ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2023. Випуск 64. С. 175–184 Visnyk of the Lviv University. Series Chemistry. 2023. Issue 64. P. 175–184

УДК 546.66'47

КРИСТАЛІЧНА СТРУКТУРА БІНАРНИХ СПОЛУК RE_2 Zn₁₇ (RE – Gd, Dy, Ho, Er, Tm, Yb)

І. Арсенюк^{*}, Б. Стельмахович

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: Ivanna.Arseniuk@lnu.edu.ua

Методами рентгенівської дифракції полікристалічних зразків уточнено склади та кристалічні структури багатьох бінарних сполук рідкісноземельних металів (P3M, *RE*) з цинком: структурний тип близькоспоріднений з Th₂Zn₁₇, просторова група *R-3m*, Gd_{1,74}Zn_{17,83} (*a* = 0,89918(2), *c* = 1,31662(3) нм), Dy_{1,82}Zn_{17,43} (*a* = 0,89626(1), *c* = 1,31325(2) нм), Ho_{1,86}Zn_{17,76} (*a* = 0,89455(2), *c* = 1,31680(4) нм), Er_{1,90}Zn_{17,22} (*a* = 0,89444(1), *c* = 1,31074(2) нм), Tm_{1,80}Zn_{17,25} (*a* = 0,89404(1), *c* = 1,31157(2) нм), Yb_{2,26}Zn_{16,67} (*a* = 0,90495(1), *c* = 1,32288(2) нм). Структури досліджених сполук відрізняються від СТ Th₂Zn₁₇ дефектністю положень, зайнятих атомами P3M (6*c*), наявністю додаткових дефектних положень, зайнятих атомами Zn (6*c*), та атомами Yb для сполуки ітербію.

Ключові слова: рентгенофазовий аналіз, кристалічна структура, рідкісноземельний метал, цинк.

DOI: https://doi.org/10.30970/vch.6401.175

1. Вступ

У подвійних системах рідкісноземельних металів з перехідними металами, зокрема другої половини четвертого періоду, існує велика кількість інтерметалічних сполук [1]. До таких систем належать також системи з цинком. Наприклад, у кожній із систем P3M–Zn, де P3M (або RE) – метал ітрієвої підгрупи, утворюється близько восьми сполук, які характеризуються різноманітністю складів та кристалічних структур [2]. Значна частина цих сполук утворюється за великого вмісту цинку. Сполукам складу RE₂Zn₁₇ притаманний поліморфізм: вони кристалізуються у типах Th₂Zn₁₇ (ПГ *R*-3*m*) та Th₂Ni₁₇ (ПГ *P*6₃/*mmc*) [1, 3–6]. Обидва типи є похідними від гексагональної структури CaCu₅ (ПГ Р6/ттт) й утворюються шляхом заміни пари малих атомів на один великий атом РЗМ [7]. У праці [8] з'ясовано, що сполуки YNi_{9.41}, ErCo_{9.00}, ThNi_{9.50}, структура яких належить до типу Th₂Ni₁₇, мають склад, відмінний від стехіометрії 2:17 та зміщений у бік більшого вмісту компонента малого розміру (Ni, Co). Подібна картина простежується для тернарних сполук $Dy_{2-x}(Ag,Al)_{17}Ag_v$ (x = 0,25, y = 0,23) [9] ta $Ce_{2-x}(Ag,Al)_{17}Ag_v$ (x = 0,39, y = 0,18) [10], близькоспоріднених до типу Th₂Ni₁₇. У праці [8] стверджується, що сполуки зі структурою типу Th₂Zn₁₇ існують за стехіометрії 2:17. Однак наші систематичні дослідження потрійних систем P3M-Zn-{Al, Ga} свідчать про можливе відхилення від складу $P3M_2Zn_{17}$ також сполук із структурою типу Th_2Zn_{17} [11].

[©] Арсенюк І., Стельмахович Б., 2023

Мета нашої праці – повторне дослідження кристалічної структури бінарних сполук складу RE_2Zn_{17} (RE – Gd, Dy, Ho, Er, Tm, Yb) методом рентгенівської дифракції.

