ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2015. Випуск 56. Ч. 1. С. 9–17 Visnyk of the Lviv University. Series Chemistry. 2015. Issue 56. Pt. 1. P. 9–17

УДК 546.3-866.711.682

ВЗАЄМОДІЯ КОМПОНЕНТІВ У ПОТРІЙНИХ СИСТЕМАХ {Gd, Dy}-Mn-In

М. Демчина, І. Бігун, Б. Белан, М. Маняко, М. Дзевенко, Я. Каличак

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: marta.dem.85@gmail.com

Методами рентгенівського порошкового аналізу та енергодисперсійної рентгенівської спектроскопії досліджено взаємодію компонентів та побудовано ізотермічні перерізи діаграм стану систем {Gd, Dy}–Mn–In у повному концентраційному інтервалі при 870 К. За температури відпалу в системах існує по три тернарні сполуки, відповідно: Gd₃(Mn_xIn_{1-x}) ($0 < x \le 0,12$) (структурний тип AuCu₃), GdMn_{1,46-1,20}In_{0,54-0,80} (структурний тип MgZn₂), GdMn_{0,70-0,50}In_{1,30-1,50} (структурний тип CaIn₂); ~Dy₇Mn_{1,5}In_{1,5}, DyMn_{1,58-1,16}In_{0,42-0,84} (структурний тип MgZn₂) та DyMn_{0,71-0,35}In_{1,29-1,65} (структурний тип AlB₂). В обох системах утворюються тверді розчини заміщення на основі бінарних сполук P3MMn₂ зі структурою типу MgCu₂ протяжністю до 0,17 ат. частки In у системі з гадолінієм та до 0,10 ат. частки In у системі з диспрозієм.

Ключові слова: рідкісноземельний метал (РЗМ), Індій, Манган, тернарна сполука, кристалічна структура, фазові рівноваги.

Дослідження взаємодії компонентів у системах {Gd,Dy}–Mn–In є продовженням праць з систематичного вивчення потрійних систем P3M–перехідний метал–Індій [1]. Для систем P3M–Mn–In ізотермічні перерізи в повному концентраційному інтервалі побудовані для P3M = Y, Sm, Tb [2,3]. У системах з Gd та Er детально досліджено тільки розрізи 0,333 ат. частки P3M [4,5]. Решту потрійних систем досліджували лише з метою пошуку сполук для вивчення їхніх фізичних властивостей [4,6–8]. Аналіз наведених вище літературних даних засвідчує, що системи з манганом досить сильно відрізняються за характером взаємодії компонентів від систем нікелю, кобальту чи міді [1]. У той час, як у зазначених системах тернарні сполуки існують по всьому концентраційному трикутнику, більшість відомих сполук мангану утворюється на розрізі 0,333 ат. частки P3M, а їхній склад можна описати загальною формулою P3M(Mn,In)₂ і вони є ізоструктурними до бінарних типів фаз Лавеса (MgCu₂, MgZn₂, MgNi₂), AlB₂ чи CaIn₂. Попередні дані щодо фазових рівноваг у системі Gd–Mn–In наведені у [9].

Наша мета – побудувати ізотермічні перерізи діаграм стану систем Gd–Mn–In та Dy–Mn–In у повному концентраційному інтервалі при T = 870 K, визначити структуру та межі існування потрійних сполук.

Подвійні системи {Gd,Dy}–In [10,11], {Gd,Dy}–Mn [12] та Mn–In [13], які обмежують досліджувану потрійну, вивчені досить повно. Для них побудовано діаграми стану та визначено кристалічні структури сполук. Системи {Gd, Dy}–In схожі між собою, у них утворюється по п'ять бінарних сполук такого складу: $P3M_2In$ (структурний тип (CT) Ni₂In), $P3M_5In_3$ (CT W_5Si_3), P3MIn (CT CsCl), $P3M_3In_5$ (CT Pu_3Pd_5), $P3MIn_3$ (CT AuCu₃) [10, 11]. Подвійні системи {Gd,Dy}–Mn [12] також

[©] Демчина М., Бігун І., Белан Б. та ін., 2015

близькі між собою за характером взаємодії компонентів, у них утворюються по три сполуки однакового складу, які є ізоструктурними: $P3MMn_2$ (поліморфні модифікації з CT MgCu₂ та MgZn₂), $P3M_6Mn_{23}$ (CT Th₆Mn₂₃), та $P3MMn_{12}$ (CT ThMn₁₂). У ситемі Mn–In існує лише одна бінарна сполука: Mn₃In (CT Al₄Cu₉).

