ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65. С. 70–80 Visnyk of the Lviv University. Series Chemistry. 2024. Issue 65. P. 70–80

УДК 748.736.4

КРИСТАЛІЧНА СТРУКТУРА ТЕРНАРНОГО АНТИМОНІДУ La₆Cu₄₃Sb₂₄

Л. Федина¹, А. Федорчук², М. Федина³

¹Львівський національний університет імені Івана Франка, вул. Лесі Українки, 39, 79008 Львів, Україна;

²Львівський національний університет ветеринарної медицини та біотехнологій імені С. З. Ґжицького, вул. Пекарська, 50, 79010 Львів, Україна;

³Національний лісотехнічний університет України, вул. Чупринки, 103, 79057 Львів, Україна e-mail: fmf@ua.fm

Рентгенівським методом порошку досліджено кристалічну структуру тернарного антимоніду La₆Cu₄₃Sb₂₄ (Huber G670 Imaging Plate Guinier camera; CuK α_1 -випромінювання; R_1 =0,0822; R_p =0,1097). Структура сполуки належить до структурного типу (CT) Ce₆Cu₄₃Sb₂₄: просторова група (ПГ) *P*-43*m*, символ Пірсона (СП) *сP*292, *a* = 17,34705(7) Å; Z=8 і є близькоспорідненою до структури типу Dy₃Cu_{20+x}Sb_{11-x} ($x\approx$ 2) та може бути одержана внаслідок подвоєння періоду *a*, перерозподілу і віднімання атомів від структурного типу BaHg₁₁. Проаналізовано склади тернарних сполук у системах *R*–Cu–Sb. Розглянуто особливості заповнення простору в структурі тернарного антимоніду La₆Cu₄₃Sb₂₄ за найближчим координаційним оточенням найменш електронегативних атомів та спорідненість структури дослідженої сполуки зі структурою бінарного інтерметаліду LaCu₁₃ (структурний тип NaZn₁₃).

Ключові слова: Лантан, Купрум, Стибій, кристалічна структура, структурний тип, тернарна сполука, антимонід.

DOI: https://doi.org/10.30970/vch.6501.070

1. Вступ

Автори [1–3] за систематичного вивчення систем {La, Ce, Nd}–Cu–Sb за температури 870 К визначили утворення тернарних антимонідів приблизного складу ~ RCu_6Sb_3 . У досліджених системах при 870 К тернарні сполуки $RCu_{1-x}Sb_2$ і $R_3Cu_3Sb_4$ зі структурами типу HfCuSi₂ та $Y_3Au_3Sb_4$ є в рівновазі з бінарним антимонідом Cu₃Sb (CT Cu₃Ti) і Cu (власний CT), тому фаза з невизначеною структурою ~ RCu_6Sb_3 існує у вузькій концентраційній області і одержати однофазні зразки та вивчити кристалічну структуру не вдалося. Автори праці [4] під час дослідження системи La–Cu–Sb у повному концентраційному інтервалі не виявили інтерметаліду ~LaCu₆Sb₃ (a також La₆CuSb₁₅ (CT La₆MnSb₁₅)) за температури дослідження 693 К, що свідчить ще й про високі температури утворення цих сполук.

Під час систематичного дослідження діаграм фазових рівноваг у системах {Dy, Tm}–Cu–Sb [5, 6] одержано тернарні сполуки з дещо більшим вмістом Купруму та розшифровано новий структурний тип $Dy_3Cu_{20+x}Sb_{11-x}$ ($x \approx 2$) [7].

[©] Федина Л., Федорчук А., Федина М., 2024

Ізоструктурні сполуки знайдено з Nd, Sm, Gd, Ho, Tb, Er та Tm, однак цей структурний тип не був знайдений у системах з Ітербієм та Лютецієм [8], а характер та інтенсивності рефлексів фаз з La, Ce та Pr свідчили про відмінність структур. За детального вивчення кристалічної структури тернарного антимоніду з Церієм визначено новий структурний тип Ce₆Cu₄₃Sb₂₄ [9]. У цій праці подано результати дослідження кристалічної структури ізоструктурного тернарного антимоніду La₆Cu₄₃Sb₂₄ та аналіз взаємозв'язків вивченої структури зі спорідненими за щільністю заповнення простору, керуючись найближчим координаційним оточенням атомів з найменшою електронегативністю.

2. Матеріали та методика експерименту

Зразки складів, близьких до LaCu₆Sb₃, масою 1 г, одержано сплавленням у електродуговій печі в атмосфері очищеного аргону на мідному водоохолоджуваному поді з невитрачуваним вольфрамовим електродом шихти, що складалася з чистих компонентів (лантану марки ЛаМ-1 (з вмістом 0,9985 мас. частки La), міді марки МОК (0,9983 мас. часток Cu) та сурми марки Су0000 (0,9999 мас. часток Sb)). Як гетер застосовували очищений губчастий титан. Для гомогенізації сплави відпалювали у вакуумованій кварцовій ампулі за 870 К понад 500 год. Зразки гартували у холодній воді без розбивання ампули.