2. Матеріали та методика експерименту

Зразки для дослідження синтезували методом двократного спікання порошків вихідних компонентів, отриманих напилюванням компактних металів, і спресованих у таблетки. Використовували метали такої чистоти: РЗМ – не менше 0,995 мас. част. основного компонента; цинк – 0,999 мас. част. Zn. Таблетки поміщали у корундові тиглі і запаювали у попередньо вакуумовані кварцові ампули, заповнені аргоном за тиску 50 кПа. Ампули повільно нагрівали до 550 °С, витримували близько години, охолоджували та розбивали. Отримані зразки розтирали до дрібнодисперсного порошку, повторно спресовували, запаювали в кварцові ампули і знову впродовж 12 год нагрівали до 500 °С. Гомогенізувальний відпал проводили при 500 °С протягом 500 год (час гомогенізувального відпалу вибраний на основі попередніх експериментальних досліджень).

Рентгенофазовий аналіз синтезованих зразків проводили за дифрактограмами порошку, одержаними автоматичному дифрактометрі ДРОН-2,0 на β-фільтр (Fe Ка випромінювання, $(MnO_2)).$ Масиви експериментальних інтенсивностей відбить від полікристалічних зразків для уточнення кристалічної структури отримували на автоматичному дифрактометрі STOE STADI Р (модифікована схема юстування Гіньє, Си Ка₁ випромінювання, увігнутий Ge (111) монохроматор, крок сканування 0,015°). Всі розрахунки проводили з використанням комплексу програм структурного аналізу WinCSD [12].

3. Результати досліджень та їх обговорення

Для повторного уточнення кристалічної структури ми вибрали наступних шість зразків RE_2Zn_{17} , де RE = Gd, Dy, Ho, Er, Tm, Yb. За вихідну модель вибрали структуру сполуки Th₂Zn₁₇ (ПГ *R-3m*, 6Th 6*c* 0 0 *z* (*z* = 0,333); 6Zn 6*c* (*z* = 0,097); 9Zn 9*d* 1/2 0 1/2; 18Zn 18*h x* –*x z* (*x* = 0,5, *z* = 0,167)) [4].

Під час уточнення кристалічних структур досліджуваних сполук за цією моделлю виникали деякі неузгодження із координатами атомів та коефіцієнтами заповнення кристалографічних позицій (G). Зокрема, під час уточнення координат атоми Zn1 (6c) зміщувалися по осі Z до $z \sim 0,03$. При цьому міжатомні віддалі $\delta_{Zn1-Zn1}$ ставали надто короткими стосовно суми атомних радіусів, а параметри теплового зміщення атомів RE (6c) були надто великими, що однозначно свідчило про часткове заповнення цих позицій. Наявність значної залишкової електронної густини (близько 8 e/A^3) свідчило про можливе розташування додаткових атомів у кристалографічній позиції За (0 0 0). Результати уточнення коефіцієнтів заповнення. Варто відмітити, що під час включення у структуру сполуки атомів у позиції (За) координати атомів Zn1 (6c) змінилися до «вихідних», що привело до суттєвого поліпшення міжатомних віддалей.

Заповнення атомами кристалографічної позиції 3a (0 0 0) для сполуки ітербію відрізняється від інших РЗМ. У всіх інших досліджених нами сполуках цю правильну систему точок частково заповнюють атоми цинку, що добре узгоджується з

міжатомними віддалями. Аналогічна процедура для сполуки ітербію приводить до заповнення цієї кристалографічної позиції атомами цинку майже на 160 %, що, звичайно, не має фізичного змісту. Крім того, міжатомні віддалі становлять 0,32–0,34 нм, що для δ_{Zn-Zn} є надто великими і також свідчать про заповнення цієї позиції атомами ітербію, а не цинку.

