ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2023. Випуск 64. С. 128–135 Visnyk of the Lviv University. Series Chemistry. 2023. Issue 64. P. 128–135

УДК 537.32; 538.93

ОСОБЛИВОСТІ СТРУКТУРНИХ ТА ЕЛЕКТРОКІНЕТИЧНИХ ВЛАСТИВОСТЕЙ ТВЕРДОГО РОЗЧИНУ HfNi_{1-x}Cu_xSn

А. Горинь^{1*}, Л. Ромака¹, Ю. Стадник¹, В. Ромака², В. Пашкевич², М. Рокоманюк²

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

²Національний університет "Львівська політехніка", вул. С. Бандери, 12, 79013 Львів, Україна e-mail: andriy.horyn@lnu.edu.ua

Дослідження напівпровідникового твердого розчину HfNi_{1-x}Cu_xSn визначило ріст періоду елементарної комірки a(x) за концентрацій x=0-0,07, викликаний заміщенням у позиції 4*c* атомів Ni на атоми Cu та генеруванням структурних дефектів донорної природи. Зміни у кристалічній структурі HfNi_{1-x}Cu_xSn супроводжуються змінами в електронній структурі та появою у забороненій зоні додаткової донорної зони ε_D^2 . Досліджений твердий розчин HfNi_{1-x}Cu_xSn є перспективним термоелектричним матеріалом.

Ключові слова: електропровідність, коефіцієнт термо-ерс, рівень Фермі, структурний дефект.

DOI: https://doi.org/10.30970/vch.6401.128

1. Вступ

Для отримання нових термоелектричних матеріалів з високою ефективністю перетворення теплової енергії в електричну досліджено особливості структурних, електрокінетичних та енергетичних властивостей напівпровідникового твердого розчину HfNi_{1-x}Cu_xSn, отриманого легуванням фази пів-Гейслера *n*-HfNiSn (стр. Тип MgAgAs, пр. група $F\bar{4}$ 3*m* [1]) атомами Cu ($3d^{10}4s^1$) шляхом заміщення атомів Ni ($3d^84s^2$).

Попередні структурні дослідження фази пів-Гейслера HfNiSn засвідчили розупорядкування її кристалічної структури, що пов'язано з наявністю статистичної суміші атомів Hf та атомів Ni у позиції 4*a* [2].

Моделювання електронної структури фази пів-Гейслера HfNiSn [2] підтвердили структурні дослідження. Розрахунок розподілу густини електронних станів (DOS) для варіанта *а* впорядкованої моделі HfNiSn показує, що сполука є напівпровідником з шириною забороненої зони $\varepsilon_g \approx 588$ меВ, а рівень Фермі ε_F незначно заходить у зону провідності ε_C (рис. 1, *a*). Однак ця модель не відповідає результатам електрокінетичних досліджень *n*-HfNiSn. Розташування рівня Фермі ε_F *n*-HfNiSn у зоні провідності ε_C означає, що на температурних залежностях питомого електроопору $\ln\rho(1/T)$ не буде активаційних ділянок, пов'язаних з активацією електронів з рівня Фермі ε_F у зону провідності ε_C , що суперечить експериментальним результатам.

[©] Горинь А., Ромака Л., Стадник Ю. та ін., 2023

Рис. 1. Розподіл густини станів (DOS) для впорядкованого (*a*) та невпорядкованого (*б*) варіантів структури фази пів-Гейслера HfNiSn [2]
Fig. 1. Distribution of the density of states (DOS) for the ordered (*a*) and disordered (*b*) variants of the structure of the half-Heusler HfNiSn phase [2]

У випадку часткового заміщення атомів Hf $(5d^26s^2)$ атомами Ni $(3d^84s^2)$ у структурі HfNiSn з'являються дефекти донорної природи (у Ni більше *d*-електронів), а в забороненій зоні генерується домішкова донорна зона ε_D^1 («апріорне» легування донорами [2]). Причому рівень Фермі ε_F виходить із зони провідності ε_C у заборонену зону ε_g , ширина якої зменшується (рис. 1, δ). Отриманий напівпровідник має ширину забороненої зони $\varepsilon_g \approx 282$ меВ, а рівень Фермі ε_F розташовується біля зони провідності ε_C , що передбачає активацію електронів у зону провідності. Отже, реальна структура фази пів-Гейслера HfNiSn є невпорядкованою, містить статистичну суміш атомів Hf та Ni у позиції 4*a*, що відповідає формулі (Hf_{0.99}Ni_{0.01})NiSn.

