Ge_{0.83}Sb_{0.17})_4Sb_{11}$, oI46, Immm, a = 4,1509, b = 10,4438, c = 26,24 Å). У потрійній системі Fe-Ga-Sb [13] при 600°С на основі бінарної сполуки Fe_{1.27}Sb утворюється твердий розчин Fe_tGa_{2-x}Sb_x (2,15 $\leq t \leq$ 2,8, 1,2 $\leq x \leq$ 2, CT Ni₂In, hP6, $P6_3/mmc$, a = 4,086-4,114, c = 5,116-5,160 Å). У системі Fe-Ge-Sb [14] виявлено існування тернарних сполук FeGe_{0.3}Sb_{0.7} (CT NiAs, hP4, P6₃/mmc, a = 4,025, c = 5,09 Å), Fe₃Ge₂Sb (CT Co₃Ge₂Sb, *hP*36, *P6/mmm*, a = 8,9885, c = 7,9043 Å) ta Fe₃Ge_{2,4}Sb_{0.6} (СТ власний Fe₃Ge_{2,4}Sb_{0.6}, *hP*44, *P*6₃/*mmc*, *a* = 8,7958, *c* = 8,0042 Å).

[©] Гвоздецький В., Герман Н., Гладишевський Р.С., 2012

Відкриття в 2008 р. надпровідного переходу ($T_c \sim 26$ K) для легованого флуором оксиарсеніду LaO_{1-x}F_xFeAs [15] стимулювало появу численних праць із вивчення надпровідності та інших фізичних властивостей цієї та споріднених сполук, які належать до нового класу надпровідників – Fe-вмісних оксипніктидів. Заміна лантану на самарій зумовила підвищення T_c до 55 K. Іншим класом надпровідників є арсеніди AFe₂As₂ (A = Ca, Sr, Ba). Наприклад, T_c для Ba_{0,6}K_{0,04}Fe₂As₂ становить 38 K. Спільною характеристикою структур зазначених класів сполук є чергування сіток атомів оксигену та рідкісноземельних чи тільки лужноземельних металів із легувальними домішками з шарами тетраедричних конгломератів FeAs₄. Схожі структурні деталі трапляються в структурах сполук потрійних систем, що обмежують системи Gd–Fe– {Ga,Ge}–Sb. Ми вивчили взаємодію компонентів у наведених чотирикомпонентних системах.

Для дослідження ми синтезували 23 сплави із вмістом Gd \leq 33,3 ат. %. Зразки готували сплавлянням шихти з компактних металів (вміст основного компонента Gd \geq 99,4 мас. %, Fe \geq 99,985 мас. %, Sb \geq 99,999 мас. %, Ga \geq 99,999 мас. %, Ge \geq 99,999 мас. %) в електродуговій печі в атмосфері аргону під тиском ~50 кПа. Сплави гомогенізували у вакуумованих кварцових ампулах при 500°C упродовж 720 год у печі Vulcan A-550 з автоматичним регулюванням температури $\pm 1-2^{\circ}$ C. Відпалені сплави гартували в холодній воді без попереднього розбивання ампул. Рентгенівський фазовий та структурний аналізи проведено на підставі дифрактограм, одержаних на дифрактометрах ДРОН-2.0М та ДРОН-4.0 (проміння FeK α). Для індексування порошкограм використано теоретичні дифрактограми, розраховані за допомогою програми POWDER CELL-2.4 [16] та баз даних TYPIX [17] (стандартизовані дані структурних типів неорганічних сполук) і PEARSON'S CRYSTAL DATA [18] (структурні характеристики неорганічних сполук). Параметри структури уточнено методом Рітвельда з використанням програм DBWS-9807 [19] та FullProf [20].