На прикінцевій стадії уточнення кристалічної структури різницевий синтез електронної функції Фур'є виявив ще один додатковий максимум електронної густини у кристалографічній позиції (6c) (0 0 z, $z \approx 0,22$). Після остаточних уточнень атомних координат, коефіцієнтів заповнень кристалографічних позицій та параметрів теплового зміщення атомів з урахуванням чинника текстурованості фактори розбіжності зменшилися з ~16–18 % до наведених у табл. 1. Результати уточнення кристалічних структур сполук ~ RE_2Zn_{17} наведено у табл. 2, а їхні експериментальні, розраховані та різницеві дифрактограми – на рис. 1. Склади сполук дещо відрізняються від стехіометрії RE_2Zn_{17} та між собою, що свідчить про можливе існування незначних областей гомогенності. У випадку RE = Gd, Dy, Ho, Er, Tm склади сполук зміщені у бік нижчого вмісту рідкісноземельного металу, а у випадку Yb – навпаки.

Особливості взаємозв'язку кристалічних структур досліджених сполук (на прикладі сполук Gd та Yb) між собою та стосовно типу Th₂Zn₁₇ ілюструє табл. 3. В літературі [13] описано тернарну сполуку Yb₂Cu_{9,07}Al_{7,90} зі структурним типом Th₂Zn₁₇, в якій, подібно до Gd_{1,74}Zn_{17,83}, також наявне часткове заповнення положення (*3a*) атомами Cu. Однак, на відміну від досліджених бінарних сполук, сполука Yb₂Cu_{9,07}Al_{7,90} характеризується іншим співвідношенням заповнення позицій (*3a*) та (*6c*) (табл. 3). Проєкцію кристалічної структури сполук ~*RE*₂Zn₁₇ на площину *XZ* та координаційні многогранники атомів подано на рис. 2.

Міжатомні віддалі задовільно корелюють із сумами атомних радіусів компонентів, крім віддалей між «дефектними» атомними позиціями, які взаємно виключають своє одночасне існування (альтернативні кристалографічні позиції).

4. Висновки

Методами рентгенівської дифракції порошку повторно досліджено кристалічну структуру шести бінарних сполук: $Gd_{1,74}Zn_{17,83}$ (ПГ *R-3m, a* = 0,89918(2), c = 1,31662(3) нм), $Dy_{1,82}Zn_{17,43}$ (ПГ *R-3m, a* = 0,89626(1), c = 1,31325(2) нм), $Ho_{1,86}Zn_{17,76}$ (ПГ *R-3m, a* = 0,89455(2), c = 1,31680(4) нм), $Er_{1,90}Zn_{17,22}$ (ПГ *R-3m, a* = 0,89444(1), c = 1,31074(2) нм), $Tm_{1,80}Zn_{17,25}$ (ПГ *R-3m, a* = 0,89404(1), c = 1,31157(2) нм), Yb_{2,26}Zn_{16,67} (ПГ *R-3m, a* = 0,90495(1), c = 1,32288(2) нм).

Структури цих сполук є похідними від структурного типу Th_2Zn_{17} і відрізняються від нього частковим заселенням атомами більшого розміру (рідкісноземельного металу) позиції 6*c* (00*z*) у кристалічній структурі сполук, а також наявністю двох додаткових позицій: 3*a* (000) та 6*c* (00*z*), частково заповнених атомами меншого розміру (цинку).

×	Table I
Умови зйомки та результати рентгеноструктурних досліджень сполук ~ $RE_2 { m Zn}_{17}$	