Розуміння просторового розташування атомів (або їхньої відсутності) у фазі пів-Гейслера HfNiSn є надзвичайно важливим за утворення твердих розчинів заміщення на її основі. Наведені нижче результати дослідження нового напівпровідникового твердого розчину HfNi_{1-x}Cu_xSn, x=0,01-0,07, дають можливість, з одного боку, визначити умови синтезу матеріалів з максимальними значеннями термоелектричної добротності, а з іншого – вивчити особливості формування твердих розчинів на основі фази пів-Гейслера HfNiSn.

2. Матеріали та методика експерименту

Зразки HfNi_{1-x}Cu_xSn, x=0-0,10, синтезовано шляхом сплавляння шихти вихідних компонентів в електродуговій печі в інертній атмосфері очищеного аргону з наступним гомогенізуючим відпалюванням упродовж 720 год за температури 1 073 К. Для рентгенофазового аналізу масиви дифракційних даних отримано на порошковому дифрактометрі STOE STADI-P (Cu $K\alpha_1$ -випромінювання). Структурні характеристики зразків HfNi_{1-x}Cu_xSn розраховано з використанням програми WinCSD [3]. Контроль хімічного та фазового складу зразків проводили за допомогою енергодисперсійної рентгенівської спектроскопії (ЕДРС) (скануючий електронний мікроскоп Tescan Vega 3 LMU). Температурні і концентраційні залежності питомого електроопору (ρ) і коефіцієнта термо-ерс (α) стосовно міді вимірювали в інтервалі температур *T*=80–400 К.

3. Результати досліджень та їх обговорення

Мікрозондовий аналіз концентрації атомів на поверхні зразків HfNi_{1-x}Cu_xSn, x=0-0,07, дав можливість визначити їхню відповідність вихідним складам шихти, а рентгенівський фазовий аналіз засвідчив відсутність слідів сторонніх фаз на дифрактограмах, крім основної фази (рис. 2, *a*), яка індексується у структурному типі MgAgAs [1].

Зважаючи на те, що атомний радіус Cu ($r_{Cu}=0,128$ нм) є більший, ніж Ni ($r_{Ni}=0,124$ нм), логічним є ріст значень періоду елементарної комірки a(x) для HfNi_{1-x}Cu_xSn за концентрацій x=0-0,07 під час заміщення у позиції 4*c* атомів Ni на атоми Cu (рис. 2, δ). Той факт, що за концентрації x>0,07 значення періоду комірки a(x) зменшуються, може свідчити про межу розчинності атомів Cu.

Рис. 2. Дифрактограми (*a*) та зміна значень періоду елементарної комірки a(x) (δ) зразків HfNi_{1-x}Cu_xSn Fig. 2. X-ray powder patterns (*a*) and variation of the unit cell parameter a(x) (*b*) of HfNi_{1-x}Cu_xSn samples

Структурні зміни твердого розчину $HfNi_{1-x}Cu_xSn$ спричинять зміни в електронній структурі напівпровідника, оскільки заміщення атомів Ni $(3d^{8}4s^{2})$ на атоми Cu $(3d^{10}4s^{1})$ повинна супроводжуватися генеруванням дефектів донорної природи (атоми Cu містять більшу кількість 3*d*-електронів). Причому у забороненій зоні ε_g HfNi_{1-x}Cu_xSn з'явиться ще одна донорна зона ε_D^2 , що робить напівпровідник сильнолегованим [4]. Дослідження електрокінетичних та енергетичних характеристик напівпровідникового твердого розчину HfNi_{1-x}Cu_xSn дадуть змогу більш однозначно трактувати результати структурних досліджень.

7.0 3.50 *n*-HfNi_{0.995}Cu_{0.005}Sn n-HfNiSn 3.45 6.5 (^{3.40} W.C.^{3.35} O.^{3.30} Ul 3.25 ((w·Ωµ) ص)nl 2.5 3.25 3.20 5.0 3.15 $\frac{6}{10^3/T} \frac{8}{(1/K)}$ $\frac{6}{10^3/T} \frac{8}{(1/K)}$ 2 10 12 12 4 2 4 10 3.210-13 -HfNi_{1-r}Cu_rSn 3.205 12 x=0.023.200 11 (w.3.195 (w.3.190)ul 3.185 ρ (μΩ·Μ) 10 *n*-HfNi_{0.99}Cu_{0.01}Sn 9 x=0,04 8 7 3.180 =0.07 6 3.175 5 100 150 250 300 350 400 50 200 2 $\frac{6}{10^3/T} \frac{8}{(1/K)}$ 12 4 10 T (K)

Температурні залежності питомого електроопору ρ для HfNi_{1-x}Cu_xSn наведено на рис. 3.

