ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2023. Випуск 64. С. 51–63 Visnyk of the Lviv University. Series Chemistry. 2023. Issue 64. P. 51–63

УДК 548.736.4

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ДІАГРАМИ СТАНУ ПОТРІЙНОЇ СИСТЕМИ Gd–Si–Sb ПРИ 600 °C

Р. Данкевич, Я. Токайчук^{*}, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: yaroslav.tokaychuk@lnu.edu.ua

Методами рентгенівських фазового, структурного та спектрального аналізів побудовано ізотермічний переріз діаграми стану потрійної системи Gd–Si–Sb при 600 °C в повному концентраційному інтервалі. Підтверджено склад та кристалічну структуру дев'яти бінарних сполук систем Gd–Si i Gd–Sb. Встановлено утворення неперервного ряду твердих розчинів між сполуками Gd₅Si₃ i Gd₅Sb₃ (структурний тип Mn₅Si₃, символ Пірсона *hP*16, просторова група *P*6₃/*mcm*, *a* = 8,5113(5)-8,9745(6), *c* = 6,4206(3)-6,3431(4) Å) та обмежених твердих розчинів заміщення на основі Gd₅Si₄, GdSb i Gd₃Sb₄ протяжністю 5 ат. % Sb та 4 i 11,5 ат. % Si, відповідно. Інші бінарні сполуки розчиняють до 1 ат. % третього компонента. У системі Gd–Si–Sb при 600°C існують дві тернарні сполуки змінного складу – Gd₅Si_{2.8-2.3}Sb_{12-1.7} i Gd₅Si_{1.7-1.0}Sb_{2.3-30}, кристалічну структуру яких визначено рентгенівським дифракційним методом порошку: структурний тип Sm₅Ge₄, *oP*36, *Pnma*, *a* = 7,863(4), *b* = 15,070(9), *c* = 7,894(4) Å для складу Gd₅Si_{2.30(6)}Sb_{1.70(6)} і структурний тип Eu₅As₄, *oS*36, *Cmce*, *a* = 15,205(8), *b* = 7,913(5), *c* = 7,959(4) Å для складу Gd₅Si_{1.74(5)}Sb_{2.26(5)}. Структури тернарних сполук характеризуються частково впорядкованим розміщенням атомів *p*-елементів.

Ключові слова: гадоліній, силіцій, стибій, потрійна система, діаграма стану, рентгенівська порошкова дифракція, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6401.051

1. Вступ

Про дослідження діаграми стану потрійної системи Gd–Si–Sb у літературі відомостей немає. З огляду на значний інтерес до сполук гадолінію зі стехіометрією Gd₅ M_4 з *p*-елементами, як потенційних магнетокалоричних матеріалів [1], у працях [2–4] було детально досліджено області гомогенності і кристалічні структури інтерметалічних фаз на перетині Gd₅Si₄–"Gd₅Sb₄" (ізоконцентрата 55,6 ат. % Gd). Так, автор праці [2] повідомив про існування при 827 °С тернарної сполуки Gd₅Si_{2,64}Sb_{1,36} зі структурою типу (СТ) Sm₅Ge₄ (символ Пірсона (СП) *оР*36, просторова група (ПГ) *Pnma*, *a* = 7,892, *b* = 15,128, *c* = 7,925 Å), для якої у праці [3] було визначено координати атомів. Згодом, під час дослідження сплавів на перетині Gd₅Si₄–"Gd₅Sb₄", автори праці [4] з'ясували при 800 °С існування трьох фаз змінного складу, визначили їхні області гомогенності і параметри кристалічної структури: Gd₅Si₄₋₃₆₁Sb_{00,39} (твердий розчин на основі бінарного силіциду, СТ Gd₅Si₄, СП *оР*36, ПГ *Pnma*, *a* = 7,4725, *b* = 14,807, *c* = 7,7786 Å для складу Gd₅Si₃₆₁Sb_{0,39}), Gd₅Si₂₇₉₋₂₂₇Sb_{1,21-173} (СТ Sm₅Ge₄, СП *оР*36, ПГ *Pnma*, *a* = 7,7985–7,856, *b* = 14,9681–15,105, *c* = 7,8247–8,769 Å) і Gd₅Si_{1,730,90}Sb_{2,273,10} (СТ Eu₅As₄, СП *оS*36, ПГ *Cmce*, *a* = 15,211–15,283, *b* = 7,9382–8,050, *c* = 7,9376–8,042 Å).

[©] Данкевич Р., Токайчук Я., Гладишевський Р., 2023

Крім того, у праці [2] повідомлено про кристалічну структуру фази $Gd_5Si_{1,42}Sb_{1,58}$ (СТ Mn_5Si_3 , СП *hP*16, ПГ *P6₃/mcm*, a = 8,759, c = 6,363 Å), склад якої може належати до неперервного ряду твердих розчинів (НРТР) між ізоструктурними бінарними сполуками Gd_5Si_3 і Gd_5Sb_3 .

