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Samples of polyaniline (PAn) doped by different organic acids, namely PAn-FA, PAn-AA,
PANn-OA, and PAn-CA, were synthesized by oxidation of aniline (An) with ammonium
peroxydisulfate in the 0.5 M aqueous solutions of formic (FA), acetic (AC), oxalic (OA), and citric
acids (CA) respectively. Samples of composites of cellulose (Cel) with doped polyaniline
(Cel/PAN-FA, Cel/PAn-AA, Cel/PAn-OA, and Cel/PAn-CA)were produced by same method under
the presence of a suspension of microfibrillar bleached cellulose in the reaction mixture. The mass
ratio of An : Cel was 1 : 1. The structure of obtained samples was studied using X-ray diffraction,
FTIR spectral analysis, and scanning electron microscopy.

Adsorption capacity as concerns Cr(V1) by produced samples of both individual polyanilines
and composites and adsorption kinetics has been studied by electronic (UV) and fluorescence X-ray
spectroscopy and also X-ray energy dispersion analysis methods. Practically full removal of
Cr(VI)ions (98-100 %) of such investigated samples of PAns and its composites has been
determined.

The adsorption Kinetics is good described by equations of pseudo first and second orders.
According to the results, the Langmuir and Freundlich adsorption isotherms are plotted. It was found
that the process of adsorption Cr(VI) ions by doped samples of PAn and Cel/PAn accords to
adsorption model of Langmuir. It has been shown, that adsorbed chromium remains in the samples of
adsorbents in the form of chromium (111).
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1. Introduction

Polyaniline (PAN) is one of the most abundant polymers of new class of materials-
electrically conductive polymers (ECPs). Due to its numerous and unique physicochemical
properties, such as catalytic and adsorption properties, takes the significant interest of
researchers in PAn, as can be seen in many publications [1-3].

Over the last few decades, the possibilities of applications of ECP and PAn have
been actively studied, especially for various processes and technologies [4-12].

On the one side, wide range of important physicochemical properties, such as
unique orderliness of the structure [3] and large diversity of morphology of polyaniline
particles [13], propel of its attractiveness for investigations [1-12]. Under certain
conditions, polyaniline possess the largest number of forms-states [3—7] that is important
property and distinguishes it from another ECP. Fast transforming (switching) of PAn from
one state-form to another is used for creation of various devices in modern
technologies [1-12]. On the other side, PAn is a brittle-powdery polymer, therefore in
many cases it is applied on various inorganic [14] and organic polymeric nature [15]
matrices-carriers. Polyaniline combines in these composites excellent due to its high
affinity for the surfaces of different materials and strong hydrophilicity. Different types of
cellulose are successfully used to build such carrier matrices of PAn [16—21]. Cellulose is
most abundant, and an important renewable biopolymer found in the nature. The
worldwide biomass production of cellulose is target more than 1,5 trillion tons yearly [22].
Cellulose has such essential properties as hydrophilicity, biocompatibility, and
biodegradation. In addition, cellulose is insoluble in water and common organic solvents
due to its high crystallinity. It is well known that Cel is a fibrous biopolymer and suitable
to build a variety of composites with ECPc, caused by high similarity of chemical as well
as mechanical properties [15-23]. Cellulose is characterized high hydrophilicity and
chemical resistance to treatment by variety of acids [23]. These attitudes are an important
factor for synthesis of composites with ECPs and PAn [15-22]. The main goal is to
research the opportunities of combining electrically conductive and redox properties of
PAn with specific chemical and physical characterizations of Cel, namely high mechanical
strength and chemical resistance in different environments with purpose to bring variety of
hybrid composites being [15-20, 24-27].

Heavy metals are one of the secondary products of progressing global
industrialization, consequently what is one of the most dangerous pollutants in water and
food. Due to their ability to accumulate and high toxicity in organisms, they are causing
vitally risks to human health [28-29]. Mental and neurological disorder can be caused by
accumulation of transported and exposed heavy metals, such as mercury, plumbum, arsenic,
cadmium, chromium, and others. Chromium is classified as a carcinogenic substance, that
ranks 5th among toxic elements [30-32].