	Conditions an	d results of X-ray	structural studies	t of $\sim RE_2 Zn_{17}$ col	spunodu		
Фаза	$Gd_{1,74}Zn_{17,83}$	$Dy_{1,82}Zn_{17,43}$	Ho _{1,86} Zn _{17,76}	${ m Er}_{1,90}{ m Zn}_{17.22}$	${ m Tm}_{1,80}{ m Zn}_{17,25}$	${ m Yb}_{2,26}{ m Zn}_{16,67}$	
Структурний тип, ПГ		Бли	зькоспоріднений	i Th ₂ Zn ₁₇ ,R-3m, Z	Z=3		
Параметри гратки, нм а	0,89918(2)	0,89626(1)	0,89455(2)	0,89444(1)	0,89404(1)	0,90495(1)	
U (1,31662(3)	1,31325(2)	1,31680(4)	1,31074(2)	1,31157(2)	1,32288(2)	
c/a	1,464	1,465	1,472	1,465	1,467	1,462	
Об'єм комірки, нм ³	0,92190(5)	0,91358(4)	0,91256(7)	0,90812(3)	0,90789(2)	0,93821(3)	
Кількість атомів у комірці	58,7	57,7	58,86	57,4	57,2	56,8	
ρ _{po3p} , r/cm ³	7,780	7,823	8,010	7,917	7,858	7,862	
Випромінювання, нм			Cu Kα1, λ=	0,1540562			
Спосіб уточнення		[Повнопрофільни	й, за Рітвельдом			
$2 \square_{\text{make}}, \sin \square_{\text{make}} / \lambda$	110,65,34	109,65,30	120,2 5,63	110,65,34	110,6 5,34	120,2 5,63	
Текстура (напрям, параметр)	Ι	[001] 1,181	I	[001] 1,257	[001] 1,320	I	
Скалярний чинник	0,3545	0,3377	0,3400	0,3173	0.3514	0,3957	
Параметри профілю и,	0,08676	0,02712	0,06369	0,04577	0,00313	0,02830	
у,	-0,05943	-0.01128	-0.02789	-0,02564	0,01183	-0,01294	
W	0,02637	0,01295	0,01849	0,01853	0,00724	0,01231	
R. R. %	10.2 27.2	7.2 22.4	11.5 24.4	8.111.9	6.3 13.5	11.5 15.1	

Таблиця I

Таблиця 2

179

Координатні та теплові параметри атомів у структурах сполук ~*RE*₂Zn₁₇ *Table 2*

		Координати атомів							
Атом	G, %	ПСТ	x	У	z	HM^{2}			
Gd _{1,74} Zn _{17,83}									
Gd1	87,2(9)	6(<i>c</i>)	0	0	0,3391(6)	1,25(2)			
х	95(3)Zn	3(<i>a</i>)	0	0	0	0,81(2)			
Zn1	56(2)	6(<i>c</i>)	0	0	0,0998(15)	0,74(2)			
Zn2	39(2)	6(<i>c</i>)	0	0	0,237(3)	0,80(2)			
Zn3	100	9(<i>d</i>)	1/2	0	1/2	0,80(2)			
Zn4	100	18(f)	0,3045(5)	0	0	1,09(2)			
Zn5	100	18(<i>h</i>)	0,4977(4)	- <i>x</i>	0,1592(5)	0,86(2)			
			Dy ₁	_{,82} Zn _{17,43}					
Dy1	91(6)	6(<i>c</i>)	0	0	0,3366(5)	1,28(1)			
Х	57(2)Zn	3(<i>a</i>)	0	0	0	1,03(1)			
Zn1	72(2)	6(<i>c</i>)	0	0	0,0993(9)	1,00(1)			
Zn2	21(1)	6(<i>c</i>)	0	0	0,227(4)	1,03(1)			
Zn3	100	9(<i>d</i>)	1/2	0	1/2	0,90(1)			
Zn4	100	18(<i>f</i>)	0,3039(4)	0	0	1,36(1)			
Zn5	100	18(<i>h</i>)	0,4959(3)	- <i>x</i>	0,1583(4)	1,18(1)			
Ho _{1,86} Zn _{17,76} *									
Ho1	93,0(7)	6(<i>c</i>)	0	0	0,3448(5)	1,11(1)			
Х	80(2) Zn	3(<i>a</i>)	0	0	0	0,98(1)			
Zn1	48(1)	6(<i>c</i>)	0	0	0,1025(12)	0,98(1)			
Zn2	50(2)	6(<i>c</i>)	0	0	0,2404(10)	1,02(1)			
Zn3	100	9(<i>d</i>)	1/2	0	1/2	1,01(1)			
Zn4	100	18(<i>f</i>)	0,3121(5)	0	0	1,80(1)			
Zn5	100	18(<i>h</i>)	0,4975(3)	- <i>x</i>	0,1561(3)	1,46(1)			
	1	1	Er _{1,}	$_{90}$ Zn $_{17,22}$	l	1			
Er1	94,9(3)	6(<i>c</i>)	0	0	0,3361(2)	1,06(1)			
Х	57,2(9) Zn	3(<i>a</i>)	0	0	0	0,99(1)			
Zn1	72,7(6)	6(<i>c</i>)	0	0	0,1029(4)	0,99(1)			
Zn2	9,8(6)	6(<i>c</i>)	0	0	0,225(3)	0,99(1)			
Zn3	100	9(<i>d</i>)	1/2	0	1/2	1,00(1)			
Zn4	100	18(<i>f</i>)	0,3040(2)	0	0	1,13(1)			
Zn5	100	18(<i>h</i>)	0,4955(2)	- <i>x</i>	0,1588(2)	1,17(1)			