За результатами рентгенофазового та рентгеноструктурного аналізів визначено фазові рівноваги в певних концентраційних інтервалах чотирикомпонентних систем Gd–Fe–Ge–Sb та Gd–Fe–Ga–Sb при 500℃ (рис. 1, 2). Тетрарних сполук не знайдено. На дифрактограмах переважної більшості зразків домінують відбиття фази GdSb із кубічною структурою типу NaCl (просторова група $Fm\bar{3}m$, a = 6,2151(8) Å). У фазових рівновагах також беруть участь такі бінарні та тернарні сполуки: FeGa (CT MnGa, R3m), Fe_{2.8}Ga_{1.2} (CT Cu₃Au, Pm3m), FeGa₃ (CT IrIn₃, P4₂/mnm), GdGa₂ (CT AlB₂, P6/mmm), Gd₂Fe₁₇ (CT Th₂Zn₁₇, R3m), GaSb (CT ZnS, F43m), Gd_{0.5}Fe₃Ge₃ (CT $Y_{0.5}Co_3Ge_3$, P6/mmm), Fe₃Ge (CT Cu₃Au, Pm $\overline{3}m$), Fe_{1.7}Ge (CT Ni₂In, P6₃/mmc), Gd₆Ge_{4.3}Sb_{11.7} (CT Gd₆Ge(Ge_{0.83}Sb_{0.17})₄Sb₁₁, *Immm*), GdFe₂Ge₂ (CT CeAl₂Ga₂, *I4/mmm*), Gd₅Ge₃ (СТ Mn₅Si₃, P6₃/mcm), GdFe_{0.52}Ge₂ (СТ CeNiSi₂, Cmcm). Додатково виявлено існування високотемпературних фаз Fe_{1-x}Ga_x (CT W, Im3m), Fe₃Ga та Fe₃Ge (CT Mg₃Cd, Р6₃/mmc) одночасно з відповідними низькотемпературними, що може свідчити про стабілізацію високотемпературних фаз при 500 °С невеликою кількістю третього компонента. Хімічний та фазовий склади для деяких синтезованих сплавів, а також уточнені параметри елементарних комірок індивідуальних фаз наведено в табл. 1.

13

Рис. 1. Окремі фазові рівноваги в системі Gd-Fe-Ga-Sb при 500 °C

Рис. 2. Окремі фазові рівноваги в системі Gd-Fe-Ge-Sb при 500 °C

15

37		D .				
Хімічний склад, ат.%	Фазовий	Вміст фази.	Структурний	Параметри комірки, Å		
Gd Fe Ga Ge Sb	склад	мас.%	тип	а	b	с
25,0 25,0 25,0 - 25,0	GdSb	75(2)	NaCl	6,2178(7)	_	_
	FeGa	25(1)	MnGa	12,294(6)	_	7,793(6)
20,0 20,0 40,0 - 20,0	GdSb	56(2)	NaCl	6,2169(7)	_	-
	FeGa ₃	35(2)	IrIn ₃	6,261(2)	_	6,559(4)
	$Fe_{1-x}Ga_x$	9(1)	W	2,902(1)	_	-
	GaSb	40(2)	ZnS	6,0954(9)	_	-
167 167 33 3 33 3	GdSb	39(2)	NaCl	6,2211(8)	_	_
10,7,10,7,55,5 = 55,5	FeGa ₃	13(3)	IrIn ₃	6,262(9)	_	6,55(1)
	Fe ₃ Ga	8(2)	Mg ₃ Cd	5,163(7)	_	4,23(1)
	GdGa ₂	41(1)	AlB ₂	4,2217(4)		4,1300(7)
33,3 16,7 33,3 - 16,7	GdSb	37(1)	NaCl	6,2184(5)	_	-
	Gd ₂ Fe ₁₇	22(1)	Th_2Zn_{17}	8,636(3)	_	12,534(7)
	GdSb	57(2)	NaCl	6,2172(7)	_	-
16,7 49,9 16,7 - 16,7	$Fe_{1-x}Ga_x$	34(2)	W	2,9044(5)	_	-
	Fe _{2,8} Ga _{1,2}	9(1)	Cu ₃ Au	3,680(2)	_	-
25 0 25 0 25 0 25 0	Gd _{0,5} Fe ₃ Ge ₃	63(2)	Y _{0,5} Co ₃ Ge ₃	5,1176(8)	_	4,067(1)
23,0 $23,0$ $ 23,0$ $23,0$	GdSb	37(1)	NaCl	6,2194(7)	_	-
	GdSb	60(2)	NaCl	6,2188(8)	_	-
20.0.40.0 20.0.20.0	Fe _{1,7} Ge	24(1)	Ni ₂ In	4,0256(7)	_	5,021(1)
20,0 40,0 - 20,0 20,0	Fe _{1,8} Ge1,2	8(1)	Cu ₃ Au	3,666(1)	-	-
	Fe ₃ Ge	8(1)	Mg ₃ Cd	5,185(2)	_	4,219(4)
	$Gd_{0,5}Fe_3Ge_3$	59(2)	Y _{0,5} Co ₃ Ge ₃	5,1197(7)	-	4,0701(8)
20.0.20.0 40.0.20.0	GdSb	25(1)	NaCl	6,2165(6)	-	-
20,0 20,0 - 40,0 20,0	Ge	9(1)	С	5,6549(5)	_	-
	$Gd_8Ge_{4,3}Sb_{11,7}$	7(1)	$Gd_8Ge_{4,3}Sb_{11,7}$	4,147(4)	10,471(2)	26,22(3)
	$Gd_{0,5}Fe_3Ge_3$	43(1)	Y _{0,5} Co ₃ Ge ₃	5,1266(5)	_	4,0714(6)
20,0 36,0 - 36,0 8,0	$GdFe_2Ge_2$	39(1)	CeAl ₂ Ga ₂	3,987(3)	-	10,47(1)
	GdSb	18(1)	NaCl	6,2143(4)	_	_
	GdSb	46(2)	NaCl	6,212(1)	_	-
33,3 33,3 - 16,7 16,7	$Fe_{1-x}Ge_x$	37(2)	W	2,8778(6)	_	-
	Gd ₅ Ge ₃	17(1)	Mn ₅ Si ₃	8,593(4)	_	6,377(4)
	GdFe _{1-x} Ge ₂	46(3)	CeNiSi ₂	4,169(1)	16,055(5)	4,049(1)
33,3 16,7 - 33,3 16,7	GdSb	32(2)	NaCl	6,212(1)	-	-
	$GdFe_2Ge_2$	22(4)	CeAl ₂ Ga ₂	3,986(1)	_	10,469(4)
	GdFe ₂ Ge ₂	79 (5)	CeAl ₂ Ga ₂	3,9867(2)	-	10,4798(7)
20,0 40,0 - 35,0 5,0	GdSb	11(1)	NaCl	6,2103(4)	-	-
	Fe _{1,7} Ge	10(2)	Ni ₂ In	4,0193(6)	_	5,028(1)

