ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65. С. 81–95 Visnyk of the Lviv University. Series Chemistry. 2024. Issue 65. P. 81–95

УДК 548.315: 546.561:547.869.2

КРИСТАЛІЧНА СТРУКТУРА ГАЛОГЕНІДНИХ КОМПЛЕКСІВ КУПРУМУ(І) З КАТІОНОМ N-АЛІЛТІОМОРФОЛІНІЮ

А. Луба*, О. Павлюк

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна ^{*}e-mail: alona.luba@lnu.edu.ua

Методом зміннострумного електрохімічного синтезу, виходячи з пропанольних розчинів CuCl₂·2H₂O чи CuBr₂ та N-алільного похідного тіоморфоліну, отримано у вигляді монокристалів та рентгеноструктурно досліджено комплекси складу $[C_4H_9NS(C_3H_5)Cu_2Cl_3]$ (I), [C₄H₉NS(C₃H₅)CuBr₂] (II) та кристалічний N-алілтіоморфоліній хлорид C₄H₉NS(C₃H₅)Cl (III): для I просторова група РТ, Z = 6, a = 9,5107(5), b = 13,1644(7), c = 16,0030(7) Å, $\alpha = 87,002(4),$ $\beta = 80,243(4),$ $\gamma = 72,024(5)^{\circ},$ $V = 1878,2(2) \text{ Å}^3,$ $\rho_{o \delta \Psi} = 2,003 \ \text{г/cm}^3$, μ (CuK_{α}) = 11,32 мм⁻¹, θ _{макс} = 72,4°, 16466 виміряних рефлексів, 7155 використано, $R(F^2) = 0,042, S = 1,03;$ для II – $P2_1/n, Z = 4, a = 10,0239(8), b = 7,6183(5), c = 16,1198(14)$ Å, $\beta = 107,914(9), V = 1171,3(2) \text{ Å}^3, \rho_{oby.} = 2,085 \text{ g/cm}^3, \mu(MoK_{\alpha}) = 8,82 \text{ mm}^{-1}, \theta_{makc.} = 29,0^{\circ}, 6408$ виміряних рефлексів, 2544 використано, $R(F^2) = 0,038$, S = 1,09; для сполуки III – PT, Z = 2, a = 7,0721(5), b = 8,1438(10), c = 8,9209(13) Å, $\alpha = 63,710(13), \beta = 87,553(9), \gamma = 87,392(8)^\circ, V = 460,02$ Å³, $\rho_{oby.} = 1,297$ г/см³, μ (СиК $_{\alpha}$) = 0,57 мм⁻¹, $\theta_{Makc.} = 29,0^\circ, 10926$ виміряних рефлексів, 2116 використано, $R(F^2) = 0,028, S = 1,05.$

У кристалічній структурі синтезованих сполук σ -координовані атоми купруму(І) перебувають у тригонально-пірамідальному координаційному оточенні з атомів сульфуру гетероциклічного ліганду та трьох галогенід-іонів, натомість π -координовані атоми купруму(І) перебувають у тригональному оточенні з двох галогенід-іонів та C=C зв'язку. Алільна група катіона N-алілтіоморфолінію бере участь у координації з атомами металу виключно за наявності хлорид-іонів.

Ключові слова: координаційні сполуки, кристалічна структура, N-алілтіоморфоліній, купрум(I), л, с-комплекси.

DOI: https://doi.org/10.30970/vch.6501.081

1. Вступ

Координаційні сполуки купруму досліджують з точки зору як визначення особливостей утворення координаційного зв'язку, так і завдяки їх доволі широкому практичному використанню: для виробництва каталізаторів перетворення органічних сполук [1, 2], функціональних матеріалів з важливими оптичними, магнітними та іншими властивостями [3, 4], лікарських препаратів [5] тощо.

Алільні похідні органічних сполук широко використовують у промисловості як проміжні продукти синтезу низки важливих комерційних речовин [6], зокрема біологічно-активних субстанцій [7]. Похідні тіоморфоліну, своєю чергою, володіють цікавими функціональними властивостями [8, 9]. Більше того, попередні

[©] Луба А., Павлюк О., 2024

дослідження показали, що у галогенідних комплексах Cu(I) з катіонами N,N'-диалілтіоморфолінію [10] π -взаємодії Cu(I)–(C=C) немає на противагу координаційним сполукам алільних похідних амоніаку [11], пропеннітрилу [12] чи морфоліну [13].

У такому контексті цікаво було б дослідити комплексоутворення Cu(I) з моноалільним похідним тіоморфоліну, визначити та проаналізувати особливості побудови синтезованих сполук.

2. Матеріали та методика експерименту

Вихідний N-алілтіоморфолін синтезували за стандартною методикою алілювання нітрогенвмісних гетероциклів [14]. До 4,12 г (0,04 моль) розчину тіоморофіоліну в ізопропанолі додавали 3,1 г (0,04 моль) свіжоперегнаного алілу хлористого та 2,36 г калій гідроксиду (0,04 моль), утворену реакційну суміш нагрівали зі зворотним холодильником та перемішуванням на магнітній мішалці впродовж 30 год. Осад калій хлориду відфільтрували, утворений спиртовий розчин використовували в подальших дослідженнях. Взаємодія ізопропанольного розчину N-алілтіоморфоліну (0,024 моль) з розчином алілу хлористого (0,030 моль) у бензені під час нагрівання зі зворотним холодильником та перемішування на магнітній мішалці впродовж 50 год приводила до утворення N,N'-диалілтіоморфоліній хлориду.

Жовтуваті призматичні кристали сполуки $[C_4H_9NS(C_3H_5)Cu_2Cl_3]$ (I) утворилися в умовах змінно-струмного електрохімічного синтезу впродовж двох діб зі спиртового розчину CuCl₂·2H₂O та N-алілтіоморфоліну. Під час використання розчину купрум(II) броміду в суміші н-пропанол/етанол упродовж трьох діб у реакторі з'являлися практично безбарвні призматичні кристали комплексу $[C_4H_9NS(C_3H_5)CuBr_2]$ (II).

Під час взаємодії етанольного розчину CuCl₂·2H₂O та N,N'-диалілтіоморфоліній хлориду в умовах змінно-струмного електрохімічного синтезу переважаючим продуктом були кристали сполуки $[C_4H_8NS(C_3H_5)_2CuCl_2][10]$, проте в тому самому реакторі з часом утворилися безбарвні пластинчасті кристали сполуки $C_4H_9NS(C_3H_5)Cl$ (III).

Якість кристалів, наближені параметри гратки та дифракційний клас визначали з рентгенограм обертання та вайсенбергограм. Масив інтегральних інтенсивностей відбить для монокристалів сполук **I–III** отримано на монокристальному дифрактометрі *Agilent Gemini A*, (детектор *Atlas CCD*). Дифракційні дані опрацьовано з використанням пакета *CrysAlisPro* [15] (табл. 1). Моделі структур розв'язано прямими методами й уточнено в анізотропному наближенні повноматричним методом з використанням пакетів програм *SHELXT*, *SHELXL-2014* та *OLEX*² [16–18]. Координати атомів і параметри теплового зміщення наведено в табл. 2, основні довжини зв'язків та валентні кути – у табл. 3.

Основні кристалографічні параметри та умови рентгенівського експерименту для сполук І–III

Table 1

Selected crystal data and structure refinement parameters of $\mathbf{I} \text{-} \mathbf{III}$ compounds

Параметр	I*	II*	III*	
CCDC	2304952	2304950	2304949	
Брутто формула	[C ₇ H ₁₄ NSCu ₂ Cl ₃]	[C ₇ H ₁₄ NSCuBr ₂]	[C ₇ H ₁₄ NSCl]	
М, ат. од.	377,68	367,60	179,70	
Т, К		150		
Колір,	жовті	безбарвні	безбарвні	
форма	призми	пластинки	пластинки	
Дифрактометр	New	Gemini, Dual, Atlas		
Просторова група	$P\overline{1}$	$P2_1/n$	$P\overline{1}$	
<i>a</i> , Å	9,5107(5)	10,0239(8)	7,0721(5)	
b, Å	13,1644(7)	7,6183(5)	8,1438(10)	
<i>c</i> , Å	16,0030(7)	16,1198(14)	8,9209(13)	
α, °	87,002(4)	90	63,710(13)	
β, \circ	80,243(4)	107,914(9)	87,553(9)	
γ, °	72,024(5)	90	87,392(8)	
$V, Å^3$	1878,2(2)	1171,3(2)	460,02(10)	
Ζ	6	4	2	
ρ _{обч.} , г/см ³	2,003	2,085	1,297	
F(000)	1128	712	192	
λ, Å	1,5418	0,7107	0,7107	
μ , mm ⁻¹	11,32	8,82	0,57	
	-11 < h < 11	-11 < h < 13	-9 < h < 9	
hkl	-16 < k < 15	-10 < k < 9	-10 < k < 9	
	-17 < 1 < 19	-16 < 1 < 21	-12 < 1 < 11	
Кількість відбить: виміряних використано	16466	6408	10926	
під час уточнення	7155	2544	2116	
$\theta_{\text{make}}, \circ$.	72,4	29,0	29,0	
Кількість уточнених параметрів	383	113	95	
Вагова схема**	0,0537	0,0164	0,0218	
$[\sigma^{2}(\mathbf{F}_{BWM}^{2}) + (\mathbf{A}P)^{2} + \mathbf{B}P]^{-1}$	0,5555	6,0136	0,2019	
$R(F^2)$	0,042	0,038	0,028	
$Rw(F^2)$	0,111	0,081	0,067	
Goof	1,03	1,09	1,05	

*Основні характеристики структур депоновано у Кембриджську базу структурних даних. Доступ https://www.ccdc.cam.ac.uk/structures * $P = (F_{\text{вим.}}^2 + 2F_{\text{offyl}}^2).$

Координати атомів та їх параметри теплових зміщень у структурах $[C_7H_{14}NSCu_2Cl_3]$, $[C_7H_{14}NSCuBr_2]$ та $[C_7H_{14}NSCl]$ (**I–III**)

Table 2

Fractional atomic coordinates and thermal displacement parameters in the structures
$[C_7H_{14}NSCu_2Cl_3], [C_7H_{14}NSCuBr_2]$ Ta $[C_7H_{14}NSCl]$ (I-III)

Атом	x/a	y/b	z/c	$U_{eKB}/U_{i30}, Å^{2}*$	
Ι					
Cu(1)	0,90074(7)	0,08700(6)	0,46188(5)	0,0295(2)	
Cu(2)	0,09557(7)	0,22859(5)	0,39869(4)	0,0243(2)	
Cu(3)	-0,52123(7)	0,55140(5)	0,74426(4)	0,0246(2)	
Cu(4)	0,26577(7)	0,42253(5)	0,80361(5)	0,0273(2)	
Cu(5)	0,46398(7)	0,23354(5)	0,85391(5)	0,0280(2)	
Cu(6)**	1,2048(14)	0,1975(10)	0,9527(8)	0,0237(2)	
Cu(6A)**	1,2326(1)	0,10783(6)	0,92732(5)	0,0237(2)	
Cl(1)	0,9031(1)	-0,08979(8)	0,45880(7)	0,0242(2)	
Cl(2)	0,3399(1)	0,15271(9)	0,34206(7)	0,0248(2)	
Cl(3)	-0,0434(1)	0,15986(9)	0,32832(7)	0,0243(2)	
Cl(4)	-0,6610(1)	0,48689(9)	0,67070(7)	0,0273(2)	
Cl(5)	-0,2719(1)	0,47854(9)	0,69385(7)	0,0256(2)	
Cl(6)	0,2307(1)	0,25484(8)	0,79664(7)	0,0221(2)	
Cl(7)	0,4769(1)	0,40387(8)	0,87715(7)	0,0211(2)	
Cl(8)	1,4185(1)	0,14486(9)	0,98166(7)	0,0255(2)	
Cl(9)	1,0100(1)	0,19338(9)	1,01098(7)	0,0263(2)	
Cl(1)	0,9031(1)	-0,08979(8)	0,45880(7)	0,0242(2)	
C(12)	0,5501(5)	0,1192(4)	0,5528(3)	0,024(1)	
C(13)	0,3939(5)	0,1921(4)	0,5818(3)	0,025(1)	
C(15)	0,4265(5)	0,3354(4)	0,4769(3)	0,025(1)	
C(16)	0,5873(5)	0,2729(4)	0,4428(3)	0,025(1)	
C(17)	0,1729(5)	0,3285(4)	0,5388(3)	0,024(1)	
C(18)	0,0899(5)	0,3622(3)	0,4646(3)	0,024(1)	
C(19)	-0,0523(5)	0,3578(4)	0,4673(3)	0,026(1)	
C(22)	-0,0720(4)	0,4511(4)	0,8966(3)	0,0220(9)	
C(23)	-0,2314(5)	0,5180(4)	0,9282(3)	0,0226(9)	
C(25)	-0,2050(5)	0,6770(3)	0,8416(3)	0,024(1)	
C(26)	-0,0416(5)	0,6235(4)	0,8046(3)	0,026(1)	
C(27)	-0,4560(4)	0,6533(4)	0,8867(3)	0,0210(9)	
C(28)	-0,5323(5)	0,6865(3)	0,8101(3)	0,0227(9)	
C(29)	-0,6735(5)	0,6831(3)	0,8103(3)	0,0237(9)	
C(32)	0,7916(5)	0,1852(4)	0,7246(3)	0,028(1)	
C(33)	0,8561(5)	0,2167(4)	0,7954(3)	0,026(1)	
C(35)	0,8227(5)	0,0647(4)	0,8883(3)	0,028(1)	
C(36)	0,7525(5)	0,0208(4)	0,8267(3)	0,030(1)	
C(37)	1,0749(5)	0,0498(4)	0,7995(3)	0,027(1)	
C(38)	1,1820(5)	-0,0061(4)	0,8613(3)	0,028(1)	
C(39)	1,3325(5)	-0,0185(4)	0,8433(3)	0,031(1)	
N(14)	0,3348(4)	0,2633(3)	0,5118(2)	0,0206(8)	
N(24)	-0,2909(4)	0,5972(3)	0,8619(2)	0,0201(8)	
N(34)	0,9315(4)	0,1230(3)	0,8468(2)	0,0245(8)	

А. Луба, О. Павлюк ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65

Продовження табл.	2
прооовження тиол.	4

Атом	x/a	y/b	z/c	Uекв,/Uізо,, Å2*
S(11)	0,6799(1)	0,19649(9)	0,52561(7)	0,0235(2)
S(21)	0,0540(1)	0,53101(8)	0,87898(7)	0,0218(2)
S(31)	0,6473(1)	0,1232(1)	0,76276(8)	0,0273(3)
H(12A)	0,5506	0,0779	0,5027	0,029*
H(12B)	0,5822	0,0680	0,5985	0,029*
H(13A)	0,3267	0,1485	0,6022	0,030*
H(13B)	0,3950	0,2362	0,6298	0,030*
H(14)	0,3372	0,2161	0,4644	0,025*
H(15A)	0,4254	0,3842	0,5222	0,030*
H(15B)	0.3806	0.3795	0.4307	0.030*
H(16A)	0.6422	0.3229	0.4178	0.030*
H(16B)	0.5888	0.2240	0.3975	0.030*
H(17A)	0.1220	0.2859	0.5785	0.029*
H(17B)	0.1693	0.3930	0.5694	0.029*
H(18)	0.1380	0.3873	0.4145	0.029*
H(19A)	-0.1019	0.3329	0.5170	0.031*
H(19B)	-0.1017	0.3796	0.4196	0.031*
H(22A)	-0.0686	0.4157	0.8428	0.026*
H(22B)	-0.0386	0.3947	0.9387	0.026*
H(23A)	-0.2955	0.4709	0.9425	0.027*
H(23B)	-0.2343	0.5564	0.9803	0.027*
H(24)	-0.2781	0,5562	0.8088	0.024*
H(25A)	-0.2101	0.7157	0.8939	0.029*
H(25B)	-0.2525	0 7299	0.8004	0.029*
H(26A)	0.0091	0.6788	0 7895	0.031*
H(26B)	-0.0363	0.5849	0.7522	0.031*
H(27A)	-0.5031	0.6052	0.9224	0.025*
H(27B)	-0.4699	0.7174	0.9209	0.025*
H(28)	-0.4805	0.7103	0,7607	0.027*
H(29A)	-0.7262	0.6595	0.8594	0.028*
H(29B)	-0.7196	0.7044	0.7613	0.028*
H(32A)	0.8731	0.1348	0.6863	0.033*
H(32B)	0.7490	0.2495	0.6912	0.033*
H(33A)	0.9297	0.2538	0.7710	0.031*
H(33B)	0.7746	0.2676	0.8333	0.031*
H(34)	0.9611	0.1539	0.8944	0.029*
H(35A)	0.8763	0.0049	0.9225	0.034*
H(35B)	0.7420	0.1144	0.9275	0.034*
H(36A)	0.6853	-0.0172	0.8587	0.036*
H(36B)	0.8323	-0.0317	0.7891	0.036*
H(37A)	1.1237	0.0916	0.7578	0.032*
H(37B)	1.0519	-0.0045	0.7682	0.032*
H(38)	1.1429	-0.0327	0.9135	0.034*
H(39A)	1.3731	0.0078	0.7914	0.037*
H(39B)	1 3962	-0.0534	0.8827	0.037*

А. Луба, О. Павлюк ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65

		II		
Атом	x/a	y/b	z/c	$U_{ekb}/U_{i30}, Å^{2*}$
Cu(1)	0,35604(7)	0,45866(8)	0,49133(4)	0,0202(2)
Br(1)	0,26952(5)	0,21763(7)	0,55627(3)	0,0197(1)
Br(2)	0,49478(5)	0,35587(7)	0,38993(3)	0,0174(1)
S(1)	0,2176(1)	0,6456(2)	0,38922(8)	0,0155(3)
C(2)	0,0897(5)	0,7618(6)	0,4257(3)	0,017(1)
C(3)	0,0252(5)	0,9117(7)	0,3644(3)	0,018(1)
N(4)	0,1315(4)	0,0500(5)	0,3637(3)	0,012(1)
C(5)	0,2487(5)	0,9795(7)	0,3337(3)	0,016(1)
C(6)	0,3282(5)	0,8343(7)	0,3928(3)	0,017(1)
C(7)	0.0625(6)	0.2061(6)	0.3099(3)	0.017(1)
C(8)	-0.0342(6)	0.2986(7)	0.3487(3)	0.021(1)
C(9)	-0.1654(7)	0.3338(10)	0.3084(4)	0.042(2)
H(2A)	0.0149	0.679578	0.428873	0.021*
H(2B)	0,1349	0,808898	0,484957	0.021*
H(3A)	-0,0160	0,865027	0,304657	0.022*
H(3B)	-0.0513	0.965241	0.382669	0.022*
H(4)	0.178(6)	1.093(7)	0.419(4)	0.02(1)*
H(5A)	0.3142	1.075992	0.332590	0.019*
H(5B)	0.2099	0.933609	0.273621	0.019*
H(6A)	0,3636	0.878373	0.453411	0.020*
H(6B)	0.4099	0.799166	0.374373	0.020*
H(7A)	0.1359	1.288939	0.304936	0.020*
H(7B)	0.0096	1.166252	0.250433	0.020*
H(8)	0.0026	1.335222	0.407708	0.025*
H(9A)	-0.2062	1.299437	0.249381	0.050*
H(9B)	-0.2202	1.393731	0.338147	0.050*
(/-/	•,•-	Ш	0,000000	-,
S(1)	0,77375(5)	0,3702(1)	0,1597(1)	0,0202(1)
C(2)	0.6875(2)	0.3988(2)	0.3403(2)	0.0188(3)
C(3)	0,7790(2)	0,5555(2)	0,3549(2)	0,0173(3)
N(4)	0,7307(2)	0,7354 (2)	0,2101(1)	0,0138(2)
C(5)	0,8090(2)	0,7457(2)	0,0474(2)	0,0173(3)
C(6)	0,7240(2)	0,6034(2)	0,0061(2)	0,0200(3)
C(7)	0,7979(2)	0,8940(2)	0,2360(2)	0,0184(3)
C(8)	0,7018(2)	0,9038(2)	0,3843(2)	0,0217(3)
C(9)	0,7879(3)	0,8767(2)	0,5207(2)	0,0325(4)
Cl(1)	0,2968(1)	0,7567(1)	0,2142(1)	0,0226(1)
H(2A)	0,5487	0,4216	0,3330	0,023*
H(2B)	0,7125	0,2839	0,4424	0,023*
H(3A)	0,7353	0,5588	0,4605	0.021*
H(3B)	0.9182	0.5351	0.3587	0.021*
H(4)	0,604(3)	0,745(2)	0,208(2)	0,031(5)*
H(5A)	0,9482	0,7260	0,0541	0,021*
H(5B)	0,7819	0.8694	-0,0433	0.021*
H(6A)	0,7743	0.6188	-0.1045	0,024*
H(6B)	0.5851	0.6249	-0.0021	0.024*
H(7A)	0.9365	0.8803	0.2519	0.022*
H(7B)	0.7724	1.0097	0.1349	0.022*
H(8)	0.5696	0.9315	0.3793	0.026*
	0,0200	0.9497	0,5208	0.020*
H(9A	0.9200	U.040/	0) 470	0.0.19

Для негідрогенових атомів $U_{e\kappa e} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} (\vec{a}_{i} \vec{a}_{j})$; для H – U_{iso} .

** Для Cu(6A) заселеність позиції становить 0,948(2), а для Cu(6) – 0,052(2).

Основні довжини зв'язків (d), валентні та торсійні (*ω*, *τ*) кути у структурі сполук I–III *Table 3*

Selected bond distances (d), valence and torsion bond angles (ω , τ) in the **I–III** structures

Зв'язок	d, Å	Кут	<i>ω</i> , τ,°
		I	
Cu(1)-Cl(1)	2,3235(13)	$Cl(1)-Cu(1)-Cl(1)^{i}$	106,52(4)
$Cu(1)-Cl(1)^i$	2,4373(12)	$Cl(1)-Cu(1)-Cl(3)^{ii}$	114,36(5)
$Cu(1)-Cl(3)^{ii}$	2,3420(13)	$Cl(3)^{ii}-Cu(1)-Cl(1)^{i}$	106,60(4)
Cu(1)–S(11)	2,2558(13)	S(11)-Cu(1)-Cl(1)	112,91(5)
Cu(2)–Cl(2)	2,2727(12)	$S(11)-Cu(1)-Cl(1)^{i}$	109,07(5)
Cu(2)–Cl(3)	2,2769(12)	$S(11)-Cu(1)-Cl(3)^{ii}$	107,12(5)
Cu(2)–C(18)	2,080(5)	Cl(2)–Cu(2)–Cl(3)	107,16(5)
Cu(2)–C(19)	2,067(4)	C(18)-Cu(2)-Cl(2)	105,66(13)
Cu(3)–Cl(4)	2,2820(12)	C(18)–Cu(2)–Cl(3)	143,15(12)
Cu(3)–Cl(5)	2,2855(12)	C(19)–Cu(2)–C(18)	38,42(17)
Cu(3)–C(28)	2,080(4)	Cl(4)–Cu(3)–Cl(5)	110,35(5)
Cu(3)–C(29)	2,084(4)	C(28)–Cu(3)–Cl(4)	140,95(12)
$Cu(4)$ – $Cl(4)^{ii}$	2,3238(13)	C(28)–Cu(3)–Cl(5)	104,16(13)
Cu(4)–Cl(6)	2,3431(12)	C(28)–Cu(3)–C(29)	38,03(17)
Cu(4)– $Cl(7)$	2,4377(12)	$Cl(4)^{ii}$ -Cu(4)-Cl(6)	112,45(5)
Cu(4)–S(21)	2,2653(12)	$Cl(4)^{ii}$ -Cu(4)-Cl(7)	103,75(4)
Cu(5)–Cl(6)	2,4741(12)	Cl(6)–Cu(4)–Cl(7)	108,80(4)
Cu(5)–Cl(7)	2,3352(12)	$S(21)-Cu(4)-Cl(4)^{ii}$	114,88(5)
$Cu(5)-Cl(8)^{iii}$	2,3435(13)	S(21)–Cu(4)–Cl(6)	107,18(5)
Cu(5)–S(31)	2,2527(13)	S(21)–Cu(4)–Cl(7)	109,64(5)
Cu(6A)–Cl(8)	2,2839(12)	Cl(7)–Cu(5)–Cl(6)	107,84(4)
Cu(6A)–Cl(9)	2,2952(13)	Cl(7)– $Cu(5)$ – $Cl(8)$ ⁱⁱⁱ	111,68(5)
Cu(6A)–C(38)	2,093(5)	$Cl(8)^{iii}$ – $Cu(5)$ – $Cl(6)$	100,88(4)
Cu(6A)–C(39)	2,075(5)	S(31)–Cu(5)–Cl(6)	105,26(5)
Cu(6)–Cl(6)ii	2,564(13)	S(31)–Cu(5)–Cl(7)	119,06(5)
Cu(6)–Cl(8)	2,060(12)	$S(31)-Cu(5)-Cl(8)^{iii}$	110,28(5)
Cu(6)–Cl(9)	1,943(13)	C(39)–Cu(6A)–Cl(8)	107,68(13)
Cu(6)–Cl(6)	2,773(15)	C(39)–Cu(6A)–Cl(9)	142,26(14)
S(11)-C(16)	1,803(4)	C(39)–Cu(6A)–C(38)	38,41(18)
S(11)-C(12)	1,815(5)	Cl(8)–Cu(6A)–Cl(9)	107,30(5)
N(14)–H(14)	1,000	C(38)–Cu(6A)–Cl(8)	144,14(13)
N(14)–C(15)	1,505(6)	C(38)–Cu(6A)–Cl(9)	104,08(14)
N(14)–C13	1,492(6)	C(18)–C(17)–N(41)	112,4(4)
N(14)–C17	1,514(5)	C(19)–C(18)–C(17)	121,9(4)
C17)–C18	1,510(6)	C(28)–C(27)–N(24)	111,6(4)
C18)–C19	1,365(6)	C(29)–C(28)–C(27)	121,3(4)
S(21)-C22	1,805(4)	N(34)-C(37)-C(38)	110,6(4)
S(21)-C26	1,805(4)	C(39)–C(38)–C(37)	121,8(5)
S(21)-C22	1,805(4)	C(16)–S(11)–Cu(1)	106,82(16)
S(21)-C26	1,805(4)	C(16)–S(11)–C(12)	95,5(2)
S(21)-C22	1,805(4)	C(12)–S(11)–Cu(1)	108,37(15)
S(21)-C26	1,805(4)	C(22)–S(21)–Cu(4)	104,01(15)

А. Луба, О. Павлюк ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65

Закінчення табл. 3

Зв'язок	d, Å	Кут	ω, τ,°	
N(24)-H24	1,000	C(22)–S(21)–C(26)	97,0(2)	
N(24)-C25	1,510(5)	C(26)–S(21)–Cu(4)	106,87(16)	
N(24)-C23	1,502(5)	C(36)–S(31)–Cu(5)	105,99(17)	
N(24)-C27	1,507(5)	C(36)–S(31)–C(32)	97,9(2)	
C27)–C28	1,506(6)	C(36)–S(31)–Cu(5)	105,99(17)	
C28)–C29	1,357(6)	C(36)–S(31)–C(32)	97,9(2)	
S(31)-C36	1,798(5)	C(32)–S(31)–Cu(5)	109,88(17)	
S(31)-C32	1,811(5)	C(23)–N(24)–C(25)	112,4(3)	
N(34)–H34	1,000	C(23)–N(24)–C(27)	111,5(3)	
N(34)-C35	1,518(6)	C(33)–N(34)–C(35)	111,5(3)	
N(34)-C33	1,504(6)	C(33)–N(34)–C(37)	113,8(4)	
N(34)–C37	1,509(6)	N(41)-C(17)-C(18)-C(19)	137,4(4)	
C37)–C38	1,536(6)	N(24)-C(27)-C(28)-C(29)	143,6(4)	
C38)–C39	1,371(6)	N(34)-C(37)-C(38)-C(39)	-137,9(5)	
		II		
Br(1)– $Cu(1)$	2,4038(8)	Br(1)-Cu(1)-Br(2)	112,47(3)	
$Br(2)$ – $Cu(1)^i$	2,4768(8)	$Br(1)-Cu(1)-Br(2)^{iv}$	108,19(3)	
Br(2)– $Cu(1)$	2,5725(9)	Br(2i)- $Cu(1)$ - $Br(2)$	110,41(3)	
Cu(1)-S(1)	2,2932(14)	S(1)-Cu(1)-Br(1)	124,55(5)	
S(1)–C(2)	1,799(5)	S(1)–Cu(1)–Br(2)	93,39(4)	
S(1)–C(6)	1,806(5)	$S(1)-Cu(1)-Br(2)^{iv}$	106,78(4)	
N(4)–C(3)	1,500(6)	C(2)-S(1)-Cu(1)	113,94(17)	
N(4)–C(5)	1,501(6)	C(2)–S(1)–C6)	95,2(2)	
N(4)–C(7)	1,509(6)	C8)–C7)–N(4)	112,0(4)	
C(7)–C(8)	1,483(7)	C9)–C8)–C(7)	125,3(5)	
C(8)–C(9)	1,303(8)	N(4)-C(7)-C(8)-C(9)	-126,0(6)	
III				
S(1)–C(2)	1,8038(15)	C(2)–S(1)–C(6)	96,73(7)	
S(1)–C(6)	1,8121(15)	C(3)–N(4)–C(5)	112,03(11)	
N(4)–C(7)	1,5084(17)	C(3)–N(4)–C(7)	111,37(10)	
C(7)–C(8)	1,494(2)	C(5)–N(4)–C(7)	110,03(10)	
C(8)-C(9)	1.309(2)	C(9)-C(7)	124.25(15)	

(i) -*x*+2, -*y*, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*; -*x*+1, (iv) -*y*+1, -*z*+1.

3. Результати досліджень та їх обговорення

В елементарній комірці кристалічної структури (рис. 1) наявні шість кристалографічно незалежних атомів купруму(І). До координаційного оточення атомів Cu(1), Cu(4) та Cu(5) у вигляді деформованого тетраедра входять по три хлорид-іони та по одному атому сульфуру катіонів ліганду (τ_4 ' = 0,94, 0,95, 0,94, відповідно, [19], геометричні характеристики – див. табл. 3). Координаційний поліедр двох атомів металу Cu(2) та Cu(3) – деформований тригон (вихід атома металу з площини лігандів – 0,21 та 0,22 Å, відповідно), побудований з хлорид-іонів та подвійного зв'язку C=C алільної групи катіона N-алілтіоморфолінію (відстань Cu-*m* становить 1,956 та 1,969 Å). Останній кристалографічний різновид атомів металу – Cu(6),

розвпорядкований між двома позиціями (заселеність яких співвідноситься як 5/95), для яких характерне тригонально-пласке (з трьох атомів хлору, вихід атома металу з площини лігандів – 0,1 Å) та деформоване тетраедричне (з трьох атомів хлору та C=C зв'язку алільної групи, $\tau_4' = 0,79$).

Рис. 1. Проєкція кристалічної структури $[C_7H_{14}NSCu_2Cl_3]$ (I) Fig.1. Projection of crystal structure of $[C_7H_{14}NSCu_2Cl_3]$ (I)

Два з наявних у кристалічній структурі кристалографічно незалежних різновидів катіонів N-алілтіоморфолінію характеризуються подібними геометричними параметрами та просторовою конфігурацією (табл. 3, рис. 2), третій різновид катіонів відрізняється стереохімічною конфігурацією атома нітрогену і, як наслідок, положенням алільної групи відносно тіоморфолінового циклу.

У кристалічній структурі сполуки I формуються два типи полімерних топологічних одиниць однакового складу $\{C_7H_{14}NSCu_2Cl_3\}_n$ завдяки містковій функції частини хлорид-іонів, що входять до координаційної сфери одночасно двох атомів металу, та катіонів N-алілтіоморфолінію, які координуються подвійним зв'язком C=C алільної групи до одного атома металу та сульфуром гетероциклічного ядра – до іншого. Головна відмінність побудови згаданих структурних фрагментів полягає у розвпорядкуванні атома купруму між Cu(6) та Cu(6A) і наявності катіонів зі стереохімічно відмінним координаційним оточенням нітрогену в одному з блоків.

Помітну структуроформуючу роль у гратці сполуки І відіграють водневі зв'язки N–H…Cl [20] та C–H…Cl [21] (табл. 4). Контакти першого типу реалізуються за внутрішньомолекулярним механізмом, оскільки атоми H(N) сполучаються з хлорид-іонами, що належать до того самого топологічного блоку, що й відповідний катіон N-алілтіоморфолінію. Натомість контакти другого типу реалізуються як у межах топологічної одиниці {C₇H₁₄NSCu₂Cl₃}_n, так і з'єднують відповідні блоки у тривимірний каркас.

Рис. 2. Порівняння просторової будови кристалографічно незалежних катіонів N-алілтіоморфолінію у структурі I (кольорова версія онлайн). Атоми карбону в положеннях 2, 3, 5 та 6 гетероциклічного ядра накладено один на одного, решту розташовано згідно з відповідними геометричними параметрами катіонів

Fig. 2. Comparison of the structure of crystallographically independent N-allylthiomorpholinium cations in compound I (on-line in color). Carbon atoms in positions 2, 3, 5 and 6 of the heterocyclic core overlap; the rest are arranged according to the corresponding geometric parameters of the cations

Рис. 3. Топологічні одиниці складу $\{C_7H_{14}NSCu_2Cl_3\}_n$ та розподіл водневих зв'язків у структурі сполуки **I** Fig. 3. Topological units $\{C_7H_{14}NSCu_2Cl_3\}_n$ and hydrogen bonding in the structure of compound **I**

Table 4

Основні геометричні характеристики водневих контактів у структурах І-ІІІ

D-HA	Код	D–H, Å	HA, Å	DA, Å	D−H…A, °	
	симетрії					
		Ι				
N(24)–H(24)Cl(5)		1,00	2,13	3,131(1)	174	
N(34)-H(34)Cl(9)	-x, 1-y, -z	1,00	2,12	3,109(1)	168	
N(41)–H(41)Cl(2)	1-x, -y, 1-z	1,00	2,16	3,136(1)	165	
C(15)–H(15A)Cl(4)	1-x, 1-y, 1-z	0,99	2,67	3,611(1)	158	
C(15)-H(15B)Cl(5)		0,99	2,77	3,750(1)	172	
C(17)–H(17A)Cl(1)	1-x, -y, 1-z	0,99	2,77	3,433(1)	125	
C(22)-H(22B)Cl(9)	-x, 1-y, -z	0,99	2,77	3,697(1)	156	
C(25)-H(25B)Cl(2)	1-x, -y, 1-z	0,99	2,79	3,758(1)	167	
C(26)–H(26A)Cl(3)	-1+x,y,z	0,99	2,82	3,677(1)	145	
C(27)-H(27B)Cl(8)	1-x, 1-y, -z	0,99	2,66	3,612(1)	162	
C(32)–H(32A)Cl(1)	-1+x, 1+y, z	0,99	2,82	3,723(1)	152	
C(35)-H(35A)Cl(9)	<i>x</i> ,1+ <i>y</i> , <i>z</i>	0,99	2,73	3,692(1)	163	
C(36)–H(36B)Cl(3)	-1+x, 1+y, z	0,99	2,72	3,700(1)	174	
C(37)–H(37B)Cl(3)	-1+x, 1+y, z	0,99	2,66	3,633(1)	169	
II I						
N(4)-H(4)Br(1)	<i>x</i> ,1+ <i>y</i> , <i>z</i>	0,93	2,32	3,246(5)	173	
C(5)–H(5A)Br(2)	<i>x</i> ,1+ <i>y</i> , <i>z</i>	0,99	2,77	3,708(5)	159	
C(5)–H(5B)Br(2)	1/2-x, 1/2+y, 1/2-z	0,99	2,86	3,798(5)	158	
III						
N(4)–H(4)Cl(1)	1-x, 1-y, 1-z	0,90	2,17	3,065(1)	178	
C(5)–H(5B)Cl(1)	x,-1+y,1+z	0,99	2,78	3,732(1)	162	
C(7)–H(7A)Cl(1)	-x, 1-y, 1-z	0,99	2,76	3,675(1)	154	

Selected hydrogen contacts in the I-III structures

У кристалічній структурі сполуки II складу $[C_4H_9NS(C_3H_5)CuBr_2]$ (рис. 4) атоми металу перебувають у тетраедричному координаційному оточенні, побудованому з бромід-іонів та атомів сульфуру тіоморфолінового ядра (т₄' = 0,91, геометричні характеристики наведено в табл. 3). Завдяки містковій функції бромідіонів Br(2), які входять до координаційної сфери двох атомів металу, у кристалічній гратці комплексу II утворюються димерні топологічні одиниці {(C₇H₁₄NS)₂Cu₂Br₄} (рис. 5). Зважаючи на стеричні утруднення, спричинені наявністю бромід-іонів у сфері координаційній атомів купруму [22], алільна група катіона N-алілтіоморфолінію не бере участі в утворенні зв'язків Cu(I)-(C=C).

Рис. 4. Проєкція кристалічної структури сполуки $[C_7H_{14}NSCuBr_2]$ (II) Fig. 4. Projection of the crystal structure of the compound II

Рис. 5. Димерні топологічні одиниці [$(C_7H_{14}NS)_2Cu_2Br_4$] у кристалічній структурі **II** Fig. 5. Dimeric topological units [$(C_7H_{14}NS)_2Cu_2Br_4$] of in the structure of compound **II**

В елементарній комірці кристалічної структури сполуки III (рис. 6) розташовано дві формульні одиниці складу $C_4H_9NS(C_3H_5)Cl$. Геометричні характеристики ізольованих катіонів N-алілтіоморфолінію, головно, відповідають параметрам таких самих катіонів у структурах I та II. Важливу роль у побудові сполуки відіграють водневі зв'язки N-H...Cl та C-H...Cl (табл. 4), що додатково стабілізують кристалічну гратку.

Рис. 6. Проєкція кристалічної структури сполуки $[C_7H_{14}NSCI]$ (II) Fig. 6. Projection of the crystal structure of the compound II

4. Висновки

Координаційну поведінку катіонів N-алілтіоморфолінію у галогенідних комплексах Cu(I) визначають конкуруючим впливом розмірного фактора інших лігандів координаційної сфери металу. Менші за розміром хлорид-іони не перешкоджають взаємодії Cu(I)–(C=C). Натомість у присутності більших бромідіонів тіоморфоліновий ліганд здатний реалізовувати лише σ -координаційні можливості з утворенням зв'язків Cu(I)–S.

5. Подяки

Автори висловлюють подяку д-ру Євгену Горешніку, Інститут Йожефа Стефана, Любляна, Словенія за проведення дифрактометричного експерименту для кристалів досліджених сполук.

Павлюк О. В. висловлює подяку організації *Simons Foundation* за фінансову підтримку ("Grant for chemists of Lviv University", ID – 1290588).

- Banerjee A., Sarkar S., Shah J. et al. Excited-state copper catalysis for the synthesis of heterocycles // Angew. Chemie Int. Ed. 2022. Vol. 61, No. 4. P. e202113841. DOI: 10.1002/anie.202113841
- Priya S. C., Vijayalakshmi S., Raghavendra S. G. et al. A critical review on efficient photocatalytic degradation of organic compounds using copper-based nanoparticles // Mater. Today Proc. 2023. Vol. 80. P. 3075–3081. DOI: 10.1016/j.matpr.2021.07.169
- 3. *Chipman J. A., Berry J. F.* Paramagnetic metal–metal bonded heterometallic complexes // Chem. Rev. 2020. Vol. 120, No. 5. P. 2409–2447. DOI: 10.1021/acs.chemrev.9b00540

- Wang Z., Chen B., Rogach A. L. Synthesis, optical properties and applications of lightemitting copper nanoclusters // Nanoscale Horizons. 2017. Vol. 2, No. 3. P. 135–146. DOI: 10.1039/C7NH00013H
- Ji P., Wang P., Chen H. et al. Potential of copper and copper compounds for anticancer applications // Pharm. 2023. Vol. 16, No. 2. P. 234. DOI: 10.3390/ph16020234.
- You Y., Mita T. Recent advances in the catalytic umpolung carboxylation of allylic alcohol derivatives with carbon dioxide // Asian J. Org. Chem. 2022. Vol. 11, No. 5. P. e202200082. DOI: 10.1002/ajoc.202200082
- Arimitsu S. Syntheses and synthetic applications of functionalized propargylic and allylic fluorides // Chem. Rec. 2023. Vol. 23, No. 9. P. e202300021. DOI: 10.1002/tcr.202300021
- Vasilica Arsenie L., Ladmiral V., Lacroix-Desmazes P. et al. Morpholine and thiomorpholine derived polymers: multifunctional platforms for biological applications // Eur. Polym. J. 2023. Vol. 200. P. 112490. DOI: 10.1016/j.eurpolymj.2023.112490.
- Świerczyńska M., Słowiński D., Michalski R. et al. A thiomorpholine-based fluorescent probe for the far-red hypochlorous acid monitoring // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023. Vol. 289. P. 122193. DOI: 10.1016/j.saa.2022.122193
- Luba A., Pavlyuk O., Goreshnik E. Copper(i) halide complexes with N,N'diallylthiomorpholinium chloride: synthesis and crystal structure // Visnyk Lviv Univ. Ser. Chem. 2022. Vol. 63, P. 96–105. DOI: 10.30970/vch.6301.096.
- 11. *Filinchuk Y., Glowiak T., Mys'kiv M.* Copper(I) halide pi-complexes with diallylamine of the extreme stoichiometry. The peculiarities of synthesis and crystal structure of 3CuX·(C₃H₅)₂NH (X= Cl, Br) // Pol. J. Chem. 1999. Vol. 73, No. 8. P. 1283–1291.
- 12. Luk'yanov M., Goreshnik E., Pavlyuk O., Mys'kiv M. Copper(I) complexes with 3,3'-iminodipropanenitrile and 3-(diallylamino)propanenitrile: synthesis and crystal structure of σ -[{(NH(H⁺(C₂H₄CN)₂}Cu₃Cl₄] and π -, σ -[Cu((C₃H₅)₂NC₂H₄CN)ClO₄] compounds // Chem. Met. Alloy. 2012. Vol. 5, No. 3/4. P. 173–180.
- Slyvka Y., Goreshnik E., Pavlyuk O., Mys'kiv M. Copper(I) π-complexes with allyl derivatives of heterocyclic compounds: structural survey of their crystal engineering // Open Chem. (Central. Eur.J. Chem.). 2013. Vol. 11, No. 12. P. 43–61. DOI: 10.2478/s11532-013-0323-3
- 14. *Hilgetag G., Martini A.* Organisch-chemische experimentierkunst: Weygand-Hilgetag. Berlin: J. A. Barth, 1964. 1142 p.
- 15. *Rigaku* CrysAlisPro software system, version 1.171.40.61a. Rigaku Oxford Diffraction, 2019. http://www.rigaku.com.
- Sheldrick G. M. SHELXT integrated space-group and crystal-structure determination // Acta Cryst. A. 2015. Vol. 71, No. 1. P. 3–8. DOI: 10.1107/S2053273314026370
- 17. *Sheldrick G. M.* Crystal structure refinement with Shelxl // Acta Cryst. C. 2015. Vol. 71, No. 1. P. 3–8. DOI: 10.1107/S2053229614024218
- Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. OLEX2: a complete structure solution, refinement and analysis program // J. Appl. Crystallogr. 2009. Vol. 42, No. 2. P. 339–341. DOI: 10.1107/S0021889808042726
- 19. *Okuniewski A., Rosiak D., Chojnacki J.* et al. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas // Polyhedron. 2015. Vol. 90. P. 47–57. DOI: 10.1016/j.poly.2015.01.035

- Defazio S., Tamasi G., Cini R. A molecular orbital study of C–H...Cl⁻ and N-H...Cl⁻ hydrogen bonds. Inferences on selected metal complexes and on protein ClC Cl⁻ channels // Comptes Rendus Chim. 2005. Vol. 8, No. 9–10. P. 1584–1609. DOI: 10.1016/j.crci.2004.11.042
- Van den Berg J.-A., Seddon K. R. Critical evaluation of C-H...X hydrogen bonding in the crystalline state // Cryst. Growth Des. 2003. Vol. 3, No. 5. P. 643–661. DOI: 10.1021/cg034083h.
- 22. Goreshnik E., Schollmeyer D., Mys'kiv M. et al. X-ray investigation and coordination behaviour of the 1,3-diallylbenzimidazolium cation in $[C_{13}H_{15}N_2]^{+2}[CuCl_{2.58}Br_{1.42}]^{2-}$ and $[C_{13}H_{15}N_2]^{+}[Cu_2Cl_{0.67}Br_{2.33}]^{-}$ complexes // Z. Anorg. Allg. Chemie. 2000. Vol. 626, No 4. P. 1016–1019.

DOI: 10.1002/(SICI)1521-3749(200004)626:4<1016::AID-ZAAC1016>3.0.CO;2-Z

CRYSTAL STRUCTURE OF COPPER(I) HALIDE COMPLEXES WITH N-ALLYLTHIOMORPHOLINIUM CATION

A. Luba^{*}, O. Pavlyuk

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine *e-mail: alona.luba@lnu.edu.ua

By means of alternating current electrochemical technique, basing on propanolic solutions of CuCl₂·2H₂O or CuBr₂ and N-ally derivatives of thiomorpholine, the complexes of $[C_4H_9NS(C_3H_5)Cu_2Cl_3]$ (**I**), $[C_4H_9NS(C_3H_5)CuBr_2]$ (**II**) composition and pure N-allylthiomorpholinium chloride $C_4H_9NS(C_3H_5)Cl$ (III) were obtained in a single crystal form and characterized by X-ray single crystal method: for I space group $P\overline{1}$, Z = 6, a = 9.5107(5), $b = 13.1644(7), c = 16.0030(7) \text{ Å}, \alpha = 87.002(4), \beta = 80.243(4), \gamma = 72.024(5)^{\circ}, V = 1878.2(2) \text{ Å}^3, \gamma = 10.0030(7) \text{ Å}, \alpha = 87.002(4), \beta = 80.243(4), \gamma = 72.024(5)^{\circ}, V = 1878.2(2) \text{ Å}^3, \gamma = 10.0030(7) \text{ Å}, \alpha = 87.002(4), \beta = 80.243(4), \gamma = 72.024(5)^{\circ}, V = 1878.2(2) \text{ Å}^3, \gamma = 10.0030(7) \text{ Å}, \alpha = 87.002(4), \beta = 80.243(4), \gamma = 72.024(5)^{\circ}, V = 1878.2(2) \text{ Å}^3, \gamma = 10.0030(7) \text{ Å}, \alpha = 87.002(4), \beta = 80.243(4), \gamma = 72.024(5)^{\circ}, \gamma = 1878.2(2) \text{ Å}^3, \gamma = 10.0030(7) \text{ Å}, \gamma = 10.0030(7) \text{$ $\rho_{\text{calc}} = 2.003 \text{ g/cm}^3$, $\mu(\text{CuK}_{\alpha}) = 11.32 \text{ mm}^{-1}$, $\theta_{\text{max}} = 72.4^\circ$, 16466 measured, 7155 used reflections, $R(F^2) = 0.042$, S = 1.03; for II $-P2_1/n$, Z = 4, a = 10.0239(8), b = 7.6183(5), c = 16.1198(14) Å, $\beta = 107.914(9), V = 1171.3(2) \text{ Å}^3, \rho_{\text{calc.}} = 2.085 \text{ g/cm}^3, \mu(\text{MoK}_{\alpha}) = 8.82 \text{ mm}^{-1}, \theta_{\text{max.}} = 29.0^\circ, 6408$ measured, 2544 used reflections, $R(F^2) = 0.038$, S = 1.09; for III $-P\overline{1}$, Z = 2, a = 7.0721(5), b = 8.1438(10), c = 8.9209(13) Å, a = 63.710(13), $\beta = 87.553(9)$, $\gamma = 87.392(8)^\circ$, V = 460.02 Å³, $\rho_{\text{calc.}} = 1.297 \text{ g/cm}^3, \ \mu(\text{CuK}_{\alpha}) = 0.57 \text{ mm}^{-1}, \ \theta_{\text{max.}} = 29.0^\circ, \ 10926 \text{ measured}, \ 2116 \text{ used reflections},$ $R(F^2) = 0.028, S = 1.05.$

In the crystal structure of the synthesized compounds, σ -coordinated copper(I) atoms are in a trigonal-pyramidal coordination environment of the sulfur atom of the heterocyclic ligand and three halide ions; instead, π -coordinated copper(I) atoms are in a trigonal environment of two halide ions and C=C bond. The allyl group of the N-allylthiomorpholinium cation participates in coordination with metal atoms only in the presence of chloride ions due to steric hindrance from bromide ions. Hydrogen bonds N – H... X and C – H... X play an essential role in constructing the crystal lattice of compounds.

Keywords: coordination compounds, crystal structure, N-allylthiomorpholinium, copper(I), π , σ -complexes.

Стаття надійшла до редколегії 01.11.2023 Прийнята до друку 09.09.2024