Coordinate and thermal parameters of atoms in the structures of $\sim RE_2Zn_{17}$ compounds

I. Арсенюк, Б. Стельмахович ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2023. Випуск 64

					Зак	інчення таблі		
Δτον	C %	ПСТ	Коо	$P_{1} = 10^2 m t^2$				
AIUM	U, 70	IIC I	x	у	Z	D_{130} 10, mm		
			Tm _{1,80}	Zn _{17,25}				
Tm1	90,2(3)	6(<i>c</i>)	0	0	0,3359(2)	1,13(1)		
Х	49(1)Zn	3(<i>a</i>)	0	0	0	0,98(1)		
Zn1	80,8(7)	6(<i>c</i>)	0	0	0,1020(4)	0,97(1)		
Zn2	7,1(7)	6(<i>c</i>)	0	0	0,228(4)	1,00(1)		
Zn3	100	9(<i>d</i>)	1/2	0	1/2	0,89(1)		
Zn4	100	18(f)	0,3027(2)	0	0	1,08(1)		
Zn5	100	18(<i>h</i>)	0,4954(2)	- <i>x</i>	0,1570(2)	0,88(1)		
Yb _{2,26} Zn _{16,67}								
Yb1	75,7(4)	6(<i>c</i>)	0	0	0,3393(3)	0,91(1)		
Х	74,5(7) Yb	3(<i>a</i>)	0	0	0	1,00(1)		
Zn1	39(1)	6(<i>c</i>)	0	0	0,1050(11)	0,99(1)		
Zn2	45(1)	6(<i>c</i>)	0	0	0,2378(10)	0,97(1)		
Zn3	100	9(<i>d</i>)	1/2	0	1/2	0,83(1)		
Zn4	100	18(f)	0,3158(4)	0	0	1,66(1)		
Zn5	100	18(<i>h</i>)	0,4960(3)	- <i>x</i>	0,1632(4)	1,12(1)		

*Структуру сполуки Ho_{1,86}Zn_{17,76} уточнено за дифрактограмою двофазного зразка, який містив близько 30 мас. % фази HoZn₁₂(CT ThMn₁₂, ПГ *I*4/*mmm*).

180

Таблиця З

Порівняння структур сполук Th ₂ Zn ₁₇ , Gd _{1,74} Zn _{17,83} , Yb _{2,26} Zn _{16,67} та Yb ₂ Cu _{9,07} Al _{7,90}	
	Table 3
Comparison of structures of compounds Th_2Zn_{17} , $Gd_{1.74}Zn_{17.83}$, $Yb_{2.26}Zn_{16.67}$ and $Yb_2Cu_{9.07}$.	Al _{7.90}