Рис. 3. Температурні залежності питомого електроопору ρ HfNi_{1-x}Cu_xSn Fig. 3. Temperature dependencies of electrical resistivity ρ of HfNi_{1-x}Cu_xSn

Як бачимо з рис. 3, для зразків HfNi_{1-x}Cu_xSn зі складами x=0-0,01 температурні залежності $\ln(\rho(1/T))$ є характерними для напівпровідників, містять активаційні ділянки, їх описують співвідношенням [4]:

$$\rho^{-1}(T) = \rho_1^{-1} \exp\left(-\frac{\varepsilon_1^{\rho}}{k_B T}\right) + \rho_3^{-1} \exp\left(-\frac{\varepsilon_3^{\rho}}{k_B T}\right),\tag{1}$$

де перший високотемпературний доданок описує активацію носіїв струму ε_1^{ρ} з рівня Фермі ε_F у зони неперервних енергій, а другий, низькотемпературний – стрибкову провідність стосовно домішкових донорних станів ε_3^{ρ} з енергіями, близькими до рівня Фермі ε_F . Наявність високо- та низькотемпературної активації на залежностях $\ln(\rho(1/T,x))$ для HfNi_{1-x}Cu_xSn засвідчує розташування рівня Фермі ε_F у забороненій зоні ε_g , поблизу зони провідності ε_C , а електрони є основними носіями струму. Це підтверджують від'ємні значення коефіцієнта термо-ерс α за усіх температур (рис. 4, 5).

Рис. 4. Температурні залежності коефіцієнта термо-ерс α для HfNi_{1-x}Cu_xSn Fig. 4. Temperature dependencies of thermopower coefficient α of HfNi_{1-x}Cu_xSn

Температурні залежності коефіцієнта термо-ерс $\alpha(1/T)$ для HfNi_{1-x}Cu_xSn (рис. 4) можна описати формулою [5]:

$$\alpha = \frac{k_B}{e} \left(\frac{\varepsilon_i^{\alpha}}{k_B T} - \gamma + 1 \right), \tag{2}$$

де γ – параметр, що залежить від природи розсіювання. З високотемпературної ділянки залежності $\alpha(1/T)$ обчислено значення енергії активації ε_1^{α} , пропорційні амплітуді великомасштабної флуктуації зон неперервних енергій, а з низькотемпературної – значення енергії активації ε_3^{α} , пропорційні амплітуді модуляції дрібномасштабної флуктуації сильнолегованого та компенсованого напівпровідника [4].

Розрахунок енергії активації $\varepsilon_1^{\rho}(x)$ з високотемпературних залежностей $\ln(\rho(1/T,x))$ твердого розчину HfNi_{1-x}Cu_xSn для зразків з концентраціями x=0, x=0,005 та x=0,10 показує стрімкий рух рівня Фермі ε_F до дна зони провідності ε_C . Так, у HfNiSn рівень Фермі ε_F перебував на відстані $\varepsilon_F=81$ меВ від краю зони провідності ε_C , а у зразках з концентраціями HfNi_{0.995}Cu_{0.005}Sn та HfNi_{0.99}Cu_{0.01}Sn – на відстанях $\varepsilon_F=1$ меВ та $\varepsilon_F=0,3$ меВ, відповідно. Це допомагає визначити швидкість руху рівня Фермі ε_F по забороненій зоні ε_g у напрямку зони провідності: $\Delta \varepsilon_F/\Delta x\approx 81$ меВ/%Cu.

