ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63. С. 82 – 87 Visnyk of the Lviv University. Series Chemistry. 2022. Issue 63. Р. 82 – 87

УДК 546.3-866.711.682

КРИСТАЛІЧНА СТРУКТУРА СПОЛУК Li2CuGa та LiCu2Ga

К. Зайцева^{*}, Г. Дмитрів

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: kateryna.zaitseva@lnu.edu.ua

Синтезовано та рентгенівським дифракційним методом порошку визначено склад і кристалічну структуру двох нових тернарних сполук: Li₂CuGa (структурний тип – Li₂AgSb, просторова група – F–43m, параметр комірки – a = 6,0942(7) Å; $R_{\rm Br} = 0,0789$, $R_{\rm F} = 0,0482$) і LiCu₂Ga (структурний тип Cu₂MnAl, просторова група Fm–3m, параметр комірки – a = 5,8964(8) Å; $R_{\rm Br} = 0,0711$, $R_{\rm F} = 0,0311$).

Ключові слова: літій, купрум, галій, рентгенівський дифракційний метод порошку, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6301.082

1. Вступ

Діаграму фазових рівноваг для потрійної системи Li–Cu–Ga сьогодні не побудовано, з літературних джерел відомо про існування однієї тернарної фази у цій системі Li₁₃Cu₆Ga₂₁ (структурний тип Li₁₃Cu₆Ga₂₁, просторова група *Im*–3, символ Пірсона *cI*160) [1].

Сплави літію надалі залишаються перспективними матеріалами для анодів хімічних джерел струму [2], тому пошук нових літійвмісних інтерметалічних фаз та вивчення їх кристалічної структури були завданням нашого дослідження.

2. Матеріали та методика експерименту

Зразки складів Li₂CuGa та LiCu₂Ga синтезували в електродуговій печі в атмосфері очищеного аргону із наважок чистих компонентів (вміст основного компонента: літій \geq 99,8 мас. %, купрум та галій \geq 99,99 мас. %). Сплави гомогенізували за температури 200 °С протягом двох місяців у танталових контейнерах, запаяних в евакуйовані кварцові ампули. Після відпалу сплави зберігали під шаром очищеної та зневодненої парафінової олії. Рентгенівські порошкові дифрактограми з синтезованих сплавів отримано на порошковому дифрактограми з теоретичними дифрактограмами чистих компонентів, бінарних та тернарних сполук, розрахованими за допомогою програми PowderCell [3].

Уточнення кристалічної структури сполук Li₂CuGa та LiCu₂Ga проводили методом порошку за дифрактограмами з використанням програми FULLPROF [4], за методом Рітвельда [5].

[©] Зайцева К., Дмитрів Г., 2022

3. Результати досліджень та їх обговорення

Експериментальні, розраховані та різницеві дифрактограми зразків Li₂CuGa та LiCu₂Ga зображено на рис. 1. Умови дифракційних досліджень та результати уточнення структури сполуки наведено в табл. 1.

Рис. 1. Експериментальні (кружечки), розраховані (суцільна лінія) та різницеві (внизу) дифрактограми зразків складу: *a* – Li₂CuGa; *б* – LiCu₂Ga
Fig. 1. Experimental (circles), calculated (solid line) and difference (below) diffraction patterns of samples of composition: *a* – Li₂CuGa; *b* – LiCu₂Ga

c c .

Таблиця 1

Table 1

Умови проведення експерименту та результати уточнення структури сполук Li₂CuGa та LiCu₂Ga

а а.

....

experimenta	f Li ₂ CuGa and LiCu ₂ Ga compour	g the structure
юлуки	Li ₂ CuGa	LiCu ₂ Ga

Склад сполуки	L1 ₂ CuGa	L1Cu ₂ Ga
Структурний тип	Li ₂ AgSb	Cu ₂ MnAl
Просторова група	F-43m	Fm-3m
Символ Пірсона	cF24	cF24
Параметри комірки а, Å	6,0942(7)	5,8964(8)
Об'єм комірки V, Å ³	226,33	205
Дифрактометр	ДРОН-2.0 M	ДРОН-2.0 М
Випромінювання	Fe Ka	Fe Kα
Крок (град.)	0,05°	0,05°
20макс.	87, 565	82,142
Фактори достовірності	$R_{\rm Br} = 0,0789,$	$R_{\rm Br} = 0,0711,$
	$R_{\rm F} = 0,0482$	$R_{\rm F} = 0,0311$

Уточнення кристалографічних параметрів тернарних фаз Li₂CuGa та LiCu₂Ga провели методом Рітвельда. Оскільки дифрактограма зразка Li₂CuGa та LiCu₂Ga дуже подібна до дифрактограм сполук Li₂AgIn (структурний тип – MnCu₂Al, просторова група – *Fm*–3*m*, параметр комірки – a = 6,5681(5) Å) [6] і LiAg₂In (структурний тип – Li₂AgSb, просторова група – *Fd*–3*m*, параметр комірки – a = 6,572(7) Å) [7], то для уточнення структури цих сполук узято координати атомів у сполуках системи Li–Ag–In. Координати атомів у структурі сполуки Li₂CuGa та LiCu₂Ga наведено у табл. 2 та 3. У структурах сполук усі атоми мають координаційні многогранники у вигляді ромбододекаедрів (рис. 2, 3).

Таблиця 2

Координати атомів у структурі сполуки Li₂CuGa

Table 2

Atomic coordinates for the structure of the $\mathrm{Li}_2\mathrm{CuGa}$ compound

Атом	ПСТ	x	у	z
Li1	4a	0	0	0
Li2	4c	1/4	1/4	1/4
Cu	4b	1/2	1/2	1/2
Ga	4d	3/4	3/4	3/4

Таблиця 3

Table 3

Atomic coordinates for the structure of the LiCu2Ga compound

Координати атомів у структурі сполуки LiCu2Ga

Атом	ПСТ	x	У	Z
Li	4b	1/2	1/2	1/2
Cu	8c	1/4	1/4	1/4
Ga	4a	0	0	0

Рис. 2. Вміст елементарної комірки і координаційні многогранники атомів у структурі сполуки Li₂CuGa Fig. 2. The unit cell of the Li₂CuGa structure and the coordination polyhedra of atoms

Рис. 3. Вміст елементарної комірки і координаційні многогранники атомів у структурі сполуки LiCu₂Ga Fig. 3. The unit cell of the LiCu₂Ga structure and the coordination polyhedra of atoms

У системі Li–Cu–Ga утворюються дві тернарні сполуки Li₂CuGa та LiCu₂Ga зі співвідношенням компонентів 2:1:1 та 1:2:1, що є досить цікавим, оскільки атоми Li, Cu та Ga сильно відрізняються за природою (*s*-метал, *d*-метал та *p*-метал) та розмірами (металічні радіуси: Li – 1,52 Å; Cu – 1,28 Å; Ga – 1,35 Å). Незважаючи на це, у структурах обох сполук усім атомам відповідає аналогічна координація атомів – ромбододекаедр та ідентичні значення міжатомних відстаней: у структурі сполуки Li₂CuGa вісім відстаней довжиною 2,6389 Å та шість відстаней – 3,0471 Å; у структурі сполуки LiCu₂Ga вісім відстаней довжиною 2,5532 Å та шість відстаней – 2,9482 Å.

4. Висновки

У системі Li–Cu–Ga виявлено існування двох нових сполук Li₂CuGa та LiCu₂Ga. Сполука Li₂CuGa кристалізується в структурному типі Li₂AgSb, просторова група F-43m, a = 6,0942(7) Å. Сполука LiCu₂Ga кристалізується в структурному типі Cu₂MnAl, просторова група Fm-3m, a = 5,8964(8) Å.

- 1. Теслюк М. Ю. Тернарні фази Лавеса в системах Li-Cu-Zn, Li-Cu-Ga та Li-Cu-Ge // Допов. Акад. наук УРСР. 1965. С. 1329–133.
- Yang X., Peng Y., Hou J., Liu Y., Jian X. A review for modified Li composite anode: Principle, preparation and challenge // Nanotechnology Reviews. 2020. Vol. 9. P. 1610–1624. DOI: https://doi.org/10.1515/ntrev-2020-0120
- 3. *Kraus W. Nolze G.* PowderCell for Windows // Federal Institute for Materials Research and Testing. Berlin, 1999.
- 4. *Rodriguez-Carvajal J.* FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis // Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse, France, 1990. P. 127.
- 5. *Rietveld H. M.* A profile refinement method for nuclear and magnetic structures // J. Appl. Cryst. 1969. Vol. 2. P. 65–71.
- Dmytriv G., Pauly H., Ehrenberg H., Pavlyuk V., Vollmar E. Homogeneity range of the NaTl-type Zintl phase in the ternary system Li–In–Ag // J. Solid State Chem. 2005. Vol. 178. P. 2825–2831. DOI: https://doi.org/10.1016/j.jssc.2005.06.033
- Pavlyuk V., Dmytriv G., Chumak I., Ehrenberg H., Pauly H. The crystal structure of the LiAg₂In compound // J. Solid State Chem. 2005. Vol. 178. P. 3303–3307. DOI: http://dx.doi.org/10.1016/j.jssc.2005.08.005

86

CRYSTAL STRUCTURE OF Li₂CuGa AND LiCu₂Ga COMPOUNDS

K. Zaitseva^{*}, G. Dmytriv

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: kateryna.zaitseva@lnu.edu.ua

Lithium alloys continue to be promising materials for anodes of chemical current sources, so the search for new lithium-containing intermetallic phases and the study of their crystal structure were the task of our study.

In continuation of the study of the Li–Cu–Ga system, two alloys of Li₂CuGa and LiCu₂Ga were synthesized. The alloys were synthesized in an electric arc furnace in an atmosphere of purified argon from portions of pure components (content of the main component: Lithium \geq 99.8 wt. %, copper and gallium \geq 99.99 wt. %). The alloys were homogenized at 200 °C for two months in tantalum containers sealed in evacuated quartz ampoules. After annealing, the alloys were stored under a layer of purified and dehydrated paraffin oil. X-ray powder diffraction patterns from the synthesized alloys were obtained on a powder diffractometer DRON-2.0 M (FeK α -radiation).

By comparing the obtained diffractograms with previously studied alloys, it was assumed that the compounds Li₂CuGa and LiCu₂Ga will be isostructural with the phases Li₂AgIn and LiAg₂In. Based on these models, the crystal structure was refined by the Rietveld method: Li₂CuGa, (Li2AgSb, F-43m, a = 6.0942 (7) Å; $R_{Br} = 0.0789$, $R_F = 0.0482$); LiCu₂Ga (Cu₂MnAl, Fm-3m, a = 5.8964 (8) Å; $R_{Br} = 0.0711$, $R_F = 0.0311$).

In the Li–Cu–Ga system, two ternary compounds are formed with the ratio of components 2:1:1 and 1:2:1, which is quite interesting because Li, Cu and Ga atoms differ greatly by nature (*s*-metal, *d*-metal and *p*-metal) and size (metal radii: Li – 1.52 Å; Cu – 1.28 Å; Ga – 1.35 Å). Nevertheless, in the structures of both compounds all atoms have a similar coordination of atoms - rhombododecahedron and identical values of interatomic distances: in the structure of the compound Li₂CuGa eight distances with a length 2.6389 Å and six distances – 3.0471 Å; in the structure of the LiCu₂Ga compound there are eight distances with a length of 2.5532 Å and six distances with a length of 2.9482 Å.

Keywords: lithium, copper, gallium, X-ray powder diffraction method, crystal structure.

Стаття надійшла до редколегії 01.11.2021 Прийнята до друку 10.06.2022