ПСТ	1	$\Gamma_2 Zn_1$	7	Gd	_{1,74} Zn	17,83	Yt	$p_{2,26}$ Zn ₁	6,67	Yb ₂	Cu _{9,07} A	l _{7,90}
	Атом	G,%	x y z	Атом	G,%	x y z	Атом	G,%	x y z	Атом	G,%	x y z
6 <i>c</i> 0 0 <i>z</i>	Th	100	0,333	Gd	87	0,339	Yb	76	0,339	Yb	100	0,341
3a 0 0 0	_	-	-	Zn	95	-	Yb	75	-	Cu	3,5	-
6 <i>c</i> 0 0 <i>z</i>	Zn	100	0,097	Zn	55	0,100	Zn	39	0,105	Cu/Al	16/81	0,102
6 <i>c</i> 0 0 <i>z</i>	-	-	-	Zn	39	0,237	Zn	45	0,238	-	-	-
9d1/2 0 1/2	Zn	100	-	Zn	100	-	Zn	100	_	Cu	100	-
18 <i>f x</i> 0 0	Zn	100	0,333	Zn	100	0,305	Zn	100	0,316	Cu/Al	41/59	0,296
18h x –x z	Zn	100	0,5; 0,167	Zn	100	0,498; 0,159	Zn	100	0,496; 0,163	Cu/Al	55/45	0,498; 0,155

Рис. 2. Проєкція кристалічної структури сполук ~*RE*₂Zn₁₇ на площину *XZ* та координаційні многогранники атомів [*RE*19Zn], [X20Zn], [Zn₁13Zn*RE*], [Zn₂12ZnX], [Zn₃10Zn2X2*RE*], [Zn₄8Zn3X2*RE*], [Zn₅10ZnX3*RE*] Fig. 2. Projection of the crystal structure of ~*RE*₂Zn₁₇ compounds on the *XZ* plane and coordination polyhedra of atoms [*RE*19Zn], [X20Zn], [Zn₁13Zn*RE*], [Zn₂12ZnX], [Zn₃10Zn2X2*RE*], [Zn₄8Zn3X2*RE*], [Zn₅10ZnX3*RE*]

5. Подяка

Автори висловлюють подяку провідному науковому співробітнику Демченку П. Ю. за допомогу під час проведення експериментів з рентгенівської дифракції.

Дослідження проводили за часткової підтримки Simons Foundation (ID гранту – 1037973).

- 1. *Gladyshevsky E. I., Bodak O. I.* Crystal chemistry of intermetallic compounds of rareearth metals. Lviv: Vyshcha Shkola, 1982. 255 p. (in russian).
- Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys // Materials Park, OH: American Society for Metals. 2000. 828 p.
- Siegrist T., Page Y. Le. Crystal-chemistry of some Th₂Zn₁₇-type Rare-earth Zinc phases // J. Less-Common Met. 1987. Vol. 127. P. 189–197. DOI: https://doi.org/10.1016/0022-5088(87)90378-X
- Iandelli A., Palenzona A. Zinc-rich phases of the rare-earth-zinc alloys // J. LessCommon Met. 1967. Vol. 12. P. 333–343. DOI: https://doi.org/10.1016/0022-5088(67)90001-X
- Laube E. Strukturen von neuen SE-Verbindungen, 2. Mitt // Monatsh. Chem. 1966. Vol. 97. P. 1568–1581. DOI: 10.1007/BF00901435
- Olivier M., Siegrist T., McAlister S. P. Magnetic susceptibility and electrical resistivity of some Th₂Zn₁₇-type rare-earth zinc phases // J. Magn. Magn. Mater. 1987. Vol. 66. P. 281–290. DOI: https://doi.org/10.1016/0304-8853(87)90300-3
- 7. *Krypyakevich P. I.* Structural types of intermetallic compounds. Moscow: Nauka, 1977. 290 p. (in russian).
- Givord D., Givord F., Lemaire R. et al. Evidence of disordered substitutions in the "Th₂Ni₁₇-Type" structure. Exact structure determination of the Th–Ni, Y–Ni and Er–Co systems // J. Less-Common Met. 1972. Vol. 29, No. 4. P. 389–386. DOI: https://doi.org/10.1016/0022-5088(72)90202-0
- Stel`makhovych B. M., Kuz`ma Yu. B. New compounds with Th₂Ni₁₇ structure in rareearth metal-silver-aluminum systems // Dopov. Akad. Nauk Ukr. 7. 1991. P. 135 (in russian).
- Denysyuk O. V., Stel'makhovych B. M., Kuz'ma Yu. B. Crystal structure of new compounds in the RE–Ag–Al systems // J. Solid State Chem. 1994. Vol. 109. P. 172–174. DOI: https://doi.org/10.1006/jssc.1994.1087
- Arseniuk I., Stelmakhovych B. Crystal structure of the RE₂Zn₁₇ compounds (RE Gd, Dy, Ho, Er, Tm, Yb) // Coll. Abstr. XVIII conf. "Lviv Chemical Readings–2021". Lviv, 2021. P. H12 (in Ukrainian).
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. DOI: 10.1107/S1600576714001058
- Juckel M., Koželj P., Prots Y., Ormeci A., Burkhardt U., Leithe-Jasper A., Svanidze E. Intermediate Valence Behavior of Yb₂Cu₉Al₈ // Z. Anorg. Allg. Chem. 2020. Vol. 646. P. 1–7. DOI: 10.1002/zaac.202000118