Аналіз температурних залежностей $\ln(\rho(1/T,x))$ для HfNi_{1-x}Cu_xSn (рис. 3) показує, що за концентрацій x=0 та x=0,005 за низьких температур електропровідність напівпровідників визначають стрибки носіїв щодо локалізованих станів у околі енергії Фермі $\varepsilon_{\rm F}$. Існування стрибкової ε_3^{ρ} -провідності у напівпровідниках *n*-типу зі значною концентрацією донорів (наявність донорних зон $\varepsilon_{\rm D}^{-1}$ та $\varepsilon_{\rm D}^{-2}$) свідчить про їхню недостатність для перекриття хвильових функцій домішкових станів поблизу енергії Фермі є_г та металізації провідності. І лише за концентрації x=0,01 на температурній залежності $\ln(\rho(1/T,x))$ для HfNi₁₋₁Cu,Sn немає низькотемпературної активаційної ділянки і механізм стрибкової ε_3^{ρ} -провідності не працює. У цих зразках за низьких температур значення питомого електроопору зростають з ростом температури (металічна провідність). Металізація низькотемпературної провідності для окремих зразків HfNi_{1-x}Cu_xSn свідчить про близькість енергії Фермі ε_F до зони провідності ε_C (ε_F =0,3 меВ), що полегшує теплову іонізацію донорів та появу значної кількості вільних електронів. Тобто у зразку HfNi_{0.99}Cu_{0.01}Sn за низьких температур є значна кількість іонізованих донорів, що приводить до перекриття хвильових функцій домішкових станів біля енергії Фермі $\varepsilon_{\rm F}$. Причому домішкова донорна зона ще не перетинається із зоною провідності $\varepsilon_{\rm C}$.

132

У зразках HfNi_{1-x}Cu_xSn за концентрацій x=0,02-0,07 немає високотемпературних активаційних ділянок на залежностях $\ln(\rho(1/T,x))$ (рис. 3), що означає переміщення рівня Фермі $\varepsilon_{\rm F}$ із забороненої зони $\varepsilon_{\rm g}$ у зону провідності $\varepsilon_{\rm C}$. Тобто за концентрацій x>0,01, коли рівень Фермі $\varepsilon_{\rm F}$ зайде у зону провідності $\varepsilon_{\rm C}$, а значення питомого електроопору $\rho(T,x)$ зростають з температурою (рис. 3), визначальним у провідності напівпровідника є розсіювання електронів на фононах, а концентраційний ефект практично не працює.

Рис. 5. Зміна значень питомого електроопору ρ (1) та коефіцієнта термо-ерс α (2) для HfNi_{1-x}Cu_xSn за різних температур Fig. 5. Variation of electrical resistivity ρ (1) and thermopower coefficient α (2) of HfNi_{1-x}Cu_xSn at different temperatures

Інформативною є поведінка концентраційних залежностей питомого електроопору $\rho(x,T)$ та коефіцієнта термо-ерс $\alpha(x,T)$ для HfNi_{1-x}Cu_xSn за різних температур (рис. 5). Стрімке зменшення значень питомого електроопору $\rho(x,T)$ на ділянці концентрацій x=0-0,01 у напівпровіднику *n*-типу відбувається за умови швидкого приросту концентрації вільних електронів. Такою причиною є генерування у напівпровіднику додаткової донорної зони ε_D^2 , утвореної структурними дефектами донорної природи під час заміщення атомів Ni $(3d^84s^2)$ на атоми Cu $(3d^{10}4s^1)$. Металізація електропровідності HfNi_{1-x}Cu_xSn за концентрацій x>0,01 очікувано приводить до стрімкого зменшення значень коефіцієнта термо-ерс $\alpha(x,T)$, наприклад, за температури 80 K, від значень $\alpha_{x=0} = -178$ мкВ/К до $\alpha_{x=0,07} = -24$ мкВ/К. Отже, бачимо, що результати електрокінетичних

та енергетичних властивостей HfNi_{1-x}Cu_xSn узгоджуються з висновками структурних досліджень. Адже ріст періоду елементарної комірки a(x) може спричинити лише заміщення атомів Ni на атоми Cu. Причому у напівпровіднику утворюється ще одна донорна зона ε_D^2 .

Генерування структурних дефектів донорної природи визначено під час легування домішкою купруму фази пів-Гейслера TiNiSn [6], а також під час заміщення атомів Sn у сполуці HfNiSn на атоми Sb [7].

4. Висновки

На основі результатів комплексного дослідження структурних, електротранспортних та енергетичних властивостей напівпровідникового твердого розчину HfNi_{1-x}Cu_xSn з'ясовано, що ріст значень періоду елементарної комірки a(x) за концентрацій x=0-0,07 викликаний заміщенням у позиції 4*c* атомів Ni на атоми Cu та генеруванням структурних дефектів донорної природи. Такі зміни у кристалічній структурі супроводжуються змінами в електронній структурі напівпровідника та появою у забороненій зоні донорної зони ε_D^2 . Досліджений напівпровідниковий твердий розчин HfNi_{1-x}Cu_xSn є перспективним термоелектричним матеріалом.

