ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2023. Випуск 64. С. 3–13 Visnyk of the Lviv University. Series Chemistry. 2023. Issue 64. Р. 3–13

Неорганічна хімія

УДК 544:(344.3+015.35):546:(663'27'26):548.734

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ПРИ 870 К ДІАГРАМИ СТАНУ СИСТЕМИ Zr-Pd-Ga в ОБЛАСТІ 45-75 АТ. % Ga

О. Мякуш¹*, В. Бабіжецький², Б. Котур², А. Федорчук³

¹Національний лісотехнічний університет України, вул. Чупринки, 105, 79057 Львів, Україна;

²Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

³Львівський національний університет ветеринарної медицини та біотехнологій ім. С. Гжицького, вул. Пекарська, 50, 79010 Львів, Україна e-mail: oksmyakush@gmail.com.ua

За результатами дослідження відпалених при 870 К зразків методами Х-променевого, фазового і структурного аналізів та енергодисперсійної Х-променевої спектроскопії побудовано ізотермічний переріз діаграми стану системи Zr–Pd–Ga в області 45–75 ат. % Ga. Виявлено існування твердого розчину заміщення на основі бінарної сполуки ZrGa і методом монокристала визначено його кристалічну структуру: ZrPd_xGa_{1-x} ($0 \le x \le 0,06$) (CT MoB, ПГ I4₁/amd, a=3,841(1)-3,8660(8) Å, c=20,42(1)-20,466 (7) Å, $R_1=0,048$ для зразка складу ZrPd_{0,06}Ga_{0,94}). У системі Zr–Pd–Ga в досліджуваній області концентрацій підтверджено існування раніше відомих галідів ZrPdGa (CT LaNiAl, ПГ *Pnma*), Zr₆M_xGa_{2-x} (6,41 < x < 9,89) (CT Th₆Mn₂₃) та виявлено дві нові тернарні сполуки ZrPd_{0,6}Ga_{2,4} та ZrPd_{0,7}Ga_{1,3}. Методом порошку вивчено їхню кристалічну структуру: ZrPd_{0,6}Ga_{2,4} (CT AuCu₃, ПГ *Pm-3m*, a=4,06665(3)Å, $R_1=0,0589$, $R_P=0,0879$); ZrPd_{0,7}Ga_{1,3} (CT KHg₂, ПГ *Imma*, a=4,2456(1), b=6,5387(1), c=7,5342(1) Å; $R_1=0,0656$, $R_P=0,1603$).

Ключові слова: потрійна система, фазові рівноваги, інтерметалічні сполуки, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6401.003

1. Вступ

Серед систем Zr-метал VIII групи-Ga систематично вивчали лише системи Zr-{Fe, Co, Ni}-Ga [1,2], інші системи досліджували лише на предмет утворення окремих сполук. У літературі є дані про кристалічну структуру ґалідів ZrMGa (M=Rh, Ir, Pd, Pt) (структурний тип (CT) LaNiAl, просторова група (ПГ) *Pnma*) [3–5], ZrRu_xGa_{2-x} (0,60 < x < 0,96) (CT MgZn₂, ПГ *P6₃/mmc*) [6], Zr₆M₇Ga₁₆ (M=Ru, Rh, Pd, Pt, Ir, Os) (CT Mg₆Si₇Cu₁₆, ПГ *Fm*-3*m*) [7], ZrPd₂Ga (CT MnCu₂Al, ПГ *Fm*-3*m*) [8]. Раніше [9, 10] ми дослідили кристалічну структуру та області гомогенності сполук

[©] Мякуш О., Бабіжецький В., Котур Б. та ін., 2023

 $Zr_6M_xGa_{23-x}$ (6,41 < x < 9,89) (M=Ru, Pd) (СТ Th_6Mn_{23} , ПГ *Fm*-3*m*) і з'ясували, що за складу $Zr_6M_7Ga_{16}$ (M=Ru, Pd) наявне впорядковане розміщення атомів компонентів утрьох правильних системах точок, що є характерним для структурного типу $Mg_6Si_7Cu_{16}$ (надструктура до типу Th_6Mn_{23}) та добре узгоджується з результатами [7]. Автори праць [10, 11] повідомляли про утворення тернарних фаз ZrPd_{0,6}Ga_{2,4} та ZrPd_{0,7}Ga_{1,3}, проте не навели результатів дослідження їхньої кристалічної структури. Мета нашої праці – вивчити характер взаємодії компонентів у системі Zr–Pd–Ga при 870 К та кристалічної структури сполук і твердих розчинів, що в ній утворюються.

2. Матеріали та методика експерименту

Для уточнення і перевірки літературних відомостей та проведення фазового аналізу в системі Zr–Pd–Ga в області концентрацій 45–75 ат. % Ga синтезовано 14 подвійних та 36 потрійних сплавів. Зразки готували сплавлянням шихти з вихідних компонентів високої чистоти (≥99,9 мас. % основного компонента) в електродуговій печі на мідному охолоджуваному водою поді з вольфрамовим електродом в атмосфері очищеного аргону. Втрати під час сплавляння не перевищували 1 % від маси вихідної шихти. Для гомогенізації сплавів їх відпалювали у запаяних під вакуумом кварцових ампулах за температури 870 К протягом 1 400 год з подальшим гартуванням ампул у холодній воді.

Фазовий аналіз сплавів проводили за масивом даних дифракції Х-випромінювання, одержаних за допомогою порошкових дифрактометрів ДРОН-2,0М (Fe K_{α} -випромінювання) та STOE STADI Р (Cu $K_{\alpha 1}$ -випромінювання). Кристалічну структуру сполук уточнювали методом порошку з використанням пакета програм WinCSD [12].

Монокристали для структурного дослідження відбирали під мікроскопом з розбитих одержаних сплавів. Х-променеві дифракційні дані одного з нерегулярно огранених монокристалів отримано за температури 300(2) К за допомогою монокристального дифрактометра Bruker D8 Venture з монохроматизованим Мо K_{α} -випромінюванням. Структуру уточнено за допомогою програми SHELXL [13], версія 2018/3 (повноматричний МНК з анізотропними тепловими параметрами атомів). Отримані результати підтвердили для ZrPd_xGa_{1-x} (0 $\leq x \leq$ 0,06) структури типу МоВ. Характеристики зйомки подано у табл. 1.

Для підтвердження атомного співвідношення елементів у кожній фазі використовували метод енергодисперсійної Х-променевої спектроскопії (ЕДХС) у поєднанні з растровим електронним мікроскопом Tescan Vega 3 LMU, обладнаним детектором Oxford Si-detector X-Max N 60 LTE. Точність вимірювань ЕДРС аналізу становить 1 ат. % визначуваного елемента.

3. Результати досліджень та їх обговорення

За результатами дослідження відпалених зразків методами Х-променевого фазового, структурного та ЕДХС аналізів побудовано ізотермічний переріз діаграми стану системи Zr–Pd–Ga в області концентрацій 45–75 ат. % Ga, який наведено на рис. 1. У сплавах з високим вмістом Ga, температура плавлення якого ~ 300 К за температури відпалювання 870 К, простежується витікання рідкої фази на основі галію зі сплавів. Тому частину фазових рівноваг в області з високим вмістом Ga зображено пунктирними лініями.

4

За температури відпалу в області досліджуваних концентрацій ми підтвердили існування в системі Pd–Ga сполуки PdGa (CT FeSi, ПГ P2₁3) [14], а в системі Zr–Ga галідів: ZrGa₃ (CT ZrAl₃, ПГ *I4/mmm*), ZrGa₂ (CT ZrGa₂, *Cmmm*), Zr₃Ga₅ (CT Pu₃Pd₅, ПГ *Cmmm*), Zr₂Ga₃ (CT Zr₂Al₃, *Fdd*2) [15]. Згідно з діаграмою стану системи Zr–Ga [14] за температури 1 730 К відбувається поліморфне перетворення α -ZrGa (CT MoB, ПГ *I*4₁/*amd*) [16] $\leftrightarrow \beta$ -ZrGa (CT CrB, *Cmcm*) [17]. Ми підтвердили існування низькотемпературної модифікації α -ZrGa і визначили утворення у потрійній системі твердого розчину заміщення на основі цієї фази ZrPd_xGa_{1-x} (0 $\leq x \leq 0,06$; CT MoB, ПГ *I*4₁/*amd*, *a*=3,841(1)–3,8660(8) Å, *c*=20,42(1)–20,466 (7) Å).

Граничну розчинність паладію в ZrGa підтверджено методами ЕДХС (рис. 2, *a*) та порошку. Інші бінарні сполуки практично не розчиняють третього компонента.

Рис. 1. Частина фазових рівноваг системи Zr–Pd–Ga в області концентрацій 45–75 ат. % Ga при 870 K із нанесеними складами відомих тернарних і бінарних сполук, що існують за температури дослідження

Fig. 1. Part of the phase equilibria of the Zr–Pd–Ga system in the concentration range 45–75 at. % Ga at 870 K with plotted compositions of known ternary and binary compounds existing at the temperature of the study

Кристалічну структуру фази $ZrPd_xGa_{1-x}$ ($0 \le x \le 0,06$) досліджено методом монокристала для зразка складу $ZrPd_{0,06}Ga_{0,94}$. Умови дослідження кристалічної структури зразка та її характеристики подано в табл. 1, координати та теплові параметри зміщення атомів у структурі – у табл. 2.

Рис. 2. Зображення мікроструктур сплавів: Zr₄₀Pd₁₅Ga₄₅ (*a*) (темна фаза Zr₅₅Pd₃Ga₄₂-ZrPd_xGa_{1-x}; cipa фаза Zr₃₃Pd₂₃Ga₄₄-ZrPd_{0.7}Ga_{1.3}), Zr₂₅Pd₂₀Ga₅₅ (*b*) (cipa фаза Zr₂₁Pd₃₂Ga₄₇-Zr₆Pd_xGa_{23-x}; темна фаза Zr₂₅Pd₁₇Ga₅₈-ZrPd_{0,6}Ga_{2,4}), світло-сіра фаза Zr₃₃Pd₂₂Ga₄₅-ZrPd_{0,7}Ga_{1,3}) Fig. 2. SEM-images of the alloys: $Zr_{40}Pd_{15}Ga_{45}(a)$ (dark phase $Zr_{55}Pd_3Ga_{42}$ - $ZrPd_xGa_{1-x}$; gray phase Zr₃₃Pd₂₃Ga₄₄-ZrPd_{0.7}Ga_{1.3}), (*b*) Zr₂₅Pd₂₀Ga₅₅ (gray phase Zr₂₁Pd₃₂Ga₄₇-Zr₆Pd₃Ga_{23-x}; dark phase Zr₂₅Pd₁₇Ga₅₈–ZrPd_{0.6}Ga_{2.4}), light gray phase Zr₃₃Pd₂₂Ga₄₅–ZrPd_{0.7}Ga_{1.3})

Таблиця 1

Умови та результати дослідження кристалічної структури монокристала $ZrPd_{0,06}Ga_{0,94}$ Table 1

Single crystal data and structure refinement for ZrPd_{0.06}Ga_{0.94}

	1		
Формула	$ZrPd_{0,06}Ga_{0,94}$		
Просторова група	$I4_1/amd$ (No 141)		
Символ Пірсона, Z	<i>tI</i> 16, 8		
Уточнений склад	$ZrPd_{0,06(1)}Ga_{0,94(1)}$		
Параметри комірки			
<i>a</i> , Å	3,8660(8)		
<i>c</i> , Å	20,466(7)		
Об'єм елементарної комірки, Å ³	305, 9(1)		
Обчислена густина, г/см3	7,786		
Коефіцієнт адсорбції, 1/см	20,792		
Розмір кристала, \times мм ³	0,034×0,036×0,012		
Випромінювання і довжина хвилі, Å	MoK_{α} ; 7,1073		
Дифрактометр	Bruker D8 Venture		
Кількість уточнюваних параметрів	10		
Уточнення	F^2		
$2\theta_{\rm max}$ ta $(\sin\theta\lambda)_{\rm max}$	65,12; 0,758		
h, k, l	$-5 \le h \le 4$		
	$-5 \le k \le 5$		
	$-30 \le l \le 30$		
Загальна кількість відбить	1616		
Кількість незалежних відбить	173 ($R_{\rm int} = 0,0472$)		
Кількість відбить з $I_0 \ge 2\sigma(I_0)$	$133 (R_{\sigma} = 0.0236)$		
Фактор розбіжності R_1 (R_1 всі відбиття) ^а	0,048 (0,056)		
$wR_2 (wR_2$ всі відбиття) ⁶	0,110 (0,117)		
S по F^2	1,09		
$\Delta \rho_{\text{max}}$ ta $\Delta \rho_{\text{min}}$ (e Å ⁻³)	-1,47; +1,69		

^a $R_1(\mathbf{F}) = [\Sigma(|\mathbf{F}_o|-|\mathbf{F}_c|)]/\Sigma|\mathbf{F}_o|.$ ⁶ $wR_2(\mathbf{F}^2) = [\Sigma[w(\mathbf{F}_o^2-\mathbf{F}_c^{-2})^2/\Sigma[w(\mathbf{F}_o^{-2})^2]]^{1/2}; [w^{-1} = \sigma^2(\mathbf{F}_o)^2 + (0,0815P)^2 + 0,433P], \text{ gen}$ $P = (\mathbf{F}_o^2 + 2\mathbf{F}_c^{-2})/3.$

6

О. Мякуш, В. Бабіжецький, Б. Котур, А. Федорчук

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2023. Випуск 64

Таблиця 2

Table 2

Координати та параметри зміщення^а (Å²) атомів у структурі ZrPd_{0,06}Ga_{0,94}

Atomic coordinates and displacement parameters^a (Å²) in the structure of ZrPd_{0.06}Ga_{0.94}

Атом	ПСТ	x	У	z	$U_{\rm eq}/U_{\rm iso}$, Å ²	U_{11}	U_{22}	U_{33}
Zr	8e	0	1/4	0,17768(4)	0,0065(4)	0,0069(6)	0,0063(6)	0,0061(5)
M*	8 <i>e</i>	0	1/4	0,03988(5)	0,0071(4)	0,0082(7)	0,0061(7)	0,0071(6)
М*= Статистична суміш 0,94(1)Ga+0,06(1)Pd.								

 ${}^{\mathrm{a}}U_{13} = U_{23} = U_{12} = 0.$

Найкоротші міжатомні відстані становлять M-Zr = 2,8132(7) Å (M=0,94(1)Ga+0,06(1)Pd), Zr-Zr = 3,4819(13) Å і добре узгоджуються з сумою атомних радіусів компонентів.

У системі Zr–Pd–Ga в досліджуваній області концентрацій підтверджено існування раніше відомих галідів ZrPdGa (CT LaNiAl, ПГ *Pnma*) [5], Zr₆M_xGa_{23-x} (6,41 < x < 9,89) (CT Th₆Mn₂₃) [9, 10] та надструктури до неї Zr₆Pd₇Ga₁₆ (CT Mg₆Si₇Cu₁₆, ПГ *Fm*-3*m*) [7]. Для сполук ZrPd_{0.6}Ga_{2,4} та ZrPd_{0.7}Ga_{1,3} [11] повністю визначено кристалічну структуру. Кристалографічні характеристики обох сполук подано в табл. 3.

Таблиця 3

Кристалографічні характеристики тернарних сполук системи Zr-Pd-Ga

Table 3

Crystallographic characteristics of the ternary compounds in the Zr-Pd-Ga system

C	СТ	ПГ	Пар	Література		
Сполука			a, Å	<i>b</i> , Å	<i>c</i> , Å	_
$Zr_6Pd_xGa_{23-x}$	Th ₆ Mn ₂₃	Fm-3m	12,4633(1)-	_	_	9,10
(6,41 <x<9,89)< td=""><td></td><td></td><td>12,5154(1)</td><td></td><td></td><td></td></x<9,89)<>			12,5154(1)			
ZrPd _{0.60(1)} Ga _{2.40(1)}	AuCu ₃	Pm3m	4,06665(3)	-	_	11, *
ZrPd _{0,70(1)} Ga _{1,30(1)}	KHg ₂	Imma	4,2456(1)	6,5387(1)	7,5342(1)	11, *
ZrPdGa	LaNiAl	Pnma	6,928	3,6994	16,019	5
			6,8727(2)	3,7932(1)	15,7494(4)	*
ZrPd ₂ Ga	MnCu ₂ Al	Fm-3m	0,6379	—	_	8

*Результати нашого дослідження.

У системі Zr–Pd–Ga на ізоконцентраті 25 ат. % цирконію знайдено сполуку ZrPd_{0,6}Ga_{2,4}. ЇЇ дифрактограму (рис. 3) проіндексували в кубічній сингонії з періодом a = 4,06665(3) Å. Розрахунок інтенсивностей і уточнення параметрів атомів підтвердили структуру типу AuCu₃ (ПГ *Pm*-3*m*, $R_I = 0,0589$, $R_P = 0,0879$). Координати та ізотропні теплові параметри атомів у структурі сполуки ZrPd_{0,6}Ga_{2,4} подано в табл. 4.

7

Рис. 3. Експериментальний (•), розрахований (–) та різницевий (внизу) X-променеві профілі дифрактограми зразка складу ZrPd_{0,6}Ga_{2,4} Fig. 3. Experimental (•), calculated (–) and differential (bottom line) XRD profiles for ZrPd_{0.6}Ga_{2.4}

Таблиця 4

Координати та параметри зміщення (B_{iso} , Å²) атомів у структурі ZrPd_{0,6}Ga_{2,4} *Table 4*

Atomic coordinates and displacement parameters $(B_{i_{20}}, Å^2)$ in the structure of ZrPd_{0.6}Ga_{2.4}

Атом	ПСТ	x	у	z	<i>B</i> _{i30} .
Zr	1a	0	0	0	0,29(4)
M*	3 <i>c</i>	1/2	1/2	0	0,34(2)

M*= Статистична суміш 0,80(1)Ga+0,20(1)Pd.

Автори праці [5] на ізоконцентраті 33,3 ат. % Zr знайшли сполуку еквіатомного складу ZrPdGa та методом монокристала вивчили її кристалічну структуру (CT LaNiAl). Під час систематичного дослідженя системи Zr-Pd-Ga ми підтвердили існування цієї сполуки методом порошку та виявили ще одну тернарну сполуку на цій же ізоконцентраті, проте за меншого вмісту паладію – ZrPd_{0.7}Ga_{1.3}.

За аналогією до сполук ZrNi_{0,35-0,50}Ga_{1,65-1,50} [2] та YPd_{0,38}Ga_{1,62} [18] ми припустили можливу належність сполуки ZrPd_{0,7}Ga_{1,3} до структурного типу KHg₂. Дифрактограму сполуки ZrPd_{0,7}Ga_{1,3} (рис. 4) проіндексували в ромбічній сингонії з періодами: a = 4,2456(1), b = 6,5387(1), c = 7,5342(1) Å). Розрахунок інтенсивностей і уточнення параметрів атомів підтвердили структуру типу KHg₂ (пр. група *Imma*, $R_{\rm I} = 0,0656, R_{\rm P} = 0,1603$). Координати та ізотропні теплові параметри атомів у структурі сполуки ZrPd_{0,7}Ga_{1,3} наведено в табл. 5, а міжатомні відстані та координаційні числа – в табл. 6.

Рис. 4. Експериментальний (•), розрахований (–) та різницевий (внизу) Х-променеві профілі дифрактограми зразка складу ZrPd_{0,7}Ga_{1,3}

Fig. 4. Experimental (•), calculated (–) and differential (bottom line) XRD profiles for $ZrPd_{0.7}Ga_{1.3}$

Таблиця 5

Координати та параметри зміщення (B_{iso} , Å²) атомів у структурі ZrPd_{0,7}Ga_{1,3} *Table 5*

Atomic coordinates and displacement parameters $(B_{i30}, Å^2)$ in the structure of ZrPd_{0.7}Ga_{1.3}

Атом	ПСТ	x/a	y/b	z/c	B_{i30}
Zr	4(<i>e</i>)	0	1/4	0,5395(1)	0,71(4)
M*	8(<i>h</i>)	0	0,0450(1)	0,1650(2)	0,89(3)

M*= Статистична суміш 0,65(1) Ga + 0,35(1) Pd.

Таблиця б

Міжатомні відстані (δ , Å) та координаційні числа (КЧ) атомів у структурі сполуки ZrPd_{0.7}Ga_{1,3} *Table 6*

Interatomic distances (δ) and coordination numbers (CN) of atoms for the ZrPd_{0.7}Ga_{1.3} compound

Атом	δ	КЧ	Атом	δ	КЧ
Zr -6M*	2,946(1)		M*-2M*	2,480(1)	
-4M*	3,021(1)		- M*	2,554(2)	
-2M*	3,124(2)	18	- M*	2,681(1)	10
-2Zr	3,323(1)		-3Zr	2,946(1)	
-2Zr	3,817(1)		-2Zr	3,020(1)	
-2Zr	4,246(1)		– Zr	3,124(2)	

M*= Статистична суміш 0,65(1) Ga + 0,35(1) Pd.

За характером фазових рівноваг досліджувана система виявляє найбільшу подібність до системи Zr–Ni–Ga [2], яка містить замість Pd його електронний аналог Ni, а також до системи Y–Pd–Ga [20]. Найбільшу подібність між дослідженою та спорідненими системами виявлено на ізоконцентраті 33,3 ат. % Zr (Y), а також в області великого вмісту галію.

У системі Zr–Pd–Ga на ізоконцентраті 25 ат. % Zr утворюється сполука ZrPd_{0,6}Ga_{2,4} зі структурою типу AuCu₃. Сполуки з цією структурою кристалізуються у системах Zr–{Fe, Ni}–Ga [1, 2] за такого самого кількісного співвідношення компонентів. У системі Y–Pd–Ga утворюється сполука Y₄PdGa₁₂ [19], структуру якої можна описати як структуру включення атомів *d*-металу в октаедричні пустоти найщільнішої кубічної упаковки (CT AuCu₃).

На ізоконцентраті 33,3 ат. % Zr (Y) характерне утворення тернарних галідів еквіатомного складу ZrPdGa (CT LaNiAl) [5], YPdGa (CT TiNiSi) [21], ZrNiGa (CT ZrNiAl) [2], а за меншого вмісту d-металу в усіх системах утворюються сполуки зі структурою типу KHg₂.

Незважаючи на те, що паладій та галій мають близькі атомні радіуси ($r_{\rm Pd} = 1,37$ Å, $r_{\rm Ga} = 1,39$ Å) [22], вони значно відрізняються своїми електронегативностями ($\chi_{\rm Pd} = 2,20, \chi_{\rm Ga} = 1,81$). Тому сполуки систем Zr–Pd та Zr–Ga належать до різних структурних типів. Вони також практично не розчиняють третього компонента. Максимальна розчинність паладію у сполуці ZrGa (CT MoB) сягає 3 ат. %, а в інших галідах не перевищує 1 ат. %. Зі зростанням вмісту Pd, які має менший атомний (металічний) радіус порівняно з атомом галію, параметри елементарної комірки твердого розчину ZrPd_xGa_{1-x} ($0 \le x \le 0,06$) пропорційно зростають. Цей факт може свідчити про збільшення ковалентної складової зв'язків у сполуці ZrGa, оскільки ковалентний радіус галію становить 1,26 Å. Аналогічні залежності можна простежити для сполук систем Y–{Ru, Pd}–Ga, в яких існування складних зв'язків було підпверджено результатами досліджень електричних властивостей [23].

4. Висновки

1. Досліджено взаємодію компонентів у системі Zr–Pd–Ga при 870 К та побудовано ізотермічний переріз діаграми стану в області в області 45–75 ат. % Ga.

2. Виявлено існування твердого розчину заміщення на основі бінарної сполуки ZrGa і методом монокристала вивчено його кристалічну структуру: ZrPd_xGa_{1-x} ($0 \le x \le 0,06$) (СТ МоВ, ПГ 14₁/amd, a=3,841(1)-3,8660(8) Å, c=20,42(1)-20,466 (7) Å, $R_1=0,048$ для зразка складу ZrPd_{0,06}Ga_{0.94}.

3. Методом порошку визначено кристалічну структуру двох тернарних сполук: ZrPd_{0,6}Ga_{2,4} (СТ AuCu₃, пр. група *Pm-3m*, *a*=4,06665(3) Å, *R*_I=0,0589, *R*_P=0,0879) та ZrPd_{0,7}Ga_{1,3} (СТ KHg₂, пр. група *Imma*, *a*=4,2456(1), *b*=6,5387(1), *c*=7,5342(1) Å; *R*_I=0,0656, *R*_P=0,1603).

4. Проведено порівняльний аналіз характеру взаємодії компонентів системи Zr-Pd-Ga зі спорідненими системами Zr-Ni-Ga та Y-Pd-Ga. За характером фазових рівноваг досліджувана система виявляє найбільшу подібність до Zr-Ni-Ga.

5. Подяка

Ця робота була частково підтримана Фондом Сімонса (номер гранту: 1037973).

- 1. *Markiv V. Ya., Storozhenko A. I.* Investigation of systems Zr–Ni–Ga and Zr–Cu–Ga // Dopov. AN Ukr. RSR. Ser. A. 1974. No 10. P. 945–949 (in Ukrainian).
- Markiv V. Ya., Storozhenko A. I. Investigation of systems Zr–Ni–Ga and Zr–Cu–Ga // Izv. AN USSR. Metally. 1974. No 4. P. 213–217 (in russian).
- Dwight A. Alloying behaviour of zirconium, hafnium and the actinides in several series of isostructural compounds // J. Less-Comm. Met. 1974. Vol. 34. P. 279–284. DOI: https://doi.org/10.1016/0022-5088(74)90170-2
- Zumdick M., Pöttgen R., Zaremba V., Hoffmann R.-D. X-ray single-crystal studies of ZrRhGa, HfRhGa, and ZrRh_{0,710(4)}In // J. Solid State Chem. 2002. Vol. 166. P. 305– 310. DOI: https://doi.org/10.1006/jssc.2002.9591
- Demchyna R., Prots Yu., Schwarz U., Grin Yu. The crystal structure of the new ternary compounds TiPdGe, TiPdGa and ZrPdGa // Z. Anorg. Allg. Chem. 2004. Vol. 630. P. 1717. DOI: https://doi.org/10.1002/zaac.200470051
- Myakush O. Ya., Fedorchuk A., Mokra I., Myakush O. R. Crystal structure of compound ZrRu_xGa_{2-x} (0.60 < x < 0.96) // Visnyk Lviv Univ. Ser. Chem. 2006. Iss. 47. P. 36–40 (in Ukrainian).
- Markiv V. Ya., Storozhenko A. I. New ternary compounds with the Mg₆Cu₁₆Si₇ type structure in some systems of two transition metals with aluminium and gallium // Dopov. AN Ukr. RSR. Ser. A. 1973. No. 10. P. 941–943 (in Ukrainian).
- Ramesh Kumar K., Chunchu V., Thamizhavel A. Van Hove scenario and superconductivity in full Heusler alloy Pd₂ZrGa // J. Appl Phys 2013. Vol. 113. P. 17E115/1–17E115/3. DOI: http://dx.doi.org/10.1063/1.4799620
- Myakush O. Ya., Mokra I., Fedorchuk A., Myakush O. R. Crystal structure of compound Zr₆(M,Ga)₂₃ // Visnyk Lviv Univ. Ser. Chem. 2007. Iss. 48. P. 67–71 (in Ukrainian).
- Myakush O. R., Babizhetskyy V. S., Kotur B. Ya., Fedorchuk A. O. Phase equilibria in the system Zr-Pd-Ga in the concentration range Zr-PdGa-Ga // Proc. II Internat. Sci. Conf. "Actual Problems of Chemistry, Material Science and Ecology". Lutsk, Ukraine, June 1–3, 2022. P. 85–88 (in Ukrainian).
- 11. *Myakush O. Ya., Mokra I. R., Shpyrka Z. M., Myakush O. R.* New ternary compounds in the Zr–Pd–Ga system// IX International Conference on Crystal Chemistry of Intermetallic Compounds. Ukraine, Lviv, September 20–24. 2005. P. 91.
- 12. Akselrud L., Zavalii P., Grin Yu., Pecharsky V., Baumgartner B., Wolfel E. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133–136. P. 335–342.
- 13. *Sheldrick G. M.* Crystal structure refinement with SHELXL // Acta Crystallogr. 2015. Vol. C71. P. 3–8. DOI: https://doi.org/10.1107/S2053229614024218
- 14. *Schubert K., Lukas H. G., Meiβner H. G.* Zum Aufbau der Systeme Kobalt- Gallium, Palladium-Gallium, Palladium-Zinn // Z. Metallkunde. 1959. Bd. 50. S. 534–540.
- 15. *Pötzschke M., Schubert K.* Zum Aufbau einiger T(4)-B(3) homologer und quasihomoioger Systeme. I. Die Systeme Titan-Gallium, Zirkonium-Gallium und Hafnium-Gallium // Z. Metallkunde. 1962. Bd. 53. S. 474–488.
- 16. Schubert K., Pötzschke M., Meißner H.-G., Rossteutscher W., Stolz E. Einige strukturdaten metallischer Phasen // Naturwissenschaften. 1962. Bd. 49. S. 57–58.
- 17. Zavodianyi V. V. Crystal structure of alloys and nature of interaction of metals in the systems {Ti, La, Ho}-Al-Ga, {Ti, Zr}-Si-Ga // Abstract of Candidate's Thesis (Chemical Sciences). Kyiv, 1997. 23 p. (in Ukrainian).

- Myakush O. R., Fedorchuk A. A., Rykhal R. M. Crystal structure of compounds YRh_{0.38}Ga_{1.62}, YPd_{0.38}Ga_{1.62} and YPd_{0.32}Ga_{1.68} // Zh. Inorgan. Chem. 1998. Vol. 43. No. 4. P. 544–546 (in russian).
- Vasylechko L. O., Noga A. S., Grin Yu. N. Crystal structure and some properties of compounds R₄MGa₁₂// Izv. AN USSR. Metally. 1988. No 5. P. 209–213. (in Russian)
- Myakush O. R., Fedorchuk A. A. System Y–Pd–Ga // Visnyk Lviv Univ. Ser. Chem. 2000. Iss. 39. P. 21–24 (in Ukrainian).
- Hovestreydt E., Engel N., Klepp K. Equatomic ternary rare earth-transition metal silicides, germanides and gallides // J. Less-Comm. Met. 1982. Vol. 85. P. 247–274. DOI: https://doi.org/10.1016/0022-5088(82)90075-3
- 22. *Holleman A. F., Wiberg E., Wiberg N.* Lehrbuch der anorganishen Chemie, Walter de Gruyter. Berlin–New York, 1995. P. 1838–1840.
- 23. *Myakush O., Tokaychuk Ya., Fedorchuk A.* Intermetallic compounds of gallium as a basis for the synthesis of new materials // Proc. Internat. Sci.-Pract. Conf. "Dynamics of Scientific Research". Chemistry. Dnipropetrovsk, October 28 November 4, 2002. Vol. 16. P. 36–37 (in Ukrainian).

ISOTHERMAL SECTION AT 870 K OF Zr-Pd-Ga PHASE DIAGRAM IN THE RANGE 45-75 AT. % Ga

O. Myakush^{1*}, V. Babizhetskyy², B. Kotur², A. Fedorchuk³

¹ National University of Forest and Wood Technology of Ukraine, Chuprynky Str., 103, 79057 Lviv, Ukraine;

> ²Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine;

³Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Pekarska Str., 50, 79010 Lviv, Ukraine e-mail: oksmyakush@gmail.com.ua

The isothermal section of the Zr–Pd–Ga phase diagram in the range 45–75 at. % Ga at 870 K has been studied by means of X-ray phase and structural analyzes and energy-dispersive X-ray spectroscopy. The existence of ternary compounds ZrPdGa (LaNiAl structure type, space group *Pnma*) and $Zr_6M_xGa_{23-x}$ (6.41 < *x* < 9. 89) (Th₆Mn₂₃ structure type) have been confirmed.

The existence of solid solution of substitution $\text{ZrPd}_x\text{Ga}_{1.x}$ ($0 \le x \le 0.06$) based on ZrGa binary compound has been detected and its crystal structure has been sstudied by single crystal method (MoB structure type, space group $I4_1/amd$, a=3.841(1)-3.8660(8) Å, c=20.42(1)-20.466 (7) Å, $R_1=0.048$ for ZrPd_{0.06(1)}Ga_{0.94(1)} composition). New ternary compounds ZrPd_{0.6}Ga_{2.4} and ZrPd_{0.7}Ga_{1.3} have been synthesized and their crystal structures have been investigated by powder X-ray diffraction method.

The ZrPd_{0.6}Ga_{2.4} compound crystallizes with AuCu₃ structure type (space group *Pm3m*, a=4.0667(1) Å, $R_{\rm I}$ =0.0589, $R_{\rm P}$ = 0.0879). The final atomic parameters are: Zr in 1(*a*) 0 0 0, $B_{\rm iso}$ =0.29(4) Å²; Ga* (Ga*=0.80(1) Ga + 0.20(1) Pd) in 3(*c*) ½ ½ 0, $B_{\rm iso}$ = 0.34(2) Å²). The ZrPd_{0.7}Ga_{1.3} compound belongs to KHg₂ structure type (space group *Imma*, a=4.2456(1), b=6.5387(1), c=7.5342(1) Å, $R_{\rm I}$ =0.0656, $R_{\rm P}$ =0.1603). The final atomic parameters are: Zr in (4*e*) 0 ¼ 0.5395(1), $B_{\rm iso}$ =0.71(4) Å²; Ga*(Ga*= 0.65(1) Ga + 0.35(1) Pd) in (8*h*) 0 0.0450(1) 0.1650(2), $B_{\rm iso}$ =0,89(3) Å²).

Interaction of components in the Zr-d-metal VIII group-Ga ternary systems has been discussed and generalized.

Keywords: ternary system, phase equilibria, intermetallic compounds, crystal structure.

Стаття надійшла до редколегії 31.10.2022 Прийнята до друку 17.05.2023