CRYSTAL STRUCTURE OF THE *RE*₂Zn₁₇ COMPOUNDS (*RE* – Gd, Dy, Ho, Er, Tm, Yb)

I. Arseniuk^{*}, B. Stelmakhovych

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: Ivanna.Arseniuk@lnu.edu.ua

The compositions and crystal structures of binary compounds of rare-earth metals (*RE*) with zinc were clarified using X-ray diffraction methods of polycrystalline samples.

The samples for the study were synthesized by the method of two times sintering of powders of the metals. They have been pressed into the tablets, which were placed in sealed quartz ampoules filled with purified argon. X-ray phase analysis was performed according to X-ray powder data (Cu Ka, Fe Ka-radiation). Refinement of crystal structures was carried out using X-ray powder data obtained with automatic diffractometer STOE STADI P. All calculations were made according to complex programs of structural analysis of WinCSD.

The structural type of the investigated compounds is closely related to $\text{Th}_2\text{Zn}_{17}$, space group R-3m, $\text{Gd}_{1.74}\text{Zn}_{17.83}$ (a = 0.89918(2), c = 1.31662(3) nm), $\text{Dy}_{1.82}\text{Zn}_{17.43}$ (a = 0.89626(1), c = 1.31325(2) nm), $\text{Ho}_{1.86}\text{Zn}_{17.76}$ (a = 0.89455(2), c = 1.31680(4) nm), $\text{Er}_{1.90}\text{Zn}_{17.22}$ (a = 0.89444(1)), c = 1.31074(2) nm), $\text{Tm}_{1.80}\text{Zn}_{17.25}$ (a = 0.89404(1)), c = 1.31157(2) nm), $\text{Yb}_{2.26}\text{Zn}_{16.67}$ (a = 0.90495(1)), c = 1.32288(2) nm).

The structures of the investigated compounds differ from Th₂Zn₁₇-type structure by the defectiveness of positions occupied by *RE* atoms (6*c*), the presence of additional defective positions occupied by Zn atoms (6*c*) and additional defective positions (3*a*) occupied by Zn atoms for compounds of Gd, Dy, Ho, Er, Tm. For the compound Yb_{2.26}Zn_{16.67}, unlike other compounds, position (3*a*) is partially occupied by ytterbium atoms. The compositions of the compounds differ slightly from the stoichiometry of RE_2 Zn₁₇ and each other, indicating the possible existence of minor regions of homogeneity. In the case of RE = Gd, Dy, Ho, Er, Tm, the composition of the compounds is shifted towards a lower content of rare-earth metal, and in the case of Yb, it is the opposite.

Keywords: X-ray phase analysis, crystal structure, rare-earth metal, Zinc.

Стаття надійшла до редколегії 27.10.2022 Прийнята до друку 17.05.2023