Рентгенівський фазовий аналіз виконано за масивами дифракційних даних, отриманими на дифрактометрі ДРОН-3М (Си $K\alpha$ -випромінювання, $\theta/2\theta$ метод зйомки, $20^{\circ} \le 2\theta \le 80^{\circ}$, крок сканування 0,02°, час сканування в точці 20 с). Кристалічну структуру отриманої сполуки досліджено рентгенівським методом полікристала за масивом дифракційних даних однофазного зразка складу La₉Cu₆₄Sb₂₇, одержаним на дифрактометрі Guinier Huber G 670 за методом Гіньє на проходження (випромінювання Cu $K\alpha_1$). Профільні і структурні параметри уточнено методом Рітвельда – порівнянням теоретично розрахованих профілів дифрактограм з експериментальними. Усі розрахунки проведено з використанням комплексу програм WinCSD [10].

3. Результати досліджень та їх обговорення

Експериментальну, розраховану та різницеву дифрактограми сполуки $La_6Cu_{43}Sb_{24}$ зображено на рис. 1. Умови дифракційних досліджень та результати уточнення структури сполуки наведено в табл. 1, координати та ізотропні параметри коливання атомів – у табл. 2, міжатомні віддалі, розраховані скорочення порівняно з сумами атомних радіусів компонентів та координаційні числа атомів – у табл. 3, тоді як елементарну комірку і координаційні многогранники у структурі сполуки $La_6Cu_{43}Sb_{24}$ – на рис. 2.

Структура сполуки $La_6Cu_{43}Sb_{24}$ належить до структур з ікосаедричною та кубооктаедричною координацією атомів меншого розміру за систематикою Крип'якевича П. І. [11]. Координаційні многогранники атомів Лантану – двадцяти- та дев'ятнадцятивершинники у вигляді гексагональних призм зі всіма та п'ятьма боковими і двома базовими центрованими гранями, відповідно – [La1(Cu9)₂(Sb9)₂Cu7(Sb13)₂Cu6(Cu12)₂Cu5(Cu11)₂(Sb12)₂Sb8(Cu4)₂Sb10Cu1], [La2Cu3(Cu10)₂(Sb13)₂(Sb11)₂Cu2(Cu12)₂(Cu8)₂(Sb10)₂Sb6Sb12(Cu6)₂Sb7]. Атоми Sb5, Sb1, Sb2, Sb3, Sb4, Cu5 та Cu7 вирізняються кубічним оточенням [Sb5Sb6(Sb10)₃(Sb12)₃Sb8] чи кубооктаедричним різного ступеня деформації – [Sb1(Cu2)₁₂],

 $[Sb2(Cu7)_{12}];$ $[Sb3(Cu11)_8(Cu3)_4],$ $[Sb4(Cu5)_4(Cu10)_8],$ [Cu5Sb10Sb4(Cu12)₂(Cu10)₂(Sb13)₂Cu6(Cu10)₂La1], [Cu7(Cu7)₂Cu1(Cu9)₂Sb8Sb2(Sb9)₂(Cu7)₂La1]; а Cu1, Sb7, Cu6 – деформованим ікосаедричним оточенням: [Sb7(Cu6)₃(Cu4)₃(Sb11)₃(La2)₃], [Cu1(Cu7)₃(Sb9)₃(Cu4)₃(La1)₃], [Cu6(Sb13)₂Sb11Sb7(Cu4)₂(Cu10)₂Cu5La1(La2)₂]. Навколо атомів Стибію Sb8, Sb9, Sb10, Sb11, Sb12 та Sb13 формуються тетрагональні призми різного ступеня деформації з двома центрованими гранями [Sb8(Cu9)₃(Cu7)₃Sb5(La1)₃], [Sb9Cu1Cu4(Cu11)₂(Cu9)₂(Cu7)₂(La1)₂], [Sb10Cu5(Cu10)2Cu8(Cu12)2Sb5(La2)2La1], [Sb11(Cu8)2(Cu10)2Cu6(Cu2)2Sb7(La2)2], [Sb12Cu3Cu9(Cu11)/(Cu12)/Sb5(La1)/La2], [Sb13Cu6Cu12Cu12Cu3Cu10Cu11Cu5Cu4La2La1], a Стибію Sb6 - тетрагональні антипризми з двома центрованими базовими гранями [Sb6(Cu2)₃(Cu8)₃Sb5(La2)₃]. Пентагональна антипризма з одним додатковим атомом атомів навпроти базової грані формує поліедр навколо Cu4 [Cu4Sb9Cu1(Cu6)₂(Cu4)₂Sb7(Sb13)₂(La1)₂]. Для атомів Cu2, Cu3 та Cu10 найближче координаційне оточення є у вигляді деформованих тетрагональних призм з трьома [Cu2Sb6(Cu2)₂Sb1(Cu2)₂(Sb11)₂(Cu8)₂La2], центрованими боковими гранями [Cu3Sb12(Cu12)2(Sb13)2(Cu11)2(Cu11)2Sb3La2],

