ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65. С. 36–46 Visnyk of the Lviv University. Series Chemistry. 2024. Issue 65. P. 36–46

УДК 546:548.3

КРИСТАЛІЧНА СТРУКТУРА ТЕРНАРНОЇ СПОЛУКИ Dy1,33Ni3Ga8

Н. Муць*, А. Любицька, Я. Токайчук, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна ^{*}e-mail: nataliya.muts@lnu.edu.ua

Сплави системи Dy–Ni–Ga, синтезовані електродуговим сплавлянням і відпалені за температури 600 °C, досліджено рентгенівською порошковою дифракцією, скануючою електронною мікроскопією та енергодисперсійною рентгенівською спектроскопією. Визначено кристалічну структуру нової сполуки Dy_{1,33}Ni₃Ga₈: структурний тип Gd_{1,33}Pt₃Al₈, символ Пірсона *hR*51, просторова група *R*-3*m*, *a* = 4,20103(9), *c* = 37,8368(9) Å. Структура цієї сполуки належить до лінійної неоднорідної гомологічної серії сполук загальної формули $R_{0,67}T_nM_{2n+m}$ і складається з шарів складів Dy_{0,67}Ga та NiGa₂ у співвідношенні 2:3.

Ключові слова: система Dy–Ni–Ga, рентгенівська порошкова дифракція, енергодисперсійна рентгенівська спектроскопія, кристалічна структура, структурний тип Gd_{1,33}Pt₃Al₈, гомологічна серія структур.

DOI: https://doi.org/10.30970/vch.6501.036

1. Вступ

Згідно з базою даних Pearson's Crystal Data [1] в системі Dy–Ni–Ga утворюються 23 тернарні фази (табл. 1). В праці [2] побудовано ізотермічний переріз діаграми стану системи Dy–Ni–Ga за температури 600 °C і встановлено існування дев'ятнадцяти сполук (виділені жирним в табл. 1); однак область діаграми стану з вмістом >75 ат. % Ga не було досліджено. Вісім тернарних фаз володіють областями гомогенності з утворенням твердих розчинів заміщення Ni/Ga, тоді як інші одинадцять сполук мають точкові склади. Кристалічну структуру сполук зі стехіометрією 1:3:7 та 1:2:7 в області з великим вмістом галію (63,6 і 70 ат. % Ga, відповідно) не визначено. Мета нашої праці – дослідити систему Dy–Ni–Ga за температури 600 °C в області, багатій на Ga, зокрема визначення кристалічної структури згаданих тернарних сполук.

2. Матеріали та методика експерименту

Для дослідження системи Dy–Ni–Ga в області, багатій на Ga, було виготовлено потрійні сплави складів $Dy_{9,1}Ni_{27,3}Ga_{63,6}$ (1:3:7) та $Dy_{10}Ni_{20}Ga_{70}$ (1:2:7). Для цього використали метали такої чистоти: Dy із вмістом основного компонента не менше 99,89 мас. %, Ni та Ga >99,99 мас. %.

Зразки синтезували електродуговим сплавлянням шихти з вихідних компонентів на мідному водоохолоджуваному поді за допомогою вольфрамового електрода. Для досягнення гомогенності зразки після першого сплавляння проплавляли повторно, перевернувши на іншу сторону.

[©] Муць Н., Любицька А., Токайчук Я. та ін., 2024

Таблиця 1

Table 1

Кристалографічні характеристики сполук у системі Dy–Ni–Ga [1]

Crystallographic parameters of the compounds in the system Dy-Ni-Ga [1]

