ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63. С. 96–105 Visnyk of the Lviv University. Series Chemistry. 2022. Issue 63. Р. 96–105

УДК 548.315: 546.561:547.869.2

КУПРУМ(І) ГАЛОГЕНІДНІ КОМПЛЕКСИ З N,N'-ДИАЛІЛТІОМОРФОЛІНІЙ ХЛОРИДОМ: СИНТЕЗ ТА КРИСТАЛІЧНА СТРУКТУРА

А. Луба¹, О. Павлюк¹*, Є. Горешнік²

¹ Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

> ² Інститут Йожефа Стефана, вул. Ямова, 39, SI-1000 Любляна, Словенія e-mail: pavalex@gmail.com

Методом зміннострумного електрохімічного синтезу, на основі етанольних розчинів CuCl₂·2H₂O чи CuBr₂ і N,N'-диалілтіоморфоліній хлориду (C₄H₈NS(C₄H₅)₂Cl), отримано у вигляді монокристалів та рентгеноструктурно досліджено ізоструктурні σ-комплекси складу [C₄H₈NS(C₃H₅)₂Cu*Hal*₂]: просторова група P2₁/c, Z = 4, *Hal* = Cl (I) – *a* = 7,7763(4), *b* = 13,1892(5), *c* = 13,1761(6) Å, β = 103,470(5)°, *V* = 1314,2(1) Å³, $\rho_{oбч.}$ = 1,611 г/см³, μ (MoK_a) = 2,20 мм⁻¹, $\theta_{макс.}$ = 28,8°, 10141 виміряних рефлексів, 2659 використано, R(F²) = 0,032, S = 1,07; *Hal* = 1,04Br/0,96Cl (II) – *a* = 7,9771(3), *b* = 13,2391(5), *c* = 13,1422(5) Å, β = 103,942(4), *V* = 1347,1(1) Å³, $\rho_{oбч.}$ = 1,80 г/см³, μ (MoK_a) = 5,02 мм⁻¹, $\theta_{макс.}$ = 29,0°, 21269 виміряних рефлексів, 2772 використано, R(F²) = 0,027, S = 1,08. У кристалічній структурі досліджених сполук атоми купруму(I) перебувають у деформованому тригонально-пірамідальному координаційному оточенні з атома сульфуру гетероциклічного ліганду та трьох галогенід-іонів. Обидві алільні групи катіона N,N'-диалілтіоморфолінію некоординовані до атома металу.

Ключові слова: N,N'-диалілтіоморфоліній, купрум(І), о-комплекси, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6301.096

1. Вступ

Сполуки купруму віддавна привертають увагу як об'єкт для вивчення особливостей утворення координаційних сполук та широко використовують у промисловості та медицині [1–3].

Алілвмісні сполуки, в своєю чергою, цікаві не тільки своїм можливим промисловим використанням [4], а й як об'єкти для вивчення причин поліморфізму серед біологічно-активних субстанцій [5]. Нітроген- та сульфурвмісні гетероцикли, наприклад похідні тіоморфоліну, володіють високою фармакологічною активністю, включно з загальною антибактеріальною, специфічною антитуберкульозною, антималярійною, аналгетичною та антивірусною дією [6,7]. Також, введення тіоморфолінового ядра може корисно впливати на фізичні властивості органонеорганічних гібридних матеріалів [8–10].

У такому контексті, цікаво було б дослідити комплексоутворення Cu(I) з 1,3-диалілтіоморфолінієм, визначити та проаналізувати особливості побудови синтезованих сполук.

[©] Луба А., Павлюк О., Горешнік Є., 2022

2. Матеріали та методика експерименту

Вихідний N,N'-диалілтіоморфоліній хлорид синтезували згідно з методикою [11], використовуючи N-алілтіоморфолін як проміжний продукт. До 4,12 г (0,04 моль) розчину тіоморофіоліну ув ізопропанолі додавали 3,1 г (0,04 моль) свіжоперегнаного алілу хлористого та 2,36 г калій гідроксиду (0,04 моль), утворену реакційну суміш нагрівали зі зворотним холодильником та перемішуванням на магнітній мішалці впродовж 30 год. Взаємодія ізопропанольного розчину N-алілтіоморфоліну з розчином алілу хлористого (0,030 моль) у бензені під час нагрівання зі зворотним холодильником та перемішування на магнітній мішалці впродовж 50 год, приводила до утворення N,N'-диалілтіоморфоліній хлориду. Після випаровування розчинника отримано 0,017 моль кристалічної солі (вихід – 71 %).