Серед потрійних систем за участю рідкісноземельних металів, силіцію та стибію, ізотермічні перерізи діаграм стану побудовано для систем Y–Si–Sb при 400 °C [5], La–Si–Sb – при 800 °C [6], Ce–Si–Sb – при 400 °C [7] і Dy–Si–Sb – при 827 °C [2]. Загалом, у системах R–Si–Sb (R – рідкісноземельний метал) з'ясовано існування 14 тернарних сполук, для 13 з них визначено кристалічні структури, що належать до п'яти структурних типів [8]: La₃InGe (R = Ce; CII t/80, III I4/mcm) [7], Sm₅Ge₄ (R = Gd, Dy; CII oP36, III Pnma) [2–4], Eu₅As₄ (R = Gd; CII oS36, III Cmce) [4], Tm₂Sb₂Si₂ (R = Y, Tb, Dy, Ho, Er, Tm; CII oS36, III Cmce) [5, 9] і Yb₅Sb₃ (R = La, Ce, Pr, Nd; CII oP32, III Pnma) [6].

Діаграми стану подвійних систем Gd–Si, Gd–Sb і Si–Sb, що обмежують досліджувану потрійну систему Gd–Si–Sb, побудовано в повних концентраційних інтервалах [10]. Загалом, для системи Gd–Si повідомлено про існування восьми бінарних сполук, а для системи Gd–Sb – семи сполук [8]; кристалічні структури усіх сполук встановлені. Для кожного з двох дефектних дисиліцидів гадолінію GdSi_{2-x} повідомлено різні склади і по дві поліморфні модифікації. У системі Si–Sb проміжні фази не утворюються.

Мета цієї праці – побудова ізотермічного перерізу діаграми стану потрійної системи Gd–Si–Sb при 600 °C у повному концентраційному інтервалі, визначення розчинності третього компонента у бінарних сполуках, а також визначення кристалічної структури та областей гомогенності тернарних сполук.

2. Матеріали та методика експерименту

Сплави для дослідження синтезували сплавлянням шихти вихідних простих речовин (вміст основного компонента (мас. %): Gd \ge 99,9, Si \ge 99,999, Sb \ge 99,97) в електродуговій печі на мідному водоохолоджуваному поді з використанням вольфрамового електрода. Синтез проводили в атмосфері очищеного аргону (як гетер використовували пористий титан). Для досягнення однорідності сплави переплавляли двічі. Для гомогенізації сплави були запаяні у вакуумовані кварцові ампули та відпалені при 600 °С впродовж 720 год у муфельній електропечі VULKAN А-550 з подальшим гартуванням у холодній воді без розбивання ампул. Втрати маси під час синтезу сплавів не перевищували 2 %. З огляду на нестабільність сплавів на повітрі, їх зберігали під шаром індиферентної олії. Рентгенофазовий аналіз виконували за масивами порошкових дифракційних даних, отриманими за кімнатної температури на дифрактометрі ДРОН-2.0М (проміння Fe Kα). Його проводили експериментальних дифрактограм синтезованих порівнянням зразків 3 розрахованими дифрактограмами простих речовин, бінарних і тернарних сполук системи Gd-Si-Sb за допомогою пакета програм STOE WinXPow [11]. Кристалічну структуру тернарних фаз визначили рентгенівським дифракційним методом порошку за масивами даних, отриманими на дифрактометрі STOE Stadi P (проміння Cu Ka₁). Уточнення параметрів дифракційного профілю і кристалічної структури виконували методом Рітвельда за допомогою пакета програм FullProf Suite [12].

Визначення хімічного складу фаз у полікристалічних зразках проводили методом локального рентгеноспектрального аналізу на скануючому електронному мікроскопі Tescan Vega 3 LMU, оснащеному детекторами вторинних електронів (SE) та зворотно розсіяних електронів (BSE). Сплави для аналізу заплавляли в металічні кільця сплавом Вуда, після чого шліфували та полірували до дзеркальної поверхні, застосовуючи наждачний папір з різною величиною зерен, а також дрібнодисперсний порошок Cr₂O₃. Локальний хімічний склад фази одержували усередненням точкових складів 4–5 зерен. Фото поверхні шліфів окремих сплавів у вторинних електронах зображено на рис. 1, а результати визначення хімічного складу окремих фаз – у табл. 1.

3. Результати дослідження та їх обговорення

Для дослідження фазових рівноваг у системі Gd–Si–Sb синтезовано 10 двокомпонентних та 30 трикомпонентних сплавів. Двокомпонентні сплави синтезували з метою визначення існування бінарних сполук при 600 °C та підтвердження типу їхньої структури, з огляду на літературні відомості щодо різного складу чи поліморфізму окремих сполук.