Сполука	Структурний	Символ	Просторова	Параметри комірки Å	
Сполука	ТИП	Пірсона	група	Параметри комрки, А	
DyNi ₃ Ga ₉	ErNi ₃ Al ₉	hR78	R32	a = 7,2436, c = 27,4386	
DyNi ₃ Ga ₇			R3m	a = 4,2040, c = 37,834	
DyNi2Ga7		hR		a = 7,254, c = 27,465	
Dy2Ni10,2-7,5Ga6,8-9,5	Th_2Zn_{17}	hR57	<i>R</i> -3 <i>m</i>	a = 8,695 - 8,738, c = 12,192 - 12,311	
Dy ₄ Ni ₁₀ Ga ₂₁	Ho ₄ Ni ₁₀ Ga ₂₁	<i>mS</i> 70	C2/m	a = 20,87, b = 4,091, c = 15,45, $\beta = 125,35^{\circ}$	
Dy15Ni46Ga50	Sm15Ni52Ga44	hP111	P-6m2	a = 8,787, c = 24,79	
DyNi _{3,2-2,5} Ga _{1,8-2,5}	YCo ₃ Ga ₂	hP18	P6/mmm	a = 8,679-8,837, c = 4,122-4,082	
DyNiGa4 α	YNiAl ₄	oS24	Стст	a = 4,069, b = 15,230, c = 6,529	
DyNi _{0,9} Ga ₄ β	TbNi _{0,9} Ga ₄	<i>tI</i> 46	I4/mmm	a = 4,1790, c = 23,6450	
Dy ₃ Ni _{2,8-2,1} Ga _{8,2-8,9}	La ₃ Al ₁₁	<i>oI</i> 28	Immm	a = 4,132-4,136, b = 12,403-12,449, c = 9,438-9,430	
Dy ₄ NiGa ₁₂	Y ₄ PdGa ₁₂	cI34	Im-3m	<i>a</i> = 8,532	
DyNi2,58-2,40Ga0,42-0,60	CeNi ₃	hP24	P6 ₃ /mmc	a = 5,040-5,041, c = 16,18-16,22	
DyNiGa ₂	MgCuAl ₂	oS16	Cmcm	a = 4,103, b = 10,04, c = 6,634	
Dy ₃ Ni ₆ Ga ₂	Ce ₃ Ni ₆ Si ₂	cI44	Im-3m	<i>a</i> = 8,862	
DyNiGa	TiNiSi	oP12	Pnma	<i>a</i> = 6,832, <i>b</i> = 4,285, <i>c</i> = 7,323	
DyNi _{0,9-0,57} Ga _{1,1-1,43}	KHg ₂	oI12	Imma	<i>a</i> = 4,263–4,323, <i>b</i> = 6,871–6,984, <i>c</i> = 7,338–7,467	
Dy ₂ Ni _{1,5} Ga _{2,5}	Lu ₂ CoGa ₃	hP24	P6 ₃ /mmc	a = 8,6598, c = 7,0445	
DyNi _{0,41-0,23} Ga _{1,59-1,77}	CaIn ₂	hP6	P6 ₃ /mmc	a = 4,342-4,317, c = 7,160-7,400	
Dy ₂ Ni ₂ Ga	W_2CoB_2	oI10	Immm	<i>a</i> = 4,167, <i>b</i> = 5,336, <i>c</i> = 8,272	
DyNi _{0,9-0,8} Ga _{0,1-0,2}	TII	<i>oS</i> 8	Cmcm	<i>a</i> = 3,72, <i>b</i> = 10,29, <i>c</i> = 4,258 для DyNi _{0.9} Ga _{0.1}	
Dy21Ni8,75-5,25Ga5,25-8,75	Er21Ni9Ga5	<i>tI</i> 140	I4/mcm	a = 11,432-11,851, c = 24,52-25,36	
Dy ₂₆ Ni _{6,5} Ga _{10,5}	Sm ₂₆ Co ₁₁ Ga ₆	<i>tP</i> 86	P4/mbm	a = 11,6006, c = 15,2189	
Dy ₆ Ni ₂ Ga	Ho ₆ Co ₂ Ga	<i>oI</i> 36	Immm	$a = 9,32\overline{7}, b = 9,500, c = 9,882$	

Гомогенізаційний відпал зразків проводили за температури 600 °C впродовж сімдесяти днів у вакуумованих кварцових ампулах у муфельній електропечі VULKAN A-550 (автоматичне регулювання температури з точністю ±5 °C).

З метою визначення складу індивідуальних фаз у зразках $Dy_{9,1}Ni_{27,3}Ga_{63,6}$ та $Dy_{10}Ni_{20}Ga_{70}$ виконали енергодисперсійний рентгенівський спектральний аналіз (ЕДРС) на скануючому електронному мікроскопі Tescan Vega 3 LMU з енергодисперсійним рентгенівським мікроаналізатором Oxford Instruments Aztec One та детектором X-Max^N20.

Фазовий аналіз і визначення кристалічної структури провели на масивах рентгенівських дифракційних даних (дифрактометри ДРОН-2.0М з промінням Fe Ka та STOE Stadi P з промінням Cu Ka₁) з наступним уточненням вмісту фаз і параметрів структур методом Рітвельда за допомогою програми FullProf Suite [3]. Для пошуку прототипів використали бази даних Pearson's Crystal Data [1] та TYPIX [4], а для графічного зображення структур – програму DIAMOND [5].