Жовті призматичні кристали сполуки $[C_4H_8NS(C_3H_5)_2CuCl_2]$ (I) утворилися в умовах змінно-струмного електрохімічного синтезу через три доби зі спиртового розчину CuCl₂·2H₂O та N,N'-диалілтіоморфоліній хлориду. Під час використаня купрум(II) броміду, за тих самих експериментальних умов, упродовж п'яти діб у реакторі з'являлися практично безбарвні призматичні кристали комплексу $[C_4H_8NS(C_3H_5)_2CuCl_{0,96}Br_{1,04}]$ (II). Якість кристалів, приблизні параметри ґратки та дифракційний клас визначали з рентгенограм обертання та вайсенбергограм. Масив інтегральних інтенсивностей відбить для монокристалів сполук I–II отримано на монокристальному дифрактометрі Agilent Gemini A, обладнаному детектором Atlas CCD. Дифракційні дані опрацьовано за допомогою програми CrysAlisPro [12] (табл. 1). Структури розв'язано й уточнено з використанням програм SHELXT, SHELXL-2014 та відповідного графічного інтерфейсу програми OLEX2 [13–15]. Координати атомів і параметри теплового зміщення наведено в табл. 2, основні довжини зв'язків та валентні кути – у табл. 3.

3. Результати досліджень та їх обговорення

У кристалічній гратці досліджених сполук геометрія координаційних поліедрів атомів металу очікувано схожа, оскільки комплекси І та ІІ ізоструктурні (проекцію елементарної комірки наведено на рис. 1). До тригонально-пірамідального (т'4=0,86, [16]) координаційного оточення Cu(I), входять атоми Сульфуру катіона ліганду (відстань Cu-S становить 2,2832(6) для І та 2,2893(6) Å для ІІ) та три атоми галогену (Си-Hal становить 2,2819(6)-2,4403(6) Å для сполуки I (Hal = Cl) та 2,3646(4)-2,5202(4) Å для II (позиції *Hal* зайняті статистичною сумішшю атомів Хлору та Брому)). Атоми, що займають позицію *Hal*(2) виконують місткову функцію, з'єднуючи окремі координаційні тетраедри у димерні фрагменти $\{L_2Cu_2Hal_4\}$ (рис. 2). В межах димеру реалізуються металофільні взаємодії на віддалі Си...Си 3,180 та 3,135 Å у сполуці І та II, відповідно, величина яких формально розташована в межах, властивих для d¹⁰...d¹⁰ взаємодій [17], проте аналіз геометрії поліедрів Вороного-Діріхле (величина тілесного кута, що описує відповідну грань, становить лише 2,08 та 3,33 % [18, 19]) для атомів металу дає змогу зробити висновок, що такі взаємодії не мають помітного енергетичного внеску в побудову кристалічної структури.

Рис. 1. Проекція кристалічної структури досліджених комплексів на прикладі сполуки [C₄H₈NS(C₃H₅)₂CuCl₂] Fig.1. Projection of crystal structure of [C₄H₈NS(C₃H₅)₂CuCl₂]

Таблиця 1 Основні кристалографічні параметри та умови рентгенівського експерименту для сполук І та ІІ Table 1

Selected crystal data and structure refinement parameters of I and II compounds

	Ĩ	I	
Параметр	I*	II*	
1	2	3	
CCDC	2119435	2119434	
Брутто формула	C10H18NSCuCl2	C ₁₀ H ₁₈ NSCuBr _{1.04} Cl _{0.96}	
М, ат. од.	318,75	364,99	
Т, К	150	150	
Колір, форма	жовті	прозорі	
	призми	призми	
Дифрактометр	New Gemi	ni, Dual, Atlas	
Просторова група		$P2_1/c$	
a, Å	7,7763(4)	7,9771(3)	
b, Å	13,1892(5)	13,2391(5)	
<i>c</i> , Å	13,1761(6)	13,1422(5)	
α, °	90	90	
β, °	103,470(5)	103,942(4)	
γ, °	90	90	
$V, Å^3$	1314,2(1)	1347,1(1)	
Z	4		
$ρ_{004}$, Γ/cm ³	1,611	1,800	
F(000)	656	731	
λ, Å	0,71073	0,71073	
µ, мм-1	2,20	5,02	
hkl	-9 < h < 9	-10 < h < 10	
	-16 < k < 17	-17 < k < 18	
	-17 < 1 < 16	-17 < 1 < 17	