[Cu10Cu10Cu8Sb11Sb10Cu5Sb13Cu6Sb4Cu10Cu12Cu5], атомів Cu8 – тетрагональних призм з двома додатковими атомами навпроти бокових граней та одним навпроти ребра [Cu8(Cu10)₂(Sb11)₂Sb10Cu8(Cu2)₂Sb6(La2)₂]. Навколо атомів Купруму Cu9, Cu11 і Cu12 формуються тригональні призми різного ступеня деформації з двома, трьома та чотирма додатковими атомами, відповідно, [Cu9Sb8Sb12(Cu7)₂(Sb9)₂(Cu11)₂(La1)₂], [Cu11Cu11Sb3Sb12Sb9Cu11Cu3Cu12Cu3Sb13Cu9],

[Cu12Sb13Sb13Cu3Sb12Sb10Cu11Cu5Cu10Cu12La1La2].

Координаційні многогранники частини атомів Купруму, Стибію та Лантану дуже подібні до многогранників у структурі типу BaHg₁₁ та Dy₃Cu_{20+x}Sb_{11-x} (x≈2).

Таблиця 1

Умови проведення експерименту та результати уточнення структури сполуки La₆Cu₄₃Sb₂₄

Table 1

Experimental details and structure refinement results of the compound La₆Cu₄₃Sb₂₄

Склад зразка	La _{0,08} Cu _{0,59} Sb _{0,33}
Склад сполуки	$La_6Cu_{43}Sb_{24}$
Структурний тип	Ce ₆ Cu ₄₃ Sb ₂₄
Просторова група	P-43m
Символ Пірсона	cP292
Параметри комірки <i>a</i> , Å	17,34705(7)
Об'єм комірки $V, Å^3$	5220,07(7)
Густина $D_{\text{полв}}$, г·см ⁻³	8,2544(1)
Дифрактометр	Huber G 670
Випромінювання	Cu $K\alpha_1$, $\lambda = 1,540562$ Å
Крок (град.), час (с) сканування, 2 $\theta_{\text{макс.}}$	0,02, 20, 100,31
Фактори достовірності: <i>R</i> _I ; <i>R</i> _Р	0,0822, 0,1097

72

Структура сполуки La₆Cu₄₃Sb₂₄ за класифікацією структур, згідно з найближчим координаційним оточенням (НКО) [12] атомів з найменшою електронегативністю, належить до ряду структур, похідних від гексагональної призми з різною кількістю додаткових атомів. Навколо найменш електронегативних атомів Лантану формуються два види НКО: у вигляді гексагональної призми зі всіма центрованими гранями, як у СТ ThMn₁₂ [13], та аналогічної призми з сімома додатковими атомами (двома проти базисних та пятьма проти бокових граней), як у структурі бінарної сполуки LaB₆ (власний структурний тип) [14]. Обидва поліедри відрізняються однією нецентрованою гранню. Подібні НКО можна виділити і в структурному типі Dy₃Cu_{20+x}Sb_{11-x} ($x\approx$ 2), які є одного виду для атомів Диспрозію та вирізняються двома нецентрованими суміжними боковими гранями [7]. В системі Nd–Cu–Sb при 870 K простежується перехід CT La₆Cu₄₃Sb₂₄ \leftrightarrow Dy₃Cu_{20+x}Sb₁₁.

Таблиця 2

Координати та ізотропні параметри зміщень атомів у структурі сполуки La₆Cu₄₃Sb₂₄

Table 2

Atomic	coordinates	and isotropic	e displacemen	t parameters in	the structure of	of $La_6Cu_{43}Sb_{24}$
--------	-------------	---------------	---------------	-----------------	------------------	-------------------------