37

3. Результати досліджень та їх обговорення

Енергодисперсійний рентгенівський спектральний аналіз

За результатами скануючої електронної мікроскопії зразок $Dy_{9,1}Ni_{27,3}Ga_{63,6}$ виявився двофазним (рис. 1, табл. 2): світла (основна) матриця відповідає тернарній сполуці $Dy_{1,33}Ni_3Ga_8$ (склад фази за результатами енергодисперсійної рентгенівської спектроскопії (ЕДРС) становить $Dy_{12(1)}Ni_{30(2)}Ga_{58(2)}$), темна матриця – бінарній сполуці Ni_2Ga_3 ($Dy_{0,9(3)}Ni_{43,8(8)}Ga_{55,3(6)}$). Загальний склад зразка за результатами ЕДРС – $Dy_{9,6}Ni_{31,2}Ga_{59,2}$.

Зразок $Dy_{10}Ni_{20}Ga_{70}$ містить дві фази: світла матриця – тернарна сполука $DyNiGa_4$ ($Dy_{18(1)}Ni_{20(2)}Ga_{62(3)}$), темна матриця – тернарна сполука $DyNi_3Ga_9$ ($Dy_{8,8(7)}Ni_{25,4(7)}Ga_{65,8(5)}$). Загальний склад зразка за результатами ЕДРС – $Dy_{11,1}Ni_{23,8}Ga_{65,1}$.

Рис. 1. Фотографії поверхонь зразків Dy_{9,1}Ni_{27,3}Ga_{63,6} та Dy₁₀Ni₂₀Ga₇₀ (скануючий електронний мікроскоп Tescan Vega 3 LMU) Fig. 1. Photos of the surface of the Dy_{9.1}Ni_{27,3}Ga_{63,6} and Dy₁₀Ni₂₀Ga₇₀ samples (scanning electron microscope Tescan Vega 3 LMU)

Таблиця 2

39

Результати ЕДРС зразків Dy_{9,1}Ni_{27,3}Ga_{63,6} та Dy₁₀Ni₂₀Ga₇₀

Table 2

Results of the EDX analysis of the samples $Dy_{9.1}Ni_{27.3}Ga_{63.6}$ and $Dy_{10}Ni_{20}Ga_{70}$

Current theory	Vaaramaniš	Фаза			
Склад фази	усереднении	(структурний тип)			
	Зразок Dy _{9,1} Ni _{27,3} Ga _{63,6}				
Dy11,94Ni30,81Ga57,25					
Dy11,36Ni28,41Ga60,23	Dy ₁₂₍₁₎ Ni ₃₀₍₂₎ Ga ₅₈₍₂₎	$(Gd_{1,33}Pt_3Al_8)$			
Dy12,99Ni31,24Ga55,77					
Dy _{1,2} Ni _{43,09} Ga _{55,71}		Ni ₂ Ga ₃			
Dy _{0,76} Ni _{43,52} Ga _{55,72}	Dy _{0,9(3)} Ni _{43,8(8)} Ga _{55,3(6)}				
Dy _{0,62} Ni _{44,68} Ga _{54,69}		$(1NI_2AI_3)$			
Зразок Dy ₁₀ Ni ₂₀ Ga ₇₀					
Dy17,15Ni17,67Ga65,18		D. N.C.			
Dy17,75Ni20,83Ga61,42	Dy ₁₈₍₁₎ Ni ₂₀₍₂₎ Ga ₆₂₍₃₎	$DyNiGa_4$ (VNiA1.)			
Dy17,92Ni21,89Ga60,18		(11111114)			
Dy _{8,38} Ni _{25,51} Ga _{66,11}					
Dy _{9,35} Ni _{25,01} Ga _{65,64}					
Dy _{9,88} Ni _{24,50} Ga _{65,62}	Dy Ni Ga	DyNi ₃ Ga ₉ (ErNi ₃ Al ₉)			
Dy _{8,48} Ni _{24,85} Ga _{66,67}	Dy _{8,8(7)} 1125,4(7)Ga _{65,8(5)}				
Dy7,99Ni26,34Ga65,67					
Dy _{8,54} Ni _{26,09} Ga _{65,37}					

Рентгенофазовий та рентгеноструктурний аналізи

За результатами рентгенофазового аналізу синтезовані зразки є також багатофазними. Результати фазового аналізу зразків Dy9,1Ni27,3Ga63,6 та Dy10Ni20Ga70 подано в табл. 3.