Chromium is geochemical element that is common in rocks, soils, mineral clays,
waters and the atmosphere [29]. Natural reservoirs are polluted due to domination of
variety of technological processes of chromium-containing ores [33]. The total Cr
concentration in spring and sea waters varies between 0.11-117 mg/L and 0.21-50 mg/L [28].
Chromium exists as oxyanion in aqueous solutions with oxidation states +3 (Cr(111)) and
+6 (Cr(VI1)). The presence and ratio of these two states depend on chemical and
photochemical redox transformation, release into atmosphere/dissolution, and reactions of
adsorption/desorption on natural objects [34]. There are also significant anthropogenic
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sources of chromium in galvanic, electronic, metallurgical, leather, wood preservatives, and
textile industries. As usual, Cr(V1) in total concentrations up to 100 mg-L™ is found in
industrial wastewater [35]. Moreover, it should be noted that processing industry of leather
is one of the biggest chromium polluters of environment [36]. Whereas its high toxicity and
hazardous impact on environment, the pollution of Cr(VI) in wastewater has been strictly
controlled for a long time [28-29] by environmental legislation of many countries and
should not exceed 0.1 mg/L [37].

However, chromium is an important chemical element that the human body requires
to function. For example, chromium is an essential nutrient required for sugar metabolism.
This means that our body requires it when we eat sweets. On the contrary, with lack of
chromium you want a sweet ... vicious circle.

Hexavalent chromium presents in various oxoanionic forms, depending on pH of the
aqueous solution and total concentration of Cr(VI), such as chromate, dichromate, and
hydro chromate [38]. In a concentration range of 0.05-300 mg/L of Cr(VI) following types

of particles are dominant: at pH <1 H,CrO;, at pH 1-6.5 HCrO; ; at pH >6.5Cr,0%" and

CrO? . Oxoanionic form Cr,0; dominates at concentrations above 300 mg/L Cr(VI) and

at pH 1-6.5 [39]. The relative amount of each type of oxoanionic forms of Cr(VI) is
strongly related to the pH of solutions [38] as well as the pH of natural waters [39]. Several
certified technologies are used to exclude Cr(VI) from aqueous solutions, namely,
precipitation, reverse osmosis, ion exchange, variety of filtration, solvent extraction,
chemical reduction/oxidation, electrochemical precipitation, and others [33, 35, 41].
However, all these methods have pros and cons or special limitations, including incomplete
removal of metal, high consumption of reagent and used energy, low selectivity, formation
of secondary waste and difficulty of its utilization [42, 43].

The combining properties of PAn and Cel are extremely useful for utilization of
chromium compounds [33—47]. This combination is carried out by chemical oxidation of
aniline by various oxidants, mainly in aqueous solutions of different acids in the presence
of dispersed cellulose [15—-20, 22—-26, 44]. During the synthesis are formed acid-doped
polyaniline layers on the surface of micro- and nanofibrils of cellulose. The composites
obtained in this way by the in-situ method have great practical importance. Thus, the ways
to combine the properties of cellulose and PAn are greatly simplified. Thereby resulting
new materials with interesting physicochemical properties [45]. The macromolecules of
cellulose consist of plenty hydroxyl groups, that can provide for grafting by various
polymers on active side chains. The hydroxyl groups can act both as donors of electrons for
reduction of hexavalent chromium, and as active centers for the deposition and retention of
trivalent chromium [45]. The efficiency of deposition of PAn on the surface of Cel depends
on reaction conditions for oxidation of aniline, nature of dopant acid, nature of oxidant,
concentrations ratio as well as mass ratio of monomer/oxidant and monomer/cellulose,
temperature of the synthesis, degree of dispersion and preliminary surface preparation of
Cel. The application of different carboxylic acids as dopants can enhance the chemical
affinity of the components in composites of Cel/PAn. In this study were synthesized and
characterized properties of PAn composites with micro fibrillated Cel in solutions of
formic, acetic, oxalic, and citric acids. Furthermore, sorption and structural properties
related to compounds of Cr(VI1) were investigated. Composite materials based on cellulose
with polyaniline, doped with carboxylic acids are attractive for research to its environment-
friendly and high specific strength properties.
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An interesting aspect for utilization of these composites is that adsorption studies of
Cr(VI) were performed at pH ~5.0-6.0, caused by dopant acid during the synthesis.

