ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63. С. 88–95 Visnyk of the Lviv University. Series Chemistry. 2022. Issue 63. P. 88–95

УДК 546.3-866.711.682

КРИСТАЛІЧНА СТРУКТУРА СПОЛУКИ ScCo₂Si₂: МОНОКРИСТАЛЬНЕ ДОСЛІДЖЕННЯ

Б. Котур^{*}, В. Бабіжецький

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: bohdan.kotur@lnu.edu.ua

Уперше проведено повне структурне дослідження монокристала сполуки ScCo₂Si₂, що належить до структурного типу CeGa₂Al₂, символ Пірсона tI10, просторова група I4/mmm (№ 139), періоди елементарної комірки a=3,7775(3) c=9,6208(11) Å. Сплави в околі складу ScCo₂Si₂ виготовляли шляхом електродугової плавки наважок вихідних компонентів в атмосфері аргону з наступною гомогенізацією у запаяних під вакуумом кварцових ампулах при 800 °С упродовж 350 год. Х-променеві дифракційні дані одного з нерегулярно огранених монокристалів отримано за температури 300(2) К за допомогою монокристального дифрактометра Bruker D8 Venture з монохроматизованим ΜοΚα-випромінюванням. Структуру уточнено за допомогою програми SHELXL, версія 2018/3 (повноматричний МНК з анізотропними тепловими параметрами атомів), R1 = 0.0247, wR2 = 0.0614 для 57 рефлексів з $I_o > 2\sigma(I_o)$ та восьми уточнюваних параметрів. Координати атомів: 2Sc у 2a 0 0 0; 4Co у 4d 0 1/2 1/4; 4Si y 4e 0 0 z, z=0.3776(2). Координаційні числа атомів Sc, Co та Si, відповідно, дорівнюють 20, 12 та 9. Міжатомні віддалі, за винятком Со-Si, є більшими від суми металічних радіусів відповідних атомів. Віддалі Co-Si (2,2525(9) Å) свідчать про суттєву взаємодію між Co та Si у структурі. Відомі сьогодні три тернарні сполуки скандію ScM₂Si₂ (M= Co, Ni, Cu) є членами повних ізоструктурних з CeGa₂Al₂ рядів RM₂Si₂ (R=P3E) сполук. Проведено кристалохімічний аналіз сполук скандію стехіометричного складу ScM₂X₂ (М=d-елемент; Х=p-елемент). Скандій посідає особливе місце серед інших РЗЕ та виявляє кристалохімічну спорідненість як з РЗЕ, так і з Zr та Hf.

Ключові слова: тернарні силіциди, рідкісноземельні елементи, монокристал, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6301.088

1. Вступ

У ряду рідкісноземельних елементів (РЗЕ) скандій посідає особливе місце і відрізняється від інших РЗЕ найменшим значенням атомного радіуса (1,64 Å), у той час як інші представники цього ряду мають значення від 1,74 (Lu) до 2,02 Å (Eu) [1]. Цей фактор суттєво впливає на металохімію скандію, його сплавів та інтерметалічних сполук (IMC). Він посідає проміжне місце між рідкісноземельними і 4А-елементами Zr і Hf, що мають близькі до Sc атомні радіуси (r_{Zr} =1,60 Å, r_{Hf} =1,59 Å) [2]. У подвійних системах R–M (R=P3E; M=P3E, 4А-елемент) лише скандій утворює неперервні ряди твердих розчинів як з іншими РЗЕ, так і з 4А-елементами. Це саме стосується бінарних і тернарних IMC: він утворює сполуки, ізоструктурні до сполук інших РЗЕ, а також до сполук цирконію та гафнію [2].

[©] Котур Б., Бабіжецький В., 2022

З понад 10 тис. відомих сьогодні інтерметалічних сполук, що кристалізуються у понад 500 структурних типах, найчастіше трапляються сполуки простих стехіометричних складів: 1:1, 1:2, 2:1, 3:1, 1:1:1, 2:1:1, 1:2:2, 2:1:2 та ін. За даними Pearson's Crystal Data [3], серед інтерметалідів найчастіше зустрічаються сполуки типів MgCu₂, cF24,227 - 1 167 cucrem; NaCl, cF8,225 - 1 065; CeGa₂Al₂ (ThCr₂Si₂), t/10,139 - 981; TiNiSi, *оP*12,62 – 793; Cu, *cF*4,225 – 788; ZrNiAl, *hP*9,189 – 684. До наведених структурних типів (СТ) належать також 19 сполук скандію (СТ TiNiSi), 14 (СТ ZrNiAl), 9 (СТ MgCu₂), 3 (СТ CeGa₂Al₂). Серед ~500 ІМС скандію структурний тип CeGa₂Al₂ має лише три представники – сполуки ScCo₂Si₂, ScNi₂Si₂, ScCu₂Si₂ й посідає 40-ве місце серед структурних типів інтерметалідів скандію [2]. Відомості про синтез сполук ScCo₂Si₂ та ScNi₂Si₂ повідомили автори [4], вивчаючи окремі сплави різних РЗЕ на **V**ТВОрення тернарних сполук, ізоструктурних типові предмет CeGa₂Al₂. опублікованому у [5]. СТ СеGa₂Al₂ кристалізується у просторовій групі І4/тт, 2Се займають положення 2a 0 0 0; 4Ga в 4d 0 ¼ ½; 4Si в 4e 0 0 z. Незалежно від групи учених з Львівського університету ідентичний структурний тип також опублікували дослідниками Загребського університету на прикладі силіциду ThCr₂Si₂ [6]. Тому в науковій літературі цей структурний тип позначають CeGa₂Al₂ або ThCr₂Si₂ (зазвичай у закордонних виданнях). Структура тернарної сполуки $CeGa_2Al_2 \in$ надструктурою до бінарного структурного типу BaAl₄, просторова група *I*4/*mmm* [7]. Вона утворюється за упорядкованого заміщення у структурі BaAl₄ положень 2d і 4e атомів Al, відповідно, атомами Ga i Al. Атоми Се займають положення Ва.

Автори [5] повідомили про належність структури двох згаданих вище сполук ScCo₂Si₂ та ScNi₂Si₂ до типу CeGa₂Al₂ і навели їхні періоди елементарних комірок (див. табл. 1), координати атомів не уточняли. Під час систематичного вивчення фазових рівноваг систем Sc-M-Si (M=Co, Ni) обидві тернарні сполуки ScCo₂Si₂ та ScNi₂Si₂ підтверджено [8, 9]. Пізніше [10] уточнено періоди комірок тернарних силіцидів. Ці дані наведено у табл. 1.

Третю відому ізоструктурну сполуку синтезовано в [11], а в праці [12] вивчено фазові рівноваги з її участю у системі Sc-Cu-Si. Для сполуки проведено повне структурне уточнення: періоди комірки (див. табл. 1), координати та теплові параметри атомів у структурі.

Для сполук ScM₂Si₂ (M=Co, Ni, Cu) не виявлено помітних областей гомогенності, вони кристалізуються за постійного складу [2, 8, 9, 12]. Для сполук вивчено Х-променеві спектри та електронну структуру [10, 13].

Нещодавно ми отримали монокристали нового тернарного силіциду $Sc_{12}Co_{41.8}Si_{30.2}$ і провели його повне структурне дослідження [14]. Сполука кристалізується у новому структурному типі: *hP*168, просторова група *P6/mmm*, *a*=17,291(1), *c*=8,0293(8) Å. Вивчаючи сплави у прилеглих областях навколо цієї фази, ми отримали також монокристал сполуки $ScCo_2Si_2$ та провели її повне структурне дослідження. Як бачимо у табл. 1 це — перше монокристальне дослідження представників структурного типу CeGa₂Al₂ серед відомих інтерметалідів скандію. Ці результати наведено у цій праці.

Таблиця 1

Деякі дані про тернарні сполуки ScM₂Si₂ (M=Co, Ni, Cu) зі структурою типу CeGa₂Al₂ (символ Пірсона *tl* 10, пр. група *I*4/*mmm* (№ 139))

Table 1

Some data for the ternary ScM₂Si₂ (M=Co, Ni, Cu) compounds with the structure of CeGa₂Al₂ (Pearson's symbol *tI*10, space group *I*4/*mmm* (No 139))

Сполука	Періоди комірки, Å		Характеристика умов	Літера-	
	а	С	c/a	дослідження	тура
ScCo ₂ Si ₂	3,72	9,51	2,56	порошкові дані, фотометод	4
	3,7756(4)	9,598(1)	2,54	порошкові дані,	8, 9
	3,7775(3)	9,6208(11)	2,55	дифрактометр ДРОН-2,0	*
				монокристальні дані,	
				дифрактометр	
ScNi ₂ Si ₂	3,72	9,50	2,55	порошкові дані, фотометод	4
	3,8018(4)	9,567(1)	2,51	порошкові дані,	10, 9
				дифрактометр ДРОН-2,0	
ScCu ₂ Si ₂	3,810(1)	10,091(3)	2,65	порошкові дані,	11, 12
				дифрактометр ДРОН-2,0	

* Наші дані.

2. Матеріали та методика експерименту

Сплави в околі складу ScCo₂Si₂ виготовляли шляхом електродугової плавки наважок вихідних компонентів на охолоджуваному водою мідному поді в атмосфері аргону. Вихідними компонентами були скандій (чистота 99,9 %), електролітичний кобальт (99,92) і полікристалічний силіцій (99,99). Для кращої гомогенізації сплави переплавляли двічі. Відхилення маси виготовлених зразків не перевищувало 1 % маси вихідних компонентів. Зразки гомогенізували у запаяних під вакуумом кварцових ампулах при 800 °С упродовж 350 год. Після відпалу ампули гартували у холодній воді без їх розбивання.

Монокристали для структурного дослідження відбирали під мікроскопом з розбитих одержаних сплавів. Х-променеві дифракційні дані одного з нерегулярно огранених монокристалів отримано за температури 300(2) К за допомогою монокристального дифрактометра Bruker D8 Venture з монохроматизованим Мо*К*α-випромінюванням. Характеристики зйомки подано у табл. 2.

Для підтвердження кількісного елементного складу фаз використовували метод енергодисперсійної Х-променевої спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопом Tescan Vega 3 LMU, обладнаним детектором Oxford Si-detector X-Max N 60 LTE. Точність вимірювань ЕДРС аналізу становить 1 ат. % визначуваного елемента. Результати ЕДХ аналізу добре узгоджуються із даними X-променевого аналізу та подано на рис. 1.

Рис. 1. Фотографії мікрошліфів зразків $Sc_{15}Co_{45}Si_{40}(a)$ та $Sc_{14}Co_{38}Si_{48}(b)$. Фазовий склад узгоджено за результатами Х-променевого аналізу та ЕДХ Fig. 1. Backscattered electron image of the annealed bulk samples: $Sc_{15}Co_{45}Si_{40}(a)$ and $Sc_{14}Co_{38}Si_{48}(b)$. Phase composition is in accordance with the XRD and EDX data

Таблиця 2

Характеристика X-променевої зйомки монокристала $ScCo_2Si_2$ та уточнення його кристалічної структури

		Table 2
Single crystal and X-ray structure refineme	ent data for ScCo ₂ Si ₂	
Емпірична формула	$ScCo_2Si_2$	
Сингонія	тетрагональна	
Просторова група	14/mmm (No. 139)	
Символ Пірсона, Z	<i>tI</i> 10, 2	
Параметри елементарної комірки		
a, Å	3,7775(3)	
<i>c</i> , Å	9,6208(11)	
Об'єм елементарної комірки, Å ³	137,28(3)	
Розрахована густина, г/см ³	5,298	
Коефіцієнт абсорбції, 1/см	14,860	
Розмір кристала, мм ³	0.11×0.03×0.06	
Випромінювання, довжина хвилі, λ, Å	ΜοΚα, 0,71073	
Дифрактометр	Bruker D8 Venture	
Уточнювані параметри	8	
Уточнення	F^2	
$2\theta_{\text{Make}}$ ta $(\sin\theta/\lambda)_{\text{Max}}$	61,05; 0,715	
h, k, l	$-4 \le h \le 5$	
	$-5 \le k \le 5$	
	$-13 \le l \le 12$	
Спостережені рефлекси	385	
Незалежні рефлекси	63	
Рефлекси з $I_0 \ge 2\sigma(I_0)$	57	
Кінцевий індекс R ₁ (R ₁ усі рефлекси)	0,0247 (0,0273) ^{a)}	
Зважений індекс wR_2 (wR_2 усі рефлекси)	0,0614 (0,0597) ⁶⁾	
S sa F^2	1,164	
Найбільший максимум/мінімум різницевої	0,52/-0,66	
електронної густини, $e Å^{-3}$		

^{a)} $R_1(F) = [\Sigma(|F_o| - |F_c|)] / \Sigma[F_o].$ ^{b)} $wR_2(F^2) = [\Sigma[w(F_o^2 - F_c^2)^2 / \Sigma[w(F_o^2)^2]]^{1/2}; [w^{-1} = \sigma^2(F_o)^2 + (0.0310P)^2 + 0.5726P], \text{ ge } P = (F_o^2 + 2F_c^2) / 3.$

3. Результати досліджень та їх обговорення

Початкові атомні параметри у тетрагональній елементарній комірці отримано за допомогою прямих методів з використанням програми SIR 97 [15]. Структуру уточнено за допомогою програми SHELXL [16], версія 2018/3 (повноматричний МНК з анізотропними тепловими параметрами атомів) (див. табл. 2). Отримані результати підтвердили для ScCo₂Si₂ структуру типу CeGa₂Al₂ з упорядкованим розташуванням атомів Sc, Co та Si у положеннях 2a, 4d та 4e, відповідно. Фінальний розрахунок різницевої електронної густини у структурі виявив дуже незначні максимуми (мінімуми) зі значеннями 0,52 (-0,66) е Å 3. Кінцеві значення координат та теплових параметрів зміщення атомів подано у табл. 3, а міжатомні віддалі у структурі – у табл. 4.

Таблиия 3

Координати та теплові параметри зміщення^а (Å²) атомів у структурі ScCo₂Si₂

Table 3

Atomic coordinates and displacement parameters^a (Å²) in the structure of ScCo₂Si₂

Atom	Site	x	у	z	$U_{ m eq}/U_{ m iso}$	U_{11}	U_{22}	U_{33}
Sc	2a	0	0	0	0.0076(6)	0.0072(7)	0.0072(7)	0.0083(7)
Co	4d	0	1/2	1/4	0.0055(5)	0.0052(5)	0.0052(5)	0.0062(6)
Si	4e	0	0	0.3776(2)	0.0061(5)	0.0063(6)	0.0063(6)	0.0057(8)
${}^{a}U_{22} = U_{12} = U_{12} = 0$								

Таблиця 4

Міжатомні віддалі (Å) у структурі ScCo₂Si₂

Table 4

Interatomic distances (Å) in the structure of ScCo₂Si₂

Sc-8Si	2,9193(7)	Si - 4 Co	2,2525(9)	
– 8 Co	3,0582(2)	- Si	2,356(3)	
-4 Sc	3,7775(3)	-4 Sc	2,9193(7)	
Co - 4 Si	2,2525(9)			
- 4 Co	2,6711(2)			
-4 Sc	3,0582(2)			

Різні за розмірами атоми у структурі характеризуються різними значеннями координаційних чисел – 20 (атоми Sc), 12 (Со), 9 (Si). Координаційний многогранник (КМ) найбільших атомів Sc – 20-вершинник [ScSc₄Co₈Si₈] з 16 трикутними та 12 чотирикутними гранями. КМ атомів Со – деформований кубооктаедр [CoSc₄Co₄Si₄]. Найближчі сусіди атомів Si – 4Sc та 4Co – утворюють тетрагональну антипризму, квадратну грань якої, утвореної чотирма атомами Sc, центрує атом Si. Разом вони формують дев'ятивершинник складу [SiSc₄Co₄Si]. Структуру ScCo₂Si₂ загалом можна описати як побудовану з шарів антипризм [SiSc₄Co₄], повернутих і зсунутих один відносно іншого і накладених уздовж осі z так, щоб кожна верхня антипризма дотикалась до чотирьох нижніх. Укладку антипризм [SiSc₄Co₄] ілюструє рис. 2. Варто зазначити, що подібний фрагмент структури ScCo₂Si₂ (CeGa₂Al₂) часто трапляється як фрагмент у структурах багатьох складніших гібридних структурних типів інтерметалічних сполук, наприклад, Sc₅Co₄Si₁₀ (*tP*38), ScNiSi₃ (*oS*20), ScNi₂Si₃ (*tI*24) та ін. [2].

Міжатомні віддалі у структурі ScCo₂Si₂, за винятком Co–Si, є більшими від суми металічних радіусів відповідних атомів ($r_{Sc} = 1,64$ Å, $r_{Co} = 1,25$ Å, $r_{Si} = 1,17$ Å). Віддалі Co–Si мають значення 2,25 Å і є меншими від суми радіусів атомів (2,42 Å), що свідчить про суттєву взаємодію між Co i Si у структурі. Такі самі особливості виявлено й для двох інших ізоструктурних силіцидів скандію ScCu₂Si₂ [11] та ScNi₂Si₂ [13]. Як з'ясовано у [13], основна зв'язуюча смуга Х-променевих спектрів силіцидів ScM₂Si₂ формується *p*-станами Si та *p*-станами 3*d*-елементів M (M=Co, Ni, Cu), які й утворюють напрямлені зв'язки M–Si ковалентного типу.

Сполуки скандію ScM₂Si₂ (M=Co, Ni, Cu) є членами повних ізоструктурних з CeGa₂Al₂ рядів RM₂Si₂ (R=P3E) сполук [3]. РЗМ утворюють також багато інших рядів ізоструктурних сполук, які не є повними [3]. Найчастіше відсутні або не ізоструктурні з іншими РЗМ сполуки скандію. Наприклад, у ряді RFe₂Si₂, ізоструктурному з CeGa₂Al₂, сполука ScFe₂Si₂ відсутня. Вона кристалізується у структурі типу HfFe₂Si₂, *оP*20, просторова група *Pbcm*, *a*=7,5002; *b*=7,1375; *c*=5,0224 Å [17, 18], що має на відміну від типу CeGa₂Al₂ лише два відомі представники: HfFe₂Si₂ та ScFe₂Si₂ і не трапляється серед сполук жодного іншого РЗЕ. Цей приклад ілюструє особливе місце скандію серед інших РЗЕ. У праці [2] проведено кристалохімічний аналіз понад 500 бінарних і тернарних інтерметалідів скандію, що підтверджує кристалохімічну спорідненість скандію як з РЗЕ, так і з Zr та Hf.

Рис. 2. Укладка шарів тетрагональних антипризм [SiSc₄Co₄] у структурі ScCo₂Si₂ (проєкція уздовж 010) Fig. 2. Stacking of layers of tetragonal antiprisms [SiSc₄Co₄] in the structure of ScCo₂Si₂ in the projection along 010

4. Висновки

Уперше проведено повне структурне дослідження монокристала сполуки $ScCo_2Si_2$, що належить до структурного типу $CeGa_2Al_2$, символ Пірсона *tI*10,139, просторова група *I4/mmm*, періоди елементарної комірки *a*=3,7775(3) *c*=9,6208(11) Å. Координати атомів: 2Sc y 2*a* 0 0 0; 4Co y 4*d* 0 1/2 1/4; 4Si y 4*e* 0 0 *z*, *z*=0,3776(2).

Відомі сьогодні три тернарні сполуки скандію ScM₂Si₂ (M= Co, Ni, Cu) є членами повних ізоструктурних з CeGa₂Al₂ рядів RM₂Si₂ (R=P3E) сполук. Проведено кристалохімічний аналіз сполук скандію стехіометричного складу ScM₂X₂ (M=*d*-елемент; X=*p*-елемент). Скандій посідає особливе місце серед інших P3E та виявляє кристалохімічну спорідненість як з P3E, так і з Zr та Hf.

- 1. Bokii G. B. Crystal Chemistry. Moscow: Nauka, 1971. 400 p. (in Russian).
- Kotur B. Ya., Gratz E. Scandium alloy systems and intermetallics. In: Handbook on the Physics and Chemistry of Rare Earths. Eds. K. A. Gschneidner, Jr. and L.-R. Eyring. Vol. 27, Ch. 175. 1999. Amsterdam: Elsevier Science B.V. P. 339–533. DOI: https://doi.org/10.1016/S0168-1273(99)27006-7
- 3. Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds. Eds. P. Villars, K. Cenzual. ASM International, Materials Park, Ohio, USA, 2018/19. Release.
- Voroshilov Yu. V., Markiv V. Ya., Gladyshevsky E. I. System zirconium–nickel–silicon // Izvestiya Akad. Nauk SSSR. Neorgan. Mater. 1967. Vol. 3. P. 1404–1408 (in Russian). Inorg. Mater. 1967. Vol. 3. P. 1224–1226.
- Zarechnyuk O. S., Kripyakevich P. I., Gladyshevsky E. I. Ternary intermetallic compounds with the superstructure to the BaAl₄ type // Kristallografiya. 1964. Vol. 9. P. 835–838 (in Russian).
- Ban Z., Sikirica M. The crystal structure of ternary silicides ThM₂Si₂ (M=Cr, Mn, Fe, Co, Ni and Cu) // Acta Crystallogr. 1965. Vol. 18. P. 594–599. DOI: https://doi.org/10.1107/S0365110X6500141X
- 7. Andress K. R., Alberti E. X-ray investigation of Aluminum-Barium alloys // Z. Metallkd. 1935. Vol. 27. P. 126–128.
- 8. *Kotur B. Ya., Bodak O. I., Gladyshevsky E. I.* The system scandium–cobalt–silicon // Dopov. Akad. Nauk Ukr. RSR, Ser. A. 1977. No. 7. P. 664–666 (in Ukrainian).
- 9. *Bodak O. I., Kotur B. Ya., Gladyshevsky E. I.* The system scandium–nickel–silicon // Dopov. Akad. Nauk Ukr. RSR, Ser. A. 1976. No. 7. P. 656–659 (in Ukrainian).
- Kotur B. Ya., Dobrianskaya L. O., Shcherba I. D. Crystal and electronic structure of ternary silicides od scandium // V-th All-Unian Conference on Crystal Chemistry of Intermetallic Compounds, Lvov, 17–19 October, 1989. Abstracts. P. 161 (in Russian).
- 11. *Kotur B. Ya.* Crystal structure of ScCu₂Si₂ // Vestnik Lvov Uni. Ser. Chem. 1984. Iss. 25. P. 20–21 (in Russian).
- 12. *Kotur B. Ya., Litvinko N. Z., Bodak O. I.* System scandium–copper–silicon // Dopov. Akad. Nauk Ukr. RSR. Ser. B. 1985. No. 1. P. 34–36 (in Ukrainian).
- Shcherba I. D., Antonov V. M., Kotur B. Ya. X-ray emission spectra and electron structure of RM₂Si₂ (R=Sc, Y; M=Fe, Co, Ni, Cu) compounds // J. Alloys Compd. 1996. Vol. 242. P. 58–65. DOI: https://doi.org/10.1016/0925-8388(96)02335-3
- Kotur B., Babizhetskyy V., Smetana V., Zheng C., Mudring A.-V. Crystal and electronic structures of the new ternary silicide Sc₁₂Co_{41.8}Si_{30.2} // J. Solid State Chem. 2021. Vol. 302. 122373 (11 p.). DOI: https://doi.org/10.1016/j.jssc.2021.122373
- Altomare A., Burla M. C., Camalli M., Cascarano G. L., Giacovazzo C., Guagliardi A., Moliterni A. G. G., Polidori G., Spagna R. SIR97: a new tool for crystal structure determination and refinement // J. Appl. Crystallogr. 1999. Vol. 32. P. 115–119. DOI: https://doi.org/10.1107/S0021889898007717

- 16. *Sheldrick G. M.* Crystal structure refinement with SHELXL // Acta Crystallogr. 2015. Vol. C71. P. 3–8. DOI: https://doi.org/10.1107/S2053229614024218
- 17. *Gladyshevsky E. I., Kotur B. Ya., Bodak O. I., Skvorchuk V. P.* System scandium–iron– silicon // Dopov. Akad. Nauk Ukr. RSR. Ser. A. 1977. No. 8. P. 751–754 (in Ukrainian).
- Kotur B. Ya., Cerny R., Pacheko J. V., Yvon K. Refinement of the crystal structure of scandium diiron disilicide, ScFe₂Si₂ // Z. Kristallogr. 1997. Vol. 212. P. 289. DOI: https://doi.org/10.1524/ncrs.1997.212.1.289

CRYSTAL STRUCTURE OF THE COMPOUND ScC0₂Si₂: SINGLE CRYSTAL INVESTIGATION

B. Ya. Kotur^{*}, V. S. Babizhetskyy

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: bohdan.kotur@lnu.edu.ua

For the first time, the complete single crystal structure study of the compound ScCo₂Si₂ was performed. It belongs to the CeGa₂Al₂ structure type, Pearson's symbol t/10,139, space group I4/mmm, lattice parameters a=3.7775(3) c=9.6208(11) Å. The compound was prepared by arc-melting of the initial elements with the purity of not less than 99.9 % under argon followed by annealing in silica tubes at 800 °C for 350 h. Single crystals for structural examination were selected under a microscope from the broken alloys obtained. X-ray diffraction data of one of the irregularly faceted single crystals obtained at a temperature of 300(2) K by means of single crystal X-ray diffractometer Bruker D8 Venture with monochromatized MoK α -radiation. The structure is refined using the program SHELXL, version 2018/3 (full-matrix least-squares refinement with anisotropic atomic parameters), $R_1 = 0.0247$, $wR_2 = 0.0614$ for 57 unique reflections with $I_o > 2\sigma(I_o)$ and 8 refined parameters. Coordinates of atoms are the following: 2Sc at 2a 0 0 0; 4Co at 4d 0 1/2 1/4; 4Si at 4e 0 0 z, z=0.3776(2). Coordination numbers of Sc, Co and Si atoms are 20, 12 and 9, respectively. The interatomic distances, with the exception of Co-Si, are longer than the sum of the metal radii of the corresponding atoms. Co-Si distances (2.2525(9) Å) are smaller than the sum of the radii of these atoms (2.42 Å) and indicate a significant interaction between Co and Si in the structure. Currently known three scandium ternary compounds ScM2Si2 (M=Co, Ni, Cu) are members of complete series of compounds RM2Si2 (R=rare earths) isotypic with CeGa₂Al₂. Crystal chemical analysis of scandium intermetallic compounds of stoichiometric composition ScM2X2 (M=d-element; X=p-element) was performed. Scandium occupies a special place among rare earths and shows crystal chemical affinity both with rare earths and Zr and Hf.

Keywords: ternary silicides, rare earth elements, single crystal, crystal structure.

Стаття надійшла до редколегії 29.10.2021 Прийнята до друку 10.06.2022