Таблиця З

Результати рентгенофазового аналізу зразків $Dy_{9,1}Ni_{27,3}Ga_{63,6}$ та $Dy_{10}Ni_{20}Ga_{70}$ Table 3

Results of the phase analysis of the samples $Dy_{9.1}Ni_{27.3}Ga_{63.6}$ and $Dy_{10}Ni_{20}Ga_{70}$

Зразок	Фаза (структурний тип, символ Пірсона, просторова група)	Вміст, мас. %	Параметри комірки, Å
Dy _{9,1} Ni _{27,3} Ga _{63,6}	Dy _{1,33} Ni ₃ Ga ₈ (Gd _{1,33} Pt ₃ Al ₈ , <i>hR</i> 51, <i>R</i> -3 <i>m</i>)	51,4(3)	a = 4,20103(9), c = 37,8368(9)
	Dy ₄ Ni ₁₀ Ga ₂₁ (Ho ₄ Ni ₁₀ Ga ₂₁ , <i>mS</i> 70, <i>C</i> 2/ <i>m</i>)	25,6(2)	a = 20,7542(8), b = 4,0889(1), $c = 15,3506(6), \beta = 124,760(2)^{\circ}$
	Ni ₂ Ga ₃ (Ni ₂ Al ₃ , <i>hP5</i> , <i>P</i> -3 <i>m</i> 1)	23,0(1)	a = 4,0537(1), c = 4,8875(1)
$Dy_{10}Ni_{20}Ga_{70}$	DyNi ₃ Ga ₉ (ErNi ₃ Al ₉ , <i>hR</i> 78, <i>R</i> 32)	69,9(1)	a = 7,2530(8), c = 27,455(4)
	DyNiGa ₄ (YNiAl ₄ , oS24, Cmcm)	30,1(1)	a = 4,0806(8), b = 15,226(3), c = 6,556(1)

Зразок Dy_{9,1}Ni_{27,3}Ga_{63,6} містить три фази: основною (51,4(3) мас. %) є тернарна сполука Dy_{1,33}Ni₃Ga₈ зі структурою типу Gd_{1,33}Pt₃Al₈ (символ Пірсона *hR*51, просторова група *R*-3*m*), додатковими є тернарна сполука Dy₄Ni₁₀Ga₂₁ (структурний тип Ho₄Ni₁₀Ga₂₁, *mS*70, *C*2*/m*) та бінарна сполука Ni₂Ga₃ (структурний тип Ni₂Al₃, *hP*5, *P*-3*m*1).

Зразок $Dy_{10}Ni_{20}Ga_{70}$ містить дві фази: основна фаза (69,9(1) мас. %) – тернарна сполука $DyNi_3Ga_9$ зі структурою типу $ErNi_3Al_9$ (*hR*78, *R*32) та сполука $DyNiGa_4$ (структурний тип $YNiAl_4$, *oS*24, *Cmcm*).

Ми провели повне визначення кристалічної структури тернарної сполуки $Dy_{1,33}Ni_3Ga_8$ методом Рітвельда за масивом дифракційних даних зразка складу $Dy_{9,1}Ni_{27,3}Ga_{63,6}$, отриманого за кімнатної температури на дифрактометрі STOE Stadi P (Си $K\alpha_1$ -випромінювання). Результати уточнення наведено в табл. 4, координати та параметри зміщення атомів у структурі сполуки $Dy_{1,33}Ni_3Ga_8$ подано у табл. 5; дифрактограму зразка $Dy_{9,1}Ni_{27,3}Ga_{63,6}$ наведено на рис. 2.

Особливістю опису кристалічної структури сполуки $Dy_{1,33}Ni_3Ga_8 \in CTATUCTU4He$ упорядкування атомів Dy (положення 6*c*) та трикутників, утворених з атомів Ga (18*h*). Коефіцієнти заповнення цих положень не уточнювали, а зафіксували їх у співвідношенні 2:1 (на два атоми Dy припадає один трикутник Ga₃).

Таблиця 4

Результати уточнення кристалічних структур індивідуальних фаз у зразку Dy_{9,1}Ni_{27,3}Ga_{63,6} (дифрактометр STOE Stadi P, Cu Kα₁ проміння)