Фазовий склад зразків систем Gd–Fe–{Ga,Ge}–Sb

Для тернарних сполук $GdFe_2Ge_2$ та $GdFe_{1-x}Ge_2$ були відомі лише параметри елементарних комірок. Ми визначили координати атомів у відповідних структурах (табл. 2) на підставі рентгенівських порошкових дифракційних даних (рис. 3, 4).

Таблиця 2

Сполука GdFe ₂ Ge ₂ , структура типу CeAl ₂ Ga ₂ , просторова група <i>I</i> 4/ <i>mmm</i> , $a = 3,987(3), c = 10,47(1)$ Å, $R_{\rm B} = 0,0562$									
Атом	ПСТ	x	у	z	B_{i30} , нм ²				
Gd	2a	0	0	0	0,004(1)				
Fe	4d	0	1/2	1/4	0,009(1)				
Ge	4 <i>e</i>	0	0	0,3774(6)	0,009(1)				
Сполука GdFe _{0,52(6)} Ge ₂ , структура типу CeNiSi ₂ , просторова група <i>Стст</i> , $a = 4,169(1), b = 16,055(5), c = 4,049(1)$ Å, $R_{\rm B} = 0,0887$									
Атом	ПСТ	x	у	z	B_{i30} , HM^2				
Gd	4 <i>c</i>	0	0,397(2)	1/4	0,005(2)				
Fe [*]	4 <i>c</i>	0	0,180(4)	1/4	0,009(4)				
Ge1	4 <i>c</i>	0	0,044(3)	1/4	0,009(4)				
Ge2	4 <i>c</i>	0	0,744(3)	1/4	0,009(4)				

Результати уточнення кристалічної структури сполук GdFe₂Ge₂ та GdFe_{1-x}Ge₂

* Примітка. Коефіцієнт заповнення позиції 0,52(6).

Відповідні зразки виявилися багатофазовими із вмістом основних фаз GdFe₂Ge₂ (CeAl₂Ga₂, *I4/mmm*) та GdFe_{0,52}Ge₂ (CeNiSi₂, *Cmcm*) – 39 і 46 мас. %, відповідно. Параметри елементарної комірки для фази GdFe₂Ge₂ (CeAl₂Ga₂, *I4/mmm*, a = 3,9867(2), c = 10,4798(7)) добре узгоджуються з літературними даними, тоді як вміст заліза та параметри комірки для фази GdFe_{1-x}Ge₂ (x = 0,48, CT CeNiSi₂, *oS*16, *Cmcm*, a = 4,169(1), b = 16,055(5), c = 4,049(1) Å) є більшими.