- 1. *Romaka V. V., Romaka L. P., Krayovskyy V. Ya., Stadnyk Yu. V.* Stannides of rare earth and transition metals // Lviv Polytech. Univ. 2015. 221 p. [in Ukrainian].
- Romaka V. V., Rogl P., Romaka L. et al. Peculiarities of structural disorder in Zr- and Hf-containing Heusler and half-Heusler stannides. Intermetallics. 2013. Vol. 35. P. 45–52. DOI: https://doi.org/10.1016/j.intermet.2012.11.022
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Cryst. 2014. Vol. 47. P. 803–805. DOI: https://doi.org/10.1107/S1600576714001058
- 4. *Shklovskii B. I., Efros A. L.* Electronic Properties of Doped Semiconductors // Springer-Verlag. Berlin; Heidelberg, 1984. 324 p. DOI: 10.1007/978-3-662-02403-4
- 5. *Mott N. F., Davis E. A.* Electronic Processes in Non-crystalline Materials // Clarendon Press. Oxford, 1979.
- Stadnyk Yu., Romaka L., Romaka V. V., Krajovskii V., Horyn A. Investigation of electrokinetic, magnetic and energy state characteristics of TiNi_{1-x}Cu_xSn semiconductive solid solution // Visnyk Lviv Univ. Ser. Chem. 2018. Vol. 59(1). P. 123–130. DOI: https://doi.org/10.30970/vch.5901.123
- Romaka V. V., Stadnyk Yu., Romaka L., Korzh R., Krajovskii V. Investigation of HfNiSn_{1-x}Sb_x semiconductive solid solution. 1. Crystal and electronic structures // Visnyk Lviv Univ. Ser. Chem. 2014. Vol. 55. P. 142–148.

PECULIARITIES OF STRUCTURAL AND ELECTROKINETIC PROPERTIES OF HfNi_{1-x}Cu_xSn SOLID SOLUTION

A. Horyn^{1*}, L. Romaka¹, Yu. Stadnyk¹, V. Romaka², V. Pashkevych², M. Rokomanyuk²

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine;

²National University "Lvivska Politechnika", S. Bandera Str., 12, 79013 Lviv, Ukraine e-mail: andriy.horyn@lnu.edu.ua

The effect of doping of half-Heusler phase HfNiSn (MgAgAs structure type) by Cu atoms on the structural, electrokinetic, and energetic characteristics of the semiconductive solid solution HfNi_{1-x}Cu_xSn was studied in the ranges: T = 80-400 K, x = 0-0.07. The samples of the HfNi_{1-x}Cu_xSn solid solution were synthesized in an electric arc furnace. Homogenizing annealing was carried out at 1073 K for 720 hours. Powder diffraction data were obtained on a powder diffractometer STOE STADI-P (Cu $K\alpha_1$ -radiation). Structural characteristics are calculated using WinCSD program package. The temperature and concentration dependences of electrical resistivity ρ and thermopower coefficient α (relative to copper) were measured in the temperature range T=80-400 K. X-ray phase and structural analyses revealed the absence of traces of foreign phases on the diffraction patterns of the HfNi_{1-x}Cu_xSn samples except for the main phase, which is indexed in the structure type MgAgAs. The study of the semiconductive solid solution HfNi1-rCurSn established an increase of the unit cell parameter a(x) at concentrations x=0-0.07, caused by the substitution of Cu atoms in the 4c position of Ni atoms and the generation of structural defects of a donor nature. The fact that at a concentration x > 0.07 the values of the unit cell parameter a(x) decrease may indicate the solubility limit of Cu atoms. Changes in the crystal structure of HfNi_{1-x}Cu_xSn are accompanied by changes in the electronic structure and the appearance of an additional donor band ε_D^{-2} in the band gap.

The presence of high- and low-temperature activation on the $\ln(\rho(1/T,x))$ dependencies of HfNi_{1-x}Cu_xSn indicates the location of the Fermi level ε_F in the band gap ε_g , near the conduction band ε_C , and electrons are the main current carriers. It was shown that the studied HfNi_{1-x}Cu_xSn solid solution is a promising thermoelectric material.

Keywords: electrical conductivity, thermopower coefficient, Fermi level, structural defect.

Стаття надійшла до редколегії 29.10.2022 Прийнята до друку 17.05.2023