Table 4

Фаза	Dy _{1,33} Ni ₃ Ga ₈ Dy ₄ Ni ₁₀ Ga ₂₁		Ni ₂ Ga ₃			
Вміст, мас. %	51,4(3)	25,6(2)	23,0(1)			
Структурний тип	Gd _{1,33} Pt ₃ Al ₈	Ho ₄ Ni ₁₀ Ga ₂₁	Ni ₂ Al ₃			
Просторова група	R-3m	C2/m	P-3m1			
Символ Пірсона	hR51	mS70	hP5			
Параметри комірки	4,20103(9)	20,7542(8)	4,0537(1)			
	_	4,0889(1)	-			
	37,8368(9)	15,3506(6)	4,8875(1)			
		$\beta = 124,760(2)^{\circ}$				
Об'єм комірки, Å ³	578,30(2)	1070,19(6)	69,552(3)			
Густина, г см-3	12,282	8,382	7,797			
Параметр текстури G [напрям]	0,940(4) [110]	-	-			
Інтервал кутів 2θ (крок), °	6-110,625 (0,015)					
Кількість відбить	6976					
Кількість уточнюваних	33					
параметрів						
Фактор розбіжності R _В	0,0413	0,155	0,0598			
Acumernia P1 P2	0,072(5)	0,087(5)	0,072(5)			
7100merph/11,12	0,013(1)	0,013(1)	0,013(1)			
Параметри ширини піків U, V, W	0,019(2), -0,003(2), 0,0096(6)					
Параметр змішування η	0,832(7)					
Фактори розбіжності $R_{\rm p}, R_{\rm wp}, R_{\rm exp}$	0,0257, 0,0353, 0,0245					
Фактор добротності опису профілю χ^2	2,08					

Results of the refinement of the crystal structures of the individual phases in the sample $Dy_{9,1}Ni_{27,3}Ga_{63,6}$ (diffractometer STOE Stadi P, Cu $K\alpha_1$ radiation)

Таблиця 5

Координати та параметри зміщення атомів у структурі сполуки $Dy_{1,33}Ni_3Ga_8$ (структурний тип $Gd_{1,33}Pt_3Al_8$, символ Пірсона hR51, просторова група R-3m, a = 4,20103(9), c = 37,8368(9) Å)

Table 5

41

Atomic coordinates and displacement parameters for Dy _{1.33} Ni ₃ Ga ₈	
(structure type Gd _{1,33} Pt ₃ Al ₈ , Pearson symbol <i>hR</i> 51, space group <i>R</i> -3 <i>m</i> , $a = 4.20103(9)$, $c = 37.8368(9)$ Å)	

Amon	Правильна	Координати атомів			Коефіцієнт	D Å ²
AIOM	система	x	у	z	заповнення	D_{iso}, A
Dy	6 <i>c</i>	0	0	0,26849(6)	0,667	0,54(5)
Ni1	6 <i>c</i>	0	0	0,12156(8)	1	0,56(9)
Ni2	3 <i>a</i>	0	0	0	1	1,13(13)
Ga1	18h	0,5452(5)	0,4578(5)	0,3951(1)	0,333	0,87(11)
Ga2	6 <i>c</i>	0	0	0,18638(8)	1	0,60(8)
Ga3	6 <i>c</i>	0	0	0,35082(9)	1	0,68(8)
Ga4	6 <i>c</i>	0	0	0,44567(6)	1	0,60(7)

Автори праці [2] вказували на існування за температури 600 °С двох тернарних сполук: DyNi₃Ga₇ (просторова група *R3m*, a = 4,204 Å, c = 37,834 Å) та DyNi₂Ga₇ (ромбоедрична сингонія, a = 7,254 Å, c = 27,465 Å). Очевидно, сполука зі стехіометрією 1:3:7 відповідає тернарному галіду Dy_{1,33}Ni₃Ga₈, параметри кристалічної структури якого ми визначили вперше, а сполука зі стехіометрією 1:2:7 – це сполука DyNi₃Ga₉, кристалічну структуру якої визначили автори праці [6].

Рис. 2. Експериментальна, розрахована та різницева дифрактограми зразка Dy_{9,1}Ni_{27,3}Ga_{63,6}, відпаленого за 600 °C упродовж 70 днів; Cu Kα₁ проміння (Dy_{1,33}Ni₃Ga₈ – 51,4(3) мас. %; Ni₂Ga₃ – 23,0(1) мас. %; Dy₄Ni₁₀Ga₂₁ – 25,6(2) мас. %)

Fig. 2. Observed, calculated and difference X-ray powder diffraction patterns for the $Dy_{9.1}Ni_{27.3}Ga_{63.6}$ sample annealed at 600 °C for 70 days; Cu $K\alpha_1$ radiation ($Dy_{1.33}Ni_3Ga_8 - 51.4(3)$ mass %; $Ni_2Ga_3 - 23.0(1)$ mass %; $Dy_4Ni_{10}Ga_{21} - 25.6(2)$ mass %) Уточнену нами частину ізотермічного перерізу діаграми стану системи Dy–Ni–Ga за температури 600 °С подано на рис. 3.