Атом	ПСТ	x/a	y/b	z/c	$B_{iso}(\text{\AA}^2)$
Lal	12 <i>i</i>	0,7487(1)	x	0,49491(6)	1,04(3)
La2	12 <i>i</i>	0,2504(1)	x	0,00672(6)	0,93(3)
Cu1	4e	0,6484(2)	x	x	1,87(10)
Cu2	12 <i>i</i>	0,1114(2)	x	0,9983(2)	0,70(9)
Cu3	12 <i>i</i>	0,6200(2)	x	0,0041(2)	1,95(10)
Cu4	12 <i>i</i>	0,3174(1)	x	0,7948(2)	1,32(10)
Cu5	12 <i>i</i>	0,1101(2)	0,5021(2)	x+1	1,52(9)
Cu6	12 <i>i</i>	0,1673(1)	x	0,6487(2)	0,70(9)
Cu7	12 <i>i</i>	0,4872(2)	0,3861(2)	<i>y</i> +1	0,77(9)
Cu8	12 <i>i</i>	0,0573(1)	x	0,2533(3)	0,91(7)
Cu9	12 <i>i</i>	0,4232(1)	0,2633(3)	x	1,40(9)
Cu10	24 <i>j</i>	0,3736(2)	0,8886(2)	0,0104(2)	1,25(9)
Cu11	24 <i>j</i>	0,3930(2)	0,8931(2)	0,4947(2)	1,85(10)
Cu12	24j	0,4384(2)	0,9356(2)	0,7467(2)	0,90(9)
Sb1	1a	0	0	0	1,76(9)
Sb2	1b	1/2	1/2	1/2	0,81(7)
Sb3	3 <i>c</i>	0	1/2	1/2	1,49(11)
Sb4	3 <i>d</i>	1/2	0	0	1,47(11)
Sb5	4e	0,2454(1)	x	x	0,53(2)
Sb6	4e	0,1422(1)	x	x	1,68(4)
Sb7	4e	0,7962(1)	x	x	1,61(4)
Sb8	4e	0,3590(1)	x	x	1,15(4)
Sb9	12 <i>i</i>	0,57892(6)	x	0,7578(1)	0,86(4)
Sb10	12 <i>i</i>	0,14246(7)	x	0,3547(1)	1,13(5)
Sb11	12 <i>i</i>	0,08861(5)	x	0,7533(1)	0,91(4)
Sb12	12 <i>i</i>	0,36157(6)	x	0,1436(1)	0,47(4)
Sb13	24j	0,41516(8)	0,91806(9)	0,25142(10)	1,76(4)

Таблиця 3

Міжатомні віддалі δ , скорочення міжатомних віддалей $\Delta \delta$ та координаційні числа атомів у структурі сполуки La₆Cu₄₃Sb₂₄

Table 3

Interatomic distances δ and its reduction $\Delta \delta$, coordination numbers of the atoms
in the structure of La ₆ Cu ₄₃ Sb ₂₄

1	Атоми	δ,Å	*Δδ, %	КЧ	A	томи	δ,Å	Δδ, %	КЧ
1	2	3	4	5	6	7	8	9	10
La1	- 2Cu9 - 2Sb9 - Cu7 - 2Sb13 - Cu6	3,238(3) 3,290(2) 3,321(3) 3,326(2) 3,371(3)	2,63 -11,01 5,26 -10,04 6,85	20	Cu1	- 3Cu7 - 3Sb9 - 3Cu4 - 3La1	2,499(5) 2,551(4) 2,675(5) 3,626(4)	-2,23 -17,66 4,66 14,93	12
	- 2Cu12 - Cu5 - 2Cu11 - 2Sb12 - Sb8 - 2Cu4 - Sb10 - Cu1	3,387(3) 3,465(3) 3,513(4) 3,536(2) 3,541(2) 3,543(3) 3,612(3) 3,626(4)	7,35 9,83 11,35 -4,35 -4,22 12,30 -2,30 14,93		Cu2	- Sb6 - 2Cu2 - Sb1 - 2Cu2 - 2Sb11 - 2Cu8 - La2	2,608(4) 2,691(4) 2,733(2) 2,775(4) 2,817(3) 2,826(5) 3,412(3)	-15,82 5,28 -11,78 8,59 -9,07 10,56 8,15 20,56	11
La2	- Cu3 - 2Cu10 - 2Sb13 - 2Sb11 - Cu2 - 2Cu12 - 2Cu8 - 2Sb10 - Sb6 - Sb12 2Cu 6	3,182(4) 3,237(3) 3,246(2) 3,258(2) 3,412(3) 3,412(3) 3,463(3) 3,510(2) 3,545(3) 3,616(2) 3,776(3)	$\begin{array}{c} 0,86\\ 2,57\\ -12,20\\ -11,87\\ 8,15\\ 8,15\\ 9,76\\ -5,06\\ -4,11\\ -2,19\\ 19,68 \end{array}$	19	Cu4	- Sb12 - 2Cu12 - 2 Sb13 - 2Cu11 - 2Cu11 - Sb3 - La2 - Sb9 - Cu1 - 2Cu6 - 2Cu4	2,461(4) 2,637(4) 2,753(3) 2,778(4) 2,943(3) 3,182(3) 2,623(3) 2,675(5) 2,750(3) 2,753(4)	$\begin{array}{r} -20,36\\ 3,17\\ -11,14\\ 8,69\\ 10,33\\ -5,00\\ 2,15\\ -15,33\\ 4,66\\ 7,59\\ 7,71\end{array}$	11
Sb1	- 2Cu6 - Sb7 -12Cu2	3.826(2) 2,733(2)	3,49 -11,78	12		- 1Sb7 - 2Sb13 - 2La1	2,788(3) 2,959(3) 3,543(3)	-10,01 -4,49 12,30	
Sb2	-12Cu7	2,804(2)	-9,49	12	Cu5	– Sb10 – Sb4	2,609(4) 2,700(3)	-15,78	12
Sb3	- 8Cu11 - 4Cu3	2,626(3) 2,927(3)	-15,24 -5,52	12		-2Cu12 -2Cu10 -2Sb13	2,805(4) 2,820(4) 2,920(3)	9,74 10,33 -5.75	
Sb4	- 4Cu5 - 8Cu10	2,700(3) 2,927(3)	-12,85 -5,52	12		- Cu6 - 2Cu10 - La1	2,968(5) 3,003(4) 3,465(3)	16,12 17,49 9,83	