2. Experimental section

Reactants and materials

The composites of cellulose/polyaniline (Cel/PAn) were synthesized by chemical
oxidation of aniline using ammonium peroxodisulphate (NH,4),S,0g (APS), Aldrich,
formic, acetic, oxalic, citric acids and mixture of microfibrillar celluloses, namely
TM Linters ADM, USA, melt pulp 1290 um, viscosity 37050 mPa-s, degree of
polymerization (DP=2050) and two samples of celluloses, TM Biofloc (HV+, MV), melt
pulp 1290 pm, viscosity 24700 mPa-s and 10530 mPa-s (TM Tember, Canada) and degree
of polymerizations 1400 and 1150, in mass ratio (in %) 50.0:37.5:12.5 accordingly.
Distilled water was used as solvent.

Synthesis of PAn

A portion of An (1 g) was dissolved in 80 ml of 0.5 M aqueous solution of formic,
acetic, oxalic, or citric acid. Afterwards 2.68 g of APS was also dissolved in 20 ml of 0.5 M
solutions of above-mentioned acids. Drop wise was added solution of APS for one hour and
then further stirred for one hour. Obtained suspension was left for 24 h, filtered and washed
with distilled water until the filtrate was neutral. All samples were dried in a vacuum oven
at 50 °C for 24 h [45].

Synthesis of composites Cel/PAn

For the synthesis of composites Cel/PAn sample of An (1 g) was dissolved in 80 ml
of 0.5 M aqueous solution of formic (FA), acetic (AA), oxalic (OA), or citric (CA) acid and
simultaneously a sample of APS (2.67 g) was dissolve in 20 ml of 0.5 M solutions of the
above-mentioned carboxylic acids. Then to the solution of aniline was added 1 g of Cel and
stirred for one hour with mechanical stirrer, following the solution of APS was added drop
wise over the second hour and finally stirred for one hour. Composites were washed and
isolated as PAn [48].

Preparation for investigation

The synthesized samples were dried in a vacuum oven at 50 °C and liquefied by
0.9 kG-cm?, after that pulverized and implemented for research of physicochemical and
adsorption properties. During the synthesis, polyaniline in obtained PAn and Cel/PAn
samples was doped by carboxylic acid.

Investigation of properties

Diffractograms of samples PAn and Cel/PAn were recorded on a diffractometer
DRON-4-07 (radiation Cu Ka, A=1.54060 A). FTIR ATR spectra was performed using
NICOLET IS 10 ATR spectrophotometer in the range of 4000-650 cm ' with a step of
scanning 5 cv .

The electrical conductivity of tableted samples was determined by method [49].
Rigol DM 3068 was employed to determine the electrical resistance of tablets, so
10 measurements have been done.
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Morphology of the prepared PAn-CA and GI/PAn-CA samples was studied using a
ZEISS EVO 40XVP scanning electron microscope (SEM). All the SEM images were
obtained by recording of the secondary electrons (SEs). The excitation of secondary
radiation was achieved by irradiation of the samples by electrons beam with energy of
8 keV. A SMARTSEM software package was used for the SEM image analysis.

Chemical composition of the samples was determined via Energy Dispersive X-ray
(EDX) spectroscopy using an INCA Energy 350 system. [50].