Рис. 3. Частина ізотермічного перерізу діаграми стану системи Dy–Ni–Ga в області, багатій на галій, доповнена результатами цієї роботи

Fig. 3. Part of the isothermal cross-section of the phase diagram of the system Dy–Ni–Ga in the Ga-rich region updated according to the results of this work

Структура сполуки $Dy_{1,33}Ni_3Ga_8$ належить до лінійної неоднорідної гомологічної серії сполук загальної формули $R_{0,67}T_nM_{2n+m}$ з n = 1,5, $m = 1 \rightarrow 2Dy_{0,67}Ni_{1,5}Ga_4 \equiv Dy_{1,33}Ni_3Ga_8$. Елементарна комірка цієї сполуки складається з шести атомних шарів складу $Dy_{0,67}Ga$ (плоскі моноатомні шари) та дев'яти шарів (гофровані шари товщиною ~1,3 Å) складу NiGa₂. Формулу сполуки можна подати і в такий спосіб: $6Dy_{0,67}Ga + 9NiGa_2 \equiv Dy_4Ni_9Ga_{24} \equiv Dy_{1,33}Ni_3Ga_8$.

Шари, що містять атоми рідкісноземельного металу, розділені між собою одинарним шаром NiGa₂ чи двома послідовними шарами NiGa₂. Укладку атомних шарів у структурі сполуки $Dy_{1,33}Ni_3Ga_8$ (кристалографічний напрям [001]) в проєкції вздовж осі *y*, а також проєкції шарів $Dy_{0,67}Ga$ та NiGa₂ вздовж осі *z* зображено на рис. 5. Міжатомні відстані і координаційні числа та многогранники в структурі сполуки $Dy_{1,33}Ni_3Ga_8$ наведено у табл. 6.

Рис. 4. Укладка атомних шарів у структурі сполуки Dy_{1,33}Ni₃Ga₈ (сегментами показано часткове заповнення положень атомів Dy та Ga) Fig. 4. Stacking of atomic layers in the structure of Dy_{1,33}Ni₃Ga₈ (circles with segments indicate partial filling of the positions by Dy and Ga atoms)

Таблиця б

Міжатомні відстані в структурі сполуки Dy_{1,33}Ni₃Ga₈ (структурний тип Gd_{1,33}Pt₃Al₈, символ Пірсона *hR*51, просторова група *R*-3*m*)

Table 6

Interatomic distances in the structure of the compound Dy _{1,33} Ni ₃ Ga ₈ (structure type Gd _{1,33} Pt ₃ Al ₈ ,
Pearson symbol <i>hR</i> 51, space group <i>R</i> -3 <i>m</i>)

A	гоми	δ , Å	Координаційне число,
			координаційний многогранник
Dy	-3Ga3	3,016(3)	
	-3Ga4	3,019(2)	
	-1Ga2	3,107(4)	KU –17
	-1Ga3	3,115(4)	$K\mathbf{M} = (\mathbf{Ga}_{r}\mathbf{N}\mathbf{i}_{r})^{12p}(\mathbf{Ga}_{r})^{5c}$
	-3Ni1	3,239(3)	(Ga_6) (Ga_5)
	-3Ni2	3,450(2)	
	-3Ga1	2,986(4)	
Ni1	-1Ga1	2,437(5)	
	-3Ga4	2,450(5)	
	-1Ga2	2,453(5)	KY = 10,
	-3Ga2	2,609(2)	$KM - (Ga_8) (Dy_2)$
	-2Dy	3,239(3)	
Ni2	-2Ga1	2,507(4)	
	-6Ga3	2,514(1)	KY = 12,
	-4Dy	3,450(2)	$KIM - (Ga_8)^{-1} (Dy_4)$
Ga1	Gal –1Ni1 2,437(5)		
	-1Ni2	2,507(4)	
	-2Ga1	2,632(5)	KH = 10.
	-2Ga3	2,704(4)	$KM - (Ni_2Ga_6)^{8cb}(Dy_2)^{2c}$
	-2Ga4	2,858(4)	
	-2Dy	2,986(4)	
Ga2	-1Ni1	2,453(5)	
	-3Ni1	2,609(2)	
	-3Ga4	2,757(2)	KY = 11,
	-3Ga2	2,848(3)	$KM = (N_1 Ga_4)^* (N_1 Ga_2 Dy)^*$
	-1Dy	3,107(4)	
Ga3	-3Ni2	2,514(1)	
	-3Ga3	2,763(2)	
	-2Dy	3,016(3)	$K\Psi = 11,$
	-1Dy	3,115(4)	$KM - (N_1 Ga_4 Dy_2)^{act} (N_1 Ga Dy)^{ct}$
	-2Ga1	2,704(4)	
Ga4	-3Ni1	2,450(5)	
	-3Ga2	2,757(2)	КЧ = 10,
	-2Dy	3,019(2)	$KM - (Ni_2Ga_4Dy_2)^{8cb}(NiGa)^{2c}$
	-2Ga1	2.858(4)	