Рис. 1. Фотографії у вторинних електронах шліфів поверхонь зразків: $a - Gd_{35}Si_{65}$; $\delta - Gd_{375}Si_{625}$; $e - Gd_{35}Si_{60}Sb_5$; $e - Gd_{40}Si_{50}Sb_{10}$; $\partial - Gd_{555}Si_{345}Sb_{10}$; $e - Gd_{555}Si_{11,1}Sb_{33,4}$ Fig. 1. Secondary electron image of polished surfaces of the samples: $a - Gd_{35}Si_{65}$; $b - Gd_{375}Si_{625}$; $c - Gd_{35}Si_{60}Sb_5$; $d - Gd_{40}Si_{50}Sb_{10}$; $e - Gd_{555}Si_{345}Sb_{10}$; $f - Gd_{555}Si_{11,1}Sb_{33,4}$

У подвійних системах Gd–Si і Gd–Sb підтверджено існування при 600 °С дев'яти бінарних сполук: GdSi_{1,88} (CT GdSi_{1,4}), GdSi_{1,66} (CT AlB₂), GdSi (CT FeB), Gd₅Si₄ (CT Gd₅Si₄), Gd₅Si₃ (CT Mn₅Si₃), Gd₂Sb₅ (CT Dy₂Sb₅), GdSb (CT NaCl), Gd₄Sb₃ (CT Th₃P₄) і Gd₅Sb₃ (CT Mn₅Si₃). У літературі повідомлено про різні склади для дефектних бінарних дисиліцидів гадолінію зі структурами типів GdSi_{1,4} і AlB₂. Ми з'ясували, що при 600 °С ці сполуки існують за складів GdSi_{1,88(1}) (CT GdSi_{1,4}, CП *oI*12, ПГ *Imma*, *a* = 4,0095(2), *b* = 4,0895(2), *c* = 13,4601(9) Å) і GdSi_{1,66(1)} (CT AlB₂, CП *hP*3, ПГ *P6/mmm*, *a* = 3,8789(2), *c* = 4,1852(3) Å), що підтверджено результатами енергодисперсійного рентгеноспектрального аналізу (рис. 1, *a* і 1, *б*, табл. 1). Склад темної фази на фото поверхні шліфа сплаву вихідного складу Gd₃₅Si₆₅ відповідає складу евтектичного перетворення L \leftrightarrow GdSi_{2-x} (GdSi_{1,88}) + Si у системі Gd–Si при 1 200 °С.

Таблиця 1

Table 1

Результати енергодисперсійного рентгенівського спектрального аналізу сплавів (рис. 1)

Вихідний склад сплаву – Gd ₃₅ Si ₆₅ (рис. 1, <i>a</i>),						
визначений склад сплаву – Gd _{34,1} Si _{65,9}						
Сіра фаза (основна)	Gd _{34,7(2)} Si _{65,3(2)} (GdSi _{1,88(1)})					
Темна фаза	Gd _{13.2(3)} Si _{86.8(2)} (див. текст)					
Вихідний склад сплаву – Gd _{37,5} Si _{62,5} (рис. 1, б),						
визначений склад сплаву – Gd _{35.8} Si _{64.2}						
Сіра фаза	$Gd_{37,6(2)}Si_{62,4(2)}$ (GdSi _{1,66(1)})					
Вихідний склад сплаву – Gd ₃₅ Si ₆₀ Sb ₅ (рис. 1, <i>в</i>),						
визначений склад сплаву – Gd _{35,3} Si _{60,6} Sb _{4,1}						
Темна фаза (основна)	$Gd_{34,8(3)}Si_{64,9(3)}Sb_{0,3(2)}$ (GdSi _{1,88})					
Сіра фаза	$Gd_{50,1(3)}Si_{4,0(4)}Sb_{45,9(3)}$ (GdSi _{0,08(1)} Sb _{0,92(1)})					
Вихідний	склад сплаву – Gd ₄₀ Si ₅₀ Sb ₁₀ (рис. 1, г),					
визначений склад сплаву – Gd _{40.2} Si _{50.2} Sb _{9.6}						
Темна фаза	$Gd_{37,4(3)}Si_{62,2(3)}Sb_{0,4(2)}$ (GdSi _{1,66})					
Сіра фаза	$Gd_{50,0(3)}Si_{3,9(3)}Sb_{46,1(2)} (GdSi_{0,08(1)}Sb_{0,92(1)})$					
Вихідний склад сплаву – Gd _{55,5} Si _{34,5} Sb ₁₀ (рис. 1 <i>д</i>),						
визнач	визначений склад сплаву – Gd _{54,3} Si _{35,6} Sb _{10,1}					
Світла фаза (основна)	$Gd_{55,3(4)}Si_{31,5(4)}Sb_{13,0(5)}$ ($Gd_5Si_{1,2}Sb_{2,8}$)					
Світла фаза (домішкова)	$Gd_{55,4(5)}Si_{39,7(5)}Sb_{4,9(6)} (Gd_5Si_{3,6(1)}Sb_{0,4(1)})$					
Сіра фаза	Gd _{49,8(3)} Si _{3,9(3)} Sb _{0,6(3)} (GdSi)					
Вихідний склад сплаву – Gd _{55,5} Si _{11,1} Sb _{33,4} (рис. 1, <i>е</i>),						
визначений склад сплаву – Gd _{54,5} Si _{9,6} Sb _{34,9}						
Світла фаза (основна)	Gd _{55,5(3)} Si _{33,3(4)} Sb _{11,2(4)} (Gd ₅ SiSb ₃)					
Сіра фаза (домішкова)	$Gd_{57,3(4)}Si_{9,8(4)}Sb_{32,9(4)} (Gd_4Si_{0,5(1)}Sb_{2,5(1)})$					
Темна фаза	$Gd_{50,1(3)}Si_{3,9(4)}Sb_{46,0(4)}$ (GdSi _{0,08(1)} Sb _{0,92(1)})					