Л. Федина. А	Федорчук. М. Федина		
ISSN 2078-56	15. Вісник Львівського уні	верситету. Серія хіміч	на. 2024. Випуск

Продовже						овження т	абл. З		
1	2	3	4	5	6	7	8	9	10
Sb5	– Sb6	3,099(3)	-14,86	8	Cu6	- 2Sb13	2,355(3)	-23,98	
	- 3Sb10	3,157(3)	-13,27			- Sb11	2,650(3)	-14,46	12
	- 3Sb12	3,354(2)	-7,86			– Sb7	2,712(4)	-15,82	
	– Sb8	3,416(3)	-6,15			- 2Cu4	2,750(3)	7,59	
						- 2Cu10	2,915(3)	14,05	
Sb6	- 3Cu2	2,608(4)	-15,82	10		- Cu5	2,968(5)	16,12	
	- 3Cu8	2,838(4)	-8,39			- La1	3,371(3)	6,85	
	– Sb5	3,099(3)	-14,86			- 2La2	3,776(3)	19,68	
	- 3La2	3,545(3)	4,31						
					Cu7	- 2Cu7	2,480(4)	-2,97	
Sb7	- 3Cu6	2,712(4)	-15,82	12		- Cu1	2,499(5)	-2,23	12
	- 3Cu4	2,788(3)	-10,01			- 2Cu9	2,715(4)	6,22	
	- 3Sb11	2,922(2)	-19.73			- Sb8	2,749(4)	-11,26	
	- 3La2	3,826(2)	12,30			- Sb2	2,804(2)	-9,49	
		, , ,	,			- 2 Sb9	2.813(3)	-9.20	
Sb8	– 3Cu9	2.288(4)	-26.15	10		- 2Cu7	3.109(4)	21.63	
200	-3Cu7	2,749(4)	-11.26	10		– La1	3.321(3)	5.26	
	- Sh5	3,416(3)	-6.15			Dui	0,021(0)	0,20	
	- 3L a1	3,110(3) 3,541(2)	-4 22		C118	-2Cu10	2 572(5)	0.74	
	JEar	5,541(2)	7,22		Cuo	-2.5b11	2,572(3) 2,591(2)	-16.37	11
Sh9	-Cu1	2551(4)	_17.66	10		- Sh10	2,331(2) 2,731(4)	_11.85	
507	-Cu4	2,531(4) 2,623(3)	-15.33	10		$-C_{11}8$	2,731(4) 2,810(3)	9.94	
	-2Cu11	2,025(3) 2,716(3)	_12.33			$-2Cu^2$	2,810(5) 2,826(5)	10.56	
	-2Cu11	2,710(3) 2,726(2)	-12,33 12.01			- 2Cu2	2,820(3)	8 30	
	$-2Cu^{2}$	2,720(2) 2,813(3)	9.20			21.92	2,030(4) 3,463(3)	9.76	
	- 2Cu7	2,813(3) 2,200(2)	-9,20			- 2La2	5,405(5)	9,70	
	-2La1	3,290(2)	-11,01		CuO	CLO	2 200(4)	26.15	
Sh10	Cu5	2 600(4)	15 70	10	Cuy	- 508 Sh12	2,200(4)	-20,13	10
5010	-Cus	2,009(4)	-13,78	10		- 5012	2,309(4)	-17,08	10
	-2Cu10	2,720(3)	-12,01			-2Cu7	2,715(4)	0,22	
	- Cu8	2,751(4)	-11,85			- 2509	2,720(2)	-12,01	
	- 2Cu12	2,764(3)	-10,78			-2Cull	3,108(5)	21,60	
	- Sb5	3,157(3)	-13,27			- 2La1	3,238(3)	2,63	
	-2La2	3,510(2)	-5,06		G 10	G 10	0.476(0)	2.12	
	– Lal	3,612(2)	-2,30		Culo	-Culo	2,476(3)	-3,13	10
G1 1 1	20.0	0.501(0)	1 < 27	10		- Cu8	2,572(5)	0,63	12
Sb11	– 2Cu8	2,591(2)	-16,37	10		- Sb11	2,616(3)	-15,56	
	-2Cu10	2,616(3)	-15,56			- Sb10	2,726(3)	-12,01	
	– Cu6	2,650(3)	-14,46			– Cu5	2,820(4)	10,33	
	– 2Cu2	2,817(3)	-9,07			– Sb13	2,821(3)	-8,94	
	– Sb7	2,922(2)	-19,73			– Cu6	2,915(3)	14,05	
	– 2La2	3,258(2)	-11,87			- Sb4	2,927(3)	-5,52	
						- Cu10	2,987(3)	16,86	
Sb12	- Cu3	2,461(4)	-20,56	10		- Cu12	3,002(4)	17,45	
	–Cu9	2,569(4)	-17,08			– Cu5	3,003(4)	17,49	
	- 2Cu11	2,630(3)	-15,11			- La2	3,237(3)	2,57	
	- 2Cu12	2,681(3)	-13,46						