Структурний тип Gd_{1,33}Pt₃Al₈ (символ Пірсона *hR*51, просторова група *R*-3*m*) [7, 8] є близькоспорідненим до типів Yb_{0,67}Ni₂Al₆, (*hP*11, *P*-6*m*2) [9] DyNi₃Al₉ (*hR*99, *R*32) [10], ErNi₃Al₉ (*hR*78, *R*32) [10] та Sc_{0,6}Fe₂Si_{4,9} (*hP*20, *P*6₃/*mmc*) [11].

Структурний тип $Gd_{1,33}Pt_3Al_8$ представлений також у потрійних системах Ce–Pt–Al [1], Sm–{Pd, Pt}–Al [12], Er–Pt–Ga [13], а також в чотирикомпонентній Gd–Pt–Al–Si (сполука $Gd_{1,33}Pt_3Al_{6,7}Si$) [7].

4. Висновки

За результатами рентгенофазового, рентгеноструктурного та енергодисперсійного рентгеноспектрального аналізів визначено фазовий склад зразків системи Dy–Ni–Ga, відпалених за температури 600 °C.

Визначено кристалічну структуру сполуки $Dy_{1,33}Ni_3Ga_8$ (структурний тип $Gd_{1,33}Pt_3Al_8$, символ Пірсона hR51, просторова група R-3m, a = 4,20103(9), c = 37,8368(9) Å). Структура сполуки $Dy_{1,33}Ni_3Ga_8$ належить до гомологічної серії сполук загальної формули $R_{0,67}T_nM_{2n+m}$ та складається з атомних шарів складів $Dy_{0,67}Ga$ та NiGa₂. Шари, що містять атоми рідкісноземельного металу, розділені між собою одинарним шаром чи двома послідовними шарами NiGa₂.

5. Подяки

Дослідження виконано в рамках науково-дослідної держбюджетної теми (номер державної реєстрації 0121U109766). Н. Муць та Я. Токайчук дякують за фінансову підтримку програмі Simons Foundation (Award Number: 1290588).

- 1. Villars P., Cenzual K. Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds // ASM International: Materials Park, Ohio, USA, Release 2023/24.
- Vasilechko L. O., Grin' Yu. N. Phase equilibria in the Dy–Ni–Ga system at 600 °C // Inorg. Mater. 1996. Vol. 32. P. 512–515.
- 3. *Rodriguez-Carvajal J.* Recent developments of the program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- Parthé E., Gelato L., Chabot B., Penzo M., Cenzual K., Gladyshevskii R. TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Springer–Verlag: Heidelberg, 1993. Vol. 1–4. 1596 p.
- 5. *Brandenburg K.* DIAMOND Crystal and Molecular Structure Visualization. Crystal Impact: Bonn, 1999.
- Ninomiya H., Matsumoto Y., Nakamura S., Kono Y. et al. Magnetic properties and magnetic phase diagrams of trigonal DyNi₃Ga₉ // J. Phys. Soc. Jpn. 2017. Vol. 86. 124704. 7 p. DOI: https://doi.org/10.7566/JPSJ.86.124704
- Latturner S. E., Kanatzidis M. G. Gd_{1.33}Pt₃(Al,Si)₈ and Gd_{0.67}Pt₂(Al,Si)₅: two structures containing a disordered Gd/Al layer grown in liquid aluminum // Inorg. Chem. 2002. Vol. 41. P. 5479–5486. DOI: https://doi.org/10.1021/ic025623n
- 8. *Lutsyshyn Yu., Tokaychuk Ya., Davydov V., Gladyshevskii R.* Tb_{0.67}PdAl₃ and Gd_{1.33}Pt₃Al₈ with layers of rare-earth-metal atoms and Al-atom triangles // Chem. Met. Alloys. 2008. Vol. 1. P. 303–316. DOI: https://doi.org/10.30970/cma1.0078
- Matselko O., Pukas S., Lutsyshyn Yu., Gladyshevskii R. et al. Ternary aluminides R_{0.67}Ni₂Al₆ (R = Sc, Y, Gd–Lu) with partly disordered structures // J. Solid State Chem. 2013. Vol. 198. P. 50–56. DOI: https://doi.org/10.1016/j.jssc.2012.09.031

- Gladyshevskii R. E., Cenzual K., Flack H. D., Parthé E. Structure of RNi₃Al₉ (R = Y, Gd, Dy, Er) with either ordered or partly disordered arrangement of Al-atom triangles and rare-earth-metal atoms // Acta Crystallogr. B. 1993. Vol. 49. P. 468–474. DOI: https://doi.org/10.1107/S010876819201173X
- 11. *Kotur B. Ya., Bruvo M.* Crystal structure of the silicide Sc_{1.2}Fe₄Si_{9.8} // Sov. Phys. Crystallogr. 1991. Vol. 36. P. 787–789.
- 12. Lutsyshyn Yu., Tokaychuk Ya., Gladyshevskii R. Crystal structure of the ternary compounds $Sm_{1.33}T_3Al_8$ (T = Pd, Pt) // Abstr. XIX Int. Semin. Phys. Chem. Solids Adv. Mater. Częstochowa, 2013. P. 120.
- Oswald I. W. H., Gourdon O., Bekins A. Evans J. et al. Er_{1.33}Pt₃Ga₈: A modulated variant of the Er₄Pt₉Al₂₄-structure type // J. Solid State Chem. 2016. Vol. 242. P. 161–167. DOI: https://doi.org/10.1016/j.jssc.2016.04.009

CRYSTAL STRUCTURE OF THE TERNARY COMPOUND Dy1.33Ni3Ga8

N. Muts^{*}, A. Liubytska, Ya. Tokaychuk, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine ^{*}e-mail: nataliya.muts@lnu.edu.ua

Samples of the Dy–Ni–Ga system were prepared by arc-melting the elements under a purified argon atmosphere. The alloys were annealed at 600 °C for 70 days in vacuumized quartz ampoules, and subsequently quenched in cold water. X-ray powder diffraction data were recorded on a DRON-2.0M (Fe $K\alpha$) or STOE Stadi P diffractometer (Cu $K\alpha_1$ radiation). Energy-dispersive X-ray spectral analysis was performed on a Tescan Vega 3 LMU scanning electron microscope.

The crystal structure of the ternary compound $Dy_{1.33}Ni_3Ga_8$ was refined by the Rietveld method using X-ray powder diffraction data collected for a multiphase sample $Dy_{9.1}Ni_{27.3}Ga_{63.6}$ on the diffractometer STOE Stadi P: structure type $Gd_{1.33}Pt_3Al_8$, Pearson symbol *hR*51, space group *R-3m*, a = 4.20103(9), c = 37.8368(9) Å, $R_B = 0.0413$. A feature of the crystal structure is the statistical disorder of the Dy atoms (position 6*c*) and triangles formed by Ga atoms (position 18*h*). The occupancy parameters for these positions were not refined but were fixed according to the ratio 2:1 (two Dy atoms for one Ga₃ triangle).

The structure type $Gd_{1,33}Pt_3Al_8$ belongs to the linear homologous series of compounds with general formula $R_{0.67}T_nM_{2n+m}$ with n = 1.5, m = 1 ($2R_{0.67}T_{1.5}M_4 \equiv R_{1,33}T_3M_8$) and consists of atom layers of the composition $R_{0.67}M$ and slabs TM_2 . The layers containing the rare-earth metal atoms are separated by double or single slabs TM_2 . The unit cell of the compound $Dy_{1,33}Ni_3Ga_8$ contains six layers $Dy_{0.67}Ga$ (almost planar monoatomic layers) and nine slabs $NiGa_2$ (corrugated layers with a thickness of ~1.3 Å): $6Dy_{0.67}Ga + 9NiGa_2 \equiv Dy_4Ni_9Ga_{24} \equiv Dy_{1,33}Ni_3Ga_8$.

The structure type $Gd_{1,33}Pt_3Al_8$ (*hR*51, *R*-3*m*) is closely related to the structure types $Yb_{0.67}Ni_2Al_6$, (*hP*11, *P*-6*m*2), DyNi_3Al_9 (*hR*99, *R*32), ErNi_3Al_9 (*hR*78, *R*32), and $Sc_{0.6}Fe_2Si_{4.9}$ (*hP*20, *P*6₃/*mmc*).

Keywords: Dy–Ni–Ga system, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, crystal structure, structure type $Gd_{1,3}Pt_3Al_8$, homologous structure series.

Стаття надійшла до редколегії 31.10.2023 Прийнята до друку 09.09.2024