А. Луба, О. Павлюк, Є. Горешнік ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63

Закінчення табл. 1

1	2	3
Кількість відбить:		
виміряних	10141	21269
використано під час уточнення		
	2659	2772
$ heta_{ m Makc}$, град,	28,8	29,0
Кількість уточнених параметрів	136	154
Вагова схема**	0,0353	0,0231
$[\sigma^2(F_{\text{BUM.}}^2) + (AP)^2 + BP]^{-1}$	0,4288	0,5557
$R(F^2)$	0,032	0,027
$Rw(F^2)$	0,081	0,059
Goof	1.07	1.08

^{*}Основні характеристики структур депоновано у Кембриджську базу структурних даних. Копію цих даних можна отримати, заповнивши аплікаційну форму на сторінці https://www.ccdc.cam.ac.uk/structures, ** $P = (F_{\text{вим.}}^2 + 2F_{\text{обч.}}^2)$.

Цікавою особливістю структури досліджених сполук є відсутність координації атомів купруму з ненасиченим зв'язком C=C двох алільних груп катіона N,N'-диалілтіоморфолінію. Відомо невелику кількість комплексів Cu(I) з некоординованим атомом купруму(I) зв'язком C=C алільної групи. Серед циклічних органічних аналогів тіоморфоліну таке явище простежується лише у сполуках піперазину, наприклад, у сполуці $[C_4H_8N_2(C_3H_5)_4]CuCl_2$ [20], в якій некоординовані дві з чотирьох наявних C_3H_5 груп, а в $[C_4H_8N_2(C_3H_5)_4]CuBr_3$ [20] через стеричний вплив іонів Брому π -координації Cu–(C=C) взагалі немає.

Рис. 2. Будова топологічних одиниць $\{L_2Cu_2Hal_4\}$ для структур I–II Fig. 2. Topological units $\{L_2Cu_2Hal_4\}$ in the structures I–II

На нашу думку, така особливість побудови кристалічної структури сполук $[C_4H_8NS(C_3H_5)_2CuHal_2]$ обумовлюється як впливом конкуренції під час комплексоутворення в розчині між атомами Сульфуру та C=C зв'язку алільної групи катіона N,N'-диалілтіоморфолінію за координацію з Cu(I), так і перерозподілом електронної густини в кристалічній структурі сполук за рахунок водневих контактів C–H...*Hal* (табл. 4, рис. 3).

99

Рис. 3. Основні водневі контакти у структурі сполуки I Fig. 3. Main hydrogen contacts in structure of compound I

Габлиця 2 Координати атомів та їхні параметри теплових зміщень у структурах $[C_{10}H_{18}NSCuHal_2]$ (I та II) *Table 2*

Fractional atomic coordinates and thermal displacement parameters in the structures

Атом	x/a	y/b	z/c	$U_{\rm ekb}/U_{\rm i30.}$,Å ² *
1	2	3	4	5
		Ι		
Cu(1)	0,64453(4)	0,58219(2)	0,55007(2)	0,0219(2)
Cl(1)	0,75717(7)	0,59384(4)	0,72579(4)	0,0189(1)
Cl(2)	0,67685(7)	0,40845(4)	0,49360(4)	0,0181(1)
S(1)	0,69418(7)	0,70859(4)	0,44197(4)	0,0169(1)
N(1)	0,7564(2)	0,5637(1)	0,2543(10)	0,0149(4)
C(1)	0,8953(3)	0,6865(2)	0,3985(2)	0,0168(4)
H(1A)	0,9048	0,7366	0,3461	0,020*
H(1B)	0,9964	0,6948	0,4570	0,020*
C(2)	0,8991(3)	0,5815(1)	0,3531(2)	0,0150(4)
H(2A)	0,8855	0,5320	0,4051	0,018*
H(2B)	1,0138	0,5706	0,3378	0,018*
C(3)	0,5730(3)	0,5819(2)	0,2726(2)	0,0170(5)
H(3A)	0,4872	0,5734	0,2067	0,020*
H(3B)	0,5494	0,5302	0,3200	0,020*
C(4)	0,5447(3)	0,6851(2)	0,3168(2)	0,0164(4)
H(4A)	0,4239	0,6897	0,3244	0,020*
H(4B)	0,5613	0,7372	0,2680	0,020*
C(5)	0,7845(3)	0,6303(2)	0,1652(2)	0,0171(4)
H(5A)	0,7036	0,6088	0,1011	0,021*
H(5B)	0,7554	0,6997	0,1787	0,021*
C(6)	0,9692(3)	0,6272(2)	0,1499(2)	0,0231(5)
H(6)	1,0180	0,5650	0,1385	0,028*

А. Луба, О. Павлюк, Є. Горешнік ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63

		101
ļ	табл.	1

				Закінчення п
1	2	3	4	5
C(7)	1,0643(3)	0,7100(2)	0,15221(2)	0,0242(5)
H(7A)	1,0170	0,7727	0,1636	0,029*
H(7B)	1,1788	0,7060	0,1425	0,029*
C(8)	0,7700(3)	0,4518(2)	0,2287(2)	0,0199(5)
H(8A)	0,8899	0,4381	0,2229	0,024*
H(8B)	0,7493	0,4121	0,2866	0,024*
C(9)	0,6456(4)	0,4166(2)	0,1312(2)	0,0229(5)
H(9)	0,5246	0,4230	0,1251	0,027*
C(10)	0,7026(4)	0,3766(2)	0,0534(2)	0,0324(6)
H(10A)	0,8233	0,3698	0,0584	0,039*
H(10B)	0,6221	0,3552	-0,0065	0,039*
		Π		
Cu(1)	0,64371(3)	0,57856(2)	0,54923(2)	0,0224(1)
Hal(1)	0,75956(4)	0,58887(2)	0,73233(2)	0,0188(1)
Hal(2)	0,32219(3)	0,60033(2)	0,50819(2)	0,0190(1)
S(1)	0,69204(6)	0,70578(4)	0,44180(4)	0,0173(1)
N(1)	0,7554(2)	0,5647(1)	0,2526(1)	0,0145(4)
C(1)	0,8891(2)	0,6853(2)	0,3995(2)	0,0180(4)
H(1A)	0,8985	0,7361	0,3479	0,022*
H(1B)	0,9874	0,6930	0,4590	0,022*
C(2)	0,8939(2)	0,58190(15)	0,35252(16)	0,0164(4)
H(2A)	0,8810	0,5317	0,4038	0,020*
H(2B)	1,0061	0,5719	0,3378	0,020*
C(3)	0,5473(2)	0,68358(16)	0,31453(16)	0,0178(4)
H(3A)	0,4289	0,6877	0,3210	0,021*
H(3B)	0,5640	0,7361	0,2664	0,021*
C(4)	0,5763(2)	0,58163(15)	0,26969(17)	0,0170(4)
H(4A)	0,4928	0,5734	0,2031	0,020*
H(4B)	0,5535	0,5296	0,3166	0,020*
C(5)	0,7817(3)	0,63171(16)	0,16357(16)	0,0179(4)
H(5A)	0,7019	0,6108	0,0990	0,021*
H(5B)	0,7540	0,7008	0,1777	0,021*
C(6)	0,9613(3)	0,62847(17)	0,14835(17)	0,0228(5)
H(6)	1,0066	0,5669	0,1339	0,027*
C(7)	1,0569(3)	0,70987(19)	0,15485(18)	0,0253(5)
H(7A)	1,1650	0,7086	0,1422	0,033(7)*
H(7B)	1,0160	0,7760	0,1720	0,037(7)*
C(8)	0,7704(3)	0,45316(15)	0,22593(17)	0,0200(5)
H(8A)	0,8876	0,4404	0,2201	0,024*
H(8B)	0,7514	0,4129	0,2838	0,024*
C(9)	0,6488(3)	0,4182(2)	0,1276(2)	0,0227(5)
H(9)	0,5306	0,4253	0,1207	0,027*
C(10)	0,7034(4)	0,3779(2)	0,0509(2)	0,0333(6)
H(10A)	0,6290	0,3488	-0,0100	0,032(7)*
H(10B)	0.8210	0.3743	0.0480	0.032(7)*

* Для негідрогенових атомів $U_{e\kappa g} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* (\vec{a}_i \vec{a}_j)$, для H – U_{i30} .

**для II – Hal(1) – 0,51(1)Cl + 0,49(1)Br, Hal(2) – 0,55(1)Br + 0,45(1)Cl.

Таблиця 3

Table 3

Основні довжини зв'язків (d) та валентні кути (ω) у структурі сполук I та II

d, Å ω .° Зв'язок Кут Π Π T I 2,2819(6) 2,3646(4) Hal(1)-Cu(1)-Hal(2)ⁱ Cu(1)-Hal(1)111,52(2) 117,41(2) Cu(1)–*Hal*(2) 2,4403(6) 2,5071(4) Hal(1)-Cu(1)-Hal(2) 109,28(2) 108,36(2) Cu(1)-Hal(2)' 2,4335(6) 2,5202(4) Hal(1)-Cu(1)-S(1)120,20(2) 120,17(2) Cu(1) - S(1)2,2832(6) 2,3646(4) Hal(2)'-Cu(1)-Hal(2)98,54(2) 102,84(2) S(1)–C(1) 1,810(2) 1,810(2) S(1)-Cu(1)-Hal(2)97,41(2) 95,64(2) 117,41(2) S(1)-C(3) S(1)-Cu(1)-Hal(2) 1,809(2) 1,813(2) 116,8(1) 1,522(3) 1,523(3) N(1)-C(5) C(4)-S(1)-C(1)95,71(9) 95,9(1) C(5)-C(6)1,497(3) 1,494(3) C(8)-N(1)-C(5)111,0(2) 110,7(2) C(6)-C(7)1,316(3) 1,311(3) C(6)-C(5)-N(1) 113,7(2) 113,6(2) N(1)-C(8) 1,522(3) 1,529(3) C(7)-C(6)-C(5) 121,7(2) 122,0(2) C(8)–C(9) 1,492(3) 1,491(3) C(9)-C(8)-N(1) 115,4(2) 115,4(2) 1,317(3) C(9)-C(10) 1,305(3) C(10)-C(9)-C(8) 121,8(2) 121,9(2)

Selected bond distances (d) and valence angles (ω) in the I and II structures

Таблиця 4

Table 4

Основні геометричні характеристики водневих контактів е структурах І та ІІ

Selected hydrogen contacts in the I and II structures

D-HA	D−H, Å	H…A, Å	D…A, Å	D−H···A, °
		Ι		
$C(1)-H(1A)Hal(1)^{ii}$	0.97	2.83	3.6859(2)	148
C(2)-H(2A)Hal(2)	0.97	2.74	3.6217(2)	151
C(3)-H(3B)Hal(2)	0.97	2.78	3.6428(2)	148
C(4)–H(4B)Hal(1) ⁱⁱ	0.97	2.83	3.6869(2)	148
C(5)–H(5B)Hal(1) ⁱⁱ	0.97	2.79	3.7419(2)	167
$C(8)-H(8A)Hal(1)^{i}$	0.97	2.70	3.6352(2)	161
		II		
C(1)–H(1A)Hal(1) ⁱⁱ	0.97	2.85	3.7061(1)	148
C(2)–H(2)Hal(2) ⁱⁱⁱ	0.97	2.81	3.6964(1)	152
C(3)–H(3B)Hal(1) ⁱⁱ	0.97	2.89	3.7405(1)	147
C(4)–H(4B)Hal(2) ^{iv}	0.97	2.85	3.7204(1)	149
C(5)–H(5B)Hal(1) ⁱⁱ	0.97	2.87	3.8222(1)	166
C(8)–H(8A)Hal(1) ⁱ	0.97	2.76	3.6985(1)	163

(*i*) -x, -y, -z; (*ii*) x, 1/2-y, 1/2+z; (*iii*) 1-x, -y, -z; (*iv*) -1+x, y, z

4. Висновки

Отже, особливості будови катіона N,N'-диалілтіоморфолінію, а саме наявність атома сульфуру в гетероциклічному ядрі та перерозподіл електронної густини завдяки водневим контактам приводять до реалізації в структурі досліджених сполук ізольованих димерних топологічних одиниць $[(C_4H_8NS(C_3H_5)_2)_2Cu_2Hal_4].$

- Benesperi I., Singh R., Freitag M. Copper coordination complexes for energyrelevant applications // Energies. 2020. Vol. 13, No. 9. P. 2198. DOI: https://doi.org/10.3390/en13092198
- 2. *Richardson H. W.* Handbook of copper compounds and applications. CRC Press. 1997. 448 p.
- Krasnovskaya O., Naumov A., Guk D. et al. Copper coordination compounds as biologically active agents // Int. J. Mol. Sci. 2020. Vol. 21, No. 11. P. 3965. DOI: https://doi.org/10.3390/ijms21113965
- 4. *Baker R.* Pi-allylmetal derivatives in organic synthesis // Chem. Rev. 1973. Vol. 73, No. 5. P. 487–530. DOI: https://doi.org/10.1021/cr60285a004
- Fedyanin I. V., Samigullina A. I., Krutov I. A. et al. Structures of a phosphoryl derivative of 4-allyl-2,4-dihydro-3h-1,2,4-triazole-3-thione: an illustrative example of conformational polymorphism // Crystals. 2021. Vol. 11, No. 9. P. 1126. DOI: https://doi.org/10.3390/cryst11091126
- Marvadi S. K., Krishna V. S., Sriram D. et al. Synthesis of novel morpholine, thiomorpholine and n-substituted piperazine coupled 2-(thiophen-2yl)dihydroquinolines as potent inhibitors of mycobacterium tuberculosis // Eur. J. Med. Chem. 2019. Vol. 164, P. 171–178. DOI: https://doi.org/10.1016/j.ejmech.2018.12.043
- Choudhary S., Silakari O., Singh P. K. Key updates on the chemistry and biological roles of thiazine scaffold: a review // Mini-Reviews Med. Chem. 2018. Vol. 18, No. 17. P. 1452–1478.
 DOL: https://doi.org/10.2174/1280557518666180416150552

DOI: https://doi.org/10.2174/1389557518666180416150552

- Wei W.-J., Gao H.-Q., Li L.-S. et al. Lead-free antimony-based halides bis(thiomorpholine) pentachloroantimonate(III) monohydrate // J. Mol. Struct. 2021. Vol. 1227. P. 129681. DOI: https://doi.org/10.1016/j.molstruc.2020.129681
- Ristić P., Filipović N., Blagojević V. et al. 2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior // CrystEngComm. 2021. Vol. 23, No. 27. P. 4799–4815. DOI: https://doi.org/10.1039/D1CE00394A
- Ganjali M. R., Asgari M., Faridbod F. et al. Thiomorpholine-functionalized nanoporous mesopore as a sensing material for Cd2+ carbon paste electrode // J. Solid State Electrochem. 2010. Vol. 14, No. 8. P. 1359–1366. DOI: https://doi.org/10.1007/s10008-009-0937-8
- 11. *Вейганд К., Хильгетаг Г.* Методы эксперимента в органической химии : пер. с нем. под ред. Суворова Н. Н. Москва: Химия, 1968. 944 с.
- 12. CrysAlisPro 1.171.38.34a (Rigaku OD, 2015).
- Sheldrick G. M.SHELXT integrated space-group and crystal-structure determination // Acta Cryst. A. 2015. Vol. 71, No. 1. P. 3–8. DOI: https://doi.org/10.1107/S2053273314026370
- 14. Sheldrick G. M. Crystal structure refinement with Shelxl // Acta Cryst. C. 2015. Vol. 71, No. 1. P. 3–8. DOI: https://doi.org/10.1107/S2053229614024218
- Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. OLEX2: a complete structure solution, refinement and analysis program // J. Appl. Crystallogr. 2009. Vol. 42, No. 2. P. 339–341. DOI: https://doi.org/10.1107/S0021889808042726

- Yang L., Powell D. R., Houser R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4 // Dalt. Trans. 2007. No. 9. P. 955–964. DOI: https://doi.org/10.1039/B617136B
- Carvajal M. A., Alvarez S., Novoa J. J. The nature of intermolecular CuI···CuI interactions: a combined theoretical and structural database analysis // Chem. Eur. J. 2004. Vol. 10, No. 9. P. 2117–2132. DOI: https://doi.org/10.1002/chem.200305249
- Blatov V. A. Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications // Crystallogr. Rev. 2004. Vol. 10, No. 4. P. 249–318. DOI: https://doi.org/10.1080/08893110412331323170
- Fedorov A. V., Shamanaev I. V. Crystal structure representation for neural networks using topological approach // Mol. Inform. 2017. Vol. 36, No. 8. P. 1600162. DOI: https://doi.org/10.1002/minf.201600162
- Goreshnik E. A., Mys'kiv M. G. Synthesis and structural features of copper(I) chloride and bromide complexes with the N,N,N,N -tetraallylpiperasinium cation (L2+) of compositions L2+[CuCl2]2- and L2+[CuBr3]2- // Russ. J. Coord. Chem. 2003. Vol. 29, No. 12. P. 871–876.

DOI: https://doi.org/10.1023/B:RUCO.0000008400.19909.1d

COPPER(I) HALIDE COMPLEXES WITH N,N'-DIALLYLTHIOMORPHOLINIUM CHLORIDE: SYNTHESIS AND CRYSTAL STRUCTURE

A. Luba¹, O. Pavlyuk¹*, E. Goreshnik²

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine

² Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia e-mail: pavalex@gmail.com

By means of alternating current electrochemical technique, basing on ethanolic solutions of CuCl₂·2H₂O or CuBr₂ and N,N'-diallylthiomorpholinium chloride, the two isostructural σ -complexes of [C₄H₈NS(C₃H₅)₂Cu*Hal*₂] composition were obtained in a single crystal form and characterized by X-ray single crystal method: sp. gr. *P*2₁/*c*, Z = 4, *Hal* = Cl (I) – *a* = 7.7763(4), *b* = 13.1892(5), *c* = 13.1761(6) Å, β = 103.470(5)°, *V* = 1314.2(1) Å³, $\rho_{calc.}$ = 1.611 g/cm³, μ (MoK_{α}) = 2.20 mm⁻¹, $\theta_{max.}$ = 28.8°, 10141 measured, 2659 used reflections, *R*(*F*²) = 0.032, *S* = 1.07; *Hal* = 1,04Br/0,96Cl (II) – *a* = 7.9771(3), *b* = 13.2391(5), *c* = 13.1422(5) Å, β = 103.942(4), *V* = 1347.1(1) Å³, $\rho_{calc.}$ = 1.80 g/cM³, μ (MoK_{α}) = 5.02 mm⁻¹, $\theta_{max.}$ = 29.0°, 21269 measured, 2772 used reflections, *R*(*F*²) = 0.027, *S* = 1.08.

In the crystal structure of the studied compounds, the trigonal-pyramidal coordination environment of Cu(I) includes sulfur atoms of the organic cation and three chloride anions (compound I) or chloride/bromide mixture (compound II). Atoms occupying position Hal(2)perform a bridging function and connect individual coordination polyhedrons into dimeric topological units {L₂Cu₂*Hal*₄}. These dimers through hydrogen bonding are linked into a threedimensional framework. None of the available allylic groups of the N,N'-diallylthiomorpholinium cation are coordinated to the copper(I) ion. In our opinion, this feature of the discussed crystal structure of [(C₄H₈NS(C₃H₅)₂)Cu*Hal*₂] compounds is explained by the influence of competition between the sulfur atom and the C=C bond of the allyl group of the cation during complexation in solution and the redistribution of electron density in the crystal structure of solid compounds due to hydrogen contacts C–H...*Hal*.

Keywords: N,N'-diallylthiomorpholinium; copper(I); σ-complexes; crystal structure.

Стаття надійшла до редколегії 01.11.2021 Прийнята до друку 10.06.2022