Л. Федина, А Федорчук, М. Федина ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65

1	2	3	4	5	6	7	8	9	10
Sb13	- Sb5 - 2La1 - La2 - Cu12 - Cu12 - Cu12 - Cu3 - Cu10 - Cu11 - Cu5 - Cu4 - La2 - La1	3,354(2) 3,536(2) 3,616(2) 2,355(3) 2,559(3) 2,571(3) 2,753(3) 2,821(3) 2,820(3) 2,920(3) 2,959(3) 3,246(2) 3,326(2)	-7,86 -4,35 -2,19 -23,98 -17,40 -17,01 -11,14 -8,94 -8,01 -5,75 -4,49 -12,20 -10,04	10	Cu11 Cu12	$\begin{array}{c} - \ Cu11 \\ - \ Sb3 \\ - \ Sb12 \\ - \ Sb9 \\ - \ Cu11 \\ - \ Cu3 \\ - \ Cu2 \\ - \ Cu3 \\ - \ Sb13 \\ - \ Cu9 \\ \hline \\ - \ Sb13 \\ - \ Sb12 \\ - \ Sb10 \\ - \ Cu11 \\ - \ Cu5 \\ - \ Cu10 \\ - \ Cu12 \\ - \ La1 \\ - \ La2 \end{array}$	$\begin{array}{c} 2,497(4)\\ 2,626(3)\\ 2,630(3)\\ 2,716(3)\\ 2,755(4)\\ 2,778(4)\\ 2,785(4)\\ 2,850(3)\\ 3,108(5)\\ 2,559(3)\\ 2,571(3)\\ 2,637(4)\\ 2,681(3)\\ 2,764(3)\\ 2,785(4)\\ 2,805(4)\\ 3,002(4)\\ 3,093(4)\\ 3,387(3)\\ 3,412(3)\\ \end{array}$	$\begin{array}{c} -2,31\\ -15,24\\ -15,11\\ -12,33\\ 7,79\\ 8,69\\ 8,96\\ 10,33\\ -8,01\\ 21,26\\ -17,40\\ -17,01\\ 3,17\\ -13,46\\ -10,78\\ 8,96\\ 9,74\\ 17,45\\ 21,01\\ 7,35\\ 8,15\\ \end{array}$	10

Рис. 1. Експериментальна (точки), розрахована (суцільна лінія) та різницева (суцільна лінія внизу рисунка) дифрактограми зразка La_{0.08}Cu_{0.59}Sb_{0.33} (CuKα₁-випромінювання)
Fig. 1. Experimental (dots), calculated (continuous line) and difference (continuous line at the bottom of the figure) diffractograms of the sample La_{0.08}Cu_{0.59}Sb_{0.33} (CuKα₁-radiation)

Значення міжатомних віддалей добре корелюють з сумами атомних радіусів компонентів ($r_{La} = 1,877$ Å, $r_{Cu} = 1,278$ Å та $r_{Sb} = 1,820$ Å) [15]). Найбільше скорочення міжатомних віддалей (понад 10 %) виявлено між атомами La–Sb (до 12 %), Cu–Sb (до 26 %) та Sb–Sb до 20 %), що може свідчити про локалізацію електронної густини біля атомів Стибію і частку ковалентного зв'язку.

Рис. 2. Розташування атомів у елементарній комірці сполуки $La_6Cu_{43}Sb_{24}$ та координаційні многогранники атомів Fig. 2. The atomic location in the elementary cell of the compound $La_6Cu_{43}Sb_{24}$ and coordination polyhedra of atoms

Простір у структурі сполуки La₆Cu₄₃Sb₂₄ щільно заповнений рядами з поліедрів навколо атомів Лантану, які почергово розділені центрованими кубами з атомів Стибію та деформованими порожніми многогранниками з атомів Стибію і Купруму (рис. 3). Каркас структури сполуки формують кубооктаедри навколо атомів Стибію. Таке саме просторове кубооктаедричне формування структури простежується в СТ ВаHg₁₁ (ПГ *Pm-3m*, СП *сP*36) [16]. Якщо подвоїти період *a* у цій структурі та половину пустих кубів замінити пустими тетраедрами, одержуємо структуру Dy₃Cu_{20+x}Sb_{11-x} (*x*~2) (ПГ *F*-43*m*, СП *сF*272) [8].

У структурі сполуки La₆Cu₄₃Sb₂₄ (СТ Ce₆Cu₄₃Sb₂₄, ПГ *Рт-3m*, СП *сР*292) замість пустих тетраедрів з'являються спарені тетраедри, тоді як куби центруються.

