ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65. С. 23–35 Visnyk of the Lviv University. Series Chemistry. 2024. Issue 65. P. 23–35

УДК 546:548.736

СИСТЕМА СаО-Pr₂O₃-Mn₂O₃: ФАЗОВІ РІВНОВАГИ ТА КРИСТАЛІЧНІ СТРУКТУРИ СПОЛУК

О. Заремба^{*}, І. Дідух, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна ^{*}e-mail: oksana.zaremba@lnu.edu.ua

Методами рентгенівського фазового та структурного аналізів полікристалічних зразків, синтезованих методом твердофазної реакції (1 000 °С, 24 год + 1 200 °С, 8 год), досліджено взаємодію компонентів у системі CaO-Pr₂O₃-Mn₂O₃. Виявлено нову сполуку Ca₂Pr₂MnO₇ зі структурою типу Ca₂Nd₂MnO₇: символ Пірсона *h*R168, просторова група *R*-3, *a* = 11,1421(4), *c* = 17,2374(7) Å (R_p = 0,0415, R_{wp} = 0,0655, R_B = 0,100). На перетині CaMnO₃-PrMnO₃ досліджуваної системи утворюється неперервний ряд твердих розчинів Ca_{1-x}Pr_xMnO₃ (*x* = 0-1) зі структурою деформованого (ромбічного) перовскіту GdFeO₃, *oP*20, *Pnma*, *V* = 208,17(11)-232,82(14) Å³, в межах якого об'єм елементарної комірки змінюється лінійно. В системі також формується твердий розчин заміщення Ca_{2-x}Pr_xMnO₄ (*x* = 0-0,5) на основі сполуки Ca₂MnO₄ зі структурою власного типу, *t*156, *I*4₁/*acd*.

Ключові слова: система CaO-Pr₂O₃-Mn₂O₃, твердофазний синтез, діаграма фазових рівноваг, твердий розчин, кристалічна структура, перовскіти.

DOI: https://doi.org/10.30970/vch.6501.023

1. Вступ

Перовскітами називають клас речовин, що мають загальну хімічну формулу ABX_3 . Кубічна структура типу CaTiO₃ (ідеальний або кубічний перовскіт) характеризується великою толерантністю і є однією із найпоширеніших серед неорганічних сполук. Вона має багато похідних, які утворюються внаслідок деформацій, серед яких є структурний тип GdFeO₃ (деформований або ромбічний перовскіт). Сьогодні перовскіти і багатокомпонентні системи, в яких вони утворюються, є актуальними об'єктами неорганічної хімії та матеріалознавства. Особливий інтерес привертають манганіти $AMnO_3$, де A - лужно- та/або рідкісноземельний метал, які кристалізуються зі структурами ідеального перовскіту чи його похідних, оскільки мають широкий спектр властивостей, у тім числі колосальний магнетоопір, та велике практичне застосування [1–4].

Мета цієї праці – синтез і дослідження полікристалічних зразків системи CaO–Pr₂O₃–Mn₂O₃, що дало змогу побудувати діаграму фазових рівноваг та визначити кристалічні структури сполук.

2. Вихідні речовини та методика експерименту

Для виготовлення полікристалічних керамічних зразків системи CaO–Pr₂O₃–Mn₂O₃ застосовували метод твердофазної реакції у кілька етапів.

[©] Заремба О., Дідух І., Гладишевський Р., 2024

Реагентами були стехіометричні кількості дрібнодисперсних порошків кальцій карбонату, празеодим(III) оксиду та манган(III) оксиду високої чистоти. На першому етапі реагенти зважували, змішували та розтирали в агатовій ступці впродовж 5 хв після додавання кожного наступного компонента, нагрівали в корундових тиглях за температури 1 000 °С упродовж 24 год на повітрі у муфельній печі СНОЛ-1,6 з автоматичним регулюванням температури з точністю ± 1 °С для повного розкладу карбонату. На другому етапі отримані суміші знову розтирали, пресували у таблетки (маса таблетки становила ~0,5 г) та спікали за температури 1 200 °С на повітрі у трубчастій печі СНОЛ-0,3/1250 впродовж 8 год.

Рентгенофазовий та рентгеноструктурний аналізи проводили на основі дифракційних даних, отриманих на автоматичних порошкових дифрактометрах ДРОН-2.0М (проміння Fe K α) та Rigaku SmartLab (проміння Cu K α). Для уточнення кристалічної структури сполуки (параметрів елементарної комірки, координат атомів, зайнятості окремих положень атомів, фактора шкали, параметра змішування функцій Гаусса та Лоренца, асиметрії піків, ширини піків на половині висоти, фактора текстури тощо) використовували комп'ютерну програму DBWS [5]. Для уточнення кристалографічних параметрів вихідні моделі брали з баз даних Pearson's Crystal Data [6], Pauling File [7] та статей у наукових журналах.

Для визначення якісного і кількісного складу окремих зразків використали методи скануючої електронної мікроскопії (СЕМ) та енергодисперсійної рентгенівської спектроскопії (ЕДРС).

3. Результати досліджень та їх обговорення

З метою дослідження взаємодії компонентів системи CaO–Pr₂O₃–Mn₂O₃ проведено синтез і рентгенівський фазовий аналіз полікристалічних зразків цієї та обмежуючих систем (табл. 1). Як бачимо з таблиці, під час експерименту Pr₂O₃ (структурний тип (Mn_{0,5}Fe_{0,5})₂O₃, символ Пірсона *cI*80, просторова група *Ia*-3) окиснюється до Pr₇O₁₂ (власний структурний тип, *hR*57, *R*-3), тоді як Mn₂O₃ ((Mn_{0,5}Fe_{0,5})₂O₃, *cI*80, *Ia*-3) перетворюється на Mn₃O₄ (власний тип, *tI*28, *I*4₁/*amd*).

Згідно з літературними відомостями [6] у системі CaO-Pr₂O₃ сполуки не утворюються, що підтверджено результатами нашого дослідження.

В обмежуючій системі Pr_2O_3 - Mn_2O_3 за умов експерименту виявлено лише одну сполуку – $PrMnO_3$, що має структуру ромбічного перовскіту GdFeO₃ (*oP20*, *Pnma*).

Щодо обмежуючої системи CaO–Mn₂O₃, то для неї відомо про існування за ідентичних умов синтезу трьох сполук: Ca₂MnO₄ (власний структурний тип, *tI*56, *I*4₁/*acd*), CaMnO₃ (GdFeO₃, *oP*20, *Pnma*) та CaMn₂O₄ (власний тип, *oP*28, *Pbcm*), що було нами показано раніше [8].

Діаграму фазових рівноваг системи CaO-Pr₂O₃--Mn₂O₃, побудовану за результатами дослідження полікристалічних зразків, зображено на рис. 1. Як бачимо з рисунка, за умов експерименту у системі формується 7 одно-, 11 дво- та 5 трифазних областей.

На перетині CaMnO₃–PrMnO₃ системи CaO–Pr₂O₃–Mn₂O₃ існує неперервний ряд твердих розчинів Ca_{1-x}Pr_xMnO₃ зі структурою ромбічного перовскіту GdFeO₃ (*oP*20, *Pnma*). У структурі цієї фази атоми кальцію та празеодиму утворюють статистичну суміш та займають положення атомів Gd, тоді як положення атомів Fe зайняті атомами Mn.

Таблиця 1

25

Фазовий аналіз зразків системи CaO-Pr₂O₃-Mn₂O₃

Table 1

№	Вихідний склад зразка, мол. %	Фазовий склад зразка	Структурний тип	Символ Пірсона	Прост. група	Вміст, мас. %
1	CaO-Pr ₂ O ₂	Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3	83,3
	50:50	CaO	NaCl	cF8	Fm-3m	16,7
2	Pr ₂ O ₃ -Mn ₂ O ₃ 70:30	PrMnO ₃	GdFeO ₃	oP20	Pnma	59,9
		Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	<i>R</i> -3	40,1
3	Pr ₂ O ₃ -Mn ₂ O ₃ 30:70	PrMnO ₃	GdFeO ₃	oP20	Pnma	66,6
		Mn ₃ O ₄	Mn ₃ O ₄	tI28	I4 ₁ /amd	33,4
4	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 20:20:60	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	68,9
4		Mn ₃ O ₄	Mn ₃ O ₄	tI28	I4 ₁ /amd	31,1
	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 35:5:60	CaMn ₂ O ₄	CaMn ₂ O ₄	oP28	Pbcm	48,3
5		Mn ₃ O ₄	Mn ₃ O ₄	tI28	I4 ₁ /amd	27,2
		$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	24,5
6	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 50:5:45	CaMn ₂ O ₄	CaMn ₂ O ₄	oP28	Pbcm	70,8
0		$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	29,2
7	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 62:3,5:34,5	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	100
8	$\begin{array}{c c} CaO - Pr_2O_3 - Mn_2O_3 \\ 51,9:11,1:37,0 \end{array} Ca_{1-x}Pr_xMn0$		GdFeO ₃	oP20	Pnma	100
9	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 40: 20: 40	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	100
10	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 26,1:30,4:43,5	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	100
11	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 9,5:42,8:47,6	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	100
12	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 10:60:30	Ca _{1-x} Pr _x MnO ₃	GdFeO ₃	oP20	Pnma	61,8
12		Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3	38,2

Phase analysis of samples of the CaO– Pr_2O_3 – Mn_2O_3 system

О. Заремба, І. Дідух, Р. Гладишевський ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65

					Закінче	ння табл.
№	Вихідний склад зразка, мол. %	Фазовий склад зразка	Структурний тип	Символ Пірсона	Прост. група	Вміст, мас. %
13	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ * 25:50:25	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	54,1
		Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	<i>R</i> -3	38,5
		Ca ₂ Pr ₂ MnO ₇	Ca ₂ Nd ₂ MnO ₇	hR168	<i>R</i> -3	7,4
14	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 40:30:30	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	65,7
		$Ca_2Pr_2MnO_7 Ca_2Nd_2MnO_7 hR168$		hR168	<i>R</i> -3	28,3
		Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	<i>R</i> -3	6,0
15	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 50:30:20	Ca ₂ Pr ₂ MnO ₇	Ca ₂ Nd ₂ MnO ₇	hR168	<i>R</i> -3	68,0
		$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	28,7
		Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	<i>R</i> -3	3,3
16	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 50:45:5	Pr ₇ O ₁₂	Pr ₇ O ₁₂	hR57	<i>R</i> -3	59,5
		CaO	NaCl	cF8	Fm-3m	29,8
		Ca ₂ Pr ₂ MnO ₇	Ca ₂ Nd ₂ MnO ₇	hR168	<i>R</i> -3	10,7
17	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 75:4,2:20,8	Ca _{2-x} Pr _x MnO ₄	Ca ₂ MnO ₄	tI56	I4 ₁ /acd	100,0
18	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 69,6:8,7:21,7	Ca _{2-x} Pr _x MnO ₄	Ca ₂ MnO ₄	<i>tI</i> 56	I4 ₁ /acd	100,0
	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 63,7:13,6:22,7	Ca _{2-x} Pr _x MnO ₄	Ca ₂ MnO ₄	<i>tI</i> 56	I4 ₁ /acd	76,0
19		$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	14,2
		Ca ₂ Pr ₂ MnO ₇	Ca ₂ Nd ₂ MnO ₇	hR168	<i>R</i> -3	9,8
20	CaO-Pr ₂ O ₃ -Mn ₂ O ₃	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	73,6
	60:10:30	$Ca_{2-x}Pr_xMnO_4$	Ca ₂ MnO ₄	tI56	I4 ₁ /acd	26,4
21	CaO-Pr ₂ O ₃ -Mn ₂ O ₃	$Ca_{2-x}Pr_xMnO_4$	Ca ₂ MnO ₄	<i>tI</i> 56	I4 ₁ /acd	57,4
	70:5:25	$Ca_{1-x}Pr_xMnO_3$	GdFeO ₃	oP20	Pnma	42,6
22	CaO-Pr ₂ O ₃ -Mn ₂ O ₃ 70:15:15	Ca ₂ Pr ₂ MnO ₇	Ca ₂ Nd ₂ MnO ₇	hR168	<i>R</i> -3	39,6
		$Ca_{2-x}Pr_xMnO_4$	Ca ₂ MnO ₄	<i>tI</i> 56	I4 ₁ /acd	49,9
		CaO	NaCl	cF8	Fm-3m	10,5

Рис. 1. Діаграма фазових рівноваг системи CaO-Pr₂O₃-Mn₂O₃: *I* - Ca₂Pr₂MnO₇ (зразки, синтезовані методом твердофазної реакції 1 000 °C, 24 год + 1 200 °C, 8 год) Fig. 1. Phase diagram of the CaO-Pr₂O₃-Mn₂O₃ system: *I* - Ca₂Pr₂MnO₇ (the samples were synthesized by solid-state reaction: 1 000 °C, 24 h + 1 200 °C, 8 h)

Зміну об'єму елементарної комірки в межах твердого розчину наведено на рис. 2, а дифрактограми досліджених зразків – на рис. 3. В межах твердого розчину відбувається поступова заміна йонів Ca²⁺ на йони близького розміру Pr³⁺. Одночасно така заміна супроводжується зміною ступеня окиснення мангану від +4 до +3. Mn³⁺ характеризується значно більшим радіусом ($r(Mn^{3+}) / r(Mn^{4+}) = 0,75$ Å / 0,67 Å = 1,12; ($r(Pr^{3+}) / r(Ca^{2+}) = 1,266$ Å / 1,26 Å = 1,00 [9]), що й приводить до зростання об'єму елементарної комірки в межах твердого розчину зі збільшенням вмісту празеодиму: V = 208,17(11) Å³ для CaMnO₃ i V = 232,82(14) Å³ для PrMnO₃; $V(PrMnO_3) / V$ (CaMnO₃) = 1,12.

Рис. 2. Зміна об'єму елементарної комірки в межах твердого розчину $Ca_{1-x}Pr_xMnO_3$ (x = 0-1), структурний тип GdFeO₃ (oP20, *Pnma*) Fig. 2. Cell volume change of the $Ca_{1-x}Pr_xMnO_3$ (x = 0-1) solid solution, structure type GdFeO₃ (oP20, *Pnma*)

Рис. 3. Дифрактограми зразків $Ca_{1-x}Pr_xMnO_3$ (проміння Fe Ka) Fig. 3. Diffraction patterns of the $Ca_{1-x}Pr_xMnO_3$ samples (Fe Ka radiation)

Для зразка $Ca_{0,5}Pr_{0,5}MnO_3$, вихідний вміст у якому атомів лужно- та рідкісноземельного елементів є однаковим, проведено дослідження методами СЕМ та ЕДРС. Фотографії поверхні зразка та елементний розподіл зображено на рис. 4 та 5, відповідно.

О. Заремба, І. Дідух, Р. Гладишевський ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2024. Випуск 65

⁶
Рис. 4. СЕМ-зображення (ліворуч – SE-детектор; праворуч – BSE-детектор) поверхні зразка Ca_{0.5}Pr_{0.5}MnO₃ за збільшення: *a* – 2000×; *б* – 5330×; *e* – 13300×
Fig. 4. SEM images (left – SE-detector; right – BSE-detector) of the surface of the Pr_{0.5}Ca_{0.5}MnO₃ sample: *a* – 2000×; *b* – 5330×; *c* – 13300×

Рис. 5. Розподіл елементів у зразку $Ca_{0,5}Pr_{0,5}MnO_3$ Рис. 5. Elemental mapping of the $Ca_{0,5}Pr_{0,5}MnO_3$ sample

Як бачимо із табл. 2, визначений методом ЕДРС склад зразка узгоджується із вихідним.

Таблиця 2

Результати ЕДРС для зразка Ca_{0.5}Pr_{0.5}MnO₃

Table 2

Елемент	Теоретичний вміст,	Експериментальний вміст, ат. %		
	ат. %			
0	60	63,2		
Ca	10	9,4		
Mn	20	18,8		
Pr	10	8,6		

Results of EDX analysis for the Ca_{0.5}Pr_{0.5}MnO₃ sample

На основі сполуки Ca₂MnO₄ (власний структурний тип, *tI*56, *I*4₁/*acd*) утворюється твердий розчин заміщення Ca_{2-x}Pr_xMnO₄ (x = 0 - 0,5), зміну об'єму елементарної комірки в межах якого показано на рис. 6. Як і у випадку твердого розчину Ca_{1-x}Pr_xMnO₃, наявне зростання об'єму елементарної комірки в межах твердого розчину зі збільшенням вмісту празеодиму.

Рис. 6. Зміна об'єму елементарної комірки в межах твердого розчину $Ca_{2x}Pr_xMnO_4$ (x = 0-0.5), структурний тип Ca_2MnO_4 ($tI56, I4_1/acd$) Fig. 6. Cell volume change of the $Ca_{2x}Pr_xMnO_4$ (x = 0-0.5) solid solution, structure type Ca_2MnO_4 ($tI56, I4_1/acd$)

31

У системі CaO–Pr₂O₃–Mn₂O₃ виявлено утворення нової тетрарної сполуки Ca₂Pr₂MnO₇: структурний тип Ca₂Nd₂MnO₇, *h*R168, *R*-3, *a* = 11,1421(4), *c* = 17,2374(7) Å (R_p = 0,0415, R_{wp} = 0,0655, R_B = 0,100). Ця сполука перебуває у рівновазі з фазами CaO, Pr₇O₁₂ (Pr₂O₃), Ca_{1-x}Pr_xMnO₃ та Ca_{2-x}Pr_xMnO₄. Визначені координати атомів у структурі сполуки Ca₂Pr₂MnO₇ наведено у табл. 3. Модель для уточнення кристалографічних параметрів взято з праці [10].

Таблиця 3

Кристалографічні параметри сполуки Ca₂Pr₂MnO₇: структурний тип Ca₂Nd₂MnO₇, символ Пірсона *hR*168, просторова група *R*-3, a = 11,1421(4), c = 17,2374(7) Å $(R_p = 0,0415, R_{wp} = 0,0655, R_B = 0,100)$ *Table 3*

Crystallographic parameters of the Ca₂Pr₂MnO₇ compound: structure type Ca₂Nd₂MnO₇, Pearson symbol *hR*168, space group *R*-3, *a* = 11.1421(4), *c* = 17.2374(7) Å $(R_p = 0.0415, R_{wp} = 0.0655, R_B = 0.100)$

Δτομ	ПС	Координати атомів			Зайнятість	
THOM	Т	x	У	Z	положення	
01	18f	0,0360	0,1530	0,0579	1	
O2	18f	0,0550	0,3850	0,2658	1	
O3	18f	0,0650	0,0190	0,5000	0,167	
O4	18f	0,0830	0,1830	0,2816	1	
05	18f	0,0990	0,4350	0,0745	1	
Ca1/Pr1	18f	0,1928(13)	0,3680(9)	0,1663(4)	0,88(1)/0,12(1)	
O6	18f	0,2540	0,1360	0,1670	0,5	
Ca2/Pr2	18f	0,3377(7)	0,1663(10)	0,0438(3)	0,11(1)/0,89(1)	
Mn1	9e	1/2	0	0	1	
Ca3/Pr3	6 <i>c</i>	0	0	0,1836(8)	0,73(2)/0,27(2)	
Cal/Pr1	6 <i>c</i>	0	0	0,3784(7)	0,07(2)/0,93(2)	
Mn2	3a	0	0	0	1	

Атоми мангану (правильні системи точок 9e та 3a) в цій структурі мають фіксовані координати. Координати атомів оксигену не уточнювали. Решту правильних систем точок займають статистичні суміші атомів кальцію та празеодиму. Координаційними поліедрами для атомів мангану є октаедри [O₆] (рис. 7), аналогічно як і в структурах фаз Ca_{1-x}Pr_xMnO₃ та Ca_{2-x}Pr_xMnO₄.

Характер взаємодії компонентів у системі CaO-Pr₂O₃-Mn₂O₃ є близькоспорідненим до систем CaO-Nd₂O₃-Mn₂O₃ та CaO-La₂O₃-Mn₂O₃, діаграми фазових рівноваг яких опубліковано у працях [8] та [11], відповідно.

Рис. 7. Кристалічна структура сполуки Ca₂Pr₂MnO₇, структурний тип Ca₂Nd₂MnO₇ (*hR*168, *R*-3); показано октаедри [O₆] навколо атомів Mn Fig. 7. Crystal structure of the Ca₂Pr₂MnO₇ compound, structure type Ca₂Nd₂MnO₇ (*hR*168, *R*-3); the octahedra [O₆] around the Mn atoms are shown

5. Висновки

Діаграму фазових рівноваг системи CaO–Pr₂O₃–Mn₂O₃ побудовано за результатами дослідження 22 полікристалічних зразків, синтезованих методом твердофазної реакції (1 000 °C, 24 год + 1 200 °C, 8 год). Вона характеризується 7-ма однофазними, 11-ма двофазними та 5-ма трифазними областями. За умов експерименту в обмежуючій системі CaO–Pr₂O₃ сполук немає, тоді як у системі CaO–Mn₂O₃ існують сполуки Ca₂MnO₄, CaMnO₃ та CaMn₂O₄, а в системі Pr₂O₃–Mn₂O₃ – лише фаза PrMnO₃. На перетині CaMnO₃–PrMnO₃ системи CaO–Pr₂O₃–Mn₂O₃ формується неперервний ряд твердих розчинів Ca_{1-x}Pr_xMnO₃ з ромбічною структурою перовскіту GdFeO₃. Також реалізується обмежений твердий розчин заміщення Ca_{2-x}Pr_xMnO₄ (x = 0–0,5) з тетрагональною структурою типу Ca₂MnO₄. У системі знайдено нову манганітну багатокомпонентну фазу Ca₂Pr₂MnO₇ (структурний тип Ca₂Nd₂MnO₇, символ Пірсона *hR*168, просторова група *R*-3), що перебуває у рівновазі з фазами CaO, Pr₇O₁₂ (Pr₂O₃), Ca_{1-x}Pr_xMnO₃ та Ca_{2-x}Pr_xMnO₄.

^{1.} *Tilley R. J. D.* Perovskites Structure-Property Relationships // John Wiley & Sons, Ltd. UK, 2016. 328 p.

Wagner P., Wackers G., Cardinaletti I., Manca J., Vanacken J. From colossal magnetoresistance to solar cells: an overview on 66 years of research into perovskites // Phys. Status Solidi A. 2017. Vol. 9. P. 1700394. DOI: https://doi.org/10.1002/pssa.201700394

^{3.} *Thomas S.* Perovskite Photovoltaics. Basic to Advanced Concepts and Implementation // Academic Press, Elsevier. UK, 2018. 501 p.

- 4. *Wenk H.-R., Bulakh A.* Minerals: Their Constitution and Origin // Cambridge University Press. UK, 2004. 646 p.
- Wiles D. B., Sakthivel A., Young R. A. Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns // Atlanta: School of Physics, Georgia Institute of Technology. 1998.
- Villars P., Cenzual K. (Eds.) Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds // ASM International: Materials Park, OH, USA, Release 2022/23.
- Villars P., Cenzual K., Daams J. L. C., Hulliger F., Okamoto H. et al. Pauling File. Inorganic Materials Database and Design System // Crystal Impact (Distributor). Germany, 2001.
- 8. Zaremba O., Kotyk O., Gladyshevskii R. The CaO-Nd₂O₃-Mn₂O₃ system // Visnyk Lviv Univ. Ser. Chem. Iss. 63. P. 54–62.

DOI: https://dx.doi.org/10.30970/vch.6301.054 (in Ukrainian)

- 9. Gladyshevskiy R. E., Pukas S. Ya. Applied crystal chemistry. Practicum Study guide. // Lviv: LNU named after Ivan Franko, 2022. 126 p. (in Ukrainian)
- 10. Wang Y. X., Bie L. J., Du Y., Lin J. H., Loong C. K. et al. Hexagonal perovskiteintergrowth manganates: $Ln_2Ca_2MnO_7$ (Ln = La, Nd and Sm) // J. Solid State Chem. 2004. Vol. 177. P. 65–72. DOI: https://doi.org/10.1016/S0022-4596(03)00310-4
- Wang Y. X., Du Y., Qin R. W., Han B., Du J., Lin J. H. Phase equilibrium of the La–Ca–Mn–O system// J. Solid State Chem. 2001. Vol. 156. P. 237–241. DOI: https://doi.org/10.1006/jssc.2000.8994

CaO-Pr₂O₃-Mn₂O₃ SYSTEM: PHASE EQUILIBRIA AND CRYSTAL STRUCTURES OF THE COMPOUNDS

O. Zaremba^{*}, I. Didukh, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, UA-79005 Lviv, Ukraine ^{*}e-mail: oksana.zaremba@lnu.edu.ua

Perovskites and multicomponent systems in which these are formed play an important role in inorganic chemistry and materials science. Manganites $AMnO_3$, where A is an alkaline-earth and/or a rare-earth metal, which crystallize with ideal perovskite structures, or any of the numerous derivatives, are of particular interest, as they exhibit a wide range of interesting properties and have already a broad area of practical applications.

The aim of this work was to investigate the $CaO-Pr_2O_3-Mn_2O_3$ system, construct the diagram of the phase equilibria and determine the crystal structures of identified compounds.

High-purity CaCO₃, Pr_2O_3 , and Mn_2O_3 powders were mixed and heated at 1000 °C for 24 h. The mixtures were pressed into pellets and sintered at 1 200 °C for 8 h. X-ray diffraction data for phase and structure analysis was collected on a DRON 2.0M (Fe K α -radiation) or a Rigaku SmartLab (Cu K α -radiation) diffractometer. SEM and EDX analyses were carried out using Tescan Vega 3 LMU equipment.

The phase diagram of the CaO–Pr₂O₃–Mn₂O₃ system was constructed based on the results of the examination of 22 polycrystalline samples synthesized by the solid-state reaction method described above. It contains 7 single-phase, 11 two-phase, and 5 three-phase regions. There are no compounds in the CaO–Pr₂O₃ boundary system, whereas the compounds Ca₂MnO₄, CaMnO₃, CaMn₂O₄, and PrMnO₃ were identified in the CaO–Mn₂O₃ and Pr₂O₃–Mn₂O₃ boundary systems. The formation of a continuous solid solution Ca_{1-x}Pr_xMnO₃ (x = 0-1) with the structure of the orthorhombic perovskite GdFeO₃ was observed. A solid solution of substitution type with limiting composition Ca₁₋₅Pr₀₋₅MnO₄ is formed based on the compound Ca₂MnO₄ (own structure type). The existence of the phase Ca₂Pr₂MnO₇ (structure type Ca₂Nd₂MnO₇, Pearson symbol *hR*168, space group *R*-3, *a* = 11.1421(4), *c* = 17.2374(7) Å, *R*_p = 0.0415, *R*_{wp} = 0.0655, *R*_B = 0.100) in the CaO–Pr₂O₃–Mn₂O₃ system was revealed. This compound is in equilibrium with CaO, Pr₇O₁₂ (Pr₂O₃), Ca_{1-x}Pr_xMnO₃, and Ca_{2-x}Pr_xMnO₄.

Keywords: CaO– Pr_2O_3 – Mn_2O_3 system, solid-state synthesis, phase diagram, solid solution, crystal structure, perovskites.

Надійшла до редколегії 30.10.2023 Прийнята до друку 09.09.2024