Results of EDXS analyses of the alloys (Fig. 1)

Ізотермічний переріз діаграми стану системи Gd–Si–Sb при 600 °C побудовано в повному концентраційному інтервалі (рис. 2). Він характеризується 13 однофазними, 24 двофазними і 12 трифазними областями. Найбільшою кількістю двофазних рівноваг (7) характеризується бінарний моностибід GdSb зі структурою типу NaCl.

Рис. 2. Ізотермічний переріз діаграми стану потрійної системи Gd–Si–Sb при 600 °C Fig. 2. Isothermal section of the phase diagram of the ternary system Gd–Si–Sb at 600 °C

Між ізоструктурними бінарними сполуками Gd₅Si₃ і Gd₅Sb₃ (CT Mn₅Si₃, CП *hP*16, ПГ *P*6₃/*mcm*) утворюється неперервний ряд твердих розчинів. У його межах, під час заміщення атомів Si на атоми Sb параметр *a* гексагональної елементарної комірки збільшується (a = 8,5113(5)-8,9745(6) Å), тоді як параметр *c* – зменшується (c = 6,4206(3)-6,3431(4) Å); об'єм елементарної комірки при цьому збільшується (V = 402,79(4)-442,43(5) Å³).

Графіки зміни параметрів елементарної комірки в межах НРТР $Gd_5Si_{3-0}Sb_{0-3}$ зображено на рис. 3. Простежуються незначні відхилення від правила Вегарда: негативне для параметра *a* та позитивне для параметрів *c* і *V*.

Рис. 3. Залежність параметрів елементарної комірки від вмісту Sbдля HPTP $Gd_5Si_{3-0}Sb_{0-3}$ Fig. 3. Unit-cell parameters vs Sb content for the continuous solid solution $Gd_5Si_{3-0}Sb_{0-3}$

На основі бінарного силіциду Gd_5Si_4 утворюється обмежений твердий розчин заміщення протяжністю до 5 ат. % Sb, а на основі бінарних стибідів GdSb і Gd_3Sb_4 – обмежені тверді розчини заміщення протяжністю до 4 і 11,5 ат. % Si, відповідно. Інші бінарні сполуки розчиняють < 1 ат. % третього компонента. Розчинність третього компонента у бінарних сполуках GdSi_{1,88}, GdSi_{1,66}, GdSi, Gd₅Si₄, GdSb і граничні склади відповідних твердих розчинів підтверджено енергодисперсійним рентгенівським спектральним аналізом трикомпонентних сплавів Gd₃₅Si₆₀Sb₅, Gd₄₀Si₅₀Sb₁₀, Gd_{55,5}Si_{34,5}Sb₁₀ і Gd_{55,5}Si_{11,1}Sb_{33,4} (див. рис. 1, *e*–*e*, табл. 1). Кристалічну структуру твердого розчину на основі сполуки Gd₄Sb₃ уточнено для складу Gd₄Si_{0,60(12)}Sb_{2,40(12)} методом Рітвельда за дифрактограмою зразка Gd₆₀Si₁₀Sb₃₀, отриманою на дифрактометрі STOE Stadi P (рис. 4, *a*, табл. 2 і 3).

У системі Gd–Si–Sb при 600 °С визначено існування двох тернарних сполук змінного складу на ізоконцентраті 55,6 ат. % Gd: Gd₅Si_{2,8-2,3}Sb_{1,2-1,7} і Gd₅Si_{1,7-1,0}Sb_{2,3-3,0}, склади яких узгоджуються з результатами праць [2–4]. Параметри їхніх кристалічних структур уточнено методом Рітвельда за дифрактограмою двофазного зразка складу Gd_{55,5}Si₂₂Sb_{22,5}, що містив обидві тернарні фази (рис. 3, *б*, табл. 2 і 3), підтверджуючи двофазну рівновагу між ними. Отже, кристалічну структуру уточнено для крайніх складів областей гомогенності тернарних сполук – Gd₅Si_{2,3}Sb_{1,7} (CT Sm₅Ge₄, CП *оР*36, ПГ *Рпта*, a = 7,863(4), b = 15,070(9), c = 7,894(4) Å) і Gd₅Si_{1,7}Sb_{2,3} (CT Eu₅As₄, CП*оS*36, ПГ*Стсе*,<math>a = 15,205(8), b = 7,913(5), c = 7,959(4) Å). Структури обох сполук характеризуються частково впорядкованим розміщенням атомів *p*-елементів. Повне впорядкування атомів у структурі сполуки Gd₃Si_{1,7-1,0}Sb_{2,3-3,0} привело б до реалізації тернарної надструктури Tm₅Si₂Sb₂ (СП *оS*36, ПГ *Стсе*) [9], однак склад Gd₅Si₂Sb₂ не входить до області гомогенності тернарної фази при 600 °С.