Для дослідження систем Gd–Mn–In та Dy–Mn–In виготовлено 45 та 39 потрійних сплавів, відповідно. Зразки масою ~1 г синтезували електродуговим плавленням шихти з компактних металів (P3M з вмістом 0,998 мас. частки P3M; манган – 0,9992 мас. частки Mn, індій – 0,9999 мас. частки In) у відповідних масових співвідношеннях в атмосфері очищеного аргону (гетер – губчатий титан). Втрати під час плавлення не перевищували 2 мас. % для кожного сплаву, тому склад сплавів приймали таким, що дорівнює складу шихти. Одержані зразки відпалювали у вакуумованих кварцових ампулах при 870 К протягом місяця. Фазовий аналіз сплавів проводили за рентгенограмами, отриманими на порошкових дифрактометрах (дифрактометр ДРОН-2.0М, Fe K_{α} -випромінювання; дифрактограм використовували програму FullProf [14]. Окремі сплави досліджували на растровому електронному мікроскопі-мікроаналізаторі РЕММА-102-02, обладнаному мікроаналізатором EDX (точність вимірювання – 2 ат. %).

За результатами рентгенофазового аналізу та, частково, енергодисперсійної рентгенівської спектроскопії (ЕДРС) побудовано ізотермічні перерізи діаграм стану систем {Gd,Dy}–Mn–In при 870 К у повному концентраційному інтервалі (рис. 1).

У досліджуваних системах підтверджено існування відомих з літератури бінарних сполук, які практично не розчиняють третього компонента. Виняток становлять бінарні сполуки P3MMn₂ з CT MgCu₂, які утворюють тверді розчини заміщення. Обидва тверді розчини простягаються вздовж ізоконцентрати 0,333 ат. частки P3M до 0,17 ат. частки In у системі з Gd та до 0,10 ат. частки In у системі з Dy. Параметри комірок для обох твердих розчинів закономірно зростають зі збільшенням вмісту In: у межах a = 0,77471(7)-0,8014(2) нм для твердого розчину GdMn_{2-1,50}In_{0-0,50} із позитивним відхиленням від правила Вегарда та a = 0,75818(7)-0,7805(1) для твердого розчину DyMn_{2-1,70}In_{0-0,30} з адитивною зміною параметрів (рис. 2, *a*, 4, *a*). Дані щодо твердого розчину в системі з гадолінієм добре корелюють з даними праці [4], у якій граничний склад описано формулою GdMn_{2-1,51}In_{0-0,49}.

На цьому ж розрізі в системі Gd–Mn–In підтверджено існування двох тернарних сполук, для яких визначено межі області гомогенності. Розріз Gd(Mn_{1-x}In_x)₂ представлений у літературі, однак результати є суперечливими. Сполука зі структурою MgZn₂ вперше виявлена авторами [8] за еквіатомного складу та температур 970 і 1 170 К. Однак, згідно з дослідженннями авторів [4], за температур 670 та 1 030 К склад сполуки є зміщеним до більшого вмісту Мангану і для неї характерна область гомогенності в межах GdMn_{1,46–1,20}In_{0,54–0,80}. В праці [4] також повідомлено, що сполука GdMnIn за температур понад 1 170 К кристалізується в структурному типі MgNi₂, а за нижчих температур не існує. Результати наших досліджень сплавів у цій області, відпалених при 870 К, практично збігаються з даними [4], і тому в ході побудови ізотермічного перерізу діаграми стану системи межі існування фази зі структурою типу MgZn₂ подано за результатами цієї праці. За температури відпалу 870 К ми не виявили фази зі структурою типу MgNi₂, а у сплавах Gd(Mn_{1-x}In_x)₂, багатих на Індій, підтверджено існування ще однієї сполуки зі структурою CaIn₂ [4] та вперше виявлено для неї область гомогенності в межах GdMn_{0,70-0,50}In_{1,30-1,50}. Збільшення параметрів комірки твердого розчину відбувається згідно з правилом Вегарда (a = 0,48567(2) - 0,48576(3), c = 0,71820(6) - 0,72000(8) нм) (див. рис. 2, δ). Раніше ми [6, 7] за складу GdMn_{0,67}In_{1,33}, однак у литому стані, виявили сполуку зі структурою типу AlB₂, близькоспорідненою до типу CaIn₂.

Рис. 1. Ізотермічні перерізи діаграм стану систем Gd-Mn-In (a) та Dy-Mn-In (б) при 870 К.

У потрійних сплавах з високим вмістом Гадолінію, відпалених за температур 870, 970 та 1 070 К ідентифікована сполуку змінного складу $Gd_3(Mn_xIn_{1-x})$ (0 < $x \le 0,12$). Імовірно, що невеликі кількості мангану стабілізують утворення фази Gd_3In , де він частково заміщує In, утворюючи твердий розчин з незначною областю гомогенності. Максимальний вміст Mn у сполуці за результатами ЕДРС аналізу становить 0,03 ат. частки (рис. 3). Дифрактограми сполуки проіндексовані у СТ AuCu₃ з параметрами комірки a = 0,48370(1)-0,48557(7) нм для різних сплавів. Кристалографічні характеристики сполуки наведено в табл. 1.

Рис. 2. Залежність параметрів та об'єму елементарних комірок твердих розчинів $Gd(Mn_{1-x}In_x)_2$ зі структурами типів $MgCu_2(x=0-0,50)$ (*a*) та $CaIn_2(x=1,30-1,50)$ (*б*) від вмісту Індію.

Таблиця 1

Кристалографічні характеристики, умови знімання та розрахунку кристалічної структури сполуки $Gd_3(Mn.In_{1,2})$ ($0 < x \le 0.12$)

erpykryph enonykn eu ₃ (nm _x m	1-x (0 (x = 0, 12)
Формула сполуки	$Gd_3Mn_{0,05}In_{0,95}$
Структурний тип	AuCu ₃
Просторова група	Pm-3m
Параметри комірки а, нм	0,48485(4) нм
Об'єм комірки V, нм ³ ; Z	0,11397(3); 1
Обчислена густина, г/см ³	8,546
Дифрактометр; випромінювання	Philips X'PERT; $CuK\alpha_1$
Межі 20	15,00° – 110,00°
Крок, час знімання	0,02°, 10 c
R _B ; R _F ; R _p ; R _{wp} , %	6,32; 7,84; 10,7; 13,9
3c 0 1/2 1/2	Gd
B_{iso} , HM^2	0,0139(5)
1a 000	0.95In+0.05Mn
В _{ізо} , нм ²	0,004(1)

Рис. 3. Експериментальна (крапки), розрахункова (лінія) та різницева дифрактограми (*a*) та ЕДРС (б) сплаву Gd₅₀Mn₄₀In₁₀ (Gd_{33,65}Mn_{61,26}In_{5,09} – фаза типу MgCu₂; Gd_{71,56}Mn_{3,01}In_{25,43} – фаза типу AuCu₃).

У системі Dy–Mn–In (див. рис. 1, б) за температури відпалу було підтверджено існування відомих раніше тернарних сполук зі CT MgZn₂ та AlB₂ і вперше визначено межі їхнього існування. Тернарна сполука зі CT MgZn₂ утворюється в межах 0,14–0,28 ат. частки In (рис. 4, δ), а її склад описує формула DyMn_{1,58-1,16}In_{0,42-0,84} (a = 0,55829(6)-0,56556(2), c = 0,91478(6)-0,92069(3) нм). Область гомогенності тернарної сполуки зі CT AlB₂ є в межах від 0,43 до 0,55 ат. частки In (див. рис. 4, ϵ), а склад сполуки такий: DyMn_{0,71-0,35}In_{1,29-1,65} (a = 0,4850(1)-0,4861(1), c = 0,3496(3)-0,3568(1) нм). Також у досліджуваній системі виявлено існування нової тернарної сполуки приблизного складу Dy₇Mn_{1,5}In_{1,5}, кристалічну структуру якої визначити, на жаль, не вдалося. Кристалографічні характеристики фаз наведено в табл. 2.

Спільною рисою всіх досліджених систем є утворення сполук на розрізі P3MMn₂-"P3MIn₂". Черговість утворення сполук на цьому перерізі в системах P3M– Mn–In відображено на рис. 5. Відомості про системи Но та Tm наведені згідно з [15].

Як уже було зазначено, сполуки P3MMn2 найчастіше належать до фаз Лавеса, кубічної MgCu2 або гексагональної MgZn2, тому з боку цих бінарних сполук утворюються або тверді розчини зі структурою типу MgCu2 (системи {Y, Gd, Dy}-Mn-In), або ж проміжні тернарні фази з цим типом структури (система Er-Mn-In).

Рис. 4. Зміна параметрів елементарної комірки фаз системи Dy-Mn-In на перерізі 0,333 ат. частки Dy: *a* – CT MgCu₂; *б* – CT MgZn₂; *в* – CT AlB₂.

Таблиця 1	2
-----------	---

Кристалографічні характеристики сполук систем {Gd, Dy}–Mn–In					
Сполука	СТ ПГ	ПГ	Параметри комірки, нм		
		111	а	С	
$GdMn_{2-1,50}In_{0-0,50}$	MgCu ₂	Fd-3m	0,77471(7)-0,8014(2)	-	
$GdMn_{1,46\text{-}1,20}In_{0,54\text{-}0,80}$	MgZn ₂	P6₃/mmc	0,5700-0,5725	0,9294-0,9336	
$GdMn_{0,70\text{-}0,50}In_{1,30\text{-}1,50}$	CaIn ₂	P6₃/mmc	0,48567(2)-0,48576(3)	0,71820(6)-0,72000(8)	
$Gd_3Mn_{0-0,12}In_{1-0,88}$	AuCu ₃	Pm-3m	0,48370(1)-0,48557(7)	-	
DyMn _{2-1,70} In _{0-0,30}	$MgCu_2$	Fd-3m	0,7582(1)-0,7805(1)	-	
DyMn _{1,58-1,16} In _{0,42-0,84}	MgZn ₂	P6 ₃ /mmc	0,55829(6)-0,56556(2)	0,91478(6)-0,92069(3)	
DyMn _{0,71-0,35} In _{1,29-1,65}	AlB ₂	P6/mmm	0,4850(1)-0,4861(1)	0,3496(3)-0,3568(1)	

Однак у системі Tb-Mn-In твердий розчин належить до типу TbFe2, який є ромбоедрично деформованим варіантом структури типу MgCu₂, а проміжна фаза з такою структурою існує за значно вищого вмісту індію і має практично сталий склад. За найвищого вмісту Індію на цій же ізоконцентраті РЗМ утворюються фази зі структурою типу AlB₂ або CaIn₂. Фази, що існують на цьому перерізі, мають змінний

склад за манганом та індієм. У всіх випадках атоми Мангану та Індію утворюють статистичні суміші (Mn+In), які займають положення менших за розмірами атомів у структурах фаз Лавеса або ж у типах AlB_2 чи $CaIn_2$. Збільшення вмісту індію приводить до зростання періодів і об'єму комірки, що узгоджується з розмірами атомів In (r = 0,1663) та Mn (r = 0,1264 нм) [16].

Споріднені системи РЗМ–Мп–Gа є значно багатшими на тернарні сполуки, ніж системи Індію. У системах Тb–Mn–Ga та Dy–Mn–Ga [17] утворюється, відповідно, сім та шість інтерметалідів, причому частина сполук виявлена в області низьких концентрацій рідкісноземельного металу, а саме – сполуки РЗМ(Mn,Ga)₁₂ (СТ ThMn₁₂), РЗМ₂(Mn,Ga)₁₇ (СТ Th₂Ni₁₇ та Th₂Zn₁₇). На розрізі 0,333 ат. частки РЗМ замість фаз Лавеса утворюються сполуки зі структурами типів KHg₂ та TiFeSi, а в частині трикутника, багатій на Ґалій, – сполуки зі структурою типу CaIn₂ замість AlB₂ у випадку систем Індію. Завдяки меншій різниці в розмірах атомів Ga (r = 0,141 нм) та Mn (r = 0,135 нм) системам РЗМ–Mn–Ga більше властиві утворення твердих розчинів на основі бінарних сполук та наявність областей гомогенності для тернарних сполук. Отже, у разі переходу від систем Ga до систем In тенденція до утворення тернарних сполук зменшується.

- Kalychak Ya. M., Zaremba V. I., Pöttgen R. et al. Rare Earth-Transition Metal-Indides // Handbook on the Physics and Chemistry of Rare Earths / Eds. K. A. Gschneider Jr., J.-C. Bünzli, V. K. Pecharsky. Amsterdam: Elsevier, 2004. Vol. 34. Ch. 218. P. 1–133.
- Пустовойченко М., Дзевенко М., Ничипорук Г. та ін. Взаємодія компонентів у системах Y-Mn-In та Sm-Mn-In // Вісн. Львів. ун-ту. Сер. хім. 2008. Вип. 49. Ч. 1. С. 64-70.
- 3. *Демчина М. С., Белан Б. Д., Маняко М. Б.* та ін. Взаємодія компонентів у системі Tb–Mn–In при 870 К // Укр. хім. журн. 2011. Т. 77. № 5. С. 16–23.
- De Negri S., Kaczorowski D., Grytsiv A., Alleno E. Gd(Mn_{1-x}In_x)₂: crystal structure and physical properties // J. Alloys Compd. 2004. Vol. 365. P. 58–67.
- 5. Дзевенко М., Галаджун Я., Давидов В., Каличак Я. Інтерметалічні фази на розрізі 0,333 атомні частки Ербію в системі Ег–Мп–Іп // Вісн. Львів. ун-ту. Сер. хім. 2004. Вип. 44. С. 14–17.
- Dzevenko M. V., Galdzhun Y. V., Zaremba V. I., Kalychak Y. M. New ternary indides of rare-earth metals and manganese with AlB₂-type structure // J. Alloys Compd. 2005. Vol. 397. P. 161–164.
- Dzevenko M., Havela L., Prokleška J. et al. Magnetic and electronic-transport properties of R(Mn, In)₂ (R – rare earth metals) with AlB₂-structure type // J. Physica B. 2007. Vol. 393. P. 321–327.
- Dhar S. K., Mitra C., Manfrinetti P., Palenzona R. Synthesis and magnetic properties of NdMnIn and some RMnIn (R – rare earth) // J. Phase Equilibria. 2002 Vol. 23.N 1. P. 79–82.
- Бігун І., Дзевенко М., Каличак Я. Взаємодія компонентів у системі Gd–Mn–In при 870 К // Фізика і хімія твердого тіла: стан, досягнення і перспективи: Зб. наук. праць Всеукр. науково-практичної конф. молодих вчених та студентів. Луцьк, 2012. С. 28.
- Yatsenko S. P., Semyanikov A. A., Shakarov H. O., Fedorova E.G. Phase Diagrams of Binary Rare Earth Metal–Indium // J. Less-Common Met. 1983. Vol. 90. N. 1. P. 95– 108.
- 11. Palenzona A., Cirafici S. Gd–In (Gadolinium–Indium) System // Bull. Alloy Phase Diagrams. 1989. Vol. 10. P. 234–240.
- Kirchmayr H. R., Lugscheider W. Aufbau der binären Zustandsbilder von Gadolinium, Dysprosium, Holmium und Erbium mit Mangan // Z. Metallkd. 1967. Bd. 58. H. 3. S. 185–193.
- Okamoto H. The In–Mn (Indium-Manganese) System // Bull. Alloy Phase Diagrams. 1990. Vol. 11. N 3. P. 303–306.
- 14. Rodriguez-Carvajal J. Program Fullprof.2k (Version 2.90). 2004.
- 15. *Dzevenko M., Bigun I., Paukov M.* et al. Crystal structure and magnetic properties of *RE*(Mn, In)₂ (*RE* = Ho, Er, Tm) // Intermetallics. 2014. Vol. 46. P. 18–21.
- 16. Emsley J. The elements. Oxford: Clarendon Press, 1991.
- 17. Гринь Ю. Н., Гладышевский Р. Е. Галлиды. М.: Металлургия, 1989. 304 с.

THE COMPONENT INTERACTION IN {Gd, Dy}-Mn-In TERNARY SYSTEMS

M. Demchyna, I. Bigun, B. Belan, M. Manyako, M. Dzevenko, Ya. Kalychak

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: marta.dem.85@gmail.com

Interaction of the components in $\{Gd, Dy\}$ -Mn–In systems was investigated by X-ray powder and EDX methods and isothermal section of phase diagrams were constructed at 870 K in full concentration range. Three ternary compounds exist in each system at the temperature of annealing: $Gd_3Mn_{0.0.12}In_{1-0.88}$ (AuCu₃-type), $GdMn_{1.46-1.20}In_{0.54-0.80}$ (MgZn₂-type), $GdMn_{0.70-0.50}In_{1.30-1.50}$ (CaIn₂type); ~Dy₇Mn_{1.5}In_{1.5}, DyMn_{1.58-1.16}In_{0.42-0.84} (MgZn₂-type) and DyMn_{0.71-0.35}In_{1.29-1.65} (AlB₂-type). Almost none of the binary compounds dissolve the third component. The exception is the existence of the solid solution based on RMn₂ binary compound, which dissolves up to 17 at. % of In in the Gd– Mn–In system, and up to 10 at. % of In in Dy–Mn–In system.

Key words: rare-earth, indium, manganese, ternary compound, crystal structure, phase equilibrium.

Стаття надійшла до редколегії 31.10.2014 Прийнята до друку 30.12.2014