У подвійній системі La–Cu утворюється високотемпературна сполука LaCu₁₃, яка належить до структурного типу NaZn₁₃ (ПГ *Fm*-3*c*, СП *cF*112) [17] і за вмістом рідкісноземельного металу близька до дослідженої сполуки La₆Cu₄₃Sb₂₄. Обидва інтерметаліди характеризуються просторовим щільним укладанням поліедрів навколо атомів Лантану, а каркаси структур сформовані із кубооктаедрів чи ікосаедрів (для La₆Cu₄₃Sb₂₄ та LaCu₁₃, відповідно) (рис. 3). Отже, структуру знайденої сполуки La₆Cu₄₃Sb₂₄ можна одержати із LaCu₁₃, замінивши відповідні НКО навколо атомів Лантану, а також ікосаедри навколо частини атомів Купруму у першій структурі на кубооктаедри навколо частини атомів Стибію у другій.

Рис. 3. Заповнення простору многогранниками у структурі сполуки La₆Cu₄₃Sb₂₄ (CT Ce₆Cu₄₃Sb₂₄) та LaCu₁₃ (CT NaZn₁₃) Fig. 3. Space filling by polyhedra in the structure of compound La₆Cu₄₃Sb₂₄ (ST Ce₆Cu₄₃Sb₂₄) and LaCu₁₃ (ST NaZn₁₃)

Рис. 4. Просторове укладання многогранників навколо атомів Лантану у структурі сполуки La₆Cu₄₃Sb₂₄ Fig. 4. Stacking of polyhedra around Lanthanum atoms in the structure of La₆Cu₄₃Sb₂₄

4. Висновки

Рентгенівським дифракційним методом порошку досліджено кристалічну структуру тернарного антимоніду $La_6Cu_{43}Sb_{24}$. Проаналізовано взаємозв'язки структури сполуки зі структурами типу $Dy_3Cu_{20+x}Sb_{11-x}$ ($x\sim2$) та $BaHg_{11}$. Розглянуто щільне заповнення простору у структурі дослідженої сполуки поліедрами навколо атомів Лантану та Стибію, керуючись найближчим координаційним оточенням атомів, та спорідненість структур сполук $La_6Cu_{43}Sb_{24}$ (СТ $Ce_6Cu_{43}Sb_{24}$) і $LaCu_{13}$ (СТ $NaZn_{13}$).

- 1. *Protsyk O., Salamakha P., Sologub O.* Ternary *R*–Cu–Sb systems, *R* = La, Ce // Coll. Abstr. 4th Intern. Conf. of f–elements. Madrid, Spain, 17–21 September 2000. P. AP41.
- 2. Zaplatinsky O., Salamakha P. Systems Nd-{Cu, Ag}-Sb // Visnyk Lviv Univ. Ser. Khim. 1994. Ed. 34. P. 29–31 (in Ukrainian).
- 3. *Sologub O. L., Salamakha P. S.* Rare-earth-antimony systems. Handbook on the Physics and Chemistry of Rare-Earths. 2003. Vol. 33. P. 36–146.
- Zeng L., Zhang J., Liao J., Qin P. Phase relations in the Cu–La–Sb system at 693 K // J. Alloys Comp. 2006. Vol. 435. P.109–111. DOI: 10.1016/j.jallcom.2005.12.093
- Fedyna L. O. Interaction of Pr, Sm, Dy and Tm with Cu and Ge or Sb // Abstr. Cand. Sci. Thesis (Inorg. Chem.). Lviv, 2006. 20 p. (in Ukrainian).
- Fedyna L. O., Fedorchuk A. O., Mykhalichko V. M., Shpyrka Z. M., Fedyna M. F. Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm–Cu–Sb at 870 K // Solid State Sci. 2017. Vol. 69. P. 7–12. DOI: 10.1016./j.solidstatesciences.2017.05.003
- 7. Fedyna L. O., Bodak O. I., Fedorchuk A. O., Tokaychuk Ya. O. The crystal structure of the new ternary antimonide $Dy_3Cu_{20+x}Sb_{11-x}$ ($x \approx 2$) // J. Solid. State Chem. 2005. Vol. 178. P. 1874–1879. DOI: https://doi.org/10.1016/j.jssc.2005.03.030
- Fedyna L. O., Bodak O. I., Fedorchuk A. O., Tokaychuk Ya. O., Fedyna M. F. New ternary antimonides with Dy₃Cu_{20+x}Sb_{11-x} type structure // Coll. Abstr. IX Intern. conf. on crystal chemistry of intermetallic compounds. Lviv, 20–24 September 2005. P. 90,
- Fedyna L. O., Fedorchuk A. O., Mykhalichko V. M., Fedyna M. F. Crystal structure of new ternary antimonide Ce₆Cu₄₃Sb₂₄ // Coll. Abstr. XIV Intern. conf. on crystal chem. of intermetallic compounds. Lviv, 22 –26 September 2019. P. 97.
- Akselrud L., Grin. Yu. WinCSD: software package for crystallographic calculations // J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. DOI: 10.1107/S1600576714001058
- 11. Kripyakevich P. I. Structure Types of Intermetallic Compounds. Nauka, 1977. 290 p.
- 12. *Fedorchuk A., Fedyna M., Kityk I.* The nearest coordination environment of atoms in the structures of inorganic compounds. // Chernivtsi: Rodovid Publishing House. 2013. 198 p. (in Ukrainian).
- 13. *Florio J. V., Rundle R. E., Snow A. I.* Compounds of thorium with transition metals. I. The thorium-manganese system // Acta Crystallogr. 1952. Vol. 5. P. 449–457.
- 14. *Ning G., Flemming R.L.* Rietveld refinement of LaB₆: data from μXRD // J. Appl. Crystallogr. 2005. Vol. 38. P. 757–759.
- 15. Emsley J. Die Elemente. Berlin-New-York, 1994. 247 p.
- 16. *Peyronel G.* Struttura della fase BaHg₁₁ // Gazz. Chim. Ital. 1952. Vol. 82. P. 679–690.
- 17. Bloch J. M., Shaltiel D., Davidov D. Preparation and study of new intermetallic compounds with the NaZn₁₃-structure: LaCu₁₃, PrCu₁₃ // J. Less-Com. Metals. 1981. Vol. 79. P. 323–327.

CRYSTAL STRUCTURE OF TERNARY ANTYMONIDE La₆Cu₄₃Sb₂₄

L. Fedyna¹, A. Fedorchuk², M. Fedyna³

¹Ivan Franko National University of Lviv, Lesi Ukrainky Str., 39, 79008 Lviv, Ukraine;

²S. Z. Gzhytskyj Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska Str., 50, 79010 Lviv, Ukraine;

³National University of Forest and Wood Technology of Ukraine, Chuprynky Str., 103, 79057 Lviv, Ukraine e-mail: fmf@ua.fm

The crystal structure of the new ternary antymonide $La_6Cu_{43}Sb_{24}$ was determined by X-ray powder diffraction (Huber G670 Imaging Plate Guinier camera, $CuK\alpha_1$ -radiation): (structure type $Ce_6Cu_{43}Sb_{24}$, space group *P*-43*m*, Pearson symbol *cP292*; *a* = 17.34705(7) Å; *V* = 5220.07(7) Å³; Z=8; $R_I = 0.0822$; $R_P = 0.1097$). The values of interatomic distances correlate with the sum of atomic radii of components. The largest reduction in the interatomic distances (more than 10 %) was found between atoms La–Sb (up to 12 %), Cu–Sb (up to 26 %), and Sb–Sb (up to 20 %), which may indicate the localization of the electron density near the Antimony atoms and existing of covalent bond part. Coordination polyhedra of La atoms are twenty- and nineteen-vertexes polyhedra, of Sb atoms – cubes, cubooctahedra, icosahedra, tetragonal prisms and antiprisms with various degrees of deformation and different number of centered faces; of Cu atoms – cubooctahedra, trigonal, tetragonal prisms and pentagonal antiprisms, differently deformed and with a different number of additional atoms.

The relationship between the structure of the investigated compound and the structures of the type $Dy_3Cu_{20+x}Sb_{11-x}$ (x~2) and $BaHg_{11}$ was analyzed: due to period doubling in the $BaHg_{11}$ structure and replacing half of the empty cubes by empty tetrahedra, we get the $Dy_3Cu_{20+x}Sb_{11-x}$ (x~2) structure. In the structure of the compound La₆Cu₄₃Sb₂₄ (ST Ce₆Cu₄₃Sb₂₄) paired tetrahedra appear instead of empty tetrahedra, and cubes become centered. The filling of the space with polyhedra around the Lanthanum and Antimony atoms in the structure of the studied compound was described according to the nearest coordination environment (NCE) of the least electronegativity atoms. The space in the structure of the compound $La_6Cu_{43}Sb_{24}$ is closely filled with rows of polyhedra around Lanthanum atoms, which are alternately separated by centered cubes of Antimony atoms and deformed empty polyhedra of Antimony and Copper atoms. In the binary system La-Cu a high-temperature compound LaCu₁₃ is formed. Binary compound LaCu₁₃ belongs to the structural type NaZn₁₃ (PG Fm-3c, SP cF112) and is close to the studied compound $La_6Cu_{43}Sb_{24}$ by the content of rare-earth metal. Compounds $LaCu_{13}$ and La₆Cu₄₃Sb₂₄ are related by the nature of the fragments arrangement. Both intermetalides are characterized by a close-packed arrangement of polyhedra around Lanthanum atoms. The frameworks of the structures are formed of cubooctahedra or icosahedra (for La₆Cu₄₃Sb₂₄ and LaCu₁₃, respectively). The structure of the compound La₆Cu₄₃Sb₂₄ can be obtained from the binary phase LaCu13 by replacing the corresponding NCE around Lanthanum atoms and icosahedra around Copper atoms with cuboctahedra around Antimony atoms.

Keywords: lantanum, copper, antimony, X-ray powder diffraction, ternary compound, crystal structure.

Стаття надійшла до редколегії 01.11.2023 Стаття прийнята до друку 09.09.2024