Fig. 4. Experimental (circles), calculated (line) and difference (bottom) X-ray powder diffraction patterns of the samples: $a - Gd_{60}Si_{10}Sb_{30}$; $\delta - Gd_{55.5}Si_{22}Sb_{22.5}$ (Cu K α_1 radiation). Vertical bars indicate the positions of reflections of the different compounds

Таблиця 2

Умови експерименту та результати уточнення кристалічної структури фаз $Gd_4Si_{0,6}Sb_{2,4}$, $Gd_5Si_{0,8}Sb_{2,2}$, $Gd_5Si_{2,3}Sb_{1,7}$ та $Gd_5Si_{1,7}Sb_{2,3}$

Table 2

 $\begin{array}{c} Experimental \ conditions \ and \ results \ of \ the \ refinements \ of \ the \ crystal \ structures \ of \ Gd_4Si_{0.60}Sb_{2.40}, \\ Gd_5Si_{0.8}Sb_{2.2}, \ Gd_5Si_{2.3}Sb_{1.7}, \ and \ Gd_5Si_{1.7}Sb_{2.3} \end{array}$

Склад зразка, ат. %	$Gd_{60}Si_{10}Sb_{30} \\$		Gd _{55,5} Si ₂₂ Sb _{22,5}		
Фаза	Gd ₄ Si _{0,60(12)} Sb _{2,40(12)}	Gd ₅ Si _{0,8(2)} Sb _{2,2(2)}	Gd ₅ Si _{2,30(6)} Sb _{1,70(6)}	Gd ₅ Si _{1,74(5)} Sb _{2,26(5}	
Вміст фази, мас.%	62(1)	38(1)	52(2)	48(2)	
Структурний тип	Th ₃ P ₄	Mn ₅ Si ₃	Sm ₅ Ge ₄	Eu ₅ As ₄	
Символ Пірсона	cI28	hP16	oP36 oS36		
Просторова група	I-43d	$P6_3/mcm$	Pnma	Cmce	
Параметри елементарної					
комірки: <i>a</i> , Å	9,1667(18)	8,929(2)	7,863(4)	15,205(8)	
<i>b</i> , Å	-	_	15,070(9)	7,913(5)	
<i>c</i> , Å	-	6,3481(15)	7,894(4)	7,959(4)	
Об'єм комірки V , Å ³	770,3(3)	438,29(17)	935,4(9)	957,7(9)	
Кількість					
формульних	4	2	4	4	
одиниць Z					
Густина D_X , г·см ⁻⁵	8,092	8,160	7,514	7,703	
Параметр текстури <i>G</i> [напрям]	_	0,93(2) [001]	0,85(3) [101]	0,91(3) [011]	
Параметри профілю:			0.054/0		
U	0,039(2)		0,054(6)		
V	0,021(2)		0,043(7)		
W	0,0093(4)		0,013(3)		
Параметр					
змішування η	0,413	0,413(3)		0,77(2)	
Параметри асиметрії					
<i>P</i> 1, <i>P</i> 2	0,074(3), 0,0120(4)		0,049(13), 0,034(5)		
Фактори					
достовірності: R _B	0,0360	0,0715	0,076	0,071	
R_F	0,0466	0,0752	0,081	0,077	
$R_{\rm p}$	0,0441		0,0387		
$R_{\rm wp}$	0,0564		0,0462		
χ^2	0,913		1,04		

Кристалічні структури тернарних сполук $Gd_5Si_{2,8-2,3}Sb_{1,2-1,7}$ і $Gd_5Si_{1,7-1,0}Sb_{2,3-3,0}$ належать до близькоспоріднених структурних типів Sm_5Ge_4 і Eu_5As_4 , які мають ромбічну симетрію і подібні параметри елементарної комірки. Структура типу $Sm_5Ge_4 \ \epsilon$ деформованим варіантом СТ Eu_5As_4 і формується шляхом зміщення положень частини атомів, унаслідок чого комірка з гранецентрованої стає примітивною. Вміст елементарних комірок (36 атомів у шести чи чотирьох правильних системах точок (ПСТ)) і координаційні многогранники атомів у структурах тернарних сполук $Gd_5Si_{2,3}Sb_{1,7}$ та $Gd_5Si_{1,7}Sb_{2,3}$ зображено на рис. 5 і 6, відповідно. Поліедри навколо атомів у обох структурах є подібними: атоми Gd оточено 14- та 17-вершинниками Франка-Каспера, атоми Si чи положення статистичних сумішей атомів з переважаючим вмістом Si – тригональними призмами з трьома додатковими атомами, а положення статистичних сумішей атомів з переважаючим вмістом Sb – пентагональними дипірамідами.

Значення міжатомних віддалей у межах координаційних многогранників атомів для Gd₅Si_{2,30}Sb_{1,70} і Gd₅Si_{1,74}Sb_{2,26} ($\delta_{Gd-Gd} = 3,489(6)-4,217(7)$ Å і 3,56(5)-4,186(7) Å, $\delta_{Gd-Si(M)} = 2,997(18)-3,134(13)$ Å і 3,081(16)-3,129(13) Å), $\delta_{Gd-Sb(M)} = 3,078(15)-4,157(16)$ Å і 3,140(6)-3,156(6) Å, $\delta_{Si(M)-Si(M)} = 2,80(3)$ Å і 2,98(2) Å, $\delta_{Sb(M)-Sb(M)} = 3,80(2)-4,157(2)$ Å і 4,206(6)-4,227(5) Å) відповідають сумам відповідних атомних радіусів Gd (r = 1,80 Å), Si (r = 1,17 Å) і Sb (r = 1,41 Å) [13], що свідчить про домінування металічного типу зв'язку.

Таблиця 3

Координати та ізотропні параметри зміщення атомів і коефіцієнти заповнення позицій у структурах фаз Gd₄Si_{0,6}Sb_{2,4}, Gd₅Si_{0,8}Sb_{2,2}, Gd₅Si_{2,3}Sb_{1,7} та Gd₅Si_{1,7}Sb_{2,3} *Table 3*

Atom coordinates, isotropic displacement parameters, and site occupancies in the structures
of the phases Gd ₄ Si _{0.60} Sb _{2.40} , Gd ₅ Si _{0.8} Sb _{2.2} , Gd ₅ Si _{2.3} Sb _{1.7} , and Gd ₅ Si _{1.7} Sb _{2.3}

Атом	ПСТ	x	у	Z	$B_{\rm iso}$, Å ²				
	$Gd_4Si_{0.60(12)}Sb_{2.40(12)}, CT Th_3P_4, C\Pi cI28, \Pi\Gamma I-43d, a = 9,1667(18) Å,$								
	M = 0.20(4) Si + 0.80(4) Sb								
Gd	16 <i>c</i>	0,0702(4)	0,0702(4)	0,0702(4)	0,58(5)				
М	12 <i>a</i>	3/8	0	1/4	0,79(6)				
Gd ₅ S	in 8(2)Sb2 20	2). CT Mn5Si3. CП	<i>hP</i> 16. ПГ <i>P</i> 6 ₃ / <i>m</i>	cm, a = 8.929(2), c	= 6.3481(15) Å.				
	M = 0,27(7) Si + 0,73(7) Sb								
Gd1	6g	0,2407(8)	0	1/4	0,51(9)				
Gd2	4d	1/3	2/3	0	0,59(10)				
М	6g	0,6051(11)	0	1/4	0,79(6)				
G	l-Sin 2010 Sh	TT SmcGe4	$C \prod \rho P_3 6 \prod P_r$	$ma_{1}a = 7.863(4)$	b = 15.070(9)				
	ago 12,30(0)00	c = 7,894(4)	Å, $M = 0,15(3)$ S	5i + 0.85(3)Sb					
Gd1	8 <i>d</i>	0,0610(6)	0,1156(4)	0,6774(6)	0,61(5)				
Gd2	8 <i>d</i>	0,4038(6)	0,1226(4)	0,3331(6)	0,61(5)				
Gd3	4c	0,2330(5)	1/4	-0,0023(5)	0,61(5)				
M	8 <i>d</i>	0,239(2)	0,0429(9)	0,012(2)	0,85(9)				
Si1	4c	0,107(3)	1/4	0,378(2)	1,0(2)				
Si2	4c	0,359(3)	1/4	0,628(3)	1,1(2)				
G	GdsSi _{1.74(5)} Sb _{2.26(5)} CT Eu ₅ As ₄ CII ρ S36 III Cmce. $a = 15.205(8)$ $b = 7.913(5)$								
c = 7,959(4) Å, $M1 = 0,80(3)$ Si + 0,20(3)Sb; $M2 = 0,07(4)$ Si + 0,93(4)Sb									
Gd1	16g	0,1315(4)	0,3320(6)	0,1674(6)	0,56(6)				
Gd2	4a	0	0	0	0,56(6)				
<i>M</i> 1	8f	0	0,134(2)	0,368(2)	1,1(3)				
M2	8 <i>d</i>	0,2031(7)	0	0	1,0(2)				

Рис. 5. Вміст елементарної комірки та координаційні многогранники атомів у структурі сполуки Gd₅Si_{2,30}Sb_{1,70}

Рис. 6. Вміст елементарної комірки та координаційні многогранники атомів у структурі сполуки $Gd_5Si_{1,74}Sb_{2,26}$ Fig. 6. Unit-cell content and coordination polyhedra in the structure of $Gd_5Si_{1,74}Sb_{2,26}$

Порівнюючи ізотермічний переріз діаграми стану системи Gd–Si–Sb при 600 °C з діаграмами стану інших потрійних систем R–Si–Sb, можна констатувати його подібність до ізотермічних перерізів діаграм стану систем з рідкісноземельними металами ітрієвої підгрупи – Y–Si–Sb при 400 °C [5] та Dy–Si–Sb при 827 °C [2]. Так, у цих системах між ізоструктурними бінарними силіцидами та стибідами зі структурою типу Mn₅Si₃ на ізоконцентратах 62,5 ат. % R утворюються неперервні ряди твердих розчинів, а на ізоконцентратах 55,6 ат. % R існують тернарні сполуки R_5 (Si,Sb)₄ зі структурами типів Sm₅Ge₄ (R = Gd, Dy) [2–4], Eu₅As₄ (R = Gd) [4] і Tm₂Sb₂Si₂ (R = Y, Tb, Dy, Ho, Er, Tm) [5, 9]. Натомість у системах R–Si–Sb з рідкісноземельними металами церієвої підгрупи (R = La, Ce, Pr, Nd) на ізоконцентратах 62,5 ат. % R існують тернарні сполуки зі структурою типу Yb₅Sb₃ [6], а на ізоконцентратах 55,6 ат. % R утворення тернарних сполук не простежували.

4. Висновки

Ізотермічний переріз діаграми стану потрійної системи Gd–Si–Sb при 600 °C характеризується утворенням неперервного ряду твердих розчинів між бінарними сполуками Gd₅Si₃ і Gd₅Sb₃ зі структурою типу Mn₅Si₃ та обмежених твердих розчинів заміщення на основі бінарних силіциду Gd₅Si₄ (розчиняє 5 ат. % Sb) та стибідів GdSb і Gd₃Sb₄ (4 і 11,5 ат. % Si, відповідно). Розчинність третього компонента в інших бінарних сполуках є меншою 1 ат.%. На ізоконцентраті 55,6 ат. % Gd існують дві тернарні сполуки змінного складу – Gd₅Si_{2,8-2,3}Sb_{1,2-1,7} і Gd₅Si_{1,7-1,0}Sb_{2,3-3,0} зі структурами типів Sm₅Ge₄ і Eu₅As₄, відповідно, які характеризуються частковим упорядкуванням атомів *p*-елементів у певних правильних системах точок. За характером фазових рівноваг, а також складом і кристалічною структурою тернарних сполук потрійна система Gd–Si–Sb є подібною до інших систем *R*–Si–Sb з рідкісноземельними металами ітрієвої підгрупи.

- Pecharsky V. K., Gschneidner, Jr. K. A. Giant magnetocaloric effect in Gd₅(Si₂Ge₂) // Phys. Rev. Lett. 1997. Vol. 78. P. 4494–4497. DOI: https://doi.org/10.1103/PhysRevLett.78.4494
- Morozkin A. V. Dy–Sb–Si system at 1100 K and ternary intermetallic phases in the Dy–Sb–Si and Gd–Sb–Si systems // J. Alloys Compd. 2003. Vol. 358. P. L6–L8. DOI: https://doi.org/10.1016/S0925-8388(03)00080-X
- Nirmala R., Morozkin A. V., Malik S. K. Magnetocaloric effect in the intermetallic compound Gd₅Si₂Sb₂ // Europhys. Lett. 2005. Vol. 72. P. 652–657. DOI: https://doi.org/10.1209/epl/i2005-10268-x
- Svitlyk V. O., Cheung Y. Y. J., Mozharivskyj Yu. A. Structural, magnetic and magnetocaloric properties of the Gd₅Si_{4-x}Sb_x (x = 0.5-3.5) phases // J. Magn. Magn. Mater. 2010. Vol. 322. P. 2558–2566. DOI: https://doi.org/10.1016/j.jmmm.2010.03.020
- Kozlov A. Yu., Pavlyuk V. V. Investigation of the interaction of the components in the Y–Si–Sb system at 670 K // J. Alloys Compd. 2004. Vol. 370. P. 192–197. DOI: https://doi.org/10.1016/j.jallcom.2003.09.023
- 6. Bie H., Mar A. Rare-earth tetrel antimonides $RE_5Tt_xSb_{3-x}$ (RE = La-Nd; Tt = Si, Ge) // Eur. J. Inorg. Chem. 2009. P. 3403–3413. DOI: https://doi.org/10.1002/ejic.200900336

- 7. *Stetskiv A. O., Pavlyuk V. V., Bodak O. I.* Phase equilibria in the ternary Ce–Si–Sb system at 670 K // Ukr. Khim. Zh. 1999. Vol. 65, No. 4. P. 87–89 (in Ukrainian).
- 8. *Villars P., Cenzual K. (Eds.).* Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2021/2022.
- Kozlov A. Yu., Pavlyuk V. V., Davydov V. M. The crystal structure of the new ternary compounds RE₅Sb₂X₂ (RE = Y, Tb, Dy, Ho, Er, Tm; X = Si or Ge) // Intermetallics. 2004. Vol. 12. P. 151–155. DOI: https://doi.org/10.1016/j.intermet.2003.09.010
- Pauling File. Binaries Edition / Eds. P. Villars, K. Cenzual, J. L. C. Daams, F. Hulliger, T. B. Massalski, H. Okamoto, K. Osaki, A. Prince. Materials Park (Ohio): ASM International, 2002.
- 11. STOE WinXPow (Version 2.21). Darmstadt: Stoe & Cie, 2005.
- 12. *Rodríguez-Carvajal J.* Recent developments of the Program *FULLPROF //* Commission on Powder Diffraction (IUCr), Newsletter. 2001. Vol. 26. P. 12–19.
- 13. *Gladyshevskii R. E., Pukas S. Ya.* Applied Crystal Chemistry. Practicum. Tutorial. 4th Edition // Ivan Franko Lviv National University. 2022. 126 p.

ISOTHERMAL SECTION OF THE PHASE DIAGRAM OF THE TERNARY SYSTEM Gd–Si–Sb AT 600 °C

R. Dankevych, Ya. Tokaychuk^{*}, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yaroslav.tokaychuk@lnu.edu.ua

The interaction of the components in the ternary system Gd–Si–Sb was studied by X-ray diffraction and energy-dispersive X-ray spectroscopy, and the isothermal section of the phase diagram at 600 °C was constructed in the full concentration range. The compositions and crystal structures of nine binary compounds in the systems Gd–Si and Gd–Sb were confirmed. Binary gadolinium silicides with GdSi_{1.4}- and AlB₂-type structures at 600°C were found to exist at the compositions GdSi_{1.88(1)} (structure type GdSi_{1.4}, Pearson symbol *oI*12, space group *Imma*, *a* = 4.0095(2), *b* = 4.0895(2), *c* = 13.4601(9) Å) and GdSi_{1.66(1)} (AlB₂, *hP3*, *P6/mmm*, *a* = 3.8789(2), *c* = 4.1852(3) Å). The formation of a continuous solid solution between the binary compounds Gd₅Si₃ and Gd₅Sb₃ (structure type Mn₅Si₃, *hP*16, *P*6₃/*mcm*, *a* = 8.5113(5)–8.9745(6), *c* = 6.4206(3)–6.3431(4) Å) was revealed. The plots of the unit-cell parameters *vs* the Sb content showed deviations from Vegard's law: a negative deviation for the *a*-parameter and positive deviations for the *c*-parameter and the cell volume. The binary compounds Gd₅Si₄, GdSb, and Gd₃Sb₄ dissolve 5 at. % Sb, 4, and 11.5 at. % Si, respectively, at 600 °C, forming limited solid solutions of the substitution type. The crystal structure of the solid solution based on Gd₃Sb₄ was studied by X-ray powder diffraction: structure type Th₃P₄, *cl*28, *I*-43*d*, *a* = 9.1667(18) Å for Gd₄Si_{0.60(12})Sb_{2.40(12}.

The other binary compounds dissolve less than 1 at. % of the third component.

The existence of two ternary compounds, $Gd_5Si_{2.8-2.3}Sb_{1.2-1.7}$ and $Gd_5Si_{1.7-1.0}Sb_{2.3-3.0}$, was established at 600 °C. The crystal structures were determined by X-ray powder diffraction: structure

type Sm_5Ge_4 , *oP*36, *Pnma*, a = 7.863(4), b = 15.070(9), c = 7.894(4) Å for the composition $Gd_5Si_{2.30(6)}Sb_{1.70(6)}$, and structure type Eu_5As_4 , *oS*36, *Cmce*, a = 15.205(8), b = 7.913(5), c = 7.959(4) Å for the composition $Gd_5Si_{1.74(5)}Sb_{2.26(5)}$. The structures are closely related (the structure type Sm_5Ge_4 is a deformation derivative of the structure type Eu_5As_4) and both compounds show partial ordering of the *p*-element atoms.

By the character of the phase equilibria, compositions and crystal structures of the ternary compounds, the ternary system Gd–Si–Sb is similar to the R–Si–Sb systems with rare-earth metals of the yttrium subgroup.

Keywords: gadolinium, silicon, antimony, ternary system, phase diagram, X-ray powder diffraction, crystal structure.

Стаття надійшла до редколегії 01.11.2022 Прийнята до друку 17.05.2023