Рис. 3. Дифрактограма зразка Gd₂₀Fe₃₆Ge₃₆Sb₈, що містить фази: *1* – Gd_{0.5}Fe₃Ge₃ (CT Y_{0.5}Co₃Ge₃, *P6/mmm*), *2* – GdFe₂Ge₂ (CT CeAl₂Ga₂, *I4/mmm*), *3* – GdSb (CT NaCl, *Fm*3*m*)

Рис. 4. Дифрактограма зразка Gd_{33,3}Fe_{16,7}Ge_{33,3}Sb_{16,7}, що містить фази: *1* – GdFe_{0,52}Ge₂ (CT CeNiSi₂, *Cmcm*), *2* – GdSb (CT NaCl, *Fm*3*m*), *3* – GdFe₂Ge₂ (CT CeAl₂Ga₂, *I*4/*mmm*)

- Leithe-Jasper A., Rogl P. The crystal structure of NdFe_{1-x}Sb₂ and isotypic compounds RE(Fe,Co)_{1-x}Sb₂ (RE = La, Ce, Pr, Sm, Gd) // J. Alloys Compd. 1994. Vol. 203. P. 133–136.
- Weitzer F., Hiebl K., Rogl P., Grin Y.N. Magnetizsm and crystal chemistry in REFe_{12-x}Ga_x (RE = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and MM = mischmetal) and (ZrPr)(Fe_{1-x}Co_x)_{12-y}Ga_y // J. Appl. Phys. 1990. Vol. 68. P. 3512–3517.
- 3. *Liu D.C., Li J.Q., Ouyang M., Liu F.S., Ao W.Q.* The phase relations in the Gd–Fe–Ga ternary system at 500 °C // J. Alloys Compd. 2009. Vol. 479. P. 134–139.
- Burzo E., Valeanu M., Plugaru N. Magnetic properties of RFe_{12-x}Ga_x compounds with R = Gd or Y // Solid State Commun. 1992. Vol. 83. P. 159–161.
- 5. *Cheng Z., Shen B., Liang B.* et al. Ga concentration dependence of magnetocrystalline anisotropy in Gd₂Fe_{17-x}Ga_x compounds // J. Appl. Phys. 1995. Vol. 78. P. 1385–1387.
- 6. Shen B.G., Liang B., Cheng Z.H. et al. Magnetic properties of R_2 Fe₁₄ M_3 compounds with M = Ga and Si; R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm // Solid State Commun. 1997. Vol. 103. P. 71–75.
- Rieger W., Lonza A.G., Parthe E. Ternare Erdalkali- und Seltene Erdmetall-Silicide und -Germanide mit ThSi₂Cr₂-Struktur // Monatsh. Chem. 1969. Vol. 100. P. 444–454.
- Mrooz O.Y., Starodub P.K., Bodak O.I. New representative of the YCo₆Ge₆ structure type // Dopov. Akad. Nauk Ukr. RSR. 1984. Vol. B. P. 12–44.
- Francois M., Venturini G., Malaman B., Roques B. Nouveaux isotypes de CeNiSi₂ dans les systemes *R*-*M*-*X* (*R* = La-Lu, *M* = Metaux des groupes 7 a 11 et *X* = Ge, Sn). I. Compositions et parametres cristallins // J. Less-Common Met. 1990. Vol. 160. P. 197–213.
- 10. *Morozkin A.Y., Seropegin Y.D., Portnoy V.K.* et al. New ternary compounds R_{117} Fe₅₂Ge₁₁₂ (R= Gd, Dy, Ho, Er, Tm) and Sm₁₁₇Cr₅₂Ge₁₁₂ of the Tb₁₁₇Fe₅₂Ge₁₁₂-type structure // Mater. Res. Bull. 1998. Vol. 33. P. 903–908.
- 11. Zhuang Y.H., Li K.F., Ma C.H., Chen X. The isothermal section of the Gd–Fe–Ge ternary system at 773 K // J. Alloys Compd. 2009. Vol. 467. P. 251–256.
- 12. Lam R., McDonald R., Mar A. Rare-earth germanium $RE_6Ge_{5-x}Sb_{11+x}$ (RE = La-Nd, Sm, Gd-Dy). Synthesis and structures // Inorg. Chem. 2001. Vol. 40. P. 952–959.
- 13. *Deputier S., Barrier N., Guerin R., Guivarch A.* Solid state phase equilibria in the Fe–Ga–Sb ternary system at 600°C // J. Alloys Compd. 2002. Vol. 340. P. 132–140.
- 14. *Mills A.M., Mar A.* Structures of the ternary iron germanium pnictides $\text{FeGe}_{1-x}Pn_x$ (Pn = P, As, Sb) // J. Alloys Compd. 2000. Vol. 298. P. 82–92.
- 15. *Kamihara Y*. Iron-based layered superconductor La[O_{1-x} F_x]FeAs (x = 0,05-0,12) with $T_c = 26$ K // J. Am. Chem. Soc. 2008. Vol. 130. P. 3296–3297.
- 16. *Kraus W., Nolze G.* PowderCell for Windows. Berlin: Federal Institute for Materials Research and Testing, 1999.
- Parthé E., Gelato L., Chabot B. et al. TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Berlin: Springer-Verlag, 1993/1994. Vol. 1–4.
- 18. *Villars P., Cenzual K.* (Eds.) Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds. Materials Park (OH): ASM International, 2011.
- 19. Young R.A., Larson A.C., Paiva-Santos C.O. User's Guide to Program DBWS-9807a for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns. School of Physics, Georgia Institute of Technology, Atlanta GA, US, 1999.
- 20. *Rodríguez-Carvajal J.* Recent developments of the program FullProf. Commission on Powder Diffraction, IUCr, Newsletter 26, 2001.

PHASE EQUILIBRIA IN THE SYSTEMS Gd–Fe–{Ga,Ge}–Sb AT 500 °C. CRYSTALLOGRAPHIC PARAMETERS OF THE COMPOUNDS GdFe₂Ge₂ AND GdFe_{0.52}Ge₂

V. Gvozdetskyi, N. German, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine, e-mail: aaadddad@gmail.com

The phase equilibria in the systems Gd–Fe–{Ga,Ge}–Sb were investigated for the content Gd \leq 33.3 at.% at 500°C and the corresponding isothermal section of the phase diagram was constructed. The crystal structures of the compounds GdFe₂Ge₂ and GdFe_{1-x}Ge₂ were refined. The unit-cell parameters of the phase GdFe₂Ge₂ (structure type CeAl₂Ga₂, *t1*10, *I4/mmm*, *a* = 3.9867(2), *c* = 10.4798(7) Å) are in good agreement with literature data, while the iron content and the cell parameters of the phase GdFe_{1-x}Ge₂ (*x* = 0.48, structure type CeNiSi₂, *oS*16, *Cmcm*, *a* = 4.169(1), *b* = 16.055(5), *c* = 4.049(1) Å) are larger than previously reported.

Key words: gadolinium, germanide, phase equilibria, crystal structure.

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ Gd-Fe-{Ga,Ge}-Sb ПРИ 500 °С. КРИСТАЛЛОГРАФИЧЕСКИЕ ПАРАМЕТРЫ СОЕДИНЕНИЙ GdFe₂Ge₂ И GdFe_{0.52}Ge₂

В. Гвоздецкий, Н. Герман, Р. Гладышевский

Львовский национальный университет имени Ивана Франко, ул. Кирила и Мефодия 6, 79005 Львов, Украина, e-mail: aaadddad@gmail.com

Исследовано фазовые равновесия в системах Gd–Fe–{Ga,Ge}–Sb в концентрационной области содержания Gd \leq 33,3 ат.% при 500°C и построено соответствующие диаграммы состояния. Определено кристаллографические параметры соединений GdFe₂Ge₂ и GdFe_{1-x}Ge₂. Параметры элементарной ячейки для фазы GdFe₂Ge₂ (структурный тип CeAl₂Ga₂, *t1*10, *t4/mmm*, a = 3,9867(2), c = 10,4798(7) Å) хорошо согласуются с литературными данными, тогда как содержание железа и параметры ячейки для фазы GdFe_{1-x}Ge₂ (x = 0,48, структурный тип CeNiSi₂, *oS*16, *Cmcm*, a = 4,169(1), b = 16,055(5), c = 4,049(1) Å) больше, чем приведенные ранее.

Ключевые слова: гадолиний, германид, фазовые равновесия, кристаллическая структура.

Стаття надійшла до редколегії 20.10.2011 Прийнята до друку 21.12.2011