ElvaX PRO analyzer was employed for X-ray fluorescence analysis.

Investigation of adsorption

The adsorption of Cr(VI) was carried out under static conditions at at 20 °C. To
portion of adsorbent (PAn or composite of Cel/PAn) was added 10 ml (100 or 200 or 330
or 400 ml) solution of K,Cr,O-, then after fixed time, 500 mcl of samples were taken for
injection in 2 ml cuvette. Furthermore, it is examined by spectrophotometric analysis.
Calibration curve was employed to determine the amount of adsorbed compound.

The adsorption of Cr (VI) in (%) from the solution was calculated by the equation:

4 (%) =100 (Co—Cy) / Co, 1)
and the equilibrium of adsorption by the equation:
A4,=(Co-C)V/Im, 2

where, A, — is amount of adsorbed Cr(VI1) at equilibrium (mg/g); C, — initial concentration of
Cr(VI) (mg/L); C, — equilibrium concentration of Cr(VI) (mg/L); V — volume of solution, L;
m — is the mass of the adsorbent, g.

3. Results and discussions

X-ray diffraction analysis

Diffractograms of samples PAn and Cel/PAn are shown in Fig. 1. The presence of
wide angle of diffraction indicates the amorphous structure of the obtained polyaniline in the
samples of PAn as well as Cel/PAn. One diffraction peak of medium intensity at 26=22.8° is
typical for Cel [51, 52]. Another two observed peaks at 26=10.7° and 16,5° are less intense.
Furthermore, it should be note, that higher peaks intensity at 260=22.8° of Cel/PAn-FA,
Cel/PAn-AA and Cel/PAn-CA may indicate thinner layering of PAn at the surfaces of
micro-fibrillated Cel.
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Fig. 1. X-ray diffraction spectra of samples, doped by different carboxylic acids: a — PAn-FA (1)
and Cel/PAn-FA (2); b — PAn-AA (1) and Cel/PAn-AA (2); c — PAn-OA (1) and Cel/PAN-FA (2);
d — PAn-CA (1) and Cel/PAN-CA (2)

FTIR-ATR Spectroscopy

FTIR spectra of samples of PAn and Cel/PAn, which were synthesized in aqueous
solutions of various organic acids, as well as Cel, are shown in Fig. 2, are identical to
spectra given in [18, 26, 43, 45, 49, 53, 54]. Polyaniline is identified by the characteristic
bands, namely at 3245-3250 cm™* (various intramolecular valence vibrations of N—H
groups due to H-bonding) [49, 53-55], doublet of band at ~1577 cm™* (valence oscillations
of —C=C— in quinoid rings (Q)) and ~1475 cm* (benzenoid (B)), respectively, peak and
shoulder at ~1300 and ~1240cm™® (C-N and C-N"" stretching and p-electron
delocalization), these vibrations are indication of the protonated state of PAn and presence
of its emeraldine salt [18, 19, 49, 52, 56] (see Table 1).

FTIR spectra of composites show similar characteristic peaks attributed to PAn, that
indicate high-quality covered surface of micro-fibrillated Cel with layers of polyaniline.
However, some characteristic peaks are slightly offset in different directions. According to
FTIR spectra, the largest shift corresponds to composite of Cel/PAn-CA. It may be caused
due to impact of dopant acid on the structure of macromolecular chains of PAn and
strengthening of H-bonding between the functional groups of Cel and PAnN.
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Fig. 2. FTIR-spectra of samples: a — PAn-FA and Cel/PAn-FA (curves 1 and 2, respectively);
b — PAn-AA and Cel/PAn-AA (curves 1 and 2, respectively); c — PAn-OA and Cel/PAn-OA (curves 1
and 2, respectively) d — PAn-CA and Cel/PAn-CA (curves 1 and 2, respectively); e — Cel

Cellulose is identified by sharp characteristic bands at ~1 025 cm™ (H- bonded
valence vibrations C—O—C and H-O groups of cellulose) [26, 43, 53, 56]. Characteristic
bands of cellulose and composites based on cellulose (see Fig. 2) are practically absent,
except for strong peak at 1025 cm*, resulted electromagnetic shielded microfibers of Cel in
the layer of PAn [17].

Despite the high content of Cel in composites (~50 %), the intensity of absorption of
PAnN exceeds the intensity of the signals of functional groups of Cel, particularly —O-H
peaks at ~3440 cm ™.

The absence of peak at ~3440 cm* endorsed strong interfacial H-bonded interaction
at the surface of Cel between the macromolecules of PAn and Cel [45].
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Characteristic peak at 1021.8 cm™ of Cel is shifted towards larger values of

wavenumbers, with an increase the number of carboxyl groups in dopant (at 1024.6 cm™
for FA and AA as well as at 1032.9 cm * CA).

Table 1
FTIR-ATR Spectra. Characteristic wavenumbers of composites Cel/PAn-carboxylic acid
and samples of PAn

Functional group wavenumbers*
Sample N=Q=N, [ N-B-N, | cN, | cN", | N, [ CHy
Vv +02, cm’!
PAN-FA 1557.3 1475.3 1285.2 1235.2 11175 789.3
Cel/PAn-FA 1570.5 1491.2 1301.9 1239.0 11315 802.4
PAn-AA 1557.6 1484.6 1287.0 1232.6 11175 792.5
Cel/PAN-AA 1567.6 1494.4 1291.0 1232.6 1131.0 800.5
PAn-OA 1568.4 1485.8 1289.8 1239.5 1111.3 796.5
Cel/PAN-OA 1575.2 1495.1 1303.3 1247.6 1134.8 818.3
PAn-CA 1562.8 14774 1287.8 1239.7 11115 784.5
Cel/PAN-CA 1574.5 1488.2 1301.1 12374 11355 799.9

*Features: ¢ — valence oscillation; p — plane of oscillation; pp — extraplanar oscillation;
Q — quinoide ring oscillation; B — benzenoid ring oscillation.

The broad peak at about 3500-1750 cm™' and shifted characteristic band of
vibrations in benzenoid rings confirm the presence of H-bonding between PAn (-N—B—N),
dopant-acid (C(O)OH) and micro-fibrils of cellulose (—OH) [26, 43, 53, 56]. Further the
broad band at about ~1200-900 cm ' is associated with high degree of m-electron
delocalization that can be achieved through the higher degree of oxidation of PAn [53].
Development and structural futures such composites are an important view of their
implementation as adsorbents of hexavalent chromium from aqueous solutions.

Electrical conductivity of PAn and Cel/PAn samples

Specific conductivity (o) of the synthesized samples have been measured to endorse
the state form of PAn, as described in method [49]. The value of specific conductivity of
the samples confirmed their state, doped with organic acids, as emeraldine form of doped
PAnN (see Table 2). As expected, the electrical conductivity of these samples is higher than
the electrical conductivity of undoped composites.

As we can see from Table2, PAn-FA has the highest specific electrical
conductivity, followed by PANn-AA, PAn-CA and the lowest PAn-OA. The comparative
decreases the electrical conductivity of composited to pure PAn is caused by dielectric
properties of Cel, that prevent the flow of electrons. However, the results show, that PAn
doped by carboxylic acids exist in the form of emeraldine salt. This determines the
electrical conductivity of Pan [57]. Our results are comparative with the data of studies [44].

This study has shown, that Cel in composites of Cel/PAn doped by organic acids
serves as a carrier matrix for macromolecules of PAn.

The removal of Cr(VI) from solutions using PAn and composites of Cel/PAn

The efficiency of removal of Cr(VI) from aqueous solutions various concentrations
by PAn and composites of Cel/PAn, doped during the synthesis by carboxylic acids is
illustrated in Fig. 3.
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Fig. 3. Effect of the time of absorption on the percentage removal of Cr(V1) from solutions by
samples: g, ¢, e, g — PAnN; b, d, f, h — Cel/PAn, doped by various acids.
Where, concentration of Cr (V1) in solution, mg/L: @, b — 100; ¢, d — 200; e, f —330; g, h — 400
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The initial concentrations of Cr(VI) solutions were 100, 200, 330, and 400 mg/L.
The removal of Cr(VI), (in %) depends on the initial concentration of Cr(VI) in the
solutions and time of contact with the investigated samples

As can been seen from Fig. 3, a, ¢, €, g, Cr(VI) ions have been completely adsorbed
by macromolecules of PAn within 40 min. It is important to emphasize the slowest
adsorption of Cr(VI) by the samples of PAn-OA. With increasing time of adsorption
enhances the removal efficiency of hexavalent chromium. These graphs show absorption
efficiency of investigated composites, as follows: 100 % absorption of Cr(V1)) by PAn-CA,;
93.4 — PAn-FA; 91.1 — PAn-AA and 36.2 % — PAN-OA respectively. According to Fig. 3,
the composite of PAn doped by citric acid is the best effective sorbent of Cr(VI). In
contrast, adsorb samples of cellulose approximately 7-8 % of Cr(VI).

Interpretation of slope angle of kinetic curves in Fig. 3 leads us to the conclusion
that the absorption rate of Cr(VI) by PAn at initial stage is higher, compared to slowly
absorption of Cr(VI) by composites of Cel/PAn.

Elemental analysis of samples after adsorption of Cr(VI)

We have employed X-ray fluorescence analysis to confirm the presence of adsorbed
chromium in the samples of PAn and composites of Cel/PAn. Furthermore, quantitative
determination of chromium in above mentioned samples has been studied. The results have
been shown in the form of diagrams in Fig. 4.

As we can see from Fig. 4, chromium is present in all samples, which is mainly
concentrated on the surface of PAn as well as Cel/PAn. Slight amounts of potassium were found
in the adsorbent samples (see Fig. 4). Thus, for composites PAn-FA, Cel/PAn-FA and Cel/PAn-
CA a clear pattern can be observed: composites of Cel/PAn adsorb Cr(V1) better from aqueous
solutions than pure PAnN (see Fig. 4, a, d). Slightly worse adsorption properties according to
Cr(VI) are possessed composites of Cel/PAn doped by oxalic acid (see Fig. 4, ¢).

The higher mass fractions of adsorbed chromium on the surface of Cel/PAn-FA
and Cel/PAn-CA composites in relation to the samples of PAn are caused by the larger
surface area of polyaniline, deposited on the cellulose microfibrils. Given that the
percentage of adsorption of Cr(VI) (see Fig. 3) and the content of adsorbed chromium by
composites is quite high, it can be argued that the composites Cel/PAn-FA and Cel/PAn-
CA are good adsorbents for removal Cr(V1) from aqueous solutions.
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Fig. 4. Content of chromium in powdered samples of PAn and composites of Cel/PAn,
doped by 0,5 M organic acids and Cel after adsorption.
Note: 100, 200, 330 and 400 — concentration of Cr(\1) in adsorbing solution at the beginning, mg/L
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CEM analysis of samples after Cr(VI) adsorption

The SEM image of original sample of cellulose in Fig. 5, a, b and Fig. 5, ¢, as an
example samples of PAn and Cel/PAn, which were synthesized in solutions of FA and CA
after adsorption of Cr(VI); are shown. As we can see, cellulose microfibrils have a flat
shape with different thickness, width and length. Especially, the rough surface of
microfibrils can serve as a kind of matrix for the formation of layers of PAn. Samples of
PAn (see Fig. 5, c, e), obtained in aqueous solutions of formic, acetic and oxalic acids are
characterized by dispersed state with a highly developed surface [47]. Due to the properties
of CA is the synthesized in aqueous citric acid solution sample of PAn more aggregated [58].
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Fig. 5. SEM-images: a, b — Cel; ¢, d — PAnR; e, f — Cel/PAn after adsorption of Cr(VI);
¢, d and e, f — samples were synthesized in solutions of FA and CA, respectively
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Microfibrils of cellulose in all investigated composites are coated with a layer of
PAnN (see Fig. 5, d, f), which supplies a higher surface area of the adsorbent. In addition,
H-bonded functional groups of cellulose (—-OH) and amino (—-NH) [26, 43, 47, 53, 56], can
hold the films (layers) of PAn on the surface of cellulose microfibrils.

The presence of chromium is acknowledged by SEM images of the surface of Cel
microfibrils coated with PAn (see Fig. 6) in agqueous solutions of formic and citric acids.

B0mKm 3nekTpoHHoe usoBpaxenie 1 C r Ka 1

BOmkm 3BnekTpoHHOoE M3oBpakeHue 1

Crkal

c d
Fig. 6. SEM images of some areas of microfibrils of cellulose, coated with PAn (a, c),
and element mapping of chromium in Cel/PAn-FA and Cel/PAn-CA composite (b, d).
Employed solutions: a, b — formic acid; c, d — citric acid

As can be seen from Fig. 6, b, d, on the surface of the researched samples is a large
amount of chromium. It is obviously trivalent chromium, caused to washing these samples
after adsorption. Under similar conditions adsorption of Cr(V1) by a film of PAn, deposited
on a polyethylene terephthalate substrate [59] and oxidation of EmS of PAn to
pernigraniline has been studied.

During this investigations, pH of solutions was ~5.0-6.0, and Cr(VI) is mainly in the

form of Cr,05, CrO5 ions and to a lesser extent HCrO, [60]. Hexavalent chromium is

excellently adsorbed by PAn and various composites, such as PAn/Zeolite [61] with these
ranges of pH.
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4. Conclusion

Some properties of the synthesized samples of polyaniline and samples of cellulose
composites with poly aniline, in which polyaniline was added during the synthesis of
formate, acetic, oxalic and citric acids (PAn-FA, PAn-AA, PAn-OA and PAn-CA) and
(Cel/PAN-FA, Cel/PAn-AA, Cel/PAn-OA and Cel/PAN-CA), respectively.

It is shown that electrically conductive films of PAn are formed on the surface of
Cel, which confirms the presence of dopant acid in the composition of PAnN.

The obtained samples of polyaniline and composites were used to study their
adsorption capacity in relation to chromium (VI1). It was found that the removal of Cr(VI)
samples PAn-FA, PAn-AA, PAn-OA and PAn-CA and samples Cel/PAn-FA,
Cel/PAN-AA, Cel/PAn-OA and Cel/PAn-CA occurs practically 98-100 %.

The adsorption kinetics are satisfactorily described by equations of pseudo first and
pseudo second kinetic orders. According to the research results, the Langmuir and
Freundlich isotherms are constructed. It was found that the process of adsorption of
chromium (V1) by PAn and Cel/PAn samples, in which PAn is supplemented with various
organic acids, is best consistent with the Langmuir adsorption model. It is shown that the
adsorbed chromium remains in the samples of adsorbents in the form of chromium (111).

The remarkable adsorption properties are shown by PAn-FA, Cel/PAn-FA, PAn-CA
and Cel/PAn-CA. Therefore, these properties of such samples can be used for efficient
absorption of Cr(VI) in drinking water.
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MOPIBHSIJILHUI AHAJII3 AJCOPBIIMHOI 3IATHOCTI CTOCOBHO Cr(VI)
MOJIIAHIIIHY TA KOMITO3UTIB LEJIOJIO3A/TTOJIAHLIIH,
CHHTE30BAHHUX YV BOJHUX PO3YNHAX OPTAHIYHUX KHCJIOT
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OxucHeHHsAM aHUIiHY (AH) amoHilnepokcoaucynbdatom (AIIC) y Bogaux 0,5 M po3umHax
(dopmiaTHOI, areraTHOl, OKcaJaTHOI Ta NUTPAaTHOI KHCIOT CHHTE30BAaHO 3pa3Ku IIOJIaHUIIHY,
JonoBaHoro B rmpoueci cuatesy umumu kucinotamu (ITAH-OK, ITAH-AK, [TAH-OK Ta ITAH-IIK). 3a
Ti€I0 XK METOAMKOIO TUTBKH 32 HAsBHOCTI cycnensii MikpodiOpuisipHoi BubineHoi nemomnosu (Lem)
CHHTE30BaHO 3Pa3KH KOMIIO3UTIB IIETIOJIO3H 3 MOJIaHUTIHOM, JONOBAaHUM Y IPOIECi CHHTE3y THMHU
camumu  kucnoramu  (Lle/TIAH-®K, Ien/TIAn-AK, Hen/TIAE-OK Tta  Len/ITAH-LIK).
CrisBigHomenHss AH : Llen cranoBwio 1:1 (r:1). CTpyKTypy OTpUMaHHUX 3pa3KiB JOCIIHKEHO 32
noromororo  X-mudpakuiiHoro, [Y—®II cnexTpansHOro aHami3iB, CKaHYBalbHOI ENEKTPOHHOL
MIKPOCKOIIii Ta eeKTPOIPOBIIHOCTI.

OTpuMaHi 3pa3kd MOJIAHUIIHY Ta KOMIIO3UTIB BHKOPHCTAHO ISl JOCHTI/DKEHHS I1XHBOI
ancop6uiitnoi crocoBHo xpom(VI) 3narHocti. {1 BUBYEHHs ancopOuii BUKOPHCTAHO €JIEKTPOHHY
criektpockonito (Y®-B cnektpu) Ta duyopecueHTHHIT peHTreHIBChKMI aHaii3. 3’scoBaHO, IO
sunanenns Cr(VI) spaskamu [TAH-®OK, [TAH-AK, [TAH-OK Ta ITAH-1IK Ta 3paskamu Llen/TTAH-OK,
Hen/TTAr-AK, Len/ITAB-OK Tta Len/IIAH-LIK BinOyBaeTscs nmpaktuuno Ha 98—-100 %.

Kinetnky amcopOrii 3a10BUTFHO OMUCAHO PIBHAHHAMHU IICEBIO-TIEPIIOTO Ta MCEBIO-APYTOTro
KIHSTHYHOTO TOPSAIKIB. 3a pe3yibTaTaMd JOCHIIKeHb IM0oOymoBaHO i30TepMu JleHTMIopa Ta
Opoiinanixa. BusnaueHo, mo npornec agcopouii xpom(VI) 3pazkamu [TAH Ta Len/T1AR, y skux [TAH
JIOTIOBAHUH PI3HUMH OPraHiYHUMH KHCIOTaMH, HAHKpaIe y3ro/KyeThCs 3 JICOPOLIHHOI0 MOJCIUTIO
Jlenrmropa. IToka3aHo, mo ancopOOBaHMIl XpOM 3aJMIIAETHCSA B 3pasKax aJCOpOEHTIB y BHIIIAII
xpom(III).

[TinTBeppKeHHsT ancopOLil XpoMy OCHIKYBaHHMH 3pa3kaMu 3pO0JEHO 3a JOIOMOTOI0
CJIEKTPOHHOI CIIEKTPOCKOMIi, (IyOpECIEHTHOTO PEHTICHIBCHKOTO aHajli3y Ta €HeproANCIepCiiHOTO
aHamizy.

Kniouoei cnosa: moniaHiniz, HE0I03a, KOMIIO3UTH, CTpYKTypa, XpoM